1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
|
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// atenasio@google.com (Chris Atenasio) (ZigZag transform)
// wink@google.com (Wink Saville) (refactored from wire_format.h)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// This header is logically internal, but is made public because it is used
// from protocol-compiler-generated code, which may reside in other components.
#ifndef GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
#define GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
#include <string>
#include <google/protobuf/message_lite.h>
namespace google {
namespace protobuf {
template <typename T> class RepeatedField; // repeated_field.h
namespace io {
class CodedInputStream; // coded_stream.h
class CodedOutputStream; // coded_stream.h
}
}
namespace protobuf {
namespace internal {
class StringPieceField;
// This class is for internal use by the protocol buffer library and by
// protocol-complier-generated message classes. It must not be called
// directly by clients.
//
// This class contains helpers for implementing the binary protocol buffer
// wire format without the need for reflection. Use WireFormat when using
// reflection.
//
// This class is really a namespace that contains only static methods.
class LIBPROTOBUF_EXPORT WireFormatLite {
public:
// -----------------------------------------------------------------
// Helper constants and functions related to the format. These are
// mostly meant for internal and generated code to use.
// The wire format is composed of a sequence of tag/value pairs, each
// of which contains the value of one field (or one element of a repeated
// field). Each tag is encoded as a varint. The lower bits of the tag
// identify its wire type, which specifies the format of the data to follow.
// The rest of the bits contain the field number. Each type of field (as
// declared by FieldDescriptor::Type, in descriptor.h) maps to one of
// these wire types. Immediately following each tag is the field's value,
// encoded in the format specified by the wire type. Because the tag
// identifies the encoding of this data, it is possible to skip
// unrecognized fields for forwards compatibility.
enum WireType {
WIRETYPE_VARINT = 0,
WIRETYPE_FIXED64 = 1,
WIRETYPE_LENGTH_DELIMITED = 2,
WIRETYPE_START_GROUP = 3,
WIRETYPE_END_GROUP = 4,
WIRETYPE_FIXED32 = 5,
};
// Lite alternative to FieldDescriptor::Type. Must be kept in sync.
enum FieldType {
TYPE_DOUBLE = 1,
TYPE_FLOAT = 2,
TYPE_INT64 = 3,
TYPE_UINT64 = 4,
TYPE_INT32 = 5,
TYPE_FIXED64 = 6,
TYPE_FIXED32 = 7,
TYPE_BOOL = 8,
TYPE_STRING = 9,
TYPE_GROUP = 10,
TYPE_MESSAGE = 11,
TYPE_BYTES = 12,
TYPE_UINT32 = 13,
TYPE_ENUM = 14,
TYPE_SFIXED32 = 15,
TYPE_SFIXED64 = 16,
TYPE_SINT32 = 17,
TYPE_SINT64 = 18,
MAX_FIELD_TYPE = 18,
};
// Lite alternative to FieldDescriptor::CppType. Must be kept in sync.
enum CppType {
CPPTYPE_INT32 = 1,
CPPTYPE_INT64 = 2,
CPPTYPE_UINT32 = 3,
CPPTYPE_UINT64 = 4,
CPPTYPE_DOUBLE = 5,
CPPTYPE_FLOAT = 6,
CPPTYPE_BOOL = 7,
CPPTYPE_ENUM = 8,
CPPTYPE_STRING = 9,
CPPTYPE_MESSAGE = 10,
MAX_CPPTYPE = 10,
};
// Helper method to get the CppType for a particular Type.
static CppType FieldTypeToCppType(FieldType type);
// Given a FieldSescriptor::Type return its WireType
static inline WireFormatLite::WireType WireTypeForFieldType(
WireFormatLite::FieldType type) {
return kWireTypeForFieldType[type];
}
// Number of bits in a tag which identify the wire type.
static const int kTagTypeBits = 3;
// Mask for those bits.
static const uint32 kTagTypeMask = (1 << kTagTypeBits) - 1;
// Helper functions for encoding and decoding tags. (Inlined below and in
// _inl.h)
//
// This is different from MakeTag(field->number(), field->type()) in the case
// of packed repeated fields.
static uint32 MakeTag(int field_number, WireType type);
static WireType GetTagWireType(uint32 tag);
static int GetTagFieldNumber(uint32 tag);
// Compute the byte size of a tag. For groups, this includes both the start
// and end tags.
static inline int TagSize(int field_number, WireFormatLite::FieldType type);
// Skips a field value with the given tag. The input should start
// positioned immediately after the tag. Skipped values are simply discarded,
// not recorded anywhere. See WireFormat::SkipField() for a version that
// records to an UnknownFieldSet.
static bool SkipField(io::CodedInputStream* input, uint32 tag);
// Reads and ignores a message from the input. Skipped values are simply
// discarded, not recorded anywhere. See WireFormat::SkipMessage() for a
// version that records to an UnknownFieldSet.
static bool SkipMessage(io::CodedInputStream* input);
// This macro does the same thing as WireFormatLite::MakeTag(), but the
// result is usable as a compile-time constant, which makes it usable
// as a switch case or a template input. WireFormatLite::MakeTag() is more
// type-safe, though, so prefer it if possible.
#define GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(FIELD_NUMBER, TYPE) \
static_cast<uint32>( \
((FIELD_NUMBER) << ::google::protobuf::internal::WireFormatLite::kTagTypeBits) \
| (TYPE))
// These are the tags for the old MessageSet format, which was defined as:
// message MessageSet {
// repeated group Item = 1 {
// required int32 type_id = 2;
// required string message = 3;
// }
// }
static const int kMessageSetItemNumber = 1;
static const int kMessageSetTypeIdNumber = 2;
static const int kMessageSetMessageNumber = 3;
static const int kMessageSetItemStartTag =
GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetItemNumber,
WireFormatLite::WIRETYPE_START_GROUP);
static const int kMessageSetItemEndTag =
GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetItemNumber,
WireFormatLite::WIRETYPE_END_GROUP);
static const int kMessageSetTypeIdTag =
GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetTypeIdNumber,
WireFormatLite::WIRETYPE_VARINT);
static const int kMessageSetMessageTag =
GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetMessageNumber,
WireFormatLite::WIRETYPE_LENGTH_DELIMITED);
// Byte size of all tags of a MessageSet::Item combined.
static const int kMessageSetItemTagsSize;
// Helper functions for converting between floats/doubles and IEEE-754
// uint32s/uint64s so that they can be written. (Assumes your platform
// uses IEEE-754 floats.)
static uint32 EncodeFloat(float value);
static float DecodeFloat(uint32 value);
static uint64 EncodeDouble(double value);
static double DecodeDouble(uint64 value);
// Helper functions for mapping signed integers to unsigned integers in
// such a way that numbers with small magnitudes will encode to smaller
// varints. If you simply static_cast a negative number to an unsigned
// number and varint-encode it, it will always take 10 bytes, defeating
// the purpose of varint. So, for the "sint32" and "sint64" field types,
// we ZigZag-encode the values.
static uint32 ZigZagEncode32(int32 n);
static int32 ZigZagDecode32(uint32 n);
static uint64 ZigZagEncode64(int64 n);
static int64 ZigZagDecode64(uint64 n);
// =================================================================
// Methods for reading/writing individual field. The implementations
// of these methods are defined in wire_format_lite_inl.h; you must #include
// that file to use these.
// Avoid ugly line wrapping
#define input io::CodedInputStream* input
#define output io::CodedOutputStream* output
#define field_number int field_number
#define INL GOOGLE_ATTRIBUTE_ALWAYS_INLINE
// Read fields, not including tags. The assumption is that you already
// read the tag to determine what field to read.
// For primitive fields, we just use a templatized routine parameterized by
// the represented type and the FieldType. These are specialized with the
// appropriate definition for each declared type.
template <typename CType, enum FieldType DeclaredType>
static inline bool ReadPrimitive(input, CType* value) INL;
// Reads repeated primitive values, with optimizations for repeats.
// tag_size and tag should both be compile-time constants provided by the
// protocol compiler.
template <typename CType, enum FieldType DeclaredType>
static inline bool ReadRepeatedPrimitive(int tag_size,
uint32 tag,
input,
RepeatedField<CType>* value) INL;
// Identical to ReadRepeatedPrimitive, except will not inline the
// implementation.
template <typename CType, enum FieldType DeclaredType>
static bool ReadRepeatedPrimitiveNoInline(int tag_size,
uint32 tag,
input,
RepeatedField<CType>* value);
// Reads a primitive value directly from the provided buffer. It returns a
// pointer past the segment of data that was read.
//
// This is only implemented for the types with fixed wire size, e.g.
// float, double, and the (s)fixed* types.
template <typename CType, enum FieldType DeclaredType>
static inline const uint8* ReadPrimitiveFromArray(const uint8* buffer,
CType* value) INL;
// Reads a primitive packed field.
//
// This is only implemented for packable types.
template <typename CType, enum FieldType DeclaredType>
static inline bool ReadPackedPrimitive(input,
RepeatedField<CType>* value) INL;
// Identical to ReadPackedPrimitive, except will not inline the
// implementation.
template <typename CType, enum FieldType DeclaredType>
static bool ReadPackedPrimitiveNoInline(input, RepeatedField<CType>* value);
// Read a packed enum field. Values for which is_valid() returns false are
// dropped.
static bool ReadPackedEnumNoInline(input,
bool (*is_valid)(int),
RepeatedField<int>* value);
static bool ReadString(input, string* value);
static bool ReadBytes (input, string* value);
static inline bool ReadGroup (field_number, input, MessageLite* value);
static inline bool ReadMessage(input, MessageLite* value);
// Like above, but de-virtualize the call to MergePartialFromCodedStream().
// The pointer must point at an instance of MessageType, *not* a subclass (or
// the subclass must not override MergePartialFromCodedStream()).
template<typename MessageType>
static inline bool ReadGroupNoVirtual(field_number, input,
MessageType* value);
template<typename MessageType>
static inline bool ReadMessageNoVirtual(input, MessageType* value);
// Write a tag. The Write*() functions typically include the tag, so
// normally there's no need to call this unless using the Write*NoTag()
// variants.
static inline void WriteTag(field_number, WireType type, output) INL;
// Write fields, without tags.
static inline void WriteInt32NoTag (int32 value, output) INL;
static inline void WriteInt64NoTag (int64 value, output) INL;
static inline void WriteUInt32NoTag (uint32 value, output) INL;
static inline void WriteUInt64NoTag (uint64 value, output) INL;
static inline void WriteSInt32NoTag (int32 value, output) INL;
static inline void WriteSInt64NoTag (int64 value, output) INL;
static inline void WriteFixed32NoTag (uint32 value, output) INL;
static inline void WriteFixed64NoTag (uint64 value, output) INL;
static inline void WriteSFixed32NoTag(int32 value, output) INL;
static inline void WriteSFixed64NoTag(int64 value, output) INL;
static inline void WriteFloatNoTag (float value, output) INL;
static inline void WriteDoubleNoTag (double value, output) INL;
static inline void WriteBoolNoTag (bool value, output) INL;
static inline void WriteEnumNoTag (int value, output) INL;
// Write fields, including tags.
static void WriteInt32 (field_number, int32 value, output);
static void WriteInt64 (field_number, int64 value, output);
static void WriteUInt32 (field_number, uint32 value, output);
static void WriteUInt64 (field_number, uint64 value, output);
static void WriteSInt32 (field_number, int32 value, output);
static void WriteSInt64 (field_number, int64 value, output);
static void WriteFixed32 (field_number, uint32 value, output);
static void WriteFixed64 (field_number, uint64 value, output);
static void WriteSFixed32(field_number, int32 value, output);
static void WriteSFixed64(field_number, int64 value, output);
static void WriteFloat (field_number, float value, output);
static void WriteDouble (field_number, double value, output);
static void WriteBool (field_number, bool value, output);
static void WriteEnum (field_number, int value, output);
static void WriteString(field_number, const string& value, output);
static void WriteBytes (field_number, const string& value, output);
static void WriteGroup(
field_number, const MessageLite& value, output);
static void WriteMessage(
field_number, const MessageLite& value, output);
// Like above, but these will check if the output stream has enough
// space to write directly to a flat array.
static void WriteGroupMaybeToArray(
field_number, const MessageLite& value, output);
static void WriteMessageMaybeToArray(
field_number, const MessageLite& value, output);
// Like above, but de-virtualize the call to SerializeWithCachedSizes(). The
// pointer must point at an instance of MessageType, *not* a subclass (or
// the subclass must not override SerializeWithCachedSizes()).
template<typename MessageType>
static inline void WriteGroupNoVirtual(
field_number, const MessageType& value, output);
template<typename MessageType>
static inline void WriteMessageNoVirtual(
field_number, const MessageType& value, output);
#undef output
#define output uint8* target
// Like above, but use only *ToArray methods of CodedOutputStream.
static inline uint8* WriteTagToArray(field_number, WireType type, output) INL;
// Write fields, without tags.
static inline uint8* WriteInt32NoTagToArray (int32 value, output) INL;
static inline uint8* WriteInt64NoTagToArray (int64 value, output) INL;
static inline uint8* WriteUInt32NoTagToArray (uint32 value, output) INL;
static inline uint8* WriteUInt64NoTagToArray (uint64 value, output) INL;
static inline uint8* WriteSInt32NoTagToArray (int32 value, output) INL;
static inline uint8* WriteSInt64NoTagToArray (int64 value, output) INL;
static inline uint8* WriteFixed32NoTagToArray (uint32 value, output) INL;
static inline uint8* WriteFixed64NoTagToArray (uint64 value, output) INL;
static inline uint8* WriteSFixed32NoTagToArray(int32 value, output) INL;
static inline uint8* WriteSFixed64NoTagToArray(int64 value, output) INL;
static inline uint8* WriteFloatNoTagToArray (float value, output) INL;
static inline uint8* WriteDoubleNoTagToArray (double value, output) INL;
static inline uint8* WriteBoolNoTagToArray (bool value, output) INL;
static inline uint8* WriteEnumNoTagToArray (int value, output) INL;
// Write fields, including tags.
static inline uint8* WriteInt32ToArray(
field_number, int32 value, output) INL;
static inline uint8* WriteInt64ToArray(
field_number, int64 value, output) INL;
static inline uint8* WriteUInt32ToArray(
field_number, uint32 value, output) INL;
static inline uint8* WriteUInt64ToArray(
field_number, uint64 value, output) INL;
static inline uint8* WriteSInt32ToArray(
field_number, int32 value, output) INL;
static inline uint8* WriteSInt64ToArray(
field_number, int64 value, output) INL;
static inline uint8* WriteFixed32ToArray(
field_number, uint32 value, output) INL;
static inline uint8* WriteFixed64ToArray(
field_number, uint64 value, output) INL;
static inline uint8* WriteSFixed32ToArray(
field_number, int32 value, output) INL;
static inline uint8* WriteSFixed64ToArray(
field_number, int64 value, output) INL;
static inline uint8* WriteFloatToArray(
field_number, float value, output) INL;
static inline uint8* WriteDoubleToArray(
field_number, double value, output) INL;
static inline uint8* WriteBoolToArray(
field_number, bool value, output) INL;
static inline uint8* WriteEnumToArray(
field_number, int value, output) INL;
static inline uint8* WriteStringToArray(
field_number, const string& value, output) INL;
static inline uint8* WriteBytesToArray(
field_number, const string& value, output) INL;
static inline uint8* WriteGroupToArray(
field_number, const MessageLite& value, output) INL;
static inline uint8* WriteMessageToArray(
field_number, const MessageLite& value, output) INL;
// Like above, but de-virtualize the call to SerializeWithCachedSizes(). The
// pointer must point at an instance of MessageType, *not* a subclass (or
// the subclass must not override SerializeWithCachedSizes()).
template<typename MessageType>
static inline uint8* WriteGroupNoVirtualToArray(
field_number, const MessageType& value, output) INL;
template<typename MessageType>
static inline uint8* WriteMessageNoVirtualToArray(
field_number, const MessageType& value, output) INL;
#undef output
#undef input
#undef INL
#undef field_number
// Compute the byte size of a field. The XxSize() functions do NOT include
// the tag, so you must also call TagSize(). (This is because, for repeated
// fields, you should only call TagSize() once and multiply it by the element
// count, but you may have to call XxSize() for each individual element.)
static inline int Int32Size ( int32 value);
static inline int Int64Size ( int64 value);
static inline int UInt32Size (uint32 value);
static inline int UInt64Size (uint64 value);
static inline int SInt32Size ( int32 value);
static inline int SInt64Size ( int64 value);
static inline int EnumSize ( int value);
// These types always have the same size.
static const int kFixed32Size = 4;
static const int kFixed64Size = 8;
static const int kSFixed32Size = 4;
static const int kSFixed64Size = 8;
static const int kFloatSize = 4;
static const int kDoubleSize = 8;
static const int kBoolSize = 1;
static inline int StringSize(const string& value);
static inline int BytesSize (const string& value);
static inline int GroupSize (const MessageLite& value);
static inline int MessageSize(const MessageLite& value);
// Like above, but de-virtualize the call to ByteSize(). The
// pointer must point at an instance of MessageType, *not* a subclass (or
// the subclass must not override ByteSize()).
template<typename MessageType>
static inline int GroupSizeNoVirtual (const MessageType& value);
template<typename MessageType>
static inline int MessageSizeNoVirtual(const MessageType& value);
private:
// A helper method for the repeated primitive reader. This method has
// optimizations for primitive types that have fixed size on the wire, and
// can be read using potentially faster paths.
template <typename CType, enum FieldType DeclaredType>
static inline bool ReadRepeatedFixedSizePrimitive(
int tag_size,
uint32 tag,
google::protobuf::io::CodedInputStream* input,
RepeatedField<CType>* value) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
static const CppType kFieldTypeToCppTypeMap[];
static const WireFormatLite::WireType kWireTypeForFieldType[];
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(WireFormatLite);
};
// A class which deals with unknown values. The default implementation just
// discards them. WireFormat defines a subclass which writes to an
// UnknownFieldSet. This class is used by ExtensionSet::ParseField(), since
// ExtensionSet is part of the lite library but UnknownFieldSet is not.
class LIBPROTOBUF_EXPORT FieldSkipper {
public:
FieldSkipper() {}
virtual ~FieldSkipper() {}
// Skip a field whose tag has already been consumed.
virtual bool SkipField(io::CodedInputStream* input, uint32 tag);
// Skip an entire message or group, up to an end-group tag (which is consumed)
// or end-of-stream.
virtual bool SkipMessage(io::CodedInputStream* input);
// Deal with an already-parsed unrecognized enum value. The default
// implementation does nothing, but the UnknownFieldSet-based implementation
// saves it as an unknown varint.
virtual void SkipUnknownEnum(int field_number, int value);
};
// inline methods ====================================================
inline WireFormatLite::CppType
WireFormatLite::FieldTypeToCppType(FieldType type) {
return kFieldTypeToCppTypeMap[type];
}
inline uint32 WireFormatLite::MakeTag(int field_number, WireType type) {
return GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(field_number, type);
}
inline WireFormatLite::WireType WireFormatLite::GetTagWireType(uint32 tag) {
return static_cast<WireType>(tag & kTagTypeMask);
}
inline int WireFormatLite::GetTagFieldNumber(uint32 tag) {
return static_cast<int>(tag >> kTagTypeBits);
}
inline int WireFormatLite::TagSize(int field_number,
WireFormatLite::FieldType type) {
int result = io::CodedOutputStream::VarintSize32(
field_number << kTagTypeBits);
if (type == TYPE_GROUP) {
// Groups have both a start and an end tag.
return result * 2;
} else {
return result;
}
}
inline uint32 WireFormatLite::EncodeFloat(float value) {
union {float f; uint32 i;};
f = value;
return i;
}
inline float WireFormatLite::DecodeFloat(uint32 value) {
union {float f; uint32 i;};
i = value;
return f;
}
inline uint64 WireFormatLite::EncodeDouble(double value) {
union {double f; uint64 i;};
f = value;
return i;
}
inline double WireFormatLite::DecodeDouble(uint64 value) {
union {double f; uint64 i;};
i = value;
return f;
}
// ZigZag Transform: Encodes signed integers so that they can be
// effectively used with varint encoding.
//
// varint operates on unsigned integers, encoding smaller numbers into
// fewer bytes. If you try to use it on a signed integer, it will treat
// this number as a very large unsigned integer, which means that even
// small signed numbers like -1 will take the maximum number of bytes
// (10) to encode. ZigZagEncode() maps signed integers to unsigned
// in such a way that those with a small absolute value will have smaller
// encoded values, making them appropriate for encoding using varint.
//
// int32 -> uint32
// -------------------------
// 0 -> 0
// -1 -> 1
// 1 -> 2
// -2 -> 3
// ... -> ...
// 2147483647 -> 4294967294
// -2147483648 -> 4294967295
//
// >> encode >>
// << decode <<
inline uint32 WireFormatLite::ZigZagEncode32(int32 n) {
// Note: the right-shift must be arithmetic
return (n << 1) ^ (n >> 31);
}
inline int32 WireFormatLite::ZigZagDecode32(uint32 n) {
return (n >> 1) ^ -static_cast<int32>(n & 1);
}
inline uint64 WireFormatLite::ZigZagEncode64(int64 n) {
// Note: the right-shift must be arithmetic
return (n << 1) ^ (n >> 63);
}
inline int64 WireFormatLite::ZigZagDecode64(uint64 n) {
return (n >> 1) ^ -static_cast<int64>(n & 1);
}
} // namespace internal
} // namespace protobuf
} // namespace google
#endif // GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
|