summaryrefslogtreecommitdiffstats
path: root/src/vulkan/genX_cmd_buffer.c
blob: 5498d1d68c69bb6af5c35a9c8cbfdcc001f8be2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include <assert.h>
#include <stdbool.h>

#include "anv_private.h"

#if (ANV_GEN == 9)
#  include "genxml/gen9_pack.h"
#elif (ANV_GEN == 8)
#  include "genxml/gen8_pack.h"
#elif (ANV_IS_HASWELL)
#  include "genxml/gen75_pack.h"
#elif (ANV_GEN == 7)
#  include "genxml/gen7_pack.h"
#endif

void
genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
{
   struct anv_device *device = cmd_buffer->device;
   struct anv_bo *scratch_bo = NULL;

   cmd_buffer->state.scratch_size =
      anv_block_pool_size(&device->scratch_block_pool);
   if (cmd_buffer->state.scratch_size > 0)
      scratch_bo = &device->scratch_block_pool.bo;

/* XXX: Do we need this on more than just BDW? */
#if (ANV_GEN >= 8)
   /* Emit a render target cache flush.
    *
    * This isn't documented anywhere in the PRM.  However, it seems to be
    * necessary prior to changing the surface state base adress.  Without
    * this, we get GPU hangs when using multi-level command buffers which
    * clear depth, reset state base address, and then go render stuff.
    */
   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
                  .RenderTargetCacheFlushEnable = true);
#endif

   anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS),
      .GeneralStateBaseAddress = { scratch_bo, 0 },
      .GeneralStateMemoryObjectControlState = GENX(MOCS),
      .GeneralStateBaseAddressModifyEnable = true,

      .SurfaceStateBaseAddress = anv_cmd_buffer_surface_base_address(cmd_buffer),
      .SurfaceStateMemoryObjectControlState = GENX(MOCS),
      .SurfaceStateBaseAddressModifyEnable = true,

      .DynamicStateBaseAddress = { &device->dynamic_state_block_pool.bo, 0 },
      .DynamicStateMemoryObjectControlState = GENX(MOCS),
      .DynamicStateBaseAddressModifyEnable = true,

      .IndirectObjectBaseAddress = { NULL, 0 },
      .IndirectObjectMemoryObjectControlState = GENX(MOCS),
      .IndirectObjectBaseAddressModifyEnable = true,

      .InstructionBaseAddress = { &device->instruction_block_pool.bo, 0 },
      .InstructionMemoryObjectControlState = GENX(MOCS),
      .InstructionBaseAddressModifyEnable = true,

#  if (ANV_GEN >= 8)
      /* Broadwell requires that we specify a buffer size for a bunch of
       * these fields.  However, since we will be growing the BO's live, we
       * just set them all to the maximum.
       */
      .GeneralStateBufferSize = 0xfffff,
      .GeneralStateBufferSizeModifyEnable = true,
      .DynamicStateBufferSize = 0xfffff,
      .DynamicStateBufferSizeModifyEnable = true,
      .IndirectObjectBufferSize = 0xfffff,
      .IndirectObjectBufferSizeModifyEnable = true,
      .InstructionBufferSize = 0xfffff,
      .InstructionBuffersizeModifyEnable = true,
#  endif
   );

   /* After re-setting the surface state base address, we have to do some
    * cache flusing so that the sampler engine will pick up the new
    * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
    * Shared Function > 3D Sampler > State > State Caching (page 96):
    *
    *    Coherency with system memory in the state cache, like the texture
    *    cache is handled partially by software. It is expected that the
    *    command stream or shader will issue Cache Flush operation or
    *    Cache_Flush sampler message to ensure that the L1 cache remains
    *    coherent with system memory.
    *
    *    [...]
    *
    *    Whenever the value of the Dynamic_State_Base_Addr,
    *    Surface_State_Base_Addr are altered, the L1 state cache must be
    *    invalidated to ensure the new surface or sampler state is fetched
    *    from system memory.
    *
    * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
    * which, according the PIPE_CONTROL instruction documentation in the
    * Broadwell PRM:
    *
    *    Setting this bit is independent of any other bit in this packet.
    *    This bit controls the invalidation of the L1 and L2 state caches
    *    at the top of the pipe i.e. at the parsing time.
    *
    * Unfortunately, experimentation seems to indicate that state cache
    * invalidation through a PIPE_CONTROL does nothing whatsoever in
    * regards to surface state and binding tables.  In stead, it seems that
    * invalidating the texture cache is what is actually needed.
    *
    * XXX:  As far as we have been able to determine through
    * experimentation, shows that flush the texture cache appears to be
    * sufficient.  The theory here is that all of the sampling/rendering
    * units cache the binding table in the texture cache.  However, we have
    * yet to be able to actually confirm this.
    */
   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
                  .TextureCacheInvalidationEnable = true);
}

void genX(CmdPipelineBarrier)(
    VkCommandBuffer                             commandBuffer,
    VkPipelineStageFlags                        srcStageMask,
    VkPipelineStageFlags                        destStageMask,
    VkBool32                                    byRegion,
    uint32_t                                    memoryBarrierCount,
    const VkMemoryBarrier*                      pMemoryBarriers,
    uint32_t                                    bufferMemoryBarrierCount,
    const VkBufferMemoryBarrier*                pBufferMemoryBarriers,
    uint32_t                                    imageMemoryBarrierCount,
    const VkImageMemoryBarrier*                 pImageMemoryBarriers)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   uint32_t b, *dw;

   /* XXX: Right now, we're really dumb and just flush whatever categories
    * the app asks for.  One of these days we may make this a bit better
    * but right now that's all the hardware allows for in most areas.
    */
   VkAccessFlags src_flags = 0;
   VkAccessFlags dst_flags = 0;

   for (uint32_t i = 0; i < memoryBarrierCount; i++) {
      src_flags |= pMemoryBarriers[i].srcAccessMask;
      dst_flags |= pMemoryBarriers[i].dstAccessMask;
   }

   for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
      src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
      dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
   }

   for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
      src_flags |= pImageMemoryBarriers[i].srcAccessMask;
      dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
   }

   /* Mask out the Source access flags we care about */
   const uint32_t src_mask =
      VK_ACCESS_SHADER_WRITE_BIT |
      VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
      VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
      VK_ACCESS_TRANSFER_WRITE_BIT;

   src_flags = src_flags & src_mask;

   /* Mask out the destination access flags we care about */
   const uint32_t dst_mask =
      VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
      VK_ACCESS_INDEX_READ_BIT |
      VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT |
      VK_ACCESS_UNIFORM_READ_BIT |
      VK_ACCESS_SHADER_READ_BIT |
      VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
      VK_ACCESS_TRANSFER_READ_BIT;

   dst_flags = dst_flags & dst_mask;

   /* The src flags represent how things were used previously.  This is
    * what we use for doing flushes.
    */
   struct GENX(PIPE_CONTROL) flush_cmd = {
      GENX(PIPE_CONTROL_header),
      .PostSyncOperation = NoWrite,
   };

   for_each_bit(b, src_flags) {
      switch ((VkAccessFlagBits)(1 << b)) {
      case VK_ACCESS_SHADER_WRITE_BIT:
         flush_cmd.DCFlushEnable = true;
         break;
      case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
         flush_cmd.RenderTargetCacheFlushEnable = true;
         break;
      case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
         flush_cmd.DepthCacheFlushEnable = true;
         break;
      case VK_ACCESS_TRANSFER_WRITE_BIT:
         flush_cmd.RenderTargetCacheFlushEnable = true;
         flush_cmd.DepthCacheFlushEnable = true;
         break;
      default:
         unreachable("should've masked this out by now");
      }
   }

   /* If we end up doing two PIPE_CONTROLs, the first, flusing one also has to
    * stall and wait for the flushing to finish, so we don't re-dirty the
    * caches with in-flight rendering after the second PIPE_CONTROL
    * invalidates.
    */

   if (dst_flags)
      flush_cmd.CommandStreamerStallEnable = true;

   if (src_flags && dst_flags) {
      dw = anv_batch_emit_dwords(&cmd_buffer->batch, GENX(PIPE_CONTROL_length));
      GENX(PIPE_CONTROL_pack)(&cmd_buffer->batch, dw, &flush_cmd);
   }

   /* The dst flags represent how things will be used in the future.  This
    * is what we use for doing cache invalidations.
    */
   struct GENX(PIPE_CONTROL) invalidate_cmd = {
      GENX(PIPE_CONTROL_header),
      .PostSyncOperation = NoWrite,
   };

   for_each_bit(b, dst_flags) {
      switch ((VkAccessFlagBits)(1 << b)) {
      case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
      case VK_ACCESS_INDEX_READ_BIT:
      case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
         invalidate_cmd.VFCacheInvalidationEnable = true;
         break;
      case VK_ACCESS_UNIFORM_READ_BIT:
         invalidate_cmd.ConstantCacheInvalidationEnable = true;
         /* fallthrough */
      case VK_ACCESS_SHADER_READ_BIT:
         invalidate_cmd.TextureCacheInvalidationEnable = true;
         break;
      case VK_ACCESS_COLOR_ATTACHMENT_READ_BIT:
         invalidate_cmd.TextureCacheInvalidationEnable = true;
         break;
      case VK_ACCESS_TRANSFER_READ_BIT:
         invalidate_cmd.TextureCacheInvalidationEnable = true;
         break;
      default:
         unreachable("should've masked this out by now");
      }
   }

   if (dst_flags) {
      dw = anv_batch_emit_dwords(&cmd_buffer->batch, GENX(PIPE_CONTROL_length));
      GENX(PIPE_CONTROL_pack)(&cmd_buffer->batch, dw, &invalidate_cmd);
   }
}

static void
emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
                             struct anv_bo *bo, uint32_t offset)
{
   uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
                                 GENX(3DSTATE_VERTEX_BUFFERS));

   GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
      &(struct GENX(VERTEX_BUFFER_STATE)) {
         .VertexBufferIndex = 32, /* Reserved for this */
         .AddressModifyEnable = true,
         .BufferPitch = 0,
#if (ANV_GEN >= 8)
         .MemoryObjectControlState = GENX(MOCS),
         .BufferStartingAddress = { bo, offset },
         .BufferSize = 8
#else
         .VertexBufferMemoryObjectControlState = GENX(MOCS),
         .BufferStartingAddress = { bo, offset },
         .EndAddress = { bo, offset + 8 },
#endif
      });
}

static void
emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
                          uint32_t base_vertex, uint32_t base_instance)
{
   struct anv_state id_state =
      anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);

   ((uint32_t *)id_state.map)[0] = base_vertex;
   ((uint32_t *)id_state.map)[1] = base_instance;

   if (!cmd_buffer->device->info.has_llc)
      anv_state_clflush(id_state);

   emit_base_vertex_instance_bo(cmd_buffer,
      &cmd_buffer->device->dynamic_state_block_pool.bo, id_state.offset);
}

void genX(CmdDraw)(
    VkCommandBuffer                             commandBuffer,
    uint32_t                                    vertexCount,
    uint32_t                                    instanceCount,
    uint32_t                                    firstVertex,
    uint32_t                                    firstInstance)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;

   genX(cmd_buffer_flush_state)(cmd_buffer);

   if (cmd_buffer->state.pipeline->vs_prog_data.uses_basevertex ||
       cmd_buffer->state.pipeline->vs_prog_data.uses_baseinstance)
      emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);

   anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE),
      .VertexAccessType                         = SEQUENTIAL,
      .PrimitiveTopologyType                    = pipeline->topology,
      .VertexCountPerInstance                   = vertexCount,
      .StartVertexLocation                      = firstVertex,
      .InstanceCount                            = instanceCount,
      .StartInstanceLocation                    = firstInstance,
      .BaseVertexLocation                       = 0);
}

void genX(CmdDrawIndexed)(
    VkCommandBuffer                             commandBuffer,
    uint32_t                                    indexCount,
    uint32_t                                    instanceCount,
    uint32_t                                    firstIndex,
    int32_t                                     vertexOffset,
    uint32_t                                    firstInstance)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;

   genX(cmd_buffer_flush_state)(cmd_buffer);

   if (cmd_buffer->state.pipeline->vs_prog_data.uses_basevertex ||
       cmd_buffer->state.pipeline->vs_prog_data.uses_baseinstance)
      emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);

   anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE),
      .VertexAccessType                         = RANDOM,
      .PrimitiveTopologyType                    = pipeline->topology,
      .VertexCountPerInstance                   = indexCount,
      .StartVertexLocation                      = firstIndex,
      .InstanceCount                            = instanceCount,
      .StartInstanceLocation                    = firstInstance,
      .BaseVertexLocation                       = vertexOffset);
}

/* Auto-Draw / Indirect Registers */
#define GEN7_3DPRIM_END_OFFSET          0x2420
#define GEN7_3DPRIM_START_VERTEX        0x2430
#define GEN7_3DPRIM_VERTEX_COUNT        0x2434
#define GEN7_3DPRIM_INSTANCE_COUNT      0x2438
#define GEN7_3DPRIM_START_INSTANCE      0x243C
#define GEN7_3DPRIM_BASE_VERTEX         0x2440

static void
emit_lrm(struct anv_batch *batch,
         uint32_t reg, struct anv_bo *bo, uint32_t offset)
{
   anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM),
                  .RegisterAddress = reg,
                  .MemoryAddress = { bo, offset });
}

static void
emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
{
   anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM),
                  .RegisterOffset = reg,
                  .DataDWord = imm);
}

void genX(CmdDrawIndirect)(
    VkCommandBuffer                             commandBuffer,
    VkBuffer                                    _buffer,
    VkDeviceSize                                offset,
    uint32_t                                    drawCount,
    uint32_t                                    stride)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
   struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
   struct anv_bo *bo = buffer->bo;
   uint32_t bo_offset = buffer->offset + offset;

   genX(cmd_buffer_flush_state)(cmd_buffer);

   if (cmd_buffer->state.pipeline->vs_prog_data.uses_basevertex ||
       cmd_buffer->state.pipeline->vs_prog_data.uses_baseinstance)
      emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 8);

   emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
   emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
   emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
   emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
   emit_lri(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, 0);

   anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE),
      .IndirectParameterEnable                  = true,
      .VertexAccessType                         = SEQUENTIAL,
      .PrimitiveTopologyType                    = pipeline->topology);
}

void genX(CmdDrawIndexedIndirect)(
    VkCommandBuffer                             commandBuffer,
    VkBuffer                                    _buffer,
    VkDeviceSize                                offset,
    uint32_t                                    drawCount,
    uint32_t                                    stride)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
   struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
   struct anv_bo *bo = buffer->bo;
   uint32_t bo_offset = buffer->offset + offset;

   genX(cmd_buffer_flush_state)(cmd_buffer);

   /* TODO: We need to stomp base vertex to 0 somehow */
   if (cmd_buffer->state.pipeline->vs_prog_data.uses_basevertex ||
       cmd_buffer->state.pipeline->vs_prog_data.uses_baseinstance)
      emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 12);

   emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
   emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
   emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
   emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
   emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);

   anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE),
      .IndirectParameterEnable                  = true,
      .VertexAccessType                         = RANDOM,
      .PrimitiveTopologyType                    = pipeline->topology);
}


void genX(CmdDispatch)(
    VkCommandBuffer                             commandBuffer,
    uint32_t                                    x,
    uint32_t                                    y,
    uint32_t                                    z)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
   struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;

   if (prog_data->uses_num_work_groups) {
      struct anv_state state =
         anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
      uint32_t *sizes = state.map;
      sizes[0] = x;
      sizes[1] = y;
      sizes[2] = z;
      if (!cmd_buffer->device->info.has_llc)
         anv_state_clflush(state);
      cmd_buffer->state.num_workgroups_offset = state.offset;
      cmd_buffer->state.num_workgroups_bo =
         &cmd_buffer->device->dynamic_state_block_pool.bo;
   }

   genX(cmd_buffer_flush_compute_state)(cmd_buffer);

   anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER),
                  .SIMDSize = prog_data->simd_size / 16,
                  .ThreadDepthCounterMaximum = 0,
                  .ThreadHeightCounterMaximum = 0,
                  .ThreadWidthCounterMaximum = pipeline->cs_thread_width_max - 1,
                  .ThreadGroupIDXDimension = x,
                  .ThreadGroupIDYDimension = y,
                  .ThreadGroupIDZDimension = z,
                  .RightExecutionMask = pipeline->cs_right_mask,
                  .BottomExecutionMask = 0xffffffff);

   anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH));
}

#define GPGPU_DISPATCHDIMX 0x2500
#define GPGPU_DISPATCHDIMY 0x2504
#define GPGPU_DISPATCHDIMZ 0x2508

void genX(CmdDispatchIndirect)(
    VkCommandBuffer                             commandBuffer,
    VkBuffer                                    _buffer,
    VkDeviceSize                                offset)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
   struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
   struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;
   struct anv_bo *bo = buffer->bo;
   uint32_t bo_offset = buffer->offset + offset;

   if (prog_data->uses_num_work_groups) {
      cmd_buffer->state.num_workgroups_offset = bo_offset;
      cmd_buffer->state.num_workgroups_bo = bo;
   }

   genX(cmd_buffer_flush_compute_state)(cmd_buffer);

   emit_lrm(&cmd_buffer->batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
   emit_lrm(&cmd_buffer->batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
   emit_lrm(&cmd_buffer->batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);

   anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER),
                  .IndirectParameterEnable = true,
                  .SIMDSize = prog_data->simd_size / 16,
                  .ThreadDepthCounterMaximum = 0,
                  .ThreadHeightCounterMaximum = 0,
                  .ThreadWidthCounterMaximum = pipeline->cs_thread_width_max - 1,
                  .RightExecutionMask = pipeline->cs_right_mask,
                  .BottomExecutionMask = 0xffffffff);

   anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH));
}

void
genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
{
   if (cmd_buffer->state.current_pipeline != _3D) {
      anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT),
#if ANV_GEN >= 9
                     .MaskBits = 3,
#endif
                     .PipelineSelection = _3D);
      cmd_buffer->state.current_pipeline = _3D;
   }
}

static void
cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
{
   struct anv_device *device = cmd_buffer->device;
   const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
   const struct anv_image_view *iview =
      anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
   const struct anv_image *image = iview ? iview->image : NULL;
   const struct anv_format *anv_format =
      iview ? anv_format_for_vk_format(iview->vk_format) : NULL;
   const bool has_depth = iview && anv_format->has_depth;
   const bool has_stencil = iview && anv_format->has_stencil;

   /* FIXME: Implement the PMA stall W/A */
   /* FIXME: Width and Height are wrong */

   /* Emit 3DSTATE_DEPTH_BUFFER */
   if (has_depth) {
      anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BUFFER),
         .SurfaceType = SURFTYPE_2D,
         .DepthWriteEnable = true,
         .StencilWriteEnable = has_stencil,
         .HierarchicalDepthBufferEnable = false,
         .SurfaceFormat = isl_surf_get_depth_format(&device->isl_dev,
                                                    &image->depth_surface.isl),
         .SurfacePitch = image->depth_surface.isl.row_pitch - 1,
         .SurfaceBaseAddress = {
            .bo = image->bo,
            .offset = image->depth_surface.offset,
         },
         .Height = fb->height - 1,
         .Width = fb->width - 1,
         .LOD = 0,
         .Depth = 1 - 1,
         .MinimumArrayElement = 0,
         .DepthBufferObjectControlState = GENX(MOCS),
#if ANV_GEN >= 8
         .SurfaceQPitch = isl_surf_get_array_pitch_el_rows(&image->depth_surface.isl) >> 2,
#endif
         .RenderTargetViewExtent = 1 - 1);
   } else {
      /* Even when no depth buffer is present, the hardware requires that
       * 3DSTATE_DEPTH_BUFFER be programmed correctly. The Broadwell PRM says:
       *
       *    If a null depth buffer is bound, the driver must instead bind depth as:
       *       3DSTATE_DEPTH.SurfaceType = SURFTYPE_2D
       *       3DSTATE_DEPTH.Width = 1
       *       3DSTATE_DEPTH.Height = 1
       *       3DSTATE_DEPTH.SuraceFormat = D16_UNORM
       *       3DSTATE_DEPTH.SurfaceBaseAddress = 0
       *       3DSTATE_DEPTH.HierarchicalDepthBufferEnable = 0
       *       3DSTATE_WM_DEPTH_STENCIL.DepthTestEnable = 0
       *       3DSTATE_WM_DEPTH_STENCIL.DepthBufferWriteEnable = 0
       *
       * The PRM is wrong, though. The width and height must be programmed to
       * actual framebuffer's width and height, even when neither depth buffer
       * nor stencil buffer is present.
       */
      anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BUFFER),
         .SurfaceType = SURFTYPE_2D,
         .SurfaceFormat = D16_UNORM,
         .Width = fb->width - 1,
         .Height = fb->height - 1,
         .StencilWriteEnable = has_stencil);
   }

   /* Emit 3DSTATE_STENCIL_BUFFER */
   if (has_stencil) {
      anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STENCIL_BUFFER),
#if ANV_GEN >= 8 || ANV_IS_HASWELL
         .StencilBufferEnable = true,
#endif
         .StencilBufferObjectControlState = GENX(MOCS),

         /* Stencil buffers have strange pitch. The PRM says:
          *
          *    The pitch must be set to 2x the value computed based on width,
          *    as the stencil buffer is stored with two rows interleaved.
          */
         .SurfacePitch = 2 * image->stencil_surface.isl.row_pitch - 1,

#if ANV_GEN >= 8
         .SurfaceQPitch = isl_surf_get_array_pitch_el_rows(&image->stencil_surface.isl) >> 2,
#endif
         .SurfaceBaseAddress = {
            .bo = image->bo,
            .offset = image->offset + image->stencil_surface.offset,
         });
   } else {
      anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STENCIL_BUFFER));
   }

   /* Disable hierarchial depth buffers. */
   anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_HIER_DEPTH_BUFFER));

   /* Clear the clear params. */
   anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CLEAR_PARAMS));
}

/**
 * @see anv_cmd_buffer_set_subpass()
 */
void
genX(cmd_buffer_set_subpass)(struct anv_cmd_buffer *cmd_buffer,
                             struct anv_subpass *subpass)
{
   cmd_buffer->state.subpass = subpass;

   cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;

   cmd_buffer_emit_depth_stencil(cmd_buffer);
}

void genX(CmdBeginRenderPass)(
    VkCommandBuffer                             commandBuffer,
    const VkRenderPassBeginInfo*                pRenderPassBegin,
    VkSubpassContents                           contents)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
   ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);

   cmd_buffer->state.framebuffer = framebuffer;
   cmd_buffer->state.pass = pass;
   anv_cmd_state_setup_attachments(cmd_buffer, pRenderPassBegin);

   genX(flush_pipeline_select_3d)(cmd_buffer);

   const VkRect2D *render_area = &pRenderPassBegin->renderArea;

   anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DRAWING_RECTANGLE),
                  .ClippedDrawingRectangleYMin = render_area->offset.y,
                  .ClippedDrawingRectangleXMin = render_area->offset.x,
                  .ClippedDrawingRectangleYMax =
                     render_area->offset.y + render_area->extent.height - 1,
                  .ClippedDrawingRectangleXMax =
                     render_area->offset.x + render_area->extent.width - 1,
                  .DrawingRectangleOriginY = 0,
                  .DrawingRectangleOriginX = 0);

   genX(cmd_buffer_set_subpass)(cmd_buffer, pass->subpasses);
   anv_cmd_buffer_clear_subpass(cmd_buffer);
}

void genX(CmdNextSubpass)(
    VkCommandBuffer                             commandBuffer,
    VkSubpassContents                           contents)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);

   assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);

   anv_cmd_buffer_resolve_subpass(cmd_buffer);
   genX(cmd_buffer_set_subpass)(cmd_buffer, cmd_buffer->state.subpass + 1);
   anv_cmd_buffer_clear_subpass(cmd_buffer);
}

void genX(CmdEndRenderPass)(
    VkCommandBuffer                             commandBuffer)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);

   anv_cmd_buffer_resolve_subpass(cmd_buffer);
}