1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
|
/*
* Copyright (c) 2011-2014, Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "FixedPointParameterType.h"
#include <stdlib.h>
#include <sstream>
#include <iomanip>
#include <assert.h>
#include <math.h>
#include "Parameter.h"
#include "ParameterAccessContext.h"
#include "ConfigurationAccessContext.h"
#include <errno.h>
#include <convert.hpp>
#define base CParameterType
CFixedPointParameterType::CFixedPointParameterType(const string& strName) : base(strName), _uiIntegral(0), _uiFractional(0)
{
}
string CFixedPointParameterType::getKind() const
{
return "FixedPointParameter";
}
// Element properties
void CFixedPointParameterType::showProperties(string& strResult) const
{
base::showProperties(strResult);
// Notation
strResult += "Notation: Q";
strResult += toString(_uiIntegral);
strResult += ".";
strResult += toString(_uiFractional);
strResult += "\n";
}
// XML Serialization value space handling
// Value space handling for configuration import
void CFixedPointParameterType::handleValueSpaceAttribute(CXmlElement& xmlConfigurableElementSettingsElement, CConfigurationAccessContext& configurationAccessContext) const
{
// Direction?
if (!configurationAccessContext.serializeOut()) {
// Get Value space from XML
if (xmlConfigurableElementSettingsElement.hasAttribute("ValueSpace")) {
configurationAccessContext.setValueSpaceRaw(xmlConfigurableElementSettingsElement.getAttributeBoolean("ValueSpace", "Raw"));
} else {
configurationAccessContext.setValueSpaceRaw(false);
}
} else {
// Provide value space only if not the default one
if (configurationAccessContext.valueSpaceIsRaw()) {
xmlConfigurableElementSettingsElement.setAttributeString("ValueSpace", "Raw");
}
}
}
bool CFixedPointParameterType::fromXml(const CXmlElement& xmlElement, CXmlSerializingContext& serializingContext)
{
// Size
uint32_t uiSizeInBits = xmlElement.getAttributeInteger("Size");
// Q notation
_uiIntegral = xmlElement.getAttributeInteger("Integral");
_uiFractional = xmlElement.getAttributeInteger("Fractional");
// Size vs. Q notation integrity check
if (uiSizeInBits < getUtilSizeInBits()) {
serializingContext.setError("Inconsistent Size vs. Q notation for " + getKind() + " " + xmlElement.getPath() + ": Summing (Integral + _uiFractional + 1) should not exceed given Size (" + xmlElement.getAttributeString("Size") + ")");
return false;
}
// Set the size
setSize(uiSizeInBits / 8);
return base::fromXml(xmlElement, serializingContext);
}
bool CFixedPointParameterType::toBlackboard(const string& strValue, uint32_t& uiValue, CParameterAccessContext& parameterAccessContext) const
{
bool bValueProvidedAsHexa = isHexadecimal(strValue);
// Check data integrity
if (bValueProvidedAsHexa && !parameterAccessContext.valueSpaceIsRaw()) {
parameterAccessContext.setError("Hexadecimal values are not supported for " + getKind() + " when selected value space is real:");
return false;
}
if (parameterAccessContext.valueSpaceIsRaw()) {
if (bValueProvidedAsHexa) {
return convertFromHexadecimal(strValue, uiValue, parameterAccessContext);
}
return convertFromDecimal(strValue, uiValue, parameterAccessContext);
}
return convertFromQnm(strValue, uiValue, parameterAccessContext);
}
void CFixedPointParameterType::setOutOfRangeError(const string& strValue, CParameterAccessContext& parameterAccessContext) const
{
ostringstream strStream;
strStream << "Value " << strValue << " standing out of admitted ";
if (!parameterAccessContext.valueSpaceIsRaw()) {
// Min/Max computation
double dMin = 0;
double dMax = 0;
getRange(dMin, dMax);
strStream << fixed << setprecision(_uiFractional)
<< "real range [" << dMin << ", " << dMax << "]";
} else {
// Min/Max computation
int32_t iMax = getMaxValue<uint32_t>();
int32_t iMin = -iMax - 1;
strStream << "raw range [";
if (isHexadecimal(strValue)) {
// Format Min
strStream << "0x" << hex << uppercase <<
setw(getSize() * 2) << setfill('0') << makeEncodable(iMin);
// Format Max
strStream << ", 0x" << hex << uppercase <<
setw(getSize() * 2) << setfill('0') << makeEncodable(iMax);
} else {
strStream << iMin << ", " << iMax;
}
strStream << "]";
}
strStream << " for " << getKind();
parameterAccessContext.setError(strStream.str());
}
bool CFixedPointParameterType::fromBlackboard(string& strValue, const uint32_t& uiValue, CParameterAccessContext& parameterAccessContext) const
{
int32_t iData = uiValue;
// Check encodability
assert(isEncodable((uint32_t)iData, false));
// Format
ostringstream strStream;
// Raw formatting?
if (parameterAccessContext.valueSpaceIsRaw()) {
// Hexa formatting?
if (parameterAccessContext.outputRawFormatIsHex()) {
strStream << "0x" << hex << uppercase << setw(getSize()*2) << setfill('0') << (uint32_t)iData;
} else {
// Sign extend
signExtend(iData);
strStream << iData;
}
} else {
// Sign extend
signExtend(iData);
// Conversion
double dData = binaryQnmToDouble(iData);
strStream << fixed << setprecision(_uiFractional) << dData;
}
strValue = strStream.str();
return true;
}
// Value access
bool CFixedPointParameterType::toBlackboard(double dUserValue, uint32_t& uiValue, CParameterAccessContext& parameterAccessContext) const
{
// Check that the value is within the allowed range for this type
if (!checkValueAgainstRange(dUserValue)) {
// Illegal value provided
parameterAccessContext.setError("Value out of range");
return false;
}
// Do the conversion
int32_t iData = doubleToBinaryQnm(dUserValue);
// Check integrity
assert(isEncodable((uint32_t)iData, true));
uiValue = iData;
return true;
}
bool CFixedPointParameterType::fromBlackboard(double& dUserValue, uint32_t uiValue, CParameterAccessContext& parameterAccessContext) const
{
(void)parameterAccessContext;
int32_t iData = uiValue;
// Check unsigned value is encodable
assert(isEncodable(uiValue, false));
// Sign extend
signExtend(iData);
dUserValue = binaryQnmToDouble(iData);
return true;
}
// Util size
uint32_t CFixedPointParameterType::getUtilSizeInBits() const
{
return _uiIntegral + _uiFractional + 1;
}
// Compute the range for the type (minimum and maximum values)
void CFixedPointParameterType::getRange(double& dMin, double& dMax) const
{
dMax = (double)((1UL << (_uiIntegral + _uiFractional)) - 1) / (1UL << _uiFractional);
dMin = -(double)(1UL << (_uiIntegral + _uiFractional)) / (1UL << _uiFractional);
}
bool CFixedPointParameterType::isHexadecimal(const string& strValue) const
{
return !strValue.compare(0, 2, "0x");
}
bool CFixedPointParameterType::convertFromHexadecimal(const string& strValue, uint32_t& uiValue, CParameterAccessContext& parameterAccessContext) const
{
// For hexadecimal representation, we need full 32 bit range conversion.
uint32_t uiData;
if (!convertTo(strValue, uiData) || !isEncodable(uiData, false)) {
setOutOfRangeError(strValue, parameterAccessContext);
return false;
}
signExtend((int32_t&)uiData);
// check that the data is encodable and can been safely written to the blackboard
assert(isEncodable(uiData, true));
uiValue = uiData;
return true;
}
bool CFixedPointParameterType::convertFromDecimal(const string& strValue, uint32_t& uiValue, CParameterAccessContext& parameterAccessContext) const
{
int32_t iData;
if (!convertTo(strValue, iData) || !isEncodable((uint32_t)iData, true)) {
setOutOfRangeError(strValue, parameterAccessContext);
return false;
}
uiValue = static_cast<uint32_t>(iData);
return true;
}
bool CFixedPointParameterType::convertFromQnm(const string& strValue, uint32_t& uiValue,
CParameterAccessContext& parameterAccessContext) const
{
double dData;
if (!convertTo(strValue, dData) || !checkValueAgainstRange(dData)) {
setOutOfRangeError(strValue, parameterAccessContext);
return false;
}
uiValue = static_cast<uint32_t>(doubleToBinaryQnm(dData));
// check that the data is encodable and has been safely written to the blackboard
assert(isEncodable(uiValue, true));
return true;
}
// Check that the value is within available range for this type
bool CFixedPointParameterType::checkValueAgainstRange(double dValue) const
{
double dMin = 0;
double dMax = 0;
getRange(dMin, dMax);
return (dValue <= dMax) && (dValue >= dMin);
}
// Data conversion
int32_t CFixedPointParameterType::doubleToBinaryQnm(double dValue) const
{
// For Qn.m number, multiply by 2^n and round to the nearest integer
int32_t iData = static_cast<int32_t>(round(dValue * (1UL << _uiFractional)));
// Left justify
// For a Qn.m number, shift 32 - (n + m + 1) bits to the left (the rest of
// the bits aren't used)
iData <<= getSize() * 8 - getUtilSizeInBits();
return iData;
}
double CFixedPointParameterType::binaryQnmToDouble(int32_t iValue) const
{
// Unjustify
iValue >>= getSize() * 8 - getUtilSizeInBits();
return static_cast<double>(iValue) / (1UL << _uiFractional);
}
// From IXmlSource
void CFixedPointParameterType::toXml(CXmlElement& xmlElement, CXmlSerializingContext& serializingContext) const
{
// Size
xmlElement.setAttributeString("Size", toString(getSize() * 8));
// Integral
xmlElement.setAttributeString("Integral", toString(_uiIntegral));
// Fractional
xmlElement.setAttributeString("Fractional", toString(_uiFractional));
base::toXml(xmlElement, serializingContext);
}
|