aboutsummaryrefslogtreecommitdiffstats
path: root/java/src/main/java/com/google/protobuf/ByteString.java
blob: 89b578971b2369f901565166a8bfc4c10576a792 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

package com.google.protobuf;

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.UnsupportedEncodingException;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;
import java.util.NoSuchElementException;

/**
 * Immutable sequence of bytes.  Substring is supported by sharing the reference
 * to the immutable underlying bytes, as with {@link String}.  Concatenation is
 * likewise supported without copying (long strings) by building a tree of
 * pieces in {@link RopeByteString}.
 * <p>
 * Like {@link String}, the contents of a {@link ByteString} can never be
 * observed to change, not even in the presence of a data race or incorrect
 * API usage in the client code.
 *
 * @author crazybob@google.com Bob Lee
 * @author kenton@google.com Kenton Varda
 * @author carlanton@google.com Carl Haverl
 * @author martinrb@google.com Martin Buchholz
 */
public abstract class ByteString implements Iterable<Byte> {

  /**
   * When two strings to be concatenated have a combined length shorter than
   * this, we just copy their bytes on {@link #concat(ByteString)}.
   * The trade-off is copy size versus the overhead of creating tree nodes
   * in {@link RopeByteString}.
   */
  static final int CONCATENATE_BY_COPY_SIZE = 128;

  /**
   * When copying an InputStream into a ByteString with .readFrom(),
   * the chunks in the underlying rope start at 256 bytes, but double
   * each iteration up to 8192 bytes.
   */
  static final int MIN_READ_FROM_CHUNK_SIZE = 0x100;  // 256b
  static final int MAX_READ_FROM_CHUNK_SIZE = 0x2000;  // 8k

  /**
   * Empty {@code ByteString}.
   */
  public static final ByteString EMPTY = new LiteralByteString(new byte[0]);

  // This constructor is here to prevent subclassing outside of this package,
  ByteString() {}

  /**
   * Gets the byte at the given index. This method should be used only for
   * random access to individual bytes. To access bytes sequentially, use the
   * {@link ByteIterator} returned by {@link #iterator()}, and call {@link
   * #substring(int, int)} first if necessary.
   *
   * @param index index of byte
   * @return the value
   * @throws ArrayIndexOutOfBoundsException {@code index} is < 0 or >= size
   */
  public abstract byte byteAt(int index);

  /**
   * Return a {@link ByteString.ByteIterator} over the bytes in the ByteString.
   * To avoid auto-boxing, you may get the iterator manually and call
   * {@link ByteIterator#nextByte()}.
   *
   * @return the iterator
   */
  public abstract ByteIterator iterator();

  /**
   * This interface extends {@code Iterator<Byte>}, so that we can return an
   * unboxed {@code byte}.
   */
  public interface ByteIterator extends Iterator<Byte> {
    /**
     * An alternative to {@link Iterator#next()} that returns an
     * unboxed primitive {@code byte}.
     *
     * @return the next {@code byte} in the iteration
     * @throws NoSuchElementException if the iteration has no more elements
     */
    byte nextByte();
  }

  /**
   * Gets the number of bytes.
   *
   * @return size in bytes
   */
  public abstract int size();

  /**
   * Returns {@code true} if the size is {@code 0}, {@code false} otherwise.
   *
   * @return true if this is zero bytes long
   */
  public boolean isEmpty() {
    return size() == 0;
  }

  // =================================================================
  // ByteString -> substring

  /**
   * Return the substring from {@code beginIndex}, inclusive, to the end of the
   * string.
   *
   * @param beginIndex start at this index
   * @return substring sharing underlying data
   * @throws IndexOutOfBoundsException if {@code beginIndex < 0} or
   *     {@code beginIndex > size()}.
   */
  public ByteString substring(int beginIndex) {
    return substring(beginIndex, size());
  }

  /**
   * Return the substring from {@code beginIndex}, inclusive, to {@code
   * endIndex}, exclusive.
   *
   * @param beginIndex start at this index
   * @param endIndex   the last character is the one before this index
   * @return substring sharing underlying data
   * @throws IndexOutOfBoundsException if {@code beginIndex < 0},
   *     {@code endIndex > size()}, or {@code beginIndex > endIndex}.
   */
  public abstract ByteString substring(int beginIndex, int endIndex);

  /**
   * Tests if this bytestring starts with the specified prefix.
   * Similar to {@link String#startsWith(String)}
   *
   * @param prefix the prefix.
   * @return <code>true</code> if the byte sequence represented by the
   *         argument is a prefix of the byte sequence represented by
   *         this string; <code>false</code> otherwise.
   */
  public boolean startsWith(ByteString prefix) {
    return size() >= prefix.size() &&
           substring(0, prefix.size()).equals(prefix);
  }

  /**
   * Tests if this bytestring ends with the specified suffix.
   * Similar to {@link String#endsWith(String)}
   *
   * @param suffix the suffix.
   * @return <code>true</code> if the byte sequence represented by the
   *         argument is a suffix of the byte sequence represented by
   *         this string; <code>false</code> otherwise.
   */
  public boolean endsWith(ByteString suffix) {
    return size() >= suffix.size() &&
        substring(size() - suffix.size()).equals(suffix);
  }

  // =================================================================
  // byte[] -> ByteString

  /**
   * Copies the given bytes into a {@code ByteString}.
   *
   * @param bytes source array
   * @param offset offset in source array
   * @param size number of bytes to copy
   * @return new {@code ByteString}
   */
  public static ByteString copyFrom(byte[] bytes, int offset, int size) {
    byte[] copy = new byte[size];
    System.arraycopy(bytes, offset, copy, 0, size);
    return new LiteralByteString(copy);
  }

  /**
   * Copies the given bytes into a {@code ByteString}.
   *
   * @param bytes to copy
   * @return new {@code ByteString}
   */
  public static ByteString copyFrom(byte[] bytes) {
    return copyFrom(bytes, 0, bytes.length);
  }

  /**
   * Copies the next {@code size} bytes from a {@code java.nio.ByteBuffer} into
   * a {@code ByteString}.
   *
   * @param bytes source buffer
   * @param size number of bytes to copy
   * @return new {@code ByteString}
   */
  public static ByteString copyFrom(ByteBuffer bytes, int size) {
    byte[] copy = new byte[size];
    bytes.get(copy);
    return new LiteralByteString(copy);
  }

  /**
   * Copies the remaining bytes from a {@code java.nio.ByteBuffer} into
   * a {@code ByteString}.
   *
   * @param bytes sourceBuffer
   * @return new {@code ByteString}
   */
  public static ByteString copyFrom(ByteBuffer bytes) {
    return copyFrom(bytes, bytes.remaining());
  }

  /**
   * Encodes {@code text} into a sequence of bytes using the named charset
   * and returns the result as a {@code ByteString}.
   *
   * @param text source string
   * @param charsetName encoding to use
   * @return new {@code ByteString}
   * @throws UnsupportedEncodingException if the encoding isn't found
   */
  public static ByteString copyFrom(String text, String charsetName)
      throws UnsupportedEncodingException {
    return new LiteralByteString(text.getBytes(charsetName));
  }

  /**
   * Encodes {@code text} into a sequence of UTF-8 bytes and returns the
   * result as a {@code ByteString}.
   *
   * @param text source string
   * @return new {@code ByteString}
   */
  public static ByteString copyFromUtf8(String text) {
    try {
      return new LiteralByteString(text.getBytes("UTF-8"));
    } catch (UnsupportedEncodingException e) {
      throw new RuntimeException("UTF-8 not supported?", e);
    }
  }

  // =================================================================
  // InputStream -> ByteString

  /**
   * Completely reads the given stream's bytes into a
   * {@code ByteString}, blocking if necessary until all bytes are
   * read through to the end of the stream.
   *
   * <b>Performance notes:</b> The returned {@code ByteString} is an
   * immutable tree of byte arrays ("chunks") of the stream data.  The
   * first chunk is small, with subsequent chunks each being double
   * the size, up to 8K.  If the caller knows the precise length of
   * the stream and wishes to avoid all unnecessary copies and
   * allocations, consider using the two-argument version of this
   * method, below.
   *
   * @param streamToDrain The source stream, which is read completely
   *     but not closed.
   * @return A new {@code ByteString} which is made up of chunks of
   *     various sizes, depending on the behavior of the underlying
   *     stream.
   * @throws IOException IOException is thrown if there is a problem
   *     reading the underlying stream.
   */
  public static ByteString readFrom(InputStream streamToDrain)
      throws IOException {
    return readFrom(
        streamToDrain, MIN_READ_FROM_CHUNK_SIZE, MAX_READ_FROM_CHUNK_SIZE);
  }

  /**
   * Completely reads the given stream's bytes into a
   * {@code ByteString}, blocking if necessary until all bytes are
   * read through to the end of the stream.
   *
   * <b>Performance notes:</b> The returned {@code ByteString} is an
   * immutable tree of byte arrays ("chunks") of the stream data.  The
   * chunkSize parameter sets the size of these byte arrays. In
   * particular, if the chunkSize is precisely the same as the length
   * of the stream, unnecessary allocations and copies will be
   * avoided. Otherwise, the chunks will be of the given size, except
   * for the last chunk, which will be resized (via a reallocation and
   * copy) to contain the remainder of the stream.
   *
   * @param streamToDrain The source stream, which is read completely
   *     but not closed.
   * @param chunkSize The size of the chunks in which to read the
   *     stream.
   * @return A new {@code ByteString} which is made up of chunks of
   *     the given size.
   * @throws IOException IOException is thrown if there is a problem
   *     reading the underlying stream.
   */
  public static ByteString readFrom(InputStream streamToDrain, int chunkSize)
      throws IOException {
    return readFrom(streamToDrain, chunkSize, chunkSize);
  }

  // Helper method that takes the chunk size range as a parameter.
  public static ByteString readFrom(InputStream streamToDrain, int minChunkSize,
      int maxChunkSize) throws IOException {
    Collection<ByteString> results = new ArrayList<ByteString>();

    // copy the inbound bytes into a list of chunks; the chunk size
    // grows exponentially to support both short and long streams.
    int chunkSize = minChunkSize;
    while (true) {
      ByteString chunk = readChunk(streamToDrain, chunkSize);
      if (chunk == null) {
        break;
      }
      results.add(chunk);
      chunkSize = Math.min(chunkSize * 2, maxChunkSize);
    }

    return ByteString.copyFrom(results);
  }

  /**
   * Blocks until a chunk of the given size can be made from the
   * stream, or EOF is reached.  Calls read() repeatedly in case the
   * given stream implementation doesn't completely fill the given
   * buffer in one read() call.
   *
   * @return A chunk of the desired size, or else a chunk as large as
   * was available when end of stream was reached. Returns null if the
   * given stream had no more data in it.
   */
  private static ByteString readChunk(InputStream in, final int chunkSize)
      throws IOException {
      final byte[] buf = new byte[chunkSize];
      int bytesRead = 0;
      while (bytesRead < chunkSize) {
        final int count = in.read(buf, bytesRead, chunkSize - bytesRead);
        if (count == -1) {
          break;
        }
        bytesRead += count;
      }

      if (bytesRead == 0) {
        return null;
      } else {
        return ByteString.copyFrom(buf, 0, bytesRead);
      }
  }

  // =================================================================
  // Multiple ByteStrings -> One ByteString

  /**
   * Concatenate the given {@code ByteString} to this one. Short concatenations,
   * of total size smaller than {@link ByteString#CONCATENATE_BY_COPY_SIZE}, are
   * produced by copying the underlying bytes (as per Rope.java, <a
   * href="http://www.cs.ubc.ca/local/reading/proceedings/spe91-95/spe/vol25/issue12/spe986.pdf">
   * BAP95 </a>. In general, the concatenate involves no copying.
   *
   * @param other string to concatenate
   * @return a new {@code ByteString} instance
   */
  public ByteString concat(ByteString other) {
    int thisSize = size();
    int otherSize = other.size();
    if ((long) thisSize + otherSize >= Integer.MAX_VALUE) {
      throw new IllegalArgumentException("ByteString would be too long: " +
                                         thisSize + "+" + otherSize);
    }

    return RopeByteString.concatenate(this, other);
  }

  /**
   * Concatenates all byte strings in the iterable and returns the result.
   * This is designed to run in O(list size), not O(total bytes).
   *
   * <p>The returned {@code ByteString} is not necessarily a unique object.
   * If the list is empty, the returned object is the singleton empty
   * {@code ByteString}.  If the list has only one element, that
   * {@code ByteString} will be returned without copying.
   *
   * @param byteStrings strings to be concatenated
   * @return new {@code ByteString}
   */
  public static ByteString copyFrom(Iterable<ByteString> byteStrings) {
    Collection<ByteString> collection;
    if (!(byteStrings instanceof Collection)) {
      collection = new ArrayList<ByteString>();
      for (ByteString byteString : byteStrings) {
        collection.add(byteString);
      }
    } else {
      collection = (Collection<ByteString>) byteStrings;
    }
    ByteString result;
    if (collection.isEmpty()) {
      result = EMPTY;
    } else {
      result = balancedConcat(collection.iterator(), collection.size());
    }
    return result;
  }

  // Internal function used by copyFrom(Iterable<ByteString>).
  // Create a balanced concatenation of the next "length" elements from the
  // iterable.
  private static ByteString balancedConcat(Iterator<ByteString> iterator,
      int length) {
    assert length >= 1;
    ByteString result;
    if (length == 1) {
      result = iterator.next();
    } else {
      int halfLength = length >>> 1;
      ByteString left = balancedConcat(iterator, halfLength);
      ByteString right = balancedConcat(iterator, length - halfLength);
      result = left.concat(right);
    }
    return result;
  }

  // =================================================================
  // ByteString -> byte[]

  /**
   * Copies bytes into a buffer at the given offset.
   *
   * @param target buffer to copy into
   * @param offset in the target buffer
   * @throws IndexOutOfBoundsException if the offset is negative or too large
   */
  public void copyTo(byte[] target, int offset) {
    copyTo(target, 0, offset, size());
  }

  /**
   * Copies bytes into a buffer.
   *
   * @param target       buffer to copy into
   * @param sourceOffset offset within these bytes
   * @param targetOffset offset within the target buffer
   * @param numberToCopy number of bytes to copy
   * @throws IndexOutOfBoundsException if an offset or size is negative or too
   *     large
   */
  public void copyTo(byte[] target, int sourceOffset, int targetOffset,
      int numberToCopy) {
    if (sourceOffset < 0) {
      throw new IndexOutOfBoundsException("Source offset < 0: " + sourceOffset);
    }
    if (targetOffset < 0) {
      throw new IndexOutOfBoundsException("Target offset < 0: " + targetOffset);
    }
    if (numberToCopy < 0) {
      throw new IndexOutOfBoundsException("Length < 0: " + numberToCopy);
    }
    if (sourceOffset + numberToCopy > size()) {
      throw new IndexOutOfBoundsException(
          "Source end offset < 0: " + (sourceOffset + numberToCopy));
    }
    if (targetOffset + numberToCopy > target.length) {
      throw new IndexOutOfBoundsException(
          "Target end offset < 0: " + (targetOffset + numberToCopy));
    }
    if (numberToCopy > 0) {
      copyToInternal(target, sourceOffset, targetOffset, numberToCopy);
    }
  }

  /**
   * Internal (package private) implementation of
   * @link{#copyTo(byte[],int,int,int}.
   * It assumes that all error checking has already been performed and that 
   * @code{numberToCopy > 0}.
   */
  protected abstract void copyToInternal(byte[] target, int sourceOffset,
      int targetOffset, int numberToCopy);

  /**
   * Copies bytes into a ByteBuffer.
   *
   * @param target ByteBuffer to copy into.
   * @throws java.nio.ReadOnlyBufferException if the {@code target} is read-only
   * @throws java.nio.BufferOverflowException if the {@code target}'s
   *     remaining() space is not large enough to hold the data.
   */
  public abstract void copyTo(ByteBuffer target);

  /**
   * Copies bytes to a {@code byte[]}.
   *
   * @return copied bytes
   */
  public byte[] toByteArray() {
    int size = size();
    if (size == 0) {
      return Internal.EMPTY_BYTE_ARRAY;
    }
    byte[] result = new byte[size];
    copyToInternal(result, 0, 0, size);
    return result;
  }

  /**
   * Writes the complete contents of this byte string to
   * the specified output stream argument.
   *
   * @param  out  the output stream to which to write the data.
   * @throws IOException  if an I/O error occurs.
   */
  public abstract void writeTo(OutputStream out) throws IOException;
  
  /**
   * Writes a specified part of this byte string to an output stream.
   *
   * @param  out  the output stream to which to write the data.
   * @param  sourceOffset offset within these bytes
   * @param  numberToWrite number of bytes to write
   * @throws IOException  if an I/O error occurs.
   * @throws IndexOutOfBoundsException if an offset or size is negative or too
   *     large
   */
  void writeTo(OutputStream out, int sourceOffset, int numberToWrite)
      throws IOException {
    if (sourceOffset < 0) {
      throw new IndexOutOfBoundsException("Source offset < 0: " + sourceOffset);
    }
    if (numberToWrite < 0) {
      throw new IndexOutOfBoundsException("Length < 0: " + numberToWrite);
    }
    if (sourceOffset + numberToWrite > size()) {
      throw new IndexOutOfBoundsException(
          "Source end offset exceeded: " + (sourceOffset + numberToWrite));
    }
    if (numberToWrite > 0) {
      writeToInternal(out, sourceOffset, numberToWrite);
    }
    
  }

  /**
   * Internal version of {@link #writeTo(OutputStream,int,int)} that assumes
   * all error checking has already been done.
   */
  abstract void writeToInternal(OutputStream out, int sourceOffset,
      int numberToWrite) throws IOException;

  /**
   * Constructs a read-only {@code java.nio.ByteBuffer} whose content
   * is equal to the contents of this byte string.
   * The result uses the same backing array as the byte string, if possible.
   *
   * @return wrapped bytes
   */
  public abstract ByteBuffer asReadOnlyByteBuffer();

  /**
   * Constructs a list of read-only {@code java.nio.ByteBuffer} objects
   * such that the concatenation of their contents is equal to the contents
   * of this byte string.  The result uses the same backing arrays as the
   * byte string.
   * <p>
   * By returning a list, implementations of this method may be able to avoid
   * copying even when there are multiple backing arrays.
   * 
   * @return a list of wrapped bytes
   */
  public abstract List<ByteBuffer> asReadOnlyByteBufferList();

  /**
   * Constructs a new {@code String} by decoding the bytes using the
   * specified charset.
   *
   * @param charsetName encode using this charset
   * @return new string
   * @throws UnsupportedEncodingException if charset isn't recognized
   */
  public abstract String toString(String charsetName)
      throws UnsupportedEncodingException;

  // =================================================================
  // UTF-8 decoding

  /**
   * Constructs a new {@code String} by decoding the bytes as UTF-8.
   *
   * @return new string using UTF-8 encoding
   */
  public String toStringUtf8() {
    try {
      return toString("UTF-8");
    } catch (UnsupportedEncodingException e) {
      throw new RuntimeException("UTF-8 not supported?", e);
    }
  }

  /**
   * Tells whether this {@code ByteString} represents a well-formed UTF-8
   * byte sequence, such that the original bytes can be converted to a
   * String object and then round tripped back to bytes without loss.
   *
   * <p>More precisely, returns {@code true} whenever: <pre> {@code
   * Arrays.equals(byteString.toByteArray(),
   *     new String(byteString.toByteArray(), "UTF-8").getBytes("UTF-8"))
   * }</pre>
   *
   * <p>This method returns {@code false} for "overlong" byte sequences,
   * as well as for 3-byte sequences that would map to a surrogate
   * character, in accordance with the restricted definition of UTF-8
   * introduced in Unicode 3.1.  Note that the UTF-8 decoder included in
   * Oracle's JDK has been modified to also reject "overlong" byte
   * sequences, but (as of 2011) still accepts 3-byte surrogate
   * character byte sequences.
   *
   * <p>See the Unicode Standard,</br>
   * Table 3-6. <em>UTF-8 Bit Distribution</em>,</br>
   * Table 3-7. <em>Well Formed UTF-8 Byte Sequences</em>.
   *
   * @return whether the bytes in this {@code ByteString} are a
   * well-formed UTF-8 byte sequence
   */
  public abstract boolean isValidUtf8();

  /**
   * Tells whether the given byte sequence is a well-formed, malformed, or
   * incomplete UTF-8 byte sequence.  This method accepts and returns a partial
   * state result, allowing the bytes for a complete UTF-8 byte sequence to be
   * composed from multiple {@code ByteString} segments.
   *
   * @param state either {@code 0} (if this is the initial decoding operation)
   *     or the value returned from a call to a partial decoding method for the
   *     previous bytes
   * @param offset offset of the first byte to check
   * @param length number of bytes to check
   *
   * @return {@code -1} if the partial byte sequence is definitely malformed,
   * {@code 0} if it is well-formed (no additional input needed), or, if the
   * byte sequence is "incomplete", i.e. apparently terminated in the middle of
   * a character, an opaque integer "state" value containing enough information
   * to decode the character when passed to a subsequent invocation of a
   * partial decoding method.
   */
  protected abstract int partialIsValidUtf8(int state, int offset, int length);

  // =================================================================
  // equals() and hashCode()

  @Override
  public abstract boolean equals(Object o);

  /**
   * Return a non-zero hashCode depending only on the sequence of bytes
   * in this ByteString.
   *
   * @return hashCode value for this object
   */
  @Override
  public abstract int hashCode();

  // =================================================================
  // Input stream

  /**
   * Creates an {@code InputStream} which can be used to read the bytes.
   * <p>
   * The {@link InputStream} returned by this method is guaranteed to be
   * completely non-blocking.  The method {@link InputStream#available()}
   * returns the number of bytes remaining in the stream. The methods
   * {@link InputStream#read(byte[]), {@link InputStream#read(byte[],int,int)}
   * and {@link InputStream#skip(long)} will read/skip as many bytes as are
   * available.
   * <p>
   * The methods in the returned {@link InputStream} might <b>not</b> be
   * thread safe.
   *
   * @return an input stream that returns the bytes of this byte string.
   */
  public abstract InputStream newInput();

  /**
   * Creates a {@link CodedInputStream} which can be used to read the bytes.
   * Using this is often more efficient than creating a {@link CodedInputStream}
   * that wraps the result of {@link #newInput()}.
   *
   * @return stream based on wrapped data
   */
  public abstract CodedInputStream newCodedInput();

  // =================================================================
  // Output stream

  /**
   * Creates a new {@link Output} with the given initial capacity. Call {@link
   * Output#toByteString()} to create the {@code ByteString} instance.
   * <p>
   * A {@link ByteString.Output} offers the same functionality as a
   * {@link ByteArrayOutputStream}, except that it returns a {@link ByteString}
   * rather than a {@code byte} array.
   *
   * @param initialCapacity estimate of number of bytes to be written
   * @return {@code OutputStream} for building a {@code ByteString}
   */
  public static Output newOutput(int initialCapacity) {
    return new Output(initialCapacity);
  }

  /**
   * Creates a new {@link Output}. Call {@link Output#toByteString()} to create
   * the {@code ByteString} instance.
   * <p>
   * A {@link ByteString.Output} offers the same functionality as a
   * {@link ByteArrayOutputStream}, except that it returns a {@link ByteString}
   * rather than a {@code byte array}.
   *
   * @return {@code OutputStream} for building a {@code ByteString}
   */
  public static Output newOutput() {
    return new Output(CONCATENATE_BY_COPY_SIZE);
  }

  /**
   * Outputs to a {@code ByteString} instance. Call {@link #toByteString()} to
   * create the {@code ByteString} instance.
   */
  public static final class Output extends OutputStream {
    // Implementation note.
    // The public methods of this class must be synchronized.  ByteStrings
    // are guaranteed to be immutable.  Without some sort of locking, it could
    // be possible for one thread to call toByteSring(), while another thread
    // is still modifying the underlying byte array.

    private static final byte[] EMPTY_BYTE_ARRAY = new byte[0];
    // argument passed by user, indicating initial capacity.
    private final int initialCapacity;
    // ByteStrings to be concatenated to create the result
    private final ArrayList<ByteString> flushedBuffers;
    // Total number of bytes in the ByteStrings of flushedBuffers
    private int flushedBuffersTotalBytes;
    // Current buffer to which we are writing
    private byte[] buffer;
    // Location in buffer[] to which we write the next byte.
    private int bufferPos;

    /**
     * Creates a new ByteString output stream with the specified
     * initial capacity.
     *
     * @param initialCapacity  the initial capacity of the output stream.
     */
    Output(int initialCapacity) {
      if (initialCapacity < 0) {
        throw new IllegalArgumentException("Buffer size < 0");
      }
      this.initialCapacity = initialCapacity;
      this.flushedBuffers = new ArrayList<ByteString>();
      this.buffer = new byte[initialCapacity];
    }

    @Override
    public synchronized void write(int b) {
      if (bufferPos == buffer.length) {
        flushFullBuffer(1);
      }
      buffer[bufferPos++] = (byte)b;
    }

    @Override
    public synchronized void write(byte[] b, int offset, int length)  {
      if (length <= buffer.length - bufferPos) {
        // The bytes can fit into the current buffer.
        System.arraycopy(b, offset, buffer, bufferPos, length);
        bufferPos += length;
      } else {
        // Use up the current buffer
        int copySize  = buffer.length - bufferPos;
        System.arraycopy(b, offset, buffer, bufferPos, copySize);
        offset += copySize;
        length -= copySize;
        // Flush the buffer, and get a new buffer at least big enough to cover
        // what we still need to output
        flushFullBuffer(length);
        System.arraycopy(b, offset, buffer, 0 /* count */, length);
        bufferPos = length;
      }
    }

    /**
     * Creates a byte string. Its size is the current size of this output
     * stream and its output has been copied to it.
     *
     * @return  the current contents of this output stream, as a byte string.
     */
    public synchronized ByteString toByteString() {
      flushLastBuffer();
      return ByteString.copyFrom(flushedBuffers);
    }
    
    /**
     * Implement java.util.Arrays.copyOf() for jdk 1.5.
     */
    private byte[] copyArray(byte[] buffer, int length) {
      byte[] result = new byte[length];
      System.arraycopy(buffer, 0, result, 0, Math.min(buffer.length, length));
      return result;
    }

    /**
     * Writes the complete contents of this byte array output stream to
     * the specified output stream argument.
     *
     * @param out the output stream to which to write the data.
     * @throws IOException  if an I/O error occurs.
     */
    public void writeTo(OutputStream out) throws IOException {
      ByteString[] cachedFlushBuffers;
      byte[] cachedBuffer;
      int cachedBufferPos;
      synchronized (this) {
        // Copy the information we need into local variables so as to hold
        // the lock for as short a time as possible.
        cachedFlushBuffers =
            flushedBuffers.toArray(new ByteString[flushedBuffers.size()]);
        cachedBuffer = buffer;
        cachedBufferPos = bufferPos;
      }
      for (ByteString byteString : cachedFlushBuffers) {
        byteString.writeTo(out);
      }

      out.write(copyArray(cachedBuffer, cachedBufferPos));
    }

    /**
     * Returns the current size of the output stream.
     *
     * @return  the current size of the output stream
     */
    public synchronized int size() {
      return flushedBuffersTotalBytes + bufferPos;
    }

    /**
     * Resets this stream, so that all currently accumulated output in the
     * output stream is discarded. The output stream can be used again,
     * reusing the already allocated buffer space.
     */
    public synchronized void reset() {
      flushedBuffers.clear();
      flushedBuffersTotalBytes = 0;
      bufferPos = 0;
    }

    @Override
    public String toString() {
      return String.format("<ByteString.Output@%s size=%d>",
          Integer.toHexString(System.identityHashCode(this)), size());
    }

    /**
     * Internal function used by writers.  The current buffer is full, and the
     * writer needs a new buffer whose size is at least the specified minimum
     * size.
     */
    private void flushFullBuffer(int minSize)  {
      flushedBuffers.add(new LiteralByteString(buffer));
      flushedBuffersTotalBytes += buffer.length;
      // We want to increase our total capacity by 50%, but as a minimum,
      // the new buffer should also at least be >= minSize and
      // >= initial Capacity.
      int newSize = Math.max(initialCapacity,
          Math.max(minSize, flushedBuffersTotalBytes >>> 1));
      buffer = new byte[newSize];
      bufferPos = 0;
    }

    /**
     * Internal function used by {@link #toByteString()}. The current buffer may
     * or may not be full, but it needs to be flushed.
     */
    private void flushLastBuffer()  {
      if (bufferPos < buffer.length) {
        if (bufferPos > 0) {
          byte[] bufferCopy = copyArray(buffer, bufferPos);
          flushedBuffers.add(new LiteralByteString(bufferCopy));
        }
        // We reuse this buffer for further writes.
      } else {
        // Buffer is completely full.  Huzzah.
        flushedBuffers.add(new LiteralByteString(buffer));
        // 99% of the time, we're not going to use this OutputStream again.
        // We set buffer to an empty byte stream so that we're handling this
        // case without wasting space.  In the rare case that more writes
        // *do* occur, this empty buffer will be flushed and an appropriately
        // sized new buffer will be created.
        buffer = EMPTY_BYTE_ARRAY;
      }
      flushedBuffersTotalBytes += bufferPos;
      bufferPos = 0;
    }
  }

  /**
   * Constructs a new {@code ByteString} builder, which allows you to
   * efficiently construct a {@code ByteString} by writing to a {@link
   * CodedOutputStream}. Using this is much more efficient than calling {@code
   * newOutput()} and wrapping that in a {@code CodedOutputStream}.
   *
   * <p>This is package-private because it's a somewhat confusing interface.
   * Users can call {@link Message#toByteString()} instead of calling this
   * directly.
   *
   * @param size The target byte size of the {@code ByteString}.  You must write
   *     exactly this many bytes before building the result.
   * @return the builder
   */
  static CodedBuilder newCodedBuilder(int size) {
    return new CodedBuilder(size);
  }

  /** See {@link ByteString#newCodedBuilder(int)}. */
  static final class CodedBuilder {
    private final CodedOutputStream output;
    private final byte[] buffer;

    private CodedBuilder(int size) {
      buffer = new byte[size];
      output = CodedOutputStream.newInstance(buffer);
    }

    public ByteString build() {
      output.checkNoSpaceLeft();

      // We can be confident that the CodedOutputStream will not modify the
      // underlying bytes anymore because it already wrote all of them.  So,
      // no need to make a copy.
      return new LiteralByteString(buffer);
    }

    public CodedOutputStream getCodedOutput() {
      return output;
    }
  }

  // =================================================================
  // Methods {@link RopeByteString} needs on instances, which aren't part of the
  // public API.

  /**
   * Return the depth of the tree representing this {@code ByteString}, if any,
   * whose root is this node. If this is a leaf node, return 0.
   *
   * @return tree depth or zero
   */
  protected abstract int getTreeDepth();

  /**
   * Return {@code true} if this ByteString is literal (a leaf node) or a
   * flat-enough tree in the sense of {@link RopeByteString}.
   *
   * @return true if the tree is flat enough
   */
  protected abstract boolean isBalanced();

  /**
   * Return the cached hash code if available.
   *
   * @return value of cached hash code or 0 if not computed yet
   */
  protected abstract int peekCachedHashCode();

  /**
   * Compute the hash across the value bytes starting with the given hash, and
   * return the result.  This is used to compute the hash across strings
   * represented as a set of pieces by allowing the hash computation to be
   * continued from piece to piece.
   *
   * @param h starting hash value
   * @param offset offset into this value to start looking at data values
   * @param length number of data values to include in the hash computation
   * @return ending hash value
   */
  protected abstract int partialHash(int h, int offset, int length);

  @Override
  public String toString() {
    return String.format("<ByteString@%s size=%d>",
        Integer.toHexString(System.identityHashCode(this)), size());
  }
}