1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
/* <auto_header>
* <FILENAME>
*
* INTEL CONFIDENTIAL
* Copyright © 2011 Intel
* Corporation All Rights Reserved.
*
* The source code contained or described herein and all documents related to
* the source code ("Material") are owned by Intel Corporation or its suppliers
* or licensors. Title to the Material remains with Intel Corporation or its
* suppliers and licensors. The Material contains trade secrets and proprietary
* and confidential information of Intel or its suppliers and licensors. The
* Material is protected by worldwide copyright and trade secret laws and
* treaty provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed, or
* disclosed in any way without Intel’s prior express written permission.
*
* No license under any patent, copyright, trade secret or other intellectual
* property right is granted to or conferred upon you by disclosure or delivery
* of the Materials, either expressly, by implication, inducement, estoppel or
* otherwise. Any license under such intellectual property rights must be
* express and approved by Intel in writing.
*
* AUTHOR: Patrick Benavoli (patrickx.benavoli@intel.com)
* CREATED: 2011-06-01
* UPDATED: 2011-07-27
*
*
* </auto_header>
*/
#include "FixedPointParameterType.h"
#include <stdlib.h>
#include <sstream>
#include <iomanip>
#include <assert.h>
#include "Parameter.h"
#include "ParameterAccessContext.h"
#include "ConfigurationAccessContext.h"
#define base CParameterType
CFixedPointParameterType::CFixedPointParameterType(const string& strName) : base(strName), _uiIntegral(0), _uiFractional(0)
{
}
string CFixedPointParameterType::getKind() const
{
return "FixedPointParameter";
}
// Element properties
void CFixedPointParameterType::showProperties(string& strResult) const
{
base::showProperties(strResult);
// Notation
strResult += "Notation: Q";
strResult += toString(_uiIntegral);
strResult += ".";
strResult += toString(_uiFractional);
strResult += "\n";
}
// XML Serialization value space handling
// Value space handling for configuration import
void CFixedPointParameterType::handleValueSpaceAttribute(CXmlElement& xmlConfigurableElementSettingsElement, CConfigurationAccessContext& configurationAccessContext) const
{
// Direction?
if (!configurationAccessContext.serializeOut()) {
// Get Value space from XML
if (xmlConfigurableElementSettingsElement.hasAttribute("ValueSpace")) {
configurationAccessContext.setValueSpaceRaw(xmlConfigurableElementSettingsElement.getAttributeBoolean("ValueSpace", "Raw"));
} else {
configurationAccessContext.setValueSpaceRaw(false);
}
} else {
// Provide value space only if not the default one
if (configurationAccessContext.valueSpaceIsRaw()) {
xmlConfigurableElementSettingsElement.setAttributeString("ValueSpace", "Raw");
}
}
}
bool CFixedPointParameterType::fromXml(const CXmlElement& xmlElement, CXmlSerializingContext& serializingContext)
{
// Size
uint32_t uiSizeInBits = xmlElement.getAttributeInteger("Size");
// Q notation
_uiIntegral = xmlElement.getAttributeInteger("Integral");
_uiFractional = xmlElement.getAttributeInteger("Fractional");
// Size vs. Q notation integrity check
if (uiSizeInBits < getUtilSizeInBits()) {
serializingContext.setError("Inconsistent Size vs. Q notation for " + getKind() + " " + xmlElement.getPath() + ": Summing (Integral + _uiFractional + 1) should not exceed given Size (" + xmlElement.getAttributeString("Size") + ")");
return false;
}
// Set the size
setSize(uiSizeInBits / 8);
return base::fromXml(xmlElement, serializingContext);
}
bool CFixedPointParameterType::asInteger(const string& strValue, uint32_t& uiValue, CParameterAccessContext& parameterAccessContext) const
{
// Hexa
bool bValueProvidedAsHexa = !strValue.compare(0, 2, "0x");
// Check data integrity
if (bValueProvidedAsHexa && !parameterAccessContext.valueSpaceIsRaw()) {
parameterAccessContext.setError("Hexadecimal values are not supported for " + getKind() + " when selected value space is real:");
return false;
}
int32_t iData;
if (parameterAccessContext.valueSpaceIsRaw()) {
// Get data in integer form
iData = strtol(strValue.c_str(), NULL, 0);
if (bValueProvidedAsHexa) {
if (!isEncodable(iData, getUtilSizeInBits())) {
// Illegal value provided
parameterAccessContext.setError(getOutOfRangeError(strValue, parameterAccessContext.valueSpaceIsRaw(), true));
return false;
} else {
// Sign extend
signExtend(iData);
}
}
} else {
double dData = strtod(strValue.c_str(), NULL);
// Do the conversion
iData = (int32_t)(dData * (1UL << _uiFractional) + 0.5F - (double)(dData < 0));
}
// Check integrity
if (!isConsistent(iData)) {
// Illegal value provided
parameterAccessContext.setError(getOutOfRangeError(strValue, parameterAccessContext.valueSpaceIsRaw(), bValueProvidedAsHexa));
return false;
}
uiValue = (uint32_t)iData;
return true;
}
void CFixedPointParameterType::asString(const uint32_t& uiValue, string& strValue, CParameterAccessContext& parameterAccessContext) const
{
int32_t iData = uiValue;
// Check consistency
assert(isEncodable(iData, getUtilSizeInBits()));
// Sign extend
signExtend(iData);
// Format
ostringstream strStream;
// Raw formatting?
if (parameterAccessContext.valueSpaceIsRaw()) {
// Hexa formatting?
if (parameterAccessContext.outputRawFormatIsHex()) {
strStream << "0x" << hex << uppercase << setw(getSize()*2) << setfill('0') << uiValue;
} else {
strStream << iData;
}
} else {
double dData = (double)iData / (1UL << _uiFractional);
strStream << dData;
}
strValue = strStream.str();
}
// Util size
uint32_t CFixedPointParameterType::getUtilSizeInBits() const
{
return _uiIntegral + _uiFractional + 1;
}
// Out of range error
string CFixedPointParameterType::getOutOfRangeError(const string& strValue, bool bRawValueSpace, bool bHexaValue) const
{
// Min/Max computation
int32_t iMax = (1L << (getUtilSizeInBits() - 1)) - 1;
int32_t iMin = -iMax - 1;
ostringstream strStream;
strStream << "Value " << strValue << " standing out of admitted ";
if (!bRawValueSpace) {
strStream << "real range [" << (double)iMin / (1UL << _uiFractional) << ", "<< (double)iMax / (1UL << _uiFractional) << "]";
} else {
strStream << "raw range [";
if (bHexaValue) {
// Format Min
strStream << "0x" << hex << uppercase << setw(getSize()*2) << setfill('0') << makeEncodable(iMin);
// Format Max
strStream << ", 0x" << hex << uppercase << setw(getSize()*2) << setfill('0') << makeEncodable(iMax);
} else {
strStream << iMin << ", " << iMax;
}
strStream << "]";
}
strStream << " for " << getKind();
return strStream.str();
}
// Check data is consistent with available range, with respect to its sign
bool CFixedPointParameterType::isConsistent(uint32_t uiData) const
{
uint32_t uiShift = 32 - getUtilSizeInBits();
if (uiShift) {
// Negative value?
bool bIsValueExpectedNegative = (uiData & (1 << (uiShift - 1))) != 0;
// Check high bits are clean
return bIsValueExpectedNegative ? !(~uiData >> uiShift) : !(uiData >> uiShift);
}
return true;
}
|