aboutsummaryrefslogtreecommitdiffstats
path: root/src/google/protobuf/stubs/strutil.cc
blob: bb658ba8d327a674ad78168ef402d949ef7cf8f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// from google3/strings/strutil.cc

#include <google/protobuf/stubs/strutil.h>
#include <errno.h>
#include <float.h>    // FLT_DIG and DBL_DIG
#include <limits>
#include <limits.h>
#include <stdio.h>
#include <iterator>

#ifdef _WIN32
// MSVC has only _snprintf, not snprintf.
//
// MinGW has both snprintf and _snprintf, but they appear to be different
// functions.  The former is buggy.  When invoked like so:
//   char buffer[32];
//   snprintf(buffer, 32, "%.*g\n", FLT_DIG, 1.23e10f);
// it prints "1.23000e+10".  This is plainly wrong:  %g should never print
// trailing zeros after the decimal point.  For some reason this bug only
// occurs with some input values, not all.  In any case, _snprintf does the
// right thing, so we use it.
#define snprintf _snprintf
#endif

namespace google {
namespace protobuf {

inline bool IsNaN(double value) {
  // NaN is never equal to anything, even itself.
  return value != value;
}

// These are defined as macros on some platforms.  #undef them so that we can
// redefine them.
#undef isxdigit
#undef isprint

// The definitions of these in ctype.h change based on locale.  Since our
// string manipulation is all in relation to the protocol buffer and C++
// languages, we always want to use the C locale.  So, we re-define these
// exactly as we want them.
inline bool isxdigit(char c) {
  return ('0' <= c && c <= '9') ||
         ('a' <= c && c <= 'f') ||
         ('A' <= c && c <= 'F');
}

inline bool isprint(char c) {
  return c >= 0x20 && c <= 0x7E;
}

// ----------------------------------------------------------------------
// StripString
//    Replaces any occurrence of the character 'remove' (or the characters
//    in 'remove') with the character 'replacewith'.
// ----------------------------------------------------------------------
void StripString(string* s, const char* remove, char replacewith) {
  const char * str_start = s->c_str();
  const char * str = str_start;
  for (str = strpbrk(str, remove);
       str != NULL;
       str = strpbrk(str + 1, remove)) {
    (*s)[str - str_start] = replacewith;
  }
}

// ----------------------------------------------------------------------
// StringReplace()
//    Replace the "old" pattern with the "new" pattern in a string,
//    and append the result to "res".  If replace_all is false,
//    it only replaces the first instance of "old."
// ----------------------------------------------------------------------

void StringReplace(const string& s, const string& oldsub,
                   const string& newsub, bool replace_all,
                   string* res) {
  if (oldsub.empty()) {
    res->append(s);  // if empty, append the given string.
    return;
  }

  string::size_type start_pos = 0;
  string::size_type pos;
  do {
    pos = s.find(oldsub, start_pos);
    if (pos == string::npos) {
      break;
    }
    res->append(s, start_pos, pos - start_pos);
    res->append(newsub);
    start_pos = pos + oldsub.size();  // start searching again after the "old"
  } while (replace_all);
  res->append(s, start_pos, s.length() - start_pos);
}

// ----------------------------------------------------------------------
// StringReplace()
//    Give me a string and two patterns "old" and "new", and I replace
//    the first instance of "old" in the string with "new", if it
//    exists.  If "global" is true; call this repeatedly until it
//    fails.  RETURN a new string, regardless of whether the replacement
//    happened or not.
// ----------------------------------------------------------------------

string StringReplace(const string& s, const string& oldsub,
                     const string& newsub, bool replace_all) {
  string ret;
  StringReplace(s, oldsub, newsub, replace_all, &ret);
  return ret;
}

// ----------------------------------------------------------------------
// SplitStringUsing()
//    Split a string using a character delimiter. Append the components
//    to 'result'.
//
// Note: For multi-character delimiters, this routine will split on *ANY* of
// the characters in the string, not the entire string as a single delimiter.
// ----------------------------------------------------------------------
template <typename ITR>
static inline
void SplitStringToIteratorUsing(const string& full,
                                const char* delim,
                                ITR& result) {
  // Optimize the common case where delim is a single character.
  if (delim[0] != '\0' && delim[1] == '\0') {
    char c = delim[0];
    const char* p = full.data();
    const char* end = p + full.size();
    while (p != end) {
      if (*p == c) {
        ++p;
      } else {
        const char* start = p;
        while (++p != end && *p != c);
        *result++ = string(start, p - start);
      }
    }
    return;
  }

  string::size_type begin_index, end_index;
  begin_index = full.find_first_not_of(delim);
  while (begin_index != string::npos) {
    end_index = full.find_first_of(delim, begin_index);
    if (end_index == string::npos) {
      *result++ = full.substr(begin_index);
      return;
    }
    *result++ = full.substr(begin_index, (end_index - begin_index));
    begin_index = full.find_first_not_of(delim, end_index);
  }
}

void SplitStringUsing(const string& full,
                      const char* delim,
                      vector<string>* result) {
  back_insert_iterator< vector<string> > it(*result);
  SplitStringToIteratorUsing(full, delim, it);
}

// ----------------------------------------------------------------------
// JoinStrings()
//    This merges a vector of string components with delim inserted
//    as separaters between components.
//
// ----------------------------------------------------------------------
template <class ITERATOR>
static void JoinStringsIterator(const ITERATOR& start,
                                const ITERATOR& end,
                                const char* delim,
                                string* result) {
  GOOGLE_CHECK(result != NULL);
  result->clear();
  int delim_length = strlen(delim);

  // Precompute resulting length so we can reserve() memory in one shot.
  int length = 0;
  for (ITERATOR iter = start; iter != end; ++iter) {
    if (iter != start) {
      length += delim_length;
    }
    length += iter->size();
  }
  result->reserve(length);

  // Now combine everything.
  for (ITERATOR iter = start; iter != end; ++iter) {
    if (iter != start) {
      result->append(delim, delim_length);
    }
    result->append(iter->data(), iter->size());
  }
}

void JoinStrings(const vector<string>& components,
                 const char* delim,
                 string * result) {
  JoinStringsIterator(components.begin(), components.end(), delim, result);
}

// ----------------------------------------------------------------------
// UnescapeCEscapeSequences()
//    This does all the unescaping that C does: \ooo, \r, \n, etc
//    Returns length of resulting string.
//    The implementation of \x parses any positive number of hex digits,
//    but it is an error if the value requires more than 8 bits, and the
//    result is truncated to 8 bits.
//
//    The second call stores its errors in a supplied string vector.
//    If the string vector pointer is NULL, it reports the errors with LOG().
// ----------------------------------------------------------------------

#define IS_OCTAL_DIGIT(c) (((c) >= '0') && ((c) <= '7'))

inline int hex_digit_to_int(char c) {
  /* Assume ASCII. */
  assert('0' == 0x30 && 'A' == 0x41 && 'a' == 0x61);
  assert(isxdigit(c));
  int x = static_cast<unsigned char>(c);
  if (x > '9') {
    x += 9;
  }
  return x & 0xf;
}

// Protocol buffers doesn't ever care about errors, but I don't want to remove
// the code.
#define LOG_STRING(LEVEL, VECTOR) GOOGLE_LOG_IF(LEVEL, false)

int UnescapeCEscapeSequences(const char* source, char* dest) {
  return UnescapeCEscapeSequences(source, dest, NULL);
}

int UnescapeCEscapeSequences(const char* source, char* dest,
                             vector<string> *errors) {
  GOOGLE_DCHECK(errors == NULL) << "Error reporting not implemented.";

  char* d = dest;
  const char* p = source;

  // Small optimization for case where source = dest and there's no escaping
  while ( p == d && *p != '\0' && *p != '\\' )
    p++, d++;

  while (*p != '\0') {
    if (*p != '\\') {
      *d++ = *p++;
    } else {
      switch ( *++p ) {                    // skip past the '\\'
        case '\0':
          LOG_STRING(ERROR, errors) << "String cannot end with \\";
          *d = '\0';
          return d - dest;   // we're done with p
        case 'a':  *d++ = '\a';  break;
        case 'b':  *d++ = '\b';  break;
        case 'f':  *d++ = '\f';  break;
        case 'n':  *d++ = '\n';  break;
        case 'r':  *d++ = '\r';  break;
        case 't':  *d++ = '\t';  break;
        case 'v':  *d++ = '\v';  break;
        case '\\': *d++ = '\\';  break;
        case '?':  *d++ = '\?';  break;    // \?  Who knew?
        case '\'': *d++ = '\'';  break;
        case '"':  *d++ = '\"';  break;
        case '0': case '1': case '2': case '3':  // octal digit: 1 to 3 digits
        case '4': case '5': case '6': case '7': {
          char ch = *p - '0';
          if ( IS_OCTAL_DIGIT(p[1]) )
            ch = ch * 8 + *++p - '0';
          if ( IS_OCTAL_DIGIT(p[1]) )      // safe (and easy) to do this twice
            ch = ch * 8 + *++p - '0';      // now points at last digit
          *d++ = ch;
          break;
        }
        case 'x': case 'X': {
          if (!isxdigit(p[1])) {
            if (p[1] == '\0') {
              LOG_STRING(ERROR, errors) << "String cannot end with \\x";
            } else {
              LOG_STRING(ERROR, errors) <<
                "\\x cannot be followed by non-hex digit: \\" << *p << p[1];
            }
            break;
          }
          unsigned int ch = 0;
          const char *hex_start = p;
          while (isxdigit(p[1]))  // arbitrarily many hex digits
            ch = (ch << 4) + hex_digit_to_int(*++p);
          if (ch > 0xFF)
            LOG_STRING(ERROR, errors) << "Value of " <<
              "\\" << string(hex_start, p+1-hex_start) << " exceeds 8 bits";
          *d++ = ch;
          break;
        }
#if 0  // TODO(kenton):  Support \u and \U?  Requires runetochar().
        case 'u': {
          // \uhhhh => convert 4 hex digits to UTF-8
          char32 rune = 0;
          const char *hex_start = p;
          for (int i = 0; i < 4; ++i) {
            if (isxdigit(p[1])) {  // Look one char ahead.
              rune = (rune << 4) + hex_digit_to_int(*++p);  // Advance p.
            } else {
              LOG_STRING(ERROR, errors)
                << "\\u must be followed by 4 hex digits: \\"
                <<  string(hex_start, p+1-hex_start);
              break;
            }
          }
          d += runetochar(d, &rune);
          break;
        }
        case 'U': {
          // \Uhhhhhhhh => convert 8 hex digits to UTF-8
          char32 rune = 0;
          const char *hex_start = p;
          for (int i = 0; i < 8; ++i) {
            if (isxdigit(p[1])) {  // Look one char ahead.
              // Don't change rune until we're sure this
              // is within the Unicode limit, but do advance p.
              char32 newrune = (rune << 4) + hex_digit_to_int(*++p);
              if (newrune > 0x10FFFF) {
                LOG_STRING(ERROR, errors)
                  << "Value of \\"
                  << string(hex_start, p + 1 - hex_start)
                  << " exceeds Unicode limit (0x10FFFF)";
                break;
              } else {
                rune = newrune;
              }
            } else {
              LOG_STRING(ERROR, errors)
                << "\\U must be followed by 8 hex digits: \\"
                <<  string(hex_start, p+1-hex_start);
              break;
            }
          }
          d += runetochar(d, &rune);
          break;
        }
#endif
        default:
          LOG_STRING(ERROR, errors) << "Unknown escape sequence: \\" << *p;
      }
      p++;                                 // read past letter we escaped
    }
  }
  *d = '\0';
  return d - dest;
}

// ----------------------------------------------------------------------
// UnescapeCEscapeString()
//    This does the same thing as UnescapeCEscapeSequences, but creates
//    a new string. The caller does not need to worry about allocating
//    a dest buffer. This should be used for non performance critical
//    tasks such as printing debug messages. It is safe for src and dest
//    to be the same.
//
//    The second call stores its errors in a supplied string vector.
//    If the string vector pointer is NULL, it reports the errors with LOG().
//
//    In the first and second calls, the length of dest is returned. In the
//    the third call, the new string is returned.
// ----------------------------------------------------------------------
int UnescapeCEscapeString(const string& src, string* dest) {
  return UnescapeCEscapeString(src, dest, NULL);
}

int UnescapeCEscapeString(const string& src, string* dest,
                          vector<string> *errors) {
  scoped_array<char> unescaped(new char[src.size() + 1]);
  int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), errors);
  GOOGLE_CHECK(dest);
  dest->assign(unescaped.get(), len);
  return len;
}

string UnescapeCEscapeString(const string& src) {
  scoped_array<char> unescaped(new char[src.size() + 1]);
  int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), NULL);
  return string(unescaped.get(), len);
}

// ----------------------------------------------------------------------
// CEscapeString()
// CHexEscapeString()
//    Copies 'src' to 'dest', escaping dangerous characters using
//    C-style escape sequences. This is very useful for preparing query
//    flags. 'src' and 'dest' should not overlap. The 'Hex' version uses
//    hexadecimal rather than octal sequences.
//    Returns the number of bytes written to 'dest' (not including the \0)
//    or -1 if there was insufficient space.
//
//    Currently only \n, \r, \t, ", ', \ and !isprint() chars are escaped.
// ----------------------------------------------------------------------
int CEscapeInternal(const char* src, int src_len, char* dest,
                    int dest_len, bool use_hex, bool utf8_safe) {
  const char* src_end = src + src_len;
  int used = 0;
  bool last_hex_escape = false; // true if last output char was \xNN

  for (; src < src_end; src++) {
    if (dest_len - used < 2)   // Need space for two letter escape
      return -1;

    bool is_hex_escape = false;
    switch (*src) {
      case '\n': dest[used++] = '\\'; dest[used++] = 'n';  break;
      case '\r': dest[used++] = '\\'; dest[used++] = 'r';  break;
      case '\t': dest[used++] = '\\'; dest[used++] = 't';  break;
      case '\"': dest[used++] = '\\'; dest[used++] = '\"'; break;
      case '\'': dest[used++] = '\\'; dest[used++] = '\''; break;
      case '\\': dest[used++] = '\\'; dest[used++] = '\\'; break;
      default:
        // Note that if we emit \xNN and the src character after that is a hex
        // digit then that digit must be escaped too to prevent it being
        // interpreted as part of the character code by C.
        if ((!utf8_safe || static_cast<uint8>(*src) < 0x80) &&
            (!isprint(*src) ||
             (last_hex_escape && isxdigit(*src)))) {
          if (dest_len - used < 4) // need space for 4 letter escape
            return -1;
          sprintf(dest + used, (use_hex ? "\\x%02x" : "\\%03o"),
                  static_cast<uint8>(*src));
          is_hex_escape = use_hex;
          used += 4;
        } else {
          dest[used++] = *src; break;
        }
    }
    last_hex_escape = is_hex_escape;
  }

  if (dest_len - used < 1)   // make sure that there is room for \0
    return -1;

  dest[used] = '\0';   // doesn't count towards return value though
  return used;
}

int CEscapeString(const char* src, int src_len, char* dest, int dest_len) {
  return CEscapeInternal(src, src_len, dest, dest_len, false, false);
}

// ----------------------------------------------------------------------
// CEscape()
// CHexEscape()
//    Copies 'src' to result, escaping dangerous characters using
//    C-style escape sequences. This is very useful for preparing query
//    flags. 'src' and 'dest' should not overlap. The 'Hex' version
//    hexadecimal rather than octal sequences.
//
//    Currently only \n, \r, \t, ", ', \ and !isprint() chars are escaped.
// ----------------------------------------------------------------------
string CEscape(const string& src) {
  const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
  scoped_array<char> dest(new char[dest_length]);
  const int len = CEscapeInternal(src.data(), src.size(),
                                  dest.get(), dest_length, false, false);
  GOOGLE_DCHECK_GE(len, 0);
  return string(dest.get(), len);
}

namespace strings {

string Utf8SafeCEscape(const string& src) {
  const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
  scoped_array<char> dest(new char[dest_length]);
  const int len = CEscapeInternal(src.data(), src.size(),
                                  dest.get(), dest_length, false, true);
  GOOGLE_DCHECK_GE(len, 0);
  return string(dest.get(), len);
}

string CHexEscape(const string& src) {
  const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
  scoped_array<char> dest(new char[dest_length]);
  const int len = CEscapeInternal(src.data(), src.size(),
                                  dest.get(), dest_length, true, false);
  GOOGLE_DCHECK_GE(len, 0);
  return string(dest.get(), len);
}

}  // namespace strings

// ----------------------------------------------------------------------
// strto32_adaptor()
// strtou32_adaptor()
//    Implementation of strto[u]l replacements that have identical
//    overflow and underflow characteristics for both ILP-32 and LP-64
//    platforms, including errno preservation in error-free calls.
// ----------------------------------------------------------------------

int32 strto32_adaptor(const char *nptr, char **endptr, int base) {
  const int saved_errno = errno;
  errno = 0;
  const long result = strtol(nptr, endptr, base);
  if (errno == ERANGE && result == LONG_MIN) {
    return kint32min;
  } else if (errno == ERANGE && result == LONG_MAX) {
    return kint32max;
  } else if (errno == 0 && result < kint32min) {
    errno = ERANGE;
    return kint32min;
  } else if (errno == 0 && result > kint32max) {
    errno = ERANGE;
    return kint32max;
  }
  if (errno == 0)
    errno = saved_errno;
  return static_cast<int32>(result);
}

uint32 strtou32_adaptor(const char *nptr, char **endptr, int base) {
  const int saved_errno = errno;
  errno = 0;
  const unsigned long result = strtoul(nptr, endptr, base);
  if (errno == ERANGE && result == ULONG_MAX) {
    return kuint32max;
  } else if (errno == 0 && result > kuint32max) {
    errno = ERANGE;
    return kuint32max;
  }
  if (errno == 0)
    errno = saved_errno;
  return static_cast<uint32>(result);
}

// ----------------------------------------------------------------------
// FastIntToBuffer()
// FastInt64ToBuffer()
// FastHexToBuffer()
// FastHex64ToBuffer()
// FastHex32ToBuffer()
// ----------------------------------------------------------------------

// Offset into buffer where FastInt64ToBuffer places the end of string
// null character.  Also used by FastInt64ToBufferLeft.
static const int kFastInt64ToBufferOffset = 21;

char *FastInt64ToBuffer(int64 i, char* buffer) {
  // We could collapse the positive and negative sections, but that
  // would be slightly slower for positive numbers...
  // 22 bytes is enough to store -2**64, -18446744073709551616.
  char* p = buffer + kFastInt64ToBufferOffset;
  *p-- = '\0';
  if (i >= 0) {
    do {
      *p-- = '0' + i % 10;
      i /= 10;
    } while (i > 0);
    return p + 1;
  } else {
    // On different platforms, % and / have different behaviors for
    // negative numbers, so we need to jump through hoops to make sure
    // we don't divide negative numbers.
    if (i > -10) {
      i = -i;
      *p-- = '0' + i;
      *p = '-';
      return p;
    } else {
      // Make sure we aren't at MIN_INT, in which case we can't say i = -i
      i = i + 10;
      i = -i;
      *p-- = '0' + i % 10;
      // Undo what we did a moment ago
      i = i / 10 + 1;
      do {
        *p-- = '0' + i % 10;
        i /= 10;
      } while (i > 0);
      *p = '-';
      return p;
    }
  }
}

// Offset into buffer where FastInt32ToBuffer places the end of string
// null character.  Also used by FastInt32ToBufferLeft
static const int kFastInt32ToBufferOffset = 11;

// Yes, this is a duplicate of FastInt64ToBuffer.  But, we need this for the
// compiler to generate 32 bit arithmetic instructions.  It's much faster, at
// least with 32 bit binaries.
char *FastInt32ToBuffer(int32 i, char* buffer) {
  // We could collapse the positive and negative sections, but that
  // would be slightly slower for positive numbers...
  // 12 bytes is enough to store -2**32, -4294967296.
  char* p = buffer + kFastInt32ToBufferOffset;
  *p-- = '\0';
  if (i >= 0) {
    do {
      *p-- = '0' + i % 10;
      i /= 10;
    } while (i > 0);
    return p + 1;
  } else {
    // On different platforms, % and / have different behaviors for
    // negative numbers, so we need to jump through hoops to make sure
    // we don't divide negative numbers.
    if (i > -10) {
      i = -i;
      *p-- = '0' + i;
      *p = '-';
      return p;
    } else {
      // Make sure we aren't at MIN_INT, in which case we can't say i = -i
      i = i + 10;
      i = -i;
      *p-- = '0' + i % 10;
      // Undo what we did a moment ago
      i = i / 10 + 1;
      do {
        *p-- = '0' + i % 10;
        i /= 10;
      } while (i > 0);
      *p = '-';
      return p;
    }
  }
}

char *FastHexToBuffer(int i, char* buffer) {
  GOOGLE_CHECK(i >= 0) << "FastHexToBuffer() wants non-negative integers, not " << i;

  static const char *hexdigits = "0123456789abcdef";
  char *p = buffer + 21;
  *p-- = '\0';
  do {
    *p-- = hexdigits[i & 15];   // mod by 16
    i >>= 4;                    // divide by 16
  } while (i > 0);
  return p + 1;
}

char *InternalFastHexToBuffer(uint64 value, char* buffer, int num_byte) {
  static const char *hexdigits = "0123456789abcdef";
  buffer[num_byte] = '\0';
  for (int i = num_byte - 1; i >= 0; i--) {
    buffer[i] = hexdigits[uint32(value) & 0xf];
    value >>= 4;
  }
  return buffer;
}

char *FastHex64ToBuffer(uint64 value, char* buffer) {
  return InternalFastHexToBuffer(value, buffer, 16);
}

char *FastHex32ToBuffer(uint32 value, char* buffer) {
  return InternalFastHexToBuffer(value, buffer, 8);
}

static inline char* PlaceNum(char* p, int num, char prev_sep) {
   *p-- = '0' + num % 10;
   *p-- = '0' + num / 10;
   *p-- = prev_sep;
   return p;
}

// ----------------------------------------------------------------------
// FastInt32ToBufferLeft()
// FastUInt32ToBufferLeft()
// FastInt64ToBufferLeft()
// FastUInt64ToBufferLeft()
//
// Like the Fast*ToBuffer() functions above, these are intended for speed.
// Unlike the Fast*ToBuffer() functions, however, these functions write
// their output to the beginning of the buffer (hence the name, as the
// output is left-aligned).  The caller is responsible for ensuring that
// the buffer has enough space to hold the output.
//
// Returns a pointer to the end of the string (i.e. the null character
// terminating the string).
// ----------------------------------------------------------------------

static const char two_ASCII_digits[100][2] = {
  {'0','0'}, {'0','1'}, {'0','2'}, {'0','3'}, {'0','4'},
  {'0','5'}, {'0','6'}, {'0','7'}, {'0','8'}, {'0','9'},
  {'1','0'}, {'1','1'}, {'1','2'}, {'1','3'}, {'1','4'},
  {'1','5'}, {'1','6'}, {'1','7'}, {'1','8'}, {'1','9'},
  {'2','0'}, {'2','1'}, {'2','2'}, {'2','3'}, {'2','4'},
  {'2','5'}, {'2','6'}, {'2','7'}, {'2','8'}, {'2','9'},
  {'3','0'}, {'3','1'}, {'3','2'}, {'3','3'}, {'3','4'},
  {'3','5'}, {'3','6'}, {'3','7'}, {'3','8'}, {'3','9'},
  {'4','0'}, {'4','1'}, {'4','2'}, {'4','3'}, {'4','4'},
  {'4','5'}, {'4','6'}, {'4','7'}, {'4','8'}, {'4','9'},
  {'5','0'}, {'5','1'}, {'5','2'}, {'5','3'}, {'5','4'},
  {'5','5'}, {'5','6'}, {'5','7'}, {'5','8'}, {'5','9'},
  {'6','0'}, {'6','1'}, {'6','2'}, {'6','3'}, {'6','4'},
  {'6','5'}, {'6','6'}, {'6','7'}, {'6','8'}, {'6','9'},
  {'7','0'}, {'7','1'}, {'7','2'}, {'7','3'}, {'7','4'},
  {'7','5'}, {'7','6'}, {'7','7'}, {'7','8'}, {'7','9'},
  {'8','0'}, {'8','1'}, {'8','2'}, {'8','3'}, {'8','4'},
  {'8','5'}, {'8','6'}, {'8','7'}, {'8','8'}, {'8','9'},
  {'9','0'}, {'9','1'}, {'9','2'}, {'9','3'}, {'9','4'},
  {'9','5'}, {'9','6'}, {'9','7'}, {'9','8'}, {'9','9'}
};

char* FastUInt32ToBufferLeft(uint32 u, char* buffer) {
  int digits;
  const char *ASCII_digits = NULL;
  // The idea of this implementation is to trim the number of divides to as few
  // as possible by using multiplication and subtraction rather than mod (%),
  // and by outputting two digits at a time rather than one.
  // The huge-number case is first, in the hopes that the compiler will output
  // that case in one branch-free block of code, and only output conditional
  // branches into it from below.
  if (u >= 1000000000) {  // >= 1,000,000,000
    digits = u / 100000000;  // 100,000,000
    ASCII_digits = two_ASCII_digits[digits];
    buffer[0] = ASCII_digits[0];
    buffer[1] = ASCII_digits[1];
    buffer += 2;
sublt100_000_000:
    u -= digits * 100000000;  // 100,000,000
lt100_000_000:
    digits = u / 1000000;  // 1,000,000
    ASCII_digits = two_ASCII_digits[digits];
    buffer[0] = ASCII_digits[0];
    buffer[1] = ASCII_digits[1];
    buffer += 2;
sublt1_000_000:
    u -= digits * 1000000;  // 1,000,000
lt1_000_000:
    digits = u / 10000;  // 10,000
    ASCII_digits = two_ASCII_digits[digits];
    buffer[0] = ASCII_digits[0];
    buffer[1] = ASCII_digits[1];
    buffer += 2;
sublt10_000:
    u -= digits * 10000;  // 10,000
lt10_000:
    digits = u / 100;
    ASCII_digits = two_ASCII_digits[digits];
    buffer[0] = ASCII_digits[0];
    buffer[1] = ASCII_digits[1];
    buffer += 2;
sublt100:
    u -= digits * 100;
lt100:
    digits = u;
    ASCII_digits = two_ASCII_digits[digits];
    buffer[0] = ASCII_digits[0];
    buffer[1] = ASCII_digits[1];
    buffer += 2;
done:
    *buffer = 0;
    return buffer;
  }

  if (u < 100) {
    digits = u;
    if (u >= 10) goto lt100;
    *buffer++ = '0' + digits;
    goto done;
  }
  if (u  <  10000) {   // 10,000
    if (u >= 1000) goto lt10_000;
    digits = u / 100;
    *buffer++ = '0' + digits;
    goto sublt100;
  }
  if (u  <  1000000) {   // 1,000,000
    if (u >= 100000) goto lt1_000_000;
    digits = u / 10000;  //    10,000
    *buffer++ = '0' + digits;
    goto sublt10_000;
  }
  if (u  <  100000000) {   // 100,000,000
    if (u >= 10000000) goto lt100_000_000;
    digits = u / 1000000;  //   1,000,000
    *buffer++ = '0' + digits;
    goto sublt1_000_000;
  }
  // we already know that u < 1,000,000,000
  digits = u / 100000000;   // 100,000,000
  *buffer++ = '0' + digits;
  goto sublt100_000_000;
}

char* FastInt32ToBufferLeft(int32 i, char* buffer) {
  uint32 u = i;
  if (i < 0) {
    *buffer++ = '-';
    u = -i;
  }
  return FastUInt32ToBufferLeft(u, buffer);
}

char* FastUInt64ToBufferLeft(uint64 u64, char* buffer) {
  int digits;
  const char *ASCII_digits = NULL;

  uint32 u = static_cast<uint32>(u64);
  if (u == u64) return FastUInt32ToBufferLeft(u, buffer);

  uint64 top_11_digits = u64 / 1000000000;
  buffer = FastUInt64ToBufferLeft(top_11_digits, buffer);
  u = u64 - (top_11_digits * 1000000000);

  digits = u / 10000000;  // 10,000,000
  GOOGLE_DCHECK_LT(digits, 100);
  ASCII_digits = two_ASCII_digits[digits];
  buffer[0] = ASCII_digits[0];
  buffer[1] = ASCII_digits[1];
  buffer += 2;
  u -= digits * 10000000;  // 10,000,000
  digits = u / 100000;  // 100,000
  ASCII_digits = two_ASCII_digits[digits];
  buffer[0] = ASCII_digits[0];
  buffer[1] = ASCII_digits[1];
  buffer += 2;
  u -= digits * 100000;  // 100,000
  digits = u / 1000;  // 1,000
  ASCII_digits = two_ASCII_digits[digits];
  buffer[0] = ASCII_digits[0];
  buffer[1] = ASCII_digits[1];
  buffer += 2;
  u -= digits * 1000;  // 1,000
  digits = u / 10;
  ASCII_digits = two_ASCII_digits[digits];
  buffer[0] = ASCII_digits[0];
  buffer[1] = ASCII_digits[1];
  buffer += 2;
  u -= digits * 10;
  digits = u;
  *buffer++ = '0' + digits;
  *buffer = 0;
  return buffer;
}

char* FastInt64ToBufferLeft(int64 i, char* buffer) {
  uint64 u = i;
  if (i < 0) {
    *buffer++ = '-';
    u = -i;
  }
  return FastUInt64ToBufferLeft(u, buffer);
}

// ----------------------------------------------------------------------
// SimpleItoa()
//    Description: converts an integer to a string.
//
//    Return value: string
// ----------------------------------------------------------------------

string SimpleItoa(int i) {
  char buffer[kFastToBufferSize];
  return (sizeof(i) == 4) ?
    FastInt32ToBuffer(i, buffer) :
    FastInt64ToBuffer(i, buffer);
}

string SimpleItoa(unsigned int i) {
  char buffer[kFastToBufferSize];
  return string(buffer, (sizeof(i) == 4) ?
    FastUInt32ToBufferLeft(i, buffer) :
    FastUInt64ToBufferLeft(i, buffer));
}

string SimpleItoa(long i) {
  char buffer[kFastToBufferSize];
  return (sizeof(i) == 4) ?
    FastInt32ToBuffer(i, buffer) :
    FastInt64ToBuffer(i, buffer);
}

string SimpleItoa(unsigned long i) {
  char buffer[kFastToBufferSize];
  return string(buffer, (sizeof(i) == 4) ?
    FastUInt32ToBufferLeft(i, buffer) :
    FastUInt64ToBufferLeft(i, buffer));
}

string SimpleItoa(long long i) {
  char buffer[kFastToBufferSize];
  return (sizeof(i) == 4) ?
    FastInt32ToBuffer(i, buffer) :
    FastInt64ToBuffer(i, buffer);
}

string SimpleItoa(unsigned long long i) {
  char buffer[kFastToBufferSize];
  return string(buffer, (sizeof(i) == 4) ?
    FastUInt32ToBufferLeft(i, buffer) :
    FastUInt64ToBufferLeft(i, buffer));
}

// ----------------------------------------------------------------------
// SimpleDtoa()
// SimpleFtoa()
// DoubleToBuffer()
// FloatToBuffer()
//    We want to print the value without losing precision, but we also do
//    not want to print more digits than necessary.  This turns out to be
//    trickier than it sounds.  Numbers like 0.2 cannot be represented
//    exactly in binary.  If we print 0.2 with a very large precision,
//    e.g. "%.50g", we get "0.2000000000000000111022302462515654042363167".
//    On the other hand, if we set the precision too low, we lose
//    significant digits when printing numbers that actually need them.
//    It turns out there is no precision value that does the right thing
//    for all numbers.
//
//    Our strategy is to first try printing with a precision that is never
//    over-precise, then parse the result with strtod() to see if it
//    matches.  If not, we print again with a precision that will always
//    give a precise result, but may use more digits than necessary.
//
//    An arguably better strategy would be to use the algorithm described
//    in "How to Print Floating-Point Numbers Accurately" by Steele &
//    White, e.g. as implemented by David M. Gay's dtoa().  It turns out,
//    however, that the following implementation is about as fast as
//    DMG's code.  Furthermore, DMG's code locks mutexes, which means it
//    will not scale well on multi-core machines.  DMG's code is slightly
//    more accurate (in that it will never use more digits than
//    necessary), but this is probably irrelevant for most users.
//
//    Rob Pike and Ken Thompson also have an implementation of dtoa() in
//    third_party/fmt/fltfmt.cc.  Their implementation is similar to this
//    one in that it makes guesses and then uses strtod() to check them.
//    Their implementation is faster because they use their own code to
//    generate the digits in the first place rather than use snprintf(),
//    thus avoiding format string parsing overhead.  However, this makes
//    it considerably more complicated than the following implementation,
//    and it is embedded in a larger library.  If speed turns out to be
//    an issue, we could re-implement this in terms of their
//    implementation.
// ----------------------------------------------------------------------

string SimpleDtoa(double value) {
  char buffer[kDoubleToBufferSize];
  return DoubleToBuffer(value, buffer);
}

string SimpleFtoa(float value) {
  char buffer[kFloatToBufferSize];
  return FloatToBuffer(value, buffer);
}

static inline bool IsValidFloatChar(char c) {
  return ('0' <= c && c <= '9') ||
         c == 'e' || c == 'E' ||
         c == '+' || c == '-';
}

void DelocalizeRadix(char* buffer) {
  // Fast check:  if the buffer has a normal decimal point, assume no
  // translation is needed.
  if (strchr(buffer, '.') != NULL) return;

  // Find the first unknown character.
  while (IsValidFloatChar(*buffer)) ++buffer;

  if (*buffer == '\0') {
    // No radix character found.
    return;
  }

  // We are now pointing at the locale-specific radix character.  Replace it
  // with '.'.
  *buffer = '.';
  ++buffer;

  if (!IsValidFloatChar(*buffer) && *buffer != '\0') {
    // It appears the radix was a multi-byte character.  We need to remove the
    // extra bytes.
    char* target = buffer;
    do { ++buffer; } while (!IsValidFloatChar(*buffer) && *buffer != '\0');
    memmove(target, buffer, strlen(buffer) + 1);
  }
}

char* DoubleToBuffer(double value, char* buffer) {
  // DBL_DIG is 15 for IEEE-754 doubles, which are used on almost all
  // platforms these days.  Just in case some system exists where DBL_DIG
  // is significantly larger -- and risks overflowing our buffer -- we have
  // this assert.
  GOOGLE_COMPILE_ASSERT(DBL_DIG < 20, DBL_DIG_is_too_big);

  if (value == numeric_limits<double>::infinity()) {
    strcpy(buffer, "inf");
    return buffer;
  } else if (value == -numeric_limits<double>::infinity()) {
    strcpy(buffer, "-inf");
    return buffer;
  } else if (IsNaN(value)) {
    strcpy(buffer, "nan");
    return buffer;
  }

  int snprintf_result =
    snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG, value);

  // The snprintf should never overflow because the buffer is significantly
  // larger than the precision we asked for.
  GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);

  // We need to make parsed_value volatile in order to force the compiler to
  // write it out to the stack.  Otherwise, it may keep the value in a
  // register, and if it does that, it may keep it as a long double instead
  // of a double.  This long double may have extra bits that make it compare
  // unequal to "value" even though it would be exactly equal if it were
  // truncated to a double.
  volatile double parsed_value = strtod(buffer, NULL);
  if (parsed_value != value) {
    int snprintf_result =
      snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG+2, value);

    // Should never overflow; see above.
    GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
  }

  DelocalizeRadix(buffer);
  return buffer;
}

bool safe_strtof(const char* str, float* value) {
  char* endptr;
  errno = 0;  // errno only gets set on errors
#if defined(_WIN32) || defined (__hpux)  // has no strtof()
  *value = strtod(str, &endptr);
#else
  *value = strtof(str, &endptr);
#endif
  return *str != 0 && *endptr == 0 && errno == 0;
}

char* FloatToBuffer(float value, char* buffer) {
  // FLT_DIG is 6 for IEEE-754 floats, which are used on almost all
  // platforms these days.  Just in case some system exists where FLT_DIG
  // is significantly larger -- and risks overflowing our buffer -- we have
  // this assert.
  GOOGLE_COMPILE_ASSERT(FLT_DIG < 10, FLT_DIG_is_too_big);

  if (value == numeric_limits<double>::infinity()) {
    strcpy(buffer, "inf");
    return buffer;
  } else if (value == -numeric_limits<double>::infinity()) {
    strcpy(buffer, "-inf");
    return buffer;
  } else if (IsNaN(value)) {
    strcpy(buffer, "nan");
    return buffer;
  }

  int snprintf_result =
    snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG, value);

  // The snprintf should never overflow because the buffer is significantly
  // larger than the precision we asked for.
  GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);

  float parsed_value;
  if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) {
    int snprintf_result =
      snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG+2, value);

    // Should never overflow; see above.
    GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
  }

  DelocalizeRadix(buffer);
  return buffer;
}

// ----------------------------------------------------------------------
// NoLocaleStrtod()
//   This code will make you cry.
// ----------------------------------------------------------------------

// Returns a string identical to *input except that the character pointed to
// by radix_pos (which should be '.') is replaced with the locale-specific
// radix character.
string LocalizeRadix(const char* input, const char* radix_pos) {
  // Determine the locale-specific radix character by calling sprintf() to
  // print the number 1.5, then stripping off the digits.  As far as I can
  // tell, this is the only portable, thread-safe way to get the C library
  // to divuldge the locale's radix character.  No, localeconv() is NOT
  // thread-safe.
  char temp[16];
  int size = sprintf(temp, "%.1f", 1.5);
  GOOGLE_CHECK_EQ(temp[0], '1');
  GOOGLE_CHECK_EQ(temp[size-1], '5');
  GOOGLE_CHECK_LE(size, 6);

  // Now replace the '.' in the input with it.
  string result;
  result.reserve(strlen(input) + size - 3);
  result.append(input, radix_pos);
  result.append(temp + 1, size - 2);
  result.append(radix_pos + 1);
  return result;
}

double NoLocaleStrtod(const char* text, char** original_endptr) {
  // We cannot simply set the locale to "C" temporarily with setlocale()
  // as this is not thread-safe.  Instead, we try to parse in the current
  // locale first.  If parsing stops at a '.' character, then this is a
  // pretty good hint that we're actually in some other locale in which
  // '.' is not the radix character.

  char* temp_endptr;
  double result = strtod(text, &temp_endptr);
  if (original_endptr != NULL) *original_endptr = temp_endptr;
  if (*temp_endptr != '.') return result;

  // Parsing halted on a '.'.  Perhaps we're in a different locale?  Let's
  // try to replace the '.' with a locale-specific radix character and
  // try again.
  string localized = LocalizeRadix(text, temp_endptr);
  const char* localized_cstr = localized.c_str();
  char* localized_endptr;
  result = strtod(localized_cstr, &localized_endptr);
  if ((localized_endptr - localized_cstr) >
      (temp_endptr - text)) {
    // This attempt got further, so replacing the decimal must have helped.
    // Update original_endptr to point at the right location.
    if (original_endptr != NULL) {
      // size_diff is non-zero if the localized radix has multiple bytes.
      int size_diff = localized.size() - strlen(text);
      // const_cast is necessary to match the strtod() interface.
      *original_endptr = const_cast<char*>(
        text + (localized_endptr - localized_cstr - size_diff));
    }
  }

  return result;
}

}  // namespace protobuf
}  // namespace google