aboutsummaryrefslogtreecommitdiffstats
path: root/src/google/protobuf/compiler/python/python_generator.cc
blob: fae83a3709fc03b8754be3a0fdf7f496f50076ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: robinson@google.com (Will Robinson)
//
// This module outputs pure-Python protocol message classes that will
// largely be constructed at runtime via the metaclass in reflection.py.
// In other words, our job is basically to output a Python equivalent
// of the C++ *Descriptor objects, and fix up all circular references
// within these objects.
//
// Note that the runtime performance of protocol message classes created in
// this way is expected to be lousy.  The plan is to create an alternate
// generator that outputs a Python/C extension module that lets
// performance-minded Python code leverage the fast C++ implementation
// directly.

#include <limits>
#include <map>
#include <utility>
#include <string>
#include <vector>

#include <google/protobuf/compiler/python/python_generator.h>
#include <google/protobuf/descriptor.pb.h>

#include <google/protobuf/stubs/common.h>
#include <google/protobuf/io/printer.h>
#include <google/protobuf/descriptor.h>
#include <google/protobuf/io/zero_copy_stream.h>
#include <google/protobuf/stubs/strutil.h>
#include <google/protobuf/stubs/substitute.h>

namespace google {
namespace protobuf {
namespace compiler {
namespace python {

namespace {

// Returns a copy of |filename| with any trailing ".protodevel" or ".proto
// suffix stripped.
// TODO(robinson): Unify with copy in compiler/cpp/internal/helpers.cc.
string StripProto(const string& filename) {
  const char* suffix = HasSuffixString(filename, ".protodevel")
      ? ".protodevel" : ".proto";
  return StripSuffixString(filename, suffix);
}


// Returns the Python module name expected for a given .proto filename.
string ModuleName(const string& filename) {
  string basename = StripProto(filename);
  StripString(&basename, "-", '_');
  StripString(&basename, "/", '.');
  return basename + "_pb2";
}


// Returns the name of all containing types for descriptor,
// in order from outermost to innermost, followed by descriptor's
// own name.  Each name is separated by |separator|.
template <typename DescriptorT>
string NamePrefixedWithNestedTypes(const DescriptorT& descriptor,
                                   const string& separator) {
  string name = descriptor.name();
  for (const Descriptor* current = descriptor.containing_type();
       current != NULL; current = current->containing_type()) {
    name = current->name() + separator + name;
  }
  return name;
}


// Name of the class attribute where we store the Python
// descriptor.Descriptor instance for the generated class.
// Must stay consistent with the _DESCRIPTOR_KEY constant
// in proto2/public/reflection.py.
const char kDescriptorKey[] = "DESCRIPTOR";


// Should we generate generic services for this file?
inline bool HasGenericServices(const FileDescriptor *file) {
  return file->service_count() > 0 &&
         file->options().py_generic_services();
}


// Prints the common boilerplate needed at the top of every .py
// file output by this generator.
void PrintTopBoilerplate(
    io::Printer* printer, const FileDescriptor* file, bool descriptor_proto) {
  // TODO(robinson): Allow parameterization of Python version?
  printer->Print(
      "# Generated by the protocol buffer compiler.  DO NOT EDIT!\n"
      "\n"
      "from google.protobuf import descriptor\n"
      "from google.protobuf import message\n"
      "from google.protobuf import reflection\n");
  if (HasGenericServices(file)) {
    printer->Print(
        "from google.protobuf import service\n"
        "from google.protobuf import service_reflection\n");
  }

  // Avoid circular imports if this module is descriptor_pb2.
  if (!descriptor_proto) {
    printer->Print(
        "from google.protobuf import descriptor_pb2\n");
  }
  printer->Print(
    "# @@protoc_insertion_point(imports)\n");
  printer->Print("\n\n");
}


// Returns a Python literal giving the default value for a field.
// If the field specifies no explicit default value, we'll return
// the default default value for the field type (zero for numbers,
// empty string for strings, empty list for repeated fields, and
// None for non-repeated, composite fields).
//
// TODO(robinson): Unify with code from
// //compiler/cpp/internal/primitive_field.cc
// //compiler/cpp/internal/enum_field.cc
// //compiler/cpp/internal/string_field.cc
string StringifyDefaultValue(const FieldDescriptor& field) {
  if (field.is_repeated()) {
    return "[]";
  }

  switch (field.cpp_type()) {
    case FieldDescriptor::CPPTYPE_INT32:
      return SimpleItoa(field.default_value_int32());
    case FieldDescriptor::CPPTYPE_UINT32:
      return SimpleItoa(field.default_value_uint32());
    case FieldDescriptor::CPPTYPE_INT64:
      return SimpleItoa(field.default_value_int64());
    case FieldDescriptor::CPPTYPE_UINT64:
      return SimpleItoa(field.default_value_uint64());
    case FieldDescriptor::CPPTYPE_DOUBLE: {
      double value = field.default_value_double();
      if (value == numeric_limits<double>::infinity()) {
        // Python pre-2.6 on Windows does not parse "inf" correctly.  However,
        // a numeric literal that is too big for a double will become infinity.
        return "1e10000";
      } else if (value == -numeric_limits<double>::infinity()) {
        // See above.
        return "-1e10000";
      } else if (value != value) {
        // infinity * 0 = nan
        return "(1e10000 * 0)";
      } else {
        return SimpleDtoa(value);
      }
    }
    case FieldDescriptor::CPPTYPE_FLOAT: {
      float value = field.default_value_float();
      if (value == numeric_limits<float>::infinity()) {
        // Python pre-2.6 on Windows does not parse "inf" correctly.  However,
        // a numeric literal that is too big for a double will become infinity.
        return "1e10000";
      } else if (value == -numeric_limits<float>::infinity()) {
        // See above.
        return "-1e10000";
      } else if (value != value) {
        // infinity - infinity = nan
        return "(1e10000 * 0)";
      } else {
        return SimpleFtoa(value);
      }
    }
    case FieldDescriptor::CPPTYPE_BOOL:
      return field.default_value_bool() ? "True" : "False";
    case FieldDescriptor::CPPTYPE_ENUM:
      return SimpleItoa(field.default_value_enum()->number());
    case FieldDescriptor::CPPTYPE_STRING:
      if (field.type() == FieldDescriptor::TYPE_STRING) {
        return "unicode(\"" + CEscape(field.default_value_string()) +
            "\", \"utf-8\")";
      } else {
        return "\"" + CEscape(field.default_value_string()) + "\"";
      }
    case FieldDescriptor::CPPTYPE_MESSAGE:
      return "None";
  }
  // (We could add a default case above but then we wouldn't get the nice
  // compiler warning when a new type is added.)
  GOOGLE_LOG(FATAL) << "Not reached.";
  return "";
}



}  // namespace


Generator::Generator() : file_(NULL) {
}

Generator::~Generator() {
}

bool Generator::Generate(const FileDescriptor* file,
                         const string& parameter,
                         OutputDirectory* output_directory,
                         string* error) const {

  // Completely serialize all Generate() calls on this instance.  The
  // thread-safety constraints of the CodeGenerator interface aren't clear so
  // just be as conservative as possible.  It's easier to relax this later if
  // we need to, but I doubt it will be an issue.
  // TODO(kenton):  The proper thing to do would be to allocate any state on
  //   the stack and use that, so that the Generator class itself does not need
  //   to have any mutable members.  Then it is implicitly thread-safe.
  MutexLock lock(&mutex_);
  file_ = file;
  string module_name = ModuleName(file->name());
  string filename = module_name;
  StripString(&filename, ".", '/');
  filename += ".py";

  FileDescriptorProto fdp;
  file_->CopyTo(&fdp);
  fdp.SerializeToString(&file_descriptor_serialized_);


  scoped_ptr<io::ZeroCopyOutputStream> output(output_directory->Open(filename));
  GOOGLE_CHECK(output.get());
  io::Printer printer(output.get(), '$');
  printer_ = &printer;

  PrintTopBoilerplate(printer_, file_, GeneratingDescriptorProto());
  PrintFileDescriptor();
  PrintTopLevelEnums();
  PrintTopLevelExtensions();
  PrintAllNestedEnumsInFile();
  PrintMessageDescriptors();
  // We have to print the imports after the descriptors, so that mutually
  // recursive protos in separate files can successfully reference each other.
  PrintImports();
  FixForeignFieldsInDescriptors();
  PrintMessages();
  // We have to fix up the extensions after the message classes themselves,
  // since they need to call static RegisterExtension() methods on these
  // classes.
  FixForeignFieldsInExtensions();
  if (HasGenericServices(file)) {
    PrintServices();
  }

  printer.Print(
    "# @@protoc_insertion_point(module_scope)\n");

  return !printer.failed();
}

// Prints Python imports for all modules imported by |file|.
void Generator::PrintImports() const {
  for (int i = 0; i < file_->dependency_count(); ++i) {
    string module_name = ModuleName(file_->dependency(i)->name());
    printer_->Print("import $module$\n", "module",
                    module_name);
  }
  printer_->Print("\n");
}

// Prints the single file descriptor for this file.
void Generator::PrintFileDescriptor() const {
  map<string, string> m;
  m["descriptor_name"] = kDescriptorKey;
  m["name"] = file_->name();
  m["package"] = file_->package();
  const char file_descriptor_template[] =
      "$descriptor_name$ = descriptor.FileDescriptor(\n"
      "  name='$name$',\n"
      "  package='$package$',\n";
  printer_->Print(m, file_descriptor_template);
  printer_->Indent();
  printer_->Print(
      "serialized_pb='$value$'",
      "value", strings::CHexEscape(file_descriptor_serialized_));

  // TODO(falk): Also print options and fix the message_type, enum_type,
  //             service and extension later in the generation.

  printer_->Outdent();
  printer_->Print(")\n");
  printer_->Print("\n");
}

// Prints descriptors and module-level constants for all top-level
// enums defined in |file|.
void Generator::PrintTopLevelEnums() const {
  vector<pair<string, int> > top_level_enum_values;
  for (int i = 0; i < file_->enum_type_count(); ++i) {
    const EnumDescriptor& enum_descriptor = *file_->enum_type(i);
    PrintEnum(enum_descriptor);
    printer_->Print("\n");

    for (int j = 0; j < enum_descriptor.value_count(); ++j) {
      const EnumValueDescriptor& value_descriptor = *enum_descriptor.value(j);
      top_level_enum_values.push_back(
          make_pair(value_descriptor.name(), value_descriptor.number()));
    }
  }

  for (int i = 0; i < top_level_enum_values.size(); ++i) {
    printer_->Print("$name$ = $value$\n",
                    "name", top_level_enum_values[i].first,
                    "value", SimpleItoa(top_level_enum_values[i].second));
  }
  printer_->Print("\n");
}

// Prints all enums contained in all message types in |file|.
void Generator::PrintAllNestedEnumsInFile() const {
  for (int i = 0; i < file_->message_type_count(); ++i) {
    PrintNestedEnums(*file_->message_type(i));
  }
}

// Prints a Python statement assigning the appropriate module-level
// enum name to a Python EnumDescriptor object equivalent to
// enum_descriptor.
void Generator::PrintEnum(const EnumDescriptor& enum_descriptor) const {
  map<string, string> m;
  m["descriptor_name"] = ModuleLevelDescriptorName(enum_descriptor);
  m["name"] = enum_descriptor.name();
  m["full_name"] = enum_descriptor.full_name();
  m["file"] = kDescriptorKey;
  const char enum_descriptor_template[] =
      "$descriptor_name$ = descriptor.EnumDescriptor(\n"
      "  name='$name$',\n"
      "  full_name='$full_name$',\n"
      "  filename=None,\n"
      "  file=$file$,\n"
      "  values=[\n";
  string options_string;
  enum_descriptor.options().SerializeToString(&options_string);
  printer_->Print(m, enum_descriptor_template);
  printer_->Indent();
  printer_->Indent();
  for (int i = 0; i < enum_descriptor.value_count(); ++i) {
    PrintEnumValueDescriptor(*enum_descriptor.value(i));
    printer_->Print(",\n");
  }
  printer_->Outdent();
  printer_->Print("],\n");
  printer_->Print("containing_type=None,\n");
  printer_->Print("options=$options_value$,\n",
                  "options_value",
                  OptionsValue("EnumOptions", CEscape(options_string)));
  EnumDescriptorProto edp;
  PrintSerializedPbInterval(enum_descriptor, edp);
  printer_->Outdent();
  printer_->Print(")\n");
  printer_->Print("\n");
}

// Recursively prints enums in nested types within descriptor, then
// prints enums contained at the top level in descriptor.
void Generator::PrintNestedEnums(const Descriptor& descriptor) const {
  for (int i = 0; i < descriptor.nested_type_count(); ++i) {
    PrintNestedEnums(*descriptor.nested_type(i));
  }

  for (int i = 0; i < descriptor.enum_type_count(); ++i) {
    PrintEnum(*descriptor.enum_type(i));
  }
}

void Generator::PrintTopLevelExtensions() const {
  const bool is_extension = true;
  for (int i = 0; i < file_->extension_count(); ++i) {
    const FieldDescriptor& extension_field = *file_->extension(i);
    string constant_name = extension_field.name() + "_FIELD_NUMBER";
    UpperString(&constant_name);
    printer_->Print("$constant_name$ = $number$\n",
      "constant_name", constant_name,
      "number", SimpleItoa(extension_field.number()));
    printer_->Print("$name$ = ", "name", extension_field.name());
    PrintFieldDescriptor(extension_field, is_extension);
    printer_->Print("\n");
  }
  printer_->Print("\n");
}

// Prints Python equivalents of all Descriptors in |file|.
void Generator::PrintMessageDescriptors() const {
  for (int i = 0; i < file_->message_type_count(); ++i) {
    PrintDescriptor(*file_->message_type(i));
    printer_->Print("\n");
  }
}

void Generator::PrintServices() const {
  for (int i = 0; i < file_->service_count(); ++i) {
    PrintServiceDescriptor(*file_->service(i));
    PrintServiceClass(*file_->service(i));
    PrintServiceStub(*file_->service(i));
    printer_->Print("\n");
  }
}

void Generator::PrintServiceDescriptor(
    const ServiceDescriptor& descriptor) const {
  printer_->Print("\n");
  string service_name = ModuleLevelServiceDescriptorName(descriptor);
  string options_string;
  descriptor.options().SerializeToString(&options_string);

  printer_->Print(
      "$service_name$ = descriptor.ServiceDescriptor(\n",
      "service_name", service_name);
  printer_->Indent();
  map<string, string> m;
  m["name"] = descriptor.name();
  m["full_name"] = descriptor.full_name();
  m["file"] = kDescriptorKey;
  m["index"] = SimpleItoa(descriptor.index());
  m["options_value"] = OptionsValue("ServiceOptions", options_string);
  const char required_function_arguments[] =
      "name='$name$',\n"
      "full_name='$full_name$',\n"
      "file=$file$,\n"
      "index=$index$,\n"
      "options=$options_value$,\n";
  printer_->Print(m, required_function_arguments);

  ServiceDescriptorProto sdp;
  PrintSerializedPbInterval(descriptor, sdp);

  printer_->Print("methods=[\n");
  for (int i = 0; i < descriptor.method_count(); ++i) {
    const MethodDescriptor* method = descriptor.method(i);
    string options_string;
    method->options().SerializeToString(&options_string);

    m.clear();
    m["name"] = method->name();
    m["full_name"] = method->full_name();
    m["index"] = SimpleItoa(method->index());
    m["serialized_options"] = CEscape(options_string);
    m["input_type"] = ModuleLevelDescriptorName(*(method->input_type()));
    m["output_type"] = ModuleLevelDescriptorName(*(method->output_type()));
    m["options_value"] = OptionsValue("MethodOptions", options_string);
    printer_->Print("descriptor.MethodDescriptor(\n");
    printer_->Indent();
    printer_->Print(
        m,
        "name='$name$',\n"
        "full_name='$full_name$',\n"
        "index=$index$,\n"
        "containing_service=None,\n"
        "input_type=$input_type$,\n"
        "output_type=$output_type$,\n"
        "options=$options_value$,\n");
    printer_->Outdent();
    printer_->Print("),\n");
  }

  printer_->Outdent();
  printer_->Print("])\n\n");
}

void Generator::PrintServiceClass(const ServiceDescriptor& descriptor) const {
  // Print the service.
  printer_->Print("class $class_name$(service.Service):\n",
                  "class_name", descriptor.name());
  printer_->Indent();
  printer_->Print(
      "__metaclass__ = service_reflection.GeneratedServiceType\n"
      "$descriptor_key$ = $descriptor_name$\n",
      "descriptor_key", kDescriptorKey,
      "descriptor_name", ModuleLevelServiceDescriptorName(descriptor));
  printer_->Outdent();
}

void Generator::PrintServiceStub(const ServiceDescriptor& descriptor) const {
  // Print the service stub.
  printer_->Print("class $class_name$_Stub($class_name$):\n",
                  "class_name", descriptor.name());
  printer_->Indent();
  printer_->Print(
      "__metaclass__ = service_reflection.GeneratedServiceStubType\n"
      "$descriptor_key$ = $descriptor_name$\n",
      "descriptor_key", kDescriptorKey,
      "descriptor_name", ModuleLevelServiceDescriptorName(descriptor));
  printer_->Outdent();
}

// Prints statement assigning ModuleLevelDescriptorName(message_descriptor)
// to a Python Descriptor object for message_descriptor.
//
// Mutually recursive with PrintNestedDescriptors().
void Generator::PrintDescriptor(const Descriptor& message_descriptor) const {
  PrintNestedDescriptors(message_descriptor);

  printer_->Print("\n");
  printer_->Print("$descriptor_name$ = descriptor.Descriptor(\n",
                  "descriptor_name",
                  ModuleLevelDescriptorName(message_descriptor));
  printer_->Indent();
  map<string, string> m;
  m["name"] = message_descriptor.name();
  m["full_name"] = message_descriptor.full_name();
  m["file"] = kDescriptorKey;
  const char required_function_arguments[] =
      "name='$name$',\n"
      "full_name='$full_name$',\n"
      "filename=None,\n"
      "file=$file$,\n"
      "containing_type=None,\n";
  printer_->Print(m, required_function_arguments);
  PrintFieldsInDescriptor(message_descriptor);
  PrintExtensionsInDescriptor(message_descriptor);

  // Nested types
  printer_->Print("nested_types=[");
  for (int i = 0; i < message_descriptor.nested_type_count(); ++i) {
    const string nested_name = ModuleLevelDescriptorName(
        *message_descriptor.nested_type(i));
    printer_->Print("$name$, ", "name", nested_name);
  }
  printer_->Print("],\n");

  // Enum types
  printer_->Print("enum_types=[\n");
  printer_->Indent();
  for (int i = 0; i < message_descriptor.enum_type_count(); ++i) {
    const string descriptor_name = ModuleLevelDescriptorName(
        *message_descriptor.enum_type(i));
    printer_->Print(descriptor_name.c_str());
    printer_->Print(",\n");
  }
  printer_->Outdent();
  printer_->Print("],\n");
  string options_string;
  message_descriptor.options().SerializeToString(&options_string);
  printer_->Print(
      "options=$options_value$,\n"
      "is_extendable=$extendable$",
      "options_value", OptionsValue("MessageOptions", options_string),
      "extendable", message_descriptor.extension_range_count() > 0 ?
                      "True" : "False");
  printer_->Print(",\n");

  // Extension ranges
  printer_->Print("extension_ranges=[");
  for (int i = 0; i < message_descriptor.extension_range_count(); ++i) {
    const Descriptor::ExtensionRange* range =
        message_descriptor.extension_range(i);
    printer_->Print("($start$, $end$), ",
                    "start", SimpleItoa(range->start),
                    "end", SimpleItoa(range->end));
  }
  printer_->Print("],\n");

  // Serialization of proto
  DescriptorProto edp;
  PrintSerializedPbInterval(message_descriptor, edp);

  printer_->Outdent();
  printer_->Print(")\n");
}

// Prints Python Descriptor objects for all nested types contained in
// message_descriptor.
//
// Mutually recursive with PrintDescriptor().
void Generator::PrintNestedDescriptors(
    const Descriptor& containing_descriptor) const {
  for (int i = 0; i < containing_descriptor.nested_type_count(); ++i) {
    PrintDescriptor(*containing_descriptor.nested_type(i));
  }
}

// Prints all messages in |file|.
void Generator::PrintMessages() const {
  for (int i = 0; i < file_->message_type_count(); ++i) {
    PrintMessage(*file_->message_type(i));
    printer_->Print("\n");
  }
}

// Prints a Python class for the given message descriptor.  We defer to the
// metaclass to do almost all of the work of actually creating a useful class.
// The purpose of this function and its many helper functions above is merely
// to output a Python version of the descriptors, which the metaclass in
// reflection.py will use to construct the meat of the class itself.
//
// Mutually recursive with PrintNestedMessages().
void Generator::PrintMessage(
    const Descriptor& message_descriptor) const {
  printer_->Print("class $name$(message.Message):\n", "name",
                  message_descriptor.name());
  printer_->Indent();
  printer_->Print("__metaclass__ = reflection.GeneratedProtocolMessageType\n");
  PrintNestedMessages(message_descriptor);
  map<string, string> m;
  m["descriptor_key"] = kDescriptorKey;
  m["descriptor_name"] = ModuleLevelDescriptorName(message_descriptor);
  printer_->Print(m, "$descriptor_key$ = $descriptor_name$\n");

  printer_->Print(
    "\n"
    "# @@protoc_insertion_point(class_scope:$full_name$)\n",
    "full_name", message_descriptor.full_name());

  printer_->Outdent();
}

// Prints all nested messages within |containing_descriptor|.
// Mutually recursive with PrintMessage().
void Generator::PrintNestedMessages(
    const Descriptor& containing_descriptor) const {
  for (int i = 0; i < containing_descriptor.nested_type_count(); ++i) {
    printer_->Print("\n");
    PrintMessage(*containing_descriptor.nested_type(i));
  }
}

// Recursively fixes foreign fields in all nested types in |descriptor|, then
// sets the message_type and enum_type of all message and enum fields to point
// to their respective descriptors.
// Args:
//   descriptor: descriptor to print fields for.
//   containing_descriptor: if descriptor is a nested type, this is its
//       containing type, or NULL if this is a root/top-level type.
void Generator::FixForeignFieldsInDescriptor(
    const Descriptor& descriptor,
    const Descriptor* containing_descriptor) const {
  for (int i = 0; i < descriptor.nested_type_count(); ++i) {
    FixForeignFieldsInDescriptor(*descriptor.nested_type(i), &descriptor);
  }

  for (int i = 0; i < descriptor.field_count(); ++i) {
    const FieldDescriptor& field_descriptor = *descriptor.field(i);
    FixForeignFieldsInField(&descriptor, field_descriptor, "fields_by_name");
  }

  FixContainingTypeInDescriptor(descriptor, containing_descriptor);
  for (int i = 0; i < descriptor.enum_type_count(); ++i) {
    const EnumDescriptor& enum_descriptor = *descriptor.enum_type(i);
    FixContainingTypeInDescriptor(enum_descriptor, &descriptor);
  }
}

// Sets any necessary message_type and enum_type attributes
// for the Python version of |field|.
//
// containing_type may be NULL, in which case this is a module-level field.
//
// python_dict_name is the name of the Python dict where we should
// look the field up in the containing type.  (e.g., fields_by_name
// or extensions_by_name).  We ignore python_dict_name if containing_type
// is NULL.
void Generator::FixForeignFieldsInField(const Descriptor* containing_type,
                                        const FieldDescriptor& field,
                                        const string& python_dict_name) const {
  const string field_referencing_expression = FieldReferencingExpression(
      containing_type, field, python_dict_name);
  map<string, string> m;
  m["field_ref"] = field_referencing_expression;
  const Descriptor* foreign_message_type = field.message_type();
  if (foreign_message_type) {
    m["foreign_type"] = ModuleLevelDescriptorName(*foreign_message_type);
    printer_->Print(m, "$field_ref$.message_type = $foreign_type$\n");
  }
  const EnumDescriptor* enum_type = field.enum_type();
  if (enum_type) {
    m["enum_type"] = ModuleLevelDescriptorName(*enum_type);
    printer_->Print(m, "$field_ref$.enum_type = $enum_type$\n");
  }
}

// Returns the module-level expression for the given FieldDescriptor.
// Only works for fields in the .proto file this Generator is generating for.
//
// containing_type may be NULL, in which case this is a module-level field.
//
// python_dict_name is the name of the Python dict where we should
// look the field up in the containing type.  (e.g., fields_by_name
// or extensions_by_name).  We ignore python_dict_name if containing_type
// is NULL.
string Generator::FieldReferencingExpression(
    const Descriptor* containing_type,
    const FieldDescriptor& field,
    const string& python_dict_name) const {
  // We should only ever be looking up fields in the current file.
  // The only things we refer to from other files are message descriptors.
  GOOGLE_CHECK_EQ(field.file(), file_) << field.file()->name() << " vs. "
                                << file_->name();
  if (!containing_type) {
    return field.name();
  }
  return strings::Substitute(
      "$0.$1['$2']",
      ModuleLevelDescriptorName(*containing_type),
      python_dict_name, field.name());
}

// Prints containing_type for nested descriptors or enum descriptors.
template <typename DescriptorT>
void Generator::FixContainingTypeInDescriptor(
    const DescriptorT& descriptor,
    const Descriptor* containing_descriptor) const {
  if (containing_descriptor != NULL) {
    const string nested_name = ModuleLevelDescriptorName(descriptor);
    const string parent_name = ModuleLevelDescriptorName(
        *containing_descriptor);
    printer_->Print(
        "$nested_name$.containing_type = $parent_name$;\n",
        "nested_name", nested_name,
        "parent_name", parent_name);
  }
}

// Prints statements setting the message_type and enum_type fields in the
// Python descriptor objects we've already output in ths file.  We must
// do this in a separate step due to circular references (otherwise, we'd
// just set everything in the initial assignment statements).
void Generator::FixForeignFieldsInDescriptors() const {
  for (int i = 0; i < file_->message_type_count(); ++i) {
    FixForeignFieldsInDescriptor(*file_->message_type(i), NULL);
  }
  printer_->Print("\n");
}

// We need to not only set any necessary message_type fields, but
// also need to call RegisterExtension() on each message we're
// extending.
void Generator::FixForeignFieldsInExtensions() const {
  // Top-level extensions.
  for (int i = 0; i < file_->extension_count(); ++i) {
    FixForeignFieldsInExtension(*file_->extension(i));
  }
  // Nested extensions.
  for (int i = 0; i < file_->message_type_count(); ++i) {
    FixForeignFieldsInNestedExtensions(*file_->message_type(i));
  }
}

void Generator::FixForeignFieldsInExtension(
    const FieldDescriptor& extension_field) const {
  GOOGLE_CHECK(extension_field.is_extension());
  // extension_scope() will be NULL for top-level extensions, which is
  // exactly what FixForeignFieldsInField() wants.
  FixForeignFieldsInField(extension_field.extension_scope(), extension_field,
                          "extensions_by_name");

  map<string, string> m;
  // Confusingly, for FieldDescriptors that happen to be extensions,
  // containing_type() means "extended type."
  // On the other hand, extension_scope() will give us what we normally
  // mean by containing_type().
  m["extended_message_class"] = ModuleLevelMessageName(
      *extension_field.containing_type());
  m["field"] = FieldReferencingExpression(extension_field.extension_scope(),
                                          extension_field,
                                          "extensions_by_name");
  printer_->Print(m, "$extended_message_class$.RegisterExtension($field$)\n");
}

void Generator::FixForeignFieldsInNestedExtensions(
    const Descriptor& descriptor) const {
  // Recursively fix up extensions in all nested types.
  for (int i = 0; i < descriptor.nested_type_count(); ++i) {
    FixForeignFieldsInNestedExtensions(*descriptor.nested_type(i));
  }
  // Fix up extensions directly contained within this type.
  for (int i = 0; i < descriptor.extension_count(); ++i) {
    FixForeignFieldsInExtension(*descriptor.extension(i));
  }
}

// Returns a Python expression that instantiates a Python EnumValueDescriptor
// object for the given C++ descriptor.
void Generator::PrintEnumValueDescriptor(
    const EnumValueDescriptor& descriptor) const {
  // TODO(robinson): Fix up EnumValueDescriptor "type" fields.
  // More circular references.  ::sigh::
  string options_string;
  descriptor.options().SerializeToString(&options_string);
  map<string, string> m;
  m["name"] = descriptor.name();
  m["index"] = SimpleItoa(descriptor.index());
  m["number"] = SimpleItoa(descriptor.number());
  m["options"] = OptionsValue("EnumValueOptions", options_string);
  printer_->Print(
      m,
      "descriptor.EnumValueDescriptor(\n"
      "  name='$name$', index=$index$, number=$number$,\n"
      "  options=$options$,\n"
      "  type=None)");
}

string Generator::OptionsValue(
    const string& class_name, const string& serialized_options) const {
  if (serialized_options.length() == 0 || GeneratingDescriptorProto()) {
    return "None";
  } else {
    string full_class_name = "descriptor_pb2." + class_name;
    return "descriptor._ParseOptions(" + full_class_name + "(), '"
        + CEscape(serialized_options)+ "')";
  }
}

// Prints an expression for a Python FieldDescriptor for |field|.
void Generator::PrintFieldDescriptor(
    const FieldDescriptor& field, bool is_extension) const {
  string options_string;
  field.options().SerializeToString(&options_string);
  map<string, string> m;
  m["name"] = field.name();
  m["full_name"] = field.full_name();
  m["index"] = SimpleItoa(field.index());
  m["number"] = SimpleItoa(field.number());
  m["type"] = SimpleItoa(field.type());
  m["cpp_type"] = SimpleItoa(field.cpp_type());
  m["label"] = SimpleItoa(field.label());
  m["has_default_value"] = field.has_default_value() ? "True" : "False";
  m["default_value"] = StringifyDefaultValue(field);
  m["is_extension"] = is_extension ? "True" : "False";
  m["options"] = OptionsValue("FieldOptions", options_string);
  // We always set message_type and enum_type to None at this point, and then
  // these fields in correctly after all referenced descriptors have been
  // defined and/or imported (see FixForeignFieldsInDescriptors()).
  const char field_descriptor_decl[] =
    "descriptor.FieldDescriptor(\n"
    "  name='$name$', full_name='$full_name$', index=$index$,\n"
    "  number=$number$, type=$type$, cpp_type=$cpp_type$, label=$label$,\n"
    "  has_default_value=$has_default_value$, default_value=$default_value$,\n"
    "  message_type=None, enum_type=None, containing_type=None,\n"
    "  is_extension=$is_extension$, extension_scope=None,\n"
    "  options=$options$)";
  printer_->Print(m, field_descriptor_decl);
}

// Helper for Print{Fields,Extensions}InDescriptor().
void Generator::PrintFieldDescriptorsInDescriptor(
    const Descriptor& message_descriptor,
    bool is_extension,
    const string& list_variable_name,
    int (Descriptor::*CountFn)() const,
    const FieldDescriptor* (Descriptor::*GetterFn)(int) const) const {
  printer_->Print("$list$=[\n", "list", list_variable_name);
  printer_->Indent();
  for (int i = 0; i < (message_descriptor.*CountFn)(); ++i) {
    PrintFieldDescriptor(*(message_descriptor.*GetterFn)(i),
                         is_extension);
    printer_->Print(",\n");
  }
  printer_->Outdent();
  printer_->Print("],\n");
}

// Prints a statement assigning "fields" to a list of Python FieldDescriptors,
// one for each field present in message_descriptor.
void Generator::PrintFieldsInDescriptor(
    const Descriptor& message_descriptor) const {
  const bool is_extension = false;
  PrintFieldDescriptorsInDescriptor(
      message_descriptor, is_extension, "fields",
      &Descriptor::field_count, &Descriptor::field);
}

// Prints a statement assigning "extensions" to a list of Python
// FieldDescriptors, one for each extension present in message_descriptor.
void Generator::PrintExtensionsInDescriptor(
    const Descriptor& message_descriptor) const {
  const bool is_extension = true;
  PrintFieldDescriptorsInDescriptor(
      message_descriptor, is_extension, "extensions",
      &Descriptor::extension_count, &Descriptor::extension);
}

bool Generator::GeneratingDescriptorProto() const {
  return file_->name() == "google/protobuf/descriptor.proto";
}

// Returns the unique Python module-level identifier given to a descriptor.
// This name is module-qualified iff the given descriptor describes an
// entity that doesn't come from the current file.
template <typename DescriptorT>
string Generator::ModuleLevelDescriptorName(
    const DescriptorT& descriptor) const {
  // FIXME(robinson):
  // We currently don't worry about collisions with underscores in the type
  // names, so these would collide in nasty ways if found in the same file:
  //   OuterProto.ProtoA.ProtoB
  //   OuterProto_ProtoA.ProtoB  # Underscore instead of period.
  // As would these:
  //   OuterProto.ProtoA_.ProtoB
  //   OuterProto.ProtoA._ProtoB  # Leading vs. trailing underscore.
  // (Contrived, but certainly possible).
  //
  // The C++ implementation doesn't guard against this either.  Leaving
  // it for now...
  string name = NamePrefixedWithNestedTypes(descriptor, "_");
  UpperString(&name);
  // Module-private for now.  Easy to make public later; almost impossible
  // to make private later.
  name = "_" + name;
  // We now have the name relative to its own module.  Also qualify with
  // the module name iff this descriptor is from a different .proto file.
  if (descriptor.file() != file_) {
    name = ModuleName(descriptor.file()->name()) + "." + name;
  }
  return name;
}

// Returns the name of the message class itself, not the descriptor.
// Like ModuleLevelDescriptorName(), module-qualifies the name iff
// the given descriptor describes an entity that doesn't come from
// the current file.
string Generator::ModuleLevelMessageName(const Descriptor& descriptor) const {
  string name = NamePrefixedWithNestedTypes(descriptor, ".");
  if (descriptor.file() != file_) {
    name = ModuleName(descriptor.file()->name()) + "." + name;
  }
  return name;
}

// Returns the unique Python module-level identifier given to a service
// descriptor.
string Generator::ModuleLevelServiceDescriptorName(
    const ServiceDescriptor& descriptor) const {
  string name = descriptor.name();
  UpperString(&name);
  name = "_" + name;
  if (descriptor.file() != file_) {
    name = ModuleName(descriptor.file()->name()) + "." + name;
  }
  return name;
}

// Prints standard constructor arguments serialized_start and serialized_end.
// Args:
//   descriptor: The cpp descriptor to have a serialized reference.
//   proto: A proto
// Example printer output:
// serialized_start=41,
// serialized_end=43,
//
template <typename DescriptorT, typename DescriptorProtoT>
void Generator::PrintSerializedPbInterval(
    const DescriptorT& descriptor, DescriptorProtoT& proto) const {
  descriptor.CopyTo(&proto);
  string sp;
  proto.SerializeToString(&sp);
  int offset = file_descriptor_serialized_.find(sp);
  GOOGLE_CHECK_GE(offset, 0);

  printer_->Print("serialized_start=$serialized_start$,\n"
                  "serialized_end=$serialized_end$,\n",
                  "serialized_start", SimpleItoa(offset),
                  "serialized_end", SimpleItoa(offset + sp.size()));
}

}  // namespace python
}  // namespace compiler
}  // namespace protobuf
}  // namespace google