aboutsummaryrefslogtreecommitdiffstats
path: root/src/google/protobuf/io/coded_stream.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/google/protobuf/io/coded_stream.cc')
-rw-r--r--src/google/protobuf/io/coded_stream.cc847
1 files changed, 847 insertions, 0 deletions
diff --git a/src/google/protobuf/io/coded_stream.cc b/src/google/protobuf/io/coded_stream.cc
new file mode 100644
index 0000000..e17a477
--- /dev/null
+++ b/src/google/protobuf/io/coded_stream.cc
@@ -0,0 +1,847 @@
+// Protocol Buffers - Google's data interchange format
+// Copyright 2008 Google Inc. All rights reserved.
+// http://code.google.com/p/protobuf/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// Author: kenton@google.com (Kenton Varda)
+// Based on original Protocol Buffers design by
+// Sanjay Ghemawat, Jeff Dean, and others.
+//
+// This implementation is heavily optimized to make reads and writes
+// of small values (especially varints) as fast as possible. In
+// particular, we optimize for the common case that a read or a write
+// will not cross the end of the buffer, since we can avoid a lot
+// of branching in this case.
+
+#include <stack>
+#include <limits.h>
+#include <google/protobuf/io/coded_stream.h>
+#include <google/protobuf/io/zero_copy_stream.h>
+#include <google/protobuf/stubs/common.h>
+#include <google/protobuf/stubs/stl_util-inl.h>
+
+
+namespace google {
+namespace protobuf {
+namespace io {
+
+namespace {
+
+static const int kDefaultTotalBytesLimit = 64 << 20; // 64MB
+
+static const int kDefaultTotalBytesWarningThreshold = 32 << 20; // 32MB
+static const int kDefaultRecursionLimit = 64;
+
+static const int kMaxVarintBytes = 10;
+static const int kMaxVarint32Bytes = 5;
+
+
+} // namespace
+
+// CodedInputStream ==================================================
+
+CodedInputStream::CodedInputStream(ZeroCopyInputStream* input)
+ : input_(input),
+ buffer_(NULL),
+ buffer_size_(0),
+ total_bytes_read_(0),
+ overflow_bytes_(0),
+ last_tag_(0),
+ legitimate_message_end_(false),
+ aliasing_enabled_(false),
+ current_limit_(INT_MAX),
+ buffer_size_after_limit_(0),
+ total_bytes_limit_(kDefaultTotalBytesLimit),
+ total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
+ recursion_depth_(0),
+ recursion_limit_(kDefaultRecursionLimit) {
+ // Eagerly Refresh() so buffer space is immediately available.
+ Refresh();
+}
+
+CodedInputStream::CodedInputStream(const uint8* buffer, int size)
+ : input_(NULL),
+ buffer_(buffer),
+ buffer_size_(size),
+ total_bytes_read_(size),
+ overflow_bytes_(0),
+ last_tag_(0),
+ legitimate_message_end_(false),
+ aliasing_enabled_(false),
+ current_limit_(size),
+ buffer_size_after_limit_(0),
+ total_bytes_limit_(kDefaultTotalBytesLimit),
+ total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
+ recursion_depth_(0),
+ recursion_limit_(kDefaultRecursionLimit) {
+ // Note that setting current_limit_ == size is important to prevent some
+ // code paths from trying to access input_ and segfaulting.
+}
+
+CodedInputStream::~CodedInputStream() {
+ if (input_ != NULL) {
+ BackUpInputToCurrentPosition();
+ }
+}
+
+
+void CodedInputStream::BackUpInputToCurrentPosition() {
+ int backup_bytes = buffer_size_ + buffer_size_after_limit_ + overflow_bytes_;
+ if (backup_bytes > 0) {
+ input_->BackUp(backup_bytes);
+
+ // total_bytes_read_ doesn't include overflow_bytes_.
+ total_bytes_read_ -= buffer_size_ + buffer_size_after_limit_;
+ buffer_size_ = 0;
+ buffer_size_after_limit_ = 0;
+ overflow_bytes_ = 0;
+ }
+}
+
+inline void CodedInputStream::RecomputeBufferLimits() {
+ buffer_size_ += buffer_size_after_limit_;
+ int closest_limit = min(current_limit_, total_bytes_limit_);
+ if (closest_limit < total_bytes_read_) {
+ // The limit position is in the current buffer. We must adjust
+ // the buffer size accordingly.
+ buffer_size_after_limit_ = total_bytes_read_ - closest_limit;
+ buffer_size_ -= buffer_size_after_limit_;
+ } else {
+ buffer_size_after_limit_ = 0;
+ }
+}
+
+CodedInputStream::Limit CodedInputStream::PushLimit(int byte_limit) {
+ // Current position relative to the beginning of the stream.
+ int current_position = total_bytes_read_ -
+ (buffer_size_ + buffer_size_after_limit_);
+
+ Limit old_limit = current_limit_;
+
+ // security: byte_limit is possibly evil, so check for negative values
+ // and overflow.
+ if (byte_limit >= 0 &&
+ byte_limit <= INT_MAX - current_position) {
+ current_limit_ = current_position + byte_limit;
+ } else {
+ // Negative or overflow.
+ current_limit_ = INT_MAX;
+ }
+
+ // We need to enforce all limits, not just the new one, so if the previous
+ // limit was before the new requested limit, we continue to enforce the
+ // previous limit.
+ current_limit_ = min(current_limit_, old_limit);
+
+ RecomputeBufferLimits();
+ return old_limit;
+}
+
+void CodedInputStream::PopLimit(Limit limit) {
+ // The limit passed in is actually the *old* limit, which we returned from
+ // PushLimit().
+ current_limit_ = limit;
+ RecomputeBufferLimits();
+
+ // We may no longer be at a legitimate message end. ReadTag() needs to be
+ // called again to find out.
+ legitimate_message_end_ = false;
+}
+
+int CodedInputStream::BytesUntilLimit() {
+ if (current_limit_ == INT_MAX) return -1;
+ int current_position = total_bytes_read_ -
+ (buffer_size_ + buffer_size_after_limit_);
+
+ return current_limit_ - current_position;
+}
+
+void CodedInputStream::SetTotalBytesLimit(
+ int total_bytes_limit, int warning_threshold) {
+ // Make sure the limit isn't already past, since this could confuse other
+ // code.
+ int current_position = total_bytes_read_ -
+ (buffer_size_ + buffer_size_after_limit_);
+ total_bytes_limit_ = max(current_position, total_bytes_limit);
+ total_bytes_warning_threshold_ = warning_threshold;
+ RecomputeBufferLimits();
+}
+
+void CodedInputStream::PrintTotalBytesLimitError() {
+ GOOGLE_LOG(ERROR) << "A protocol message was rejected because it was too "
+ "big (more than " << total_bytes_limit_
+ << " bytes). To increase the limit (or to disable these "
+ "warnings), see CodedInputStream::SetTotalBytesLimit() "
+ "in google/protobuf/io/coded_stream.h.";
+}
+
+bool CodedInputStream::Skip(int count) {
+ if (count < 0) return false; // security: count is often user-supplied
+
+ if (count <= buffer_size_) {
+ // Just skipping within the current buffer. Easy.
+ Advance(count);
+ return true;
+ }
+
+ if (buffer_size_after_limit_ > 0) {
+ // We hit a limit inside this buffer. Advance to the limit and fail.
+ Advance(buffer_size_);
+ return false;
+ }
+
+ count -= buffer_size_;
+ buffer_ = NULL;
+ buffer_size_ = 0;
+
+ // Make sure this skip doesn't try to skip past the current limit.
+ int closest_limit = min(current_limit_, total_bytes_limit_);
+ int bytes_until_limit = closest_limit - total_bytes_read_;
+ if (bytes_until_limit < count) {
+ // We hit the limit. Skip up to it then fail.
+ if (bytes_until_limit > 0) {
+ total_bytes_read_ = closest_limit;
+ input_->Skip(bytes_until_limit);
+ }
+ return false;
+ }
+
+ total_bytes_read_ += count;
+ return input_->Skip(count);
+}
+
+bool CodedInputStream::GetDirectBufferPointer(const void** data, int* size) {
+ if (buffer_size_ == 0 && !Refresh()) return false;
+
+ *data = buffer_;
+ *size = buffer_size_;
+ return true;
+}
+
+bool CodedInputStream::ReadRaw(void* buffer, int size) {
+ while (buffer_size_ < size) {
+ // Reading past end of buffer. Copy what we have, then refresh.
+ memcpy(buffer, buffer_, buffer_size_);
+ buffer = reinterpret_cast<uint8*>(buffer) + buffer_size_;
+ size -= buffer_size_;
+ Advance(buffer_size_);
+ if (!Refresh()) return false;
+ }
+
+ memcpy(buffer, buffer_, size);
+ Advance(size);
+
+ return true;
+}
+
+bool CodedInputStream::ReadString(string* buffer, int size) {
+ if (size < 0) return false; // security: size is often user-supplied
+
+ if (!buffer->empty()) {
+ buffer->clear();
+ }
+
+ if (size < buffer_size_) {
+ STLStringResizeUninitialized(buffer, size);
+ memcpy((uint8*)buffer->data(), buffer_, size);
+ Advance(size);
+ return true;
+ }
+
+ while (buffer_size_ < size) {
+ // Some STL implementations "helpfully" crash on buffer->append(NULL, 0).
+ if (buffer_size_ != 0) {
+ // Note: string1.append(string2) is O(string2.size()) (as opposed to
+ // O(string1.size() + string2.size()), which would be bad).
+ buffer->append(reinterpret_cast<const char*>(buffer_), buffer_size_);
+ }
+ size -= buffer_size_;
+ Advance(buffer_size_);
+ if (!Refresh()) return false;
+ }
+
+ buffer->append(reinterpret_cast<const char*>(buffer_), size);
+ Advance(size);
+
+ return true;
+}
+
+
+bool CodedInputStream::ReadLittleEndian32(uint32* value) {
+ uint8 bytes[sizeof(*value)];
+
+ const uint8* ptr;
+ if (buffer_size_ >= sizeof(*value)) {
+ // Fast path: Enough bytes in the buffer to read directly.
+ ptr = buffer_;
+ Advance(sizeof(*value));
+ } else {
+ // Slow path: Had to read past the end of the buffer.
+ if (!ReadRaw(bytes, sizeof(*value))) return false;
+ ptr = bytes;
+ }
+
+ *value = (static_cast<uint32>(ptr[0]) ) |
+ (static_cast<uint32>(ptr[1]) << 8) |
+ (static_cast<uint32>(ptr[2]) << 16) |
+ (static_cast<uint32>(ptr[3]) << 24);
+ return true;
+}
+
+bool CodedInputStream::ReadLittleEndian64(uint64* value) {
+ uint8 bytes[sizeof(*value)];
+
+ const uint8* ptr;
+ if (buffer_size_ >= sizeof(*value)) {
+ // Fast path: Enough bytes in the buffer to read directly.
+ ptr = buffer_;
+ Advance(sizeof(*value));
+ } else {
+ // Slow path: Had to read past the end of the buffer.
+ if (!ReadRaw(bytes, sizeof(*value))) return false;
+ ptr = bytes;
+ }
+
+ uint32 part0 = (static_cast<uint32>(ptr[0]) ) |
+ (static_cast<uint32>(ptr[1]) << 8) |
+ (static_cast<uint32>(ptr[2]) << 16) |
+ (static_cast<uint32>(ptr[3]) << 24);
+ uint32 part1 = (static_cast<uint32>(ptr[4]) ) |
+ (static_cast<uint32>(ptr[5]) << 8) |
+ (static_cast<uint32>(ptr[6]) << 16) |
+ (static_cast<uint32>(ptr[7]) << 24);
+ *value = static_cast<uint64>(part0) |
+ (static_cast<uint64>(part1) << 32);
+ return true;
+}
+
+bool CodedInputStream::ReadVarint32Fallback(uint32* value) {
+ if (buffer_size_ >= kMaxVarintBytes ||
+ // Optimization: If the varint ends at exactly the end of the buffer,
+ // we can detect that and still use the fast path.
+ (buffer_size_ != 0 && !(buffer_[buffer_size_-1] & 0x80))) {
+ // Fast path: We have enough bytes left in the buffer to guarantee that
+ // this read won't cross the end, so we can skip the checks.
+ const uint8* ptr = buffer_;
+ uint32 b;
+ uint32 result;
+
+ b = *(ptr++); result = (b & 0x7F) ; if (!(b & 0x80)) goto done;
+ b = *(ptr++); result |= (b & 0x7F) << 7; if (!(b & 0x80)) goto done;
+ b = *(ptr++); result |= (b & 0x7F) << 14; if (!(b & 0x80)) goto done;
+ b = *(ptr++); result |= (b & 0x7F) << 21; if (!(b & 0x80)) goto done;
+ b = *(ptr++); result |= b << 28; if (!(b & 0x80)) goto done;
+
+ // If the input is larger than 32 bits, we still need to read it all
+ // and discard the high-order bits.
+ for (int i = 0; i < kMaxVarintBytes - kMaxVarint32Bytes; i++) {
+ b = *(ptr++); if (!(b & 0x80)) goto done;
+ }
+
+ // We have overrun the maximum size of a varint (10 bytes). Assume
+ // the data is corrupt.
+ return false;
+
+ done:
+ Advance(ptr - buffer_);
+ *value = result;
+ return true;
+
+ } else {
+ // Optimization: If we're at a limit, detect that quickly. (This is
+ // common when reading tags.)
+ while (buffer_size_ == 0) {
+ // Detect cases where we definitely hit a byte limit without calling
+ // Refresh().
+ if (// If we hit a limit, buffer_size_after_limit_ will be non-zero.
+ buffer_size_after_limit_ > 0 &&
+ // Make sure that the limit we hit is not total_bytes_limit_, since
+ // in that case we still need to call Refresh() so that it prints an
+ // error.
+ total_bytes_read_ - buffer_size_after_limit_ < total_bytes_limit_) {
+ // We hit a byte limit.
+ legitimate_message_end_ = true;
+ return false;
+ }
+
+ // Call refresh.
+ if (!Refresh()) {
+ // Refresh failed. Make sure that it failed due to EOF, not because
+ // we hit total_bytes_limit_, which, unlike normal limits, is not a
+ // valid place to end a message.
+ int current_position = total_bytes_read_ - buffer_size_after_limit_;
+ if (current_position >= total_bytes_limit_) {
+ // Hit total_bytes_limit_. But if we also hit the normal limit,
+ // we're still OK.
+ legitimate_message_end_ = current_limit_ == total_bytes_limit_;
+ } else {
+ legitimate_message_end_ = true;
+ }
+ return false;
+ }
+ }
+
+ // Slow path: Just do a 64-bit read.
+ uint64 result;
+ if (!ReadVarint64(&result)) return false;
+ *value = (uint32)result;
+ return true;
+ }
+}
+
+bool CodedInputStream::ReadVarint64(uint64* value) {
+ if (buffer_size_ >= kMaxVarintBytes ||
+ // Optimization: If the varint ends at exactly the end of the buffer,
+ // we can detect that and still use the fast path.
+ (buffer_size_ != 0 && !(buffer_[buffer_size_-1] & 0x80))) {
+ // Fast path: We have enough bytes left in the buffer to guarantee that
+ // this read won't cross the end, so we can skip the checks.
+
+ const uint8* ptr = buffer_;
+ uint32 b;
+
+ // Splitting into 32-bit pieces gives better performance on 32-bit
+ // processors.
+ uint32 part0 = 0, part1 = 0, part2 = 0;
+
+ b = *(ptr++); part0 = (b & 0x7F) ; if (!(b & 0x80)) goto done;
+ b = *(ptr++); part0 |= (b & 0x7F) << 7; if (!(b & 0x80)) goto done;
+ b = *(ptr++); part0 |= (b & 0x7F) << 14; if (!(b & 0x80)) goto done;
+ b = *(ptr++); part0 |= (b & 0x7F) << 21; if (!(b & 0x80)) goto done;
+ b = *(ptr++); part1 = (b & 0x7F) ; if (!(b & 0x80)) goto done;
+ b = *(ptr++); part1 |= (b & 0x7F) << 7; if (!(b & 0x80)) goto done;
+ b = *(ptr++); part1 |= (b & 0x7F) << 14; if (!(b & 0x80)) goto done;
+ b = *(ptr++); part1 |= (b & 0x7F) << 21; if (!(b & 0x80)) goto done;
+ b = *(ptr++); part2 = (b & 0x7F) ; if (!(b & 0x80)) goto done;
+ b = *(ptr++); part2 |= (b & 0x7F) << 7; if (!(b & 0x80)) goto done;
+
+ // We have overrun the maximum size of a varint (10 bytes). The data
+ // must be corrupt.
+ return false;
+
+ done:
+ Advance(ptr - buffer_);
+ *value = (static_cast<uint64>(part0) ) |
+ (static_cast<uint64>(part1) << 28) |
+ (static_cast<uint64>(part2) << 56);
+ return true;
+
+ } else {
+ // Slow path: This read might cross the end of the buffer, so we
+ // need to check and refresh the buffer if and when it does.
+
+ uint64 result = 0;
+ int count = 0;
+ uint32 b;
+
+ do {
+ if (count == kMaxVarintBytes) return false;
+ while (buffer_size_ == 0) {
+ if (!Refresh()) return false;
+ }
+ b = *buffer_;
+ result |= static_cast<uint64>(b & 0x7F) << (7 * count);
+ Advance(1);
+ ++count;
+ } while(b & 0x80);
+
+ *value = result;
+ return true;
+ }
+}
+
+bool CodedInputStream::Refresh() {
+ GOOGLE_DCHECK_EQ(buffer_size_, 0);
+
+ if (buffer_size_after_limit_ > 0 || overflow_bytes_ > 0 ||
+ total_bytes_read_ == current_limit_) {
+ // We've hit a limit. Stop.
+ int current_position = total_bytes_read_ - buffer_size_after_limit_;
+
+ if (current_position >= total_bytes_limit_ &&
+ total_bytes_limit_ != current_limit_) {
+ // Hit total_bytes_limit_.
+ PrintTotalBytesLimitError();
+ }
+
+ return false;
+ }
+
+ if (total_bytes_warning_threshold_ >= 0 &&
+ total_bytes_read_ >= total_bytes_warning_threshold_) {
+ GOOGLE_LOG(WARNING) << "Reading dangerously large protocol message. If the "
+ "message turns out to be larger than "
+ << total_bytes_limit_ << " bytes, parsing will be halted "
+ "for security reasons. To increase the limit (or to "
+ "disable these warnings), see "
+ "CodedInputStream::SetTotalBytesLimit() in "
+ "google/protobuf/io/coded_stream.h.";
+
+ // Don't warn again for this stream.
+ total_bytes_warning_threshold_ = -1;
+ }
+
+ const void* void_buffer;
+ if (input_->Next(&void_buffer, &buffer_size_)) {
+ buffer_ = reinterpret_cast<const uint8*>(void_buffer);
+ GOOGLE_CHECK_GE(buffer_size_, 0);
+
+ if (total_bytes_read_ <= INT_MAX - buffer_size_) {
+ total_bytes_read_ += buffer_size_;
+ } else {
+ // Overflow. Reset buffer_size_ to not include the bytes beyond INT_MAX.
+ // We can't get that far anyway, because total_bytes_limit_ is guaranteed
+ // to be less than it. We need to keep track of the number of bytes
+ // we discarded, though, so that we can call input_->BackUp() to back
+ // up over them on destruction.
+
+ // The following line is equivalent to:
+ // overflow_bytes_ = total_bytes_read_ + buffer_size_ - INT_MAX;
+ // except that it avoids overflows. Signed integer overflow has
+ // undefined results according to the C standard.
+ overflow_bytes_ = total_bytes_read_ - (INT_MAX - buffer_size_);
+ buffer_size_ -= overflow_bytes_;
+ total_bytes_read_ = INT_MAX;
+ }
+
+ RecomputeBufferLimits();
+ return true;
+ } else {
+ buffer_ = NULL;
+ buffer_size_ = 0;
+ return false;
+ }
+}
+
+// CodedOutputStream =================================================
+
+CodedOutputStream::CodedOutputStream(ZeroCopyOutputStream* output)
+ : output_(output),
+ buffer_(NULL),
+ buffer_size_(0),
+ total_bytes_(0),
+ had_error_(false) {
+ // Eagerly Refresh() so buffer space is immediately available.
+ Refresh();
+ // The Refresh() may have failed. If the client doesn't write any data,
+ // though, don't consider this an error. If the client does write data, then
+ // another Refresh() will be attempted and it will set the error once again.
+ had_error_ = false;
+}
+
+CodedOutputStream::~CodedOutputStream() {
+ if (buffer_size_ > 0) {
+ output_->BackUp(buffer_size_);
+ }
+}
+
+bool CodedOutputStream::Skip(int count) {
+ if (count < 0) return false;
+
+ while (count > buffer_size_) {
+ count -= buffer_size_;
+ if (!Refresh()) return false;
+ }
+
+ Advance(count);
+ return true;
+}
+
+bool CodedOutputStream::GetDirectBufferPointer(void** data, int* size) {
+ if (buffer_size_ == 0 && !Refresh()) return false;
+
+ *data = buffer_;
+ *size = buffer_size_;
+ return true;
+}
+
+void CodedOutputStream::WriteRaw(const void* data, int size) {
+ while (buffer_size_ < size) {
+ memcpy(buffer_, data, buffer_size_);
+ size -= buffer_size_;
+ data = reinterpret_cast<const uint8*>(data) + buffer_size_;
+ if (!Refresh()) return;
+ }
+
+ memcpy(buffer_, data, size);
+ Advance(size);
+}
+
+uint8* CodedOutputStream::WriteRawToArray(
+ const void* data, int size, uint8* target) {
+ memcpy(target, data, size);
+ return target + size;
+}
+
+
+void CodedOutputStream::WriteLittleEndian32(uint32 value) {
+ uint8 bytes[sizeof(value)];
+
+ bool use_fast = buffer_size_ >= sizeof(value);
+ uint8* ptr = use_fast ? buffer_ : bytes;
+
+ WriteLittleEndian32ToArray(value, ptr);
+
+ if (use_fast) {
+ Advance(sizeof(value));
+ } else {
+ WriteRaw(bytes, sizeof(value));
+ }
+}
+
+void CodedOutputStream::WriteLittleEndian64(uint64 value) {
+ uint8 bytes[sizeof(value)];
+
+ bool use_fast = buffer_size_ >= sizeof(value);
+ uint8* ptr = use_fast ? buffer_ : bytes;
+
+ WriteLittleEndian64ToArray(value, ptr);
+
+ if (use_fast) {
+ Advance(sizeof(value));
+ } else {
+ WriteRaw(bytes, sizeof(value));
+ }
+}
+
+inline uint8* CodedOutputStream::WriteVarint32FallbackToArrayInline(
+ uint32 value, uint8* target) {
+ target[0] = static_cast<uint8>(value | 0x80);
+ if (value >= (1 << 7)) {
+ target[1] = static_cast<uint8>((value >> 7) | 0x80);
+ if (value >= (1 << 14)) {
+ target[2] = static_cast<uint8>((value >> 14) | 0x80);
+ if (value >= (1 << 21)) {
+ target[3] = static_cast<uint8>((value >> 21) | 0x80);
+ if (value >= (1 << 28)) {
+ target[4] = static_cast<uint8>(value >> 28);
+ return target + 5;
+ } else {
+ target[3] &= 0x7F;
+ return target + 4;
+ }
+ } else {
+ target[2] &= 0x7F;
+ return target + 3;
+ }
+ } else {
+ target[1] &= 0x7F;
+ return target + 2;
+ }
+ } else {
+ target[0] &= 0x7F;
+ return target + 1;
+ }
+}
+
+void CodedOutputStream::WriteVarint32(uint32 value) {
+ if (buffer_size_ >= kMaxVarint32Bytes) {
+ // Fast path: We have enough bytes left in the buffer to guarantee that
+ // this write won't cross the end, so we can skip the checks.
+ uint8* target = buffer_;
+ uint8* end = WriteVarint32FallbackToArrayInline(value, target);
+ int size = end - target;
+ Advance(size);
+ } else {
+ // Slow path: This write might cross the end of the buffer, so we
+ // compose the bytes first then use WriteRaw().
+ uint8 bytes[kMaxVarint32Bytes];
+ int size = 0;
+ while (value > 0x7F) {
+ bytes[size++] = (static_cast<uint8>(value) & 0x7F) | 0x80;
+ value >>= 7;
+ }
+ bytes[size++] = static_cast<uint8>(value) & 0x7F;
+ WriteRaw(bytes, size);
+ }
+}
+
+uint8* CodedOutputStream::WriteVarint32FallbackToArray(
+ uint32 value, uint8* target) {
+ return WriteVarint32FallbackToArrayInline(value, target);
+}
+
+inline uint8* CodedOutputStream::WriteVarint64ToArrayInline(
+ uint64 value, uint8* target) {
+ // Splitting into 32-bit pieces gives better performance on 32-bit
+ // processors.
+ uint32 part0 = static_cast<uint32>(value );
+ uint32 part1 = static_cast<uint32>(value >> 28);
+ uint32 part2 = static_cast<uint32>(value >> 56);
+
+ int size;
+
+ // Here we can't really optimize for small numbers, since the value is
+ // split into three parts. Cheking for numbers < 128, for instance,
+ // would require three comparisons, since you'd have to make sure part1
+ // and part2 are zero. However, if the caller is using 64-bit integers,
+ // it is likely that they expect the numbers to often be very large, so
+ // we probably don't want to optimize for small numbers anyway. Thus,
+ // we end up with a hardcoded binary search tree...
+ if (part2 == 0) {
+ if (part1 == 0) {
+ if (part0 < (1 << 14)) {
+ if (part0 < (1 << 7)) {
+ size = 1; goto size1;
+ } else {
+ size = 2; goto size2;
+ }
+ } else {
+ if (part0 < (1 << 21)) {
+ size = 3; goto size3;
+ } else {
+ size = 4; goto size4;
+ }
+ }
+ } else {
+ if (part1 < (1 << 14)) {
+ if (part1 < (1 << 7)) {
+ size = 5; goto size5;
+ } else {
+ size = 6; goto size6;
+ }
+ } else {
+ if (part1 < (1 << 21)) {
+ size = 7; goto size7;
+ } else {
+ size = 8; goto size8;
+ }
+ }
+ }
+ } else {
+ if (part2 < (1 << 7)) {
+ size = 9; goto size9;
+ } else {
+ size = 10; goto size10;
+ }
+ }
+
+ GOOGLE_LOG(FATAL) << "Can't get here.";
+
+ size10: target[9] = static_cast<uint8>((part2 >> 7) | 0x80);
+ size9 : target[8] = static_cast<uint8>((part2 ) | 0x80);
+ size8 : target[7] = static_cast<uint8>((part1 >> 21) | 0x80);
+ size7 : target[6] = static_cast<uint8>((part1 >> 14) | 0x80);
+ size6 : target[5] = static_cast<uint8>((part1 >> 7) | 0x80);
+ size5 : target[4] = static_cast<uint8>((part1 ) | 0x80);
+ size4 : target[3] = static_cast<uint8>((part0 >> 21) | 0x80);
+ size3 : target[2] = static_cast<uint8>((part0 >> 14) | 0x80);
+ size2 : target[1] = static_cast<uint8>((part0 >> 7) | 0x80);
+ size1 : target[0] = static_cast<uint8>((part0 ) | 0x80);
+
+ target[size-1] &= 0x7F;
+ return target + size;
+}
+
+void CodedOutputStream::WriteVarint64(uint64 value) {
+ if (buffer_size_ >= kMaxVarintBytes) {
+ // Fast path: We have enough bytes left in the buffer to guarantee that
+ // this write won't cross the end, so we can skip the checks.
+ uint8* target = buffer_;
+
+ uint8* end = WriteVarint64ToArrayInline(value, target);
+ int size = end - target;
+ Advance(size);
+ } else {
+ // Slow path: This write might cross the end of the buffer, so we
+ // compose the bytes first then use WriteRaw().
+ uint8 bytes[kMaxVarintBytes];
+ int size = 0;
+ while (value > 0x7F) {
+ bytes[size++] = (static_cast<uint8>(value) & 0x7F) | 0x80;
+ value >>= 7;
+ }
+ bytes[size++] = static_cast<uint8>(value) & 0x7F;
+ WriteRaw(bytes, size);
+ }
+}
+
+uint8* CodedOutputStream::WriteVarint64ToArray(
+ uint64 value, uint8* target) {
+ return WriteVarint64ToArrayInline(value, target);
+}
+
+bool CodedOutputStream::Refresh() {
+ void* void_buffer;
+ if (output_->Next(&void_buffer, &buffer_size_)) {
+ buffer_ = reinterpret_cast<uint8*>(void_buffer);
+ total_bytes_ += buffer_size_;
+ return true;
+ } else {
+ buffer_ = NULL;
+ buffer_size_ = 0;
+ had_error_ = true;
+ return false;
+ }
+}
+
+int CodedOutputStream::VarintSize32Fallback(uint32 value) {
+ if (value < (1 << 7)) {
+ return 1;
+ } else if (value < (1 << 14)) {
+ return 2;
+ } else if (value < (1 << 21)) {
+ return 3;
+ } else if (value < (1 << 28)) {
+ return 4;
+ } else {
+ return 5;
+ }
+}
+
+int CodedOutputStream::VarintSize64(uint64 value) {
+ if (value < (1ull << 35)) {
+ if (value < (1ull << 7)) {
+ return 1;
+ } else if (value < (1ull << 14)) {
+ return 2;
+ } else if (value < (1ull << 21)) {
+ return 3;
+ } else if (value < (1ull << 28)) {
+ return 4;
+ } else {
+ return 5;
+ }
+ } else {
+ if (value < (1ull << 42)) {
+ return 6;
+ } else if (value < (1ull << 49)) {
+ return 7;
+ } else if (value < (1ull << 56)) {
+ return 8;
+ } else if (value < (1ull << 63)) {
+ return 9;
+ } else {
+ return 10;
+ }
+ }
+}
+
+} // namespace io
+} // namespace protobuf
+} // namespace google