diff options
author | David Wagner <david.wagner@intel.com> | 2014-03-11 14:20:53 +0100 |
---|---|---|
committer | Mattijs Korpershoek <mattijsx.korpershoek@intel.com> | 2014-06-25 10:52:26 +0200 |
commit | 59cc1e33810c55e6fa1e3bd320e1cf29e24d23be (patch) | |
tree | 632b95d1026ff684b3b37627a17db2922c0f74e7 /parameter | |
parent | 8ef87a1fe5d2f05557856efa6faf070bb9b03337 (diff) | |
download | external_parameter-framework-59cc1e33810c55e6fa1e3bd320e1cf29e24d23be.zip external_parameter-framework-59cc1e33810c55e6fa1e3bd320e1cf29e24d23be.tar.gz external_parameter-framework-59cc1e33810c55e6fa1e3bd320e1cf29e24d23be.tar.bz2 |
Correct FixedPointParameter display precision
BZ: 176178
Explain the precision computation (m * log10(2)):
For a Qn.m number, the step between each storable number is 2^(-m).
Hence, on a decimal representation, the Dth digit after the decimal
point can take all possible values (1..9) - meaning that it is
significant - only if
2^(-m) <= 10^(-D)
-m <= log2(10^(-D))
-m <= log10(10^(-D)) / log10(2)
-m <= -D / log10(2)
m * log10(2) >= D
Conversly, the Dth digit can be represented if
D <= m * log10(2)
We add 1 to the precision in order to display the digit right after the last
significant digit. This will lead to oddities such as:
$ setParameter /Test/test/f32_Q8.23 0.1234569
$ getParameter /Test/test/f32_Q8.23
> 0.1234570
but it will avoid modifying raw values when converting from string to Q-format
and back to string.
Also, use std::setprecision() on the stream instead of manually truncating the
displayed number.
Change-Id: Ief2a7daabf4505ae4312e79036b0374f53368cac
Signed-off-by: David Wagner <david.wagner@intel.com>
Diffstat (limited to 'parameter')
-rw-r--r-- | parameter/FixedPointParameterType.cpp | 27 |
1 files changed, 24 insertions, 3 deletions
diff --git a/parameter/FixedPointParameterType.cpp b/parameter/FixedPointParameterType.cpp index 6a873b3..0f9369d 100644 --- a/parameter/FixedPointParameterType.cpp +++ b/parameter/FixedPointParameterType.cpp @@ -197,9 +197,27 @@ bool CFixedPointParameterType::fromBlackboard(string& strValue, const uint32_t& double dData = asDouble(iData); // Set up the precision of the display and notation type + // For a Qn.m number, the step between each storable number is 2^(-m). + // Hence, on a decimal representation, the Dth digit after the decimal + // point can take all possible values (1..9) - meaning that it is + // significant - only if + // + // 2^(-m) <= 10^(-D) + // -m <= log2(10^(-D)) + // -m <= log10(10^(-D)) / log10(2) + // -m <= -D / log10(2) + // m * log10(2) >= D + // + // Conversly, the Dth digit can be represented if + // + // D <= m * log10(2) + // + // Since floor(x) <= x, we can write (replacing D with iPrecision and m + // with _uiFractional) this next line. + // (we add 1 to avoid losing precision even though this last digit is + // not 100% significant) int iPrecision = (_uiFractional * log10(2.0)) + 1; - int iFactor = pow(10.0, iPrecision); - strStream << fixed << ((int64_t)(dData * iFactor)) / (double)iFactor; + strStream << fixed << setprecision(iPrecision) << dData; } strValue = strStream.str(); @@ -316,8 +334,11 @@ bool CFixedPointParameterType::checkValueAgainstRange(double dValue) const int32_t CFixedPointParameterType::asInteger(double dValue) const { // Do the conversion - int32_t iData = (int32_t)(dValue * (1UL << _uiFractional) + 0.5F - (double)(dValue < 0)); + // For Qn.m number, multiply by 2^n and round to the nearest integer + int32_t iData = (int32_t)(round(dValue * (1UL << _uiFractional))); // Left justify + // For a Qn.m number, shift 32 - (n + m + 1) bits to the left (the rest of + // the bits aren't used) iData <<= getSize() * 8 - getUtilSizeInBits(); return iData; |