aboutsummaryrefslogtreecommitdiffstats
path: root/cpu-exec.c
diff options
context:
space:
mode:
authorUpstream <upstream-import@none>1970-01-12 13:46:40 +0000
committerUpstream <upstream-import@none>1970-01-12 13:46:40 +0000
commit413f05aaf54fa08c0ae7e997327a4f4a473c0a8d (patch)
tree642d637ab01ee6c54ca27d1fa96cf92a32df8053 /cpu-exec.c
downloadexternal_qemu-413f05aaf54fa08c0ae7e997327a4f4a473c0a8d.zip
external_qemu-413f05aaf54fa08c0ae7e997327a4f4a473c0a8d.tar.gz
external_qemu-413f05aaf54fa08c0ae7e997327a4f4a473c0a8d.tar.bz2
external/qemu 0.8.2
Diffstat (limited to 'cpu-exec.c')
-rw-r--r--cpu-exec.c1483
1 files changed, 1483 insertions, 0 deletions
diff --git a/cpu-exec.c b/cpu-exec.c
new file mode 100644
index 0000000..60239d4
--- /dev/null
+++ b/cpu-exec.c
@@ -0,0 +1,1483 @@
+/*
+ * i386 emulator main execution loop
+ *
+ * Copyright (c) 2003-2005 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+#include "config.h"
+#include "exec.h"
+#include "disas.h"
+
+#if !defined(CONFIG_SOFTMMU)
+#undef EAX
+#undef ECX
+#undef EDX
+#undef EBX
+#undef ESP
+#undef EBP
+#undef ESI
+#undef EDI
+#undef EIP
+#include <signal.h>
+#include <sys/ucontext.h>
+#endif
+
+int tb_invalidated_flag;
+
+//#define DEBUG_EXEC
+//#define DEBUG_SIGNAL
+
+#if defined(TARGET_ARM) || defined(TARGET_SPARC)
+/* XXX: unify with i386 target */
+void cpu_loop_exit(void)
+{
+ longjmp(env->jmp_env, 1);
+}
+#endif
+#if !(defined(TARGET_SPARC) || defined(TARGET_SH4))
+#define reg_T2
+#endif
+
+/* exit the current TB from a signal handler. The host registers are
+ restored in a state compatible with the CPU emulator
+ */
+void cpu_resume_from_signal(CPUState *env1, void *puc)
+{
+#if !defined(CONFIG_SOFTMMU)
+ struct ucontext *uc = puc;
+#endif
+
+ env = env1;
+
+ /* XXX: restore cpu registers saved in host registers */
+
+#if !defined(CONFIG_SOFTMMU)
+ if (puc) {
+ /* XXX: use siglongjmp ? */
+ sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
+ }
+#endif
+ longjmp(env->jmp_env, 1);
+}
+
+
+static TranslationBlock *tb_find_slow(target_ulong pc,
+ target_ulong cs_base,
+ unsigned int flags)
+{
+ TranslationBlock *tb, **ptb1;
+ int code_gen_size;
+ unsigned int h;
+ target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
+ uint8_t *tc_ptr;
+
+ spin_lock(&tb_lock);
+
+ tb_invalidated_flag = 0;
+
+ regs_to_env(); /* XXX: do it just before cpu_gen_code() */
+
+ /* find translated block using physical mappings */
+ phys_pc = get_phys_addr_code(env, pc);
+ phys_page1 = phys_pc & TARGET_PAGE_MASK;
+ phys_page2 = -1;
+ h = tb_phys_hash_func(phys_pc);
+ ptb1 = &tb_phys_hash[h];
+ for(;;) {
+ tb = *ptb1;
+ if (!tb)
+ goto not_found;
+ if (tb->pc == pc &&
+ tb->page_addr[0] == phys_page1 &&
+ tb->cs_base == cs_base &&
+ tb->flags == flags) {
+ /* check next page if needed */
+ if (tb->page_addr[1] != -1) {
+ virt_page2 = (pc & TARGET_PAGE_MASK) +
+ TARGET_PAGE_SIZE;
+ phys_page2 = get_phys_addr_code(env, virt_page2);
+ if (tb->page_addr[1] == phys_page2)
+ goto found;
+ } else {
+ goto found;
+ }
+ }
+ ptb1 = &tb->phys_hash_next;
+ }
+ not_found:
+ /* if no translated code available, then translate it now */
+ tb = tb_alloc(pc);
+ if (!tb) {
+ /* flush must be done */
+ tb_flush(env);
+ /* cannot fail at this point */
+ tb = tb_alloc(pc);
+ /* don't forget to invalidate previous TB info */
+ tb_invalidated_flag = 1;
+ }
+ tc_ptr = code_gen_ptr;
+ tb->tc_ptr = tc_ptr;
+ tb->cs_base = cs_base;
+ tb->flags = flags;
+ cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
+ code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
+
+ /* check next page if needed */
+ virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
+ phys_page2 = -1;
+ if ((pc & TARGET_PAGE_MASK) != virt_page2) {
+ phys_page2 = get_phys_addr_code(env, virt_page2);
+ }
+ tb_link_phys(tb, phys_pc, phys_page2);
+
+ found:
+ /* we add the TB in the virtual pc hash table */
+ env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
+ spin_unlock(&tb_lock);
+ return tb;
+}
+
+static inline TranslationBlock *tb_find_fast(void)
+{
+ TranslationBlock *tb;
+ target_ulong cs_base, pc;
+ unsigned int flags;
+
+ /* we record a subset of the CPU state. It will
+ always be the same before a given translated block
+ is executed. */
+#if defined(TARGET_I386)
+ flags = env->hflags;
+ flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
+ cs_base = env->segs[R_CS].base;
+ pc = cs_base + env->eip;
+#elif defined(TARGET_ARM)
+ flags = env->thumb | (env->vfp.vec_len << 1)
+ | (env->vfp.vec_stride << 4);
+ if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
+ flags |= (1 << 6);
+ if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
+ flags |= (1 << 7);
+ cs_base = 0;
+ pc = env->regs[15];
+#elif defined(TARGET_SPARC)
+#ifdef TARGET_SPARC64
+ // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
+ flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
+ | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
+#else
+ // FPU enable . MMU enabled . MMU no-fault . Supervisor
+ flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
+ | env->psrs;
+#endif
+ cs_base = env->npc;
+ pc = env->pc;
+#elif defined(TARGET_PPC)
+ flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
+ (msr_se << MSR_SE) | (msr_le << MSR_LE);
+ cs_base = 0;
+ pc = env->nip;
+#elif defined(TARGET_MIPS)
+ flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
+ cs_base = 0;
+ pc = env->PC;
+#elif defined(TARGET_SH4)
+ flags = env->sr & (SR_MD | SR_RB);
+ cs_base = 0; /* XXXXX */
+ pc = env->pc;
+#else
+#error unsupported CPU
+#endif
+ tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
+ if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
+ tb->flags != flags, 0)) {
+ tb = tb_find_slow(pc, cs_base, flags);
+ /* Note: we do it here to avoid a gcc bug on Mac OS X when
+ doing it in tb_find_slow */
+ if (tb_invalidated_flag) {
+ /* as some TB could have been invalidated because
+ of memory exceptions while generating the code, we
+ must recompute the hash index here */
+ T0 = 0;
+ }
+ }
+ return tb;
+}
+
+
+/* main execution loop */
+
+int cpu_exec(CPUState *env1)
+{
+ int saved_T0, saved_T1;
+#if defined(reg_T2)
+ int saved_T2;
+#endif
+ CPUState *saved_env;
+#if defined(TARGET_I386)
+#ifdef reg_EAX
+ int saved_EAX;
+#endif
+#ifdef reg_ECX
+ int saved_ECX;
+#endif
+#ifdef reg_EDX
+ int saved_EDX;
+#endif
+#ifdef reg_EBX
+ int saved_EBX;
+#endif
+#ifdef reg_ESP
+ int saved_ESP;
+#endif
+#ifdef reg_EBP
+ int saved_EBP;
+#endif
+#ifdef reg_ESI
+ int saved_ESI;
+#endif
+#ifdef reg_EDI
+ int saved_EDI;
+#endif
+#elif defined(TARGET_SPARC)
+#if defined(reg_REGWPTR)
+ uint32_t *saved_regwptr;
+#endif
+#endif
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ int saved_i7, tmp_T0;
+#endif
+ int ret, interrupt_request;
+ void (*gen_func)(void);
+ TranslationBlock *tb;
+ uint8_t *tc_ptr;
+
+#if defined(TARGET_I386)
+ /* handle exit of HALTED state */
+ if (env1->hflags & HF_HALTED_MASK) {
+ /* disable halt condition */
+ if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
+ (env1->eflags & IF_MASK)) {
+ env1->hflags &= ~HF_HALTED_MASK;
+ } else {
+ return EXCP_HALTED;
+ }
+ }
+#elif defined(TARGET_PPC)
+ if (env1->halted) {
+ if (env1->msr[MSR_EE] &&
+ (env1->interrupt_request &
+ (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
+ env1->halted = 0;
+ } else {
+ return EXCP_HALTED;
+ }
+ }
+#elif defined(TARGET_SPARC)
+ if (env1->halted) {
+ if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
+ (env1->psret != 0)) {
+ env1->halted = 0;
+ } else {
+ return EXCP_HALTED;
+ }
+ }
+#elif defined(TARGET_ARM)
+ if (env1->halted) {
+ /* An interrupt wakes the CPU even if the I and F CPSR bits are
+ set. */
+ if (env1->interrupt_request
+ & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
+ env1->halted = 0;
+ } else {
+ return EXCP_HALTED;
+ }
+ }
+#elif defined(TARGET_MIPS)
+ if (env1->halted) {
+ if (env1->interrupt_request &
+ (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
+ env1->halted = 0;
+ } else {
+ return EXCP_HALTED;
+ }
+ }
+#endif
+
+ cpu_single_env = env1;
+
+ /* first we save global registers */
+ saved_env = env;
+ env = env1;
+ saved_T0 = T0;
+ saved_T1 = T1;
+#if defined(reg_T2)
+ saved_T2 = T2;
+#endif
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ /* we also save i7 because longjmp may not restore it */
+ asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
+#endif
+
+#if defined(TARGET_I386)
+#ifdef reg_EAX
+ saved_EAX = EAX;
+#endif
+#ifdef reg_ECX
+ saved_ECX = ECX;
+#endif
+#ifdef reg_EDX
+ saved_EDX = EDX;
+#endif
+#ifdef reg_EBX
+ saved_EBX = EBX;
+#endif
+#ifdef reg_ESP
+ saved_ESP = ESP;
+#endif
+#ifdef reg_EBP
+ saved_EBP = EBP;
+#endif
+#ifdef reg_ESI
+ saved_ESI = ESI;
+#endif
+#ifdef reg_EDI
+ saved_EDI = EDI;
+#endif
+
+ env_to_regs();
+ /* put eflags in CPU temporary format */
+ CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
+ DF = 1 - (2 * ((env->eflags >> 10) & 1));
+ CC_OP = CC_OP_EFLAGS;
+ env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
+#elif defined(TARGET_ARM)
+#elif defined(TARGET_SPARC)
+#if defined(reg_REGWPTR)
+ saved_regwptr = REGWPTR;
+#endif
+#elif defined(TARGET_PPC)
+#elif defined(TARGET_MIPS)
+#elif defined(TARGET_SH4)
+ /* XXXXX */
+#else
+#error unsupported target CPU
+#endif
+ env->exception_index = -1;
+
+ /* prepare setjmp context for exception handling */
+ for(;;) {
+ if (setjmp(env->jmp_env) == 0) {
+ env->current_tb = NULL;
+ /* if an exception is pending, we execute it here */
+ if (env->exception_index >= 0) {
+ if (env->exception_index >= EXCP_INTERRUPT) {
+ /* exit request from the cpu execution loop */
+ ret = env->exception_index;
+ break;
+ } else if (env->user_mode_only) {
+ /* if user mode only, we simulate a fake exception
+ which will be hanlded outside the cpu execution
+ loop */
+#if defined(TARGET_I386)
+ do_interrupt_user(env->exception_index,
+ env->exception_is_int,
+ env->error_code,
+ env->exception_next_eip);
+#endif
+ ret = env->exception_index;
+ break;
+ } else {
+#if defined(TARGET_I386)
+ /* simulate a real cpu exception. On i386, it can
+ trigger new exceptions, but we do not handle
+ double or triple faults yet. */
+ do_interrupt(env->exception_index,
+ env->exception_is_int,
+ env->error_code,
+ env->exception_next_eip, 0);
+#elif defined(TARGET_PPC)
+ do_interrupt(env);
+#elif defined(TARGET_MIPS)
+ do_interrupt(env);
+#elif defined(TARGET_SPARC)
+ do_interrupt(env->exception_index);
+#elif defined(TARGET_ARM)
+ do_interrupt(env);
+#elif defined(TARGET_SH4)
+ do_interrupt(env);
+#endif
+ }
+ env->exception_index = -1;
+ }
+#ifdef USE_KQEMU
+ if (kqemu_is_ok(env) && env->interrupt_request == 0) {
+ int ret;
+ env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
+ ret = kqemu_cpu_exec(env);
+ /* put eflags in CPU temporary format */
+ CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
+ DF = 1 - (2 * ((env->eflags >> 10) & 1));
+ CC_OP = CC_OP_EFLAGS;
+ env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
+ if (ret == 1) {
+ /* exception */
+ longjmp(env->jmp_env, 1);
+ } else if (ret == 2) {
+ /* softmmu execution needed */
+ } else {
+ if (env->interrupt_request != 0) {
+ /* hardware interrupt will be executed just after */
+ } else {
+ /* otherwise, we restart */
+ longjmp(env->jmp_env, 1);
+ }
+ }
+ }
+#endif
+
+ T0 = 0; /* force lookup of first TB */
+ for(;;) {
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ /* g1 can be modified by some libc? functions */
+ tmp_T0 = T0;
+#endif
+ interrupt_request = env->interrupt_request;
+ if (__builtin_expect(interrupt_request, 0)) {
+#if defined(TARGET_I386)
+ /* if hardware interrupt pending, we execute it */
+ if ((interrupt_request & CPU_INTERRUPT_HARD) &&
+ (env->eflags & IF_MASK) &&
+ !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
+ int intno;
+ env->interrupt_request &= ~CPU_INTERRUPT_HARD;
+ intno = cpu_get_pic_interrupt(env);
+ if (loglevel & CPU_LOG_TB_IN_ASM) {
+ fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
+ }
+ do_interrupt(intno, 0, 0, 0, 1);
+ /* ensure that no TB jump will be modified as
+ the program flow was changed */
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ tmp_T0 = 0;
+#else
+ T0 = 0;
+#endif
+ }
+#elif defined(TARGET_PPC)
+#if 0
+ if ((interrupt_request & CPU_INTERRUPT_RESET)) {
+ cpu_ppc_reset(env);
+ }
+#endif
+ if (msr_ee != 0) {
+ if ((interrupt_request & CPU_INTERRUPT_HARD)) {
+ /* Raise it */
+ env->exception_index = EXCP_EXTERNAL;
+ env->error_code = 0;
+ do_interrupt(env);
+ env->interrupt_request &= ~CPU_INTERRUPT_HARD;
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ tmp_T0 = 0;
+#else
+ T0 = 0;
+#endif
+ } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
+ /* Raise it */
+ env->exception_index = EXCP_DECR;
+ env->error_code = 0;
+ do_interrupt(env);
+ env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ tmp_T0 = 0;
+#else
+ T0 = 0;
+#endif
+ }
+ }
+#elif defined(TARGET_MIPS)
+ if ((interrupt_request & CPU_INTERRUPT_HARD) &&
+ (env->CP0_Status & (1 << CP0St_IE)) &&
+ (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
+ !(env->hflags & MIPS_HFLAG_EXL) &&
+ !(env->hflags & MIPS_HFLAG_ERL) &&
+ !(env->hflags & MIPS_HFLAG_DM)) {
+ /* Raise it */
+ env->exception_index = EXCP_EXT_INTERRUPT;
+ env->error_code = 0;
+ do_interrupt(env);
+ env->interrupt_request &= ~CPU_INTERRUPT_HARD;
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ tmp_T0 = 0;
+#else
+ T0 = 0;
+#endif
+ }
+#elif defined(TARGET_SPARC)
+ if ((interrupt_request & CPU_INTERRUPT_HARD) &&
+ (env->psret != 0)) {
+ int pil = env->interrupt_index & 15;
+ int type = env->interrupt_index & 0xf0;
+
+ if (((type == TT_EXTINT) &&
+ (pil == 15 || pil > env->psrpil)) ||
+ type != TT_EXTINT) {
+ env->interrupt_request &= ~CPU_INTERRUPT_HARD;
+ do_interrupt(env->interrupt_index);
+ env->interrupt_index = 0;
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ tmp_T0 = 0;
+#else
+ T0 = 0;
+#endif
+ }
+ } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
+ //do_interrupt(0, 0, 0, 0, 0);
+ env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
+ } else if (interrupt_request & CPU_INTERRUPT_HALT) {
+ env1->halted = 1;
+ return EXCP_HALTED;
+ }
+#elif defined(TARGET_ARM)
+ if (interrupt_request & CPU_INTERRUPT_FIQ
+ && !(env->uncached_cpsr & CPSR_F)) {
+ env->exception_index = EXCP_FIQ;
+ do_interrupt(env);
+ }
+ if (interrupt_request & CPU_INTERRUPT_HARD
+ && !(env->uncached_cpsr & CPSR_I)) {
+ env->exception_index = EXCP_IRQ;
+ do_interrupt(env);
+ }
+#elif defined(TARGET_SH4)
+ /* XXXXX */
+#endif
+ /* Don't use the cached interupt_request value,
+ do_interrupt may have updated the EXITTB flag. */
+ if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
+ env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
+ /* ensure that no TB jump will be modified as
+ the program flow was changed */
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ tmp_T0 = 0;
+#else
+ T0 = 0;
+#endif
+ }
+ if (interrupt_request & CPU_INTERRUPT_EXIT) {
+ env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
+ env->exception_index = EXCP_INTERRUPT;
+ cpu_loop_exit();
+ }
+ }
+#ifdef DEBUG_EXEC
+ if ((loglevel & CPU_LOG_TB_CPU)) {
+#if defined(TARGET_I386)
+ /* restore flags in standard format */
+#ifdef reg_EAX
+ env->regs[R_EAX] = EAX;
+#endif
+#ifdef reg_EBX
+ env->regs[R_EBX] = EBX;
+#endif
+#ifdef reg_ECX
+ env->regs[R_ECX] = ECX;
+#endif
+#ifdef reg_EDX
+ env->regs[R_EDX] = EDX;
+#endif
+#ifdef reg_ESI
+ env->regs[R_ESI] = ESI;
+#endif
+#ifdef reg_EDI
+ env->regs[R_EDI] = EDI;
+#endif
+#ifdef reg_EBP
+ env->regs[R_EBP] = EBP;
+#endif
+#ifdef reg_ESP
+ env->regs[R_ESP] = ESP;
+#endif
+ env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
+ cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
+ env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
+#elif defined(TARGET_ARM)
+ cpu_dump_state(env, logfile, fprintf, 0);
+#elif defined(TARGET_SPARC)
+ REGWPTR = env->regbase + (env->cwp * 16);
+ env->regwptr = REGWPTR;
+ cpu_dump_state(env, logfile, fprintf, 0);
+#elif defined(TARGET_PPC)
+ cpu_dump_state(env, logfile, fprintf, 0);
+#elif defined(TARGET_MIPS)
+ cpu_dump_state(env, logfile, fprintf, 0);
+#elif defined(TARGET_SH4)
+ cpu_dump_state(env, logfile, fprintf, 0);
+#else
+#error unsupported target CPU
+#endif
+ }
+#endif
+ tb = tb_find_fast();
+#ifdef DEBUG_EXEC
+ if ((loglevel & CPU_LOG_EXEC)) {
+ fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
+ (long)tb->tc_ptr, tb->pc,
+ lookup_symbol(tb->pc));
+ }
+#endif
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ T0 = tmp_T0;
+#endif
+ /* see if we can patch the calling TB. When the TB
+ spans two pages, we cannot safely do a direct
+ jump. */
+ {
+ if (T0 != 0 &&
+#if USE_KQEMU
+ (env->kqemu_enabled != 2) &&
+#endif
+ tb->page_addr[1] == -1
+#if defined(TARGET_I386) && defined(USE_CODE_COPY)
+ && (tb->cflags & CF_CODE_COPY) ==
+ (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
+#endif
+ ) {
+ spin_lock(&tb_lock);
+ tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
+#if defined(USE_CODE_COPY)
+ /* propagates the FP use info */
+ ((TranslationBlock *)(T0 & ~3))->cflags |=
+ (tb->cflags & CF_FP_USED);
+#endif
+ spin_unlock(&tb_lock);
+ }
+ }
+ tc_ptr = tb->tc_ptr;
+ env->current_tb = tb;
+ /* execute the generated code */
+ gen_func = (void *)tc_ptr;
+#if defined(__sparc__)
+ __asm__ __volatile__("call %0\n\t"
+ "mov %%o7,%%i0"
+ : /* no outputs */
+ : "r" (gen_func)
+ : "i0", "i1", "i2", "i3", "i4", "i5",
+ "l0", "l1", "l2", "l3", "l4", "l5",
+ "l6", "l7");
+#elif defined(__arm__)
+ asm volatile ("mov pc, %0\n\t"
+ ".global exec_loop\n\t"
+ "exec_loop:\n\t"
+ : /* no outputs */
+ : "r" (gen_func)
+ : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
+#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
+{
+ if (!(tb->cflags & CF_CODE_COPY)) {
+ if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
+ save_native_fp_state(env);
+ }
+ gen_func();
+ } else {
+ if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
+ restore_native_fp_state(env);
+ }
+ /* we work with native eflags */
+ CC_SRC = cc_table[CC_OP].compute_all();
+ CC_OP = CC_OP_EFLAGS;
+ asm(".globl exec_loop\n"
+ "\n"
+ "debug1:\n"
+ " pushl %%ebp\n"
+ " fs movl %10, %9\n"
+ " fs movl %11, %%eax\n"
+ " andl $0x400, %%eax\n"
+ " fs orl %8, %%eax\n"
+ " pushl %%eax\n"
+ " popf\n"
+ " fs movl %%esp, %12\n"
+ " fs movl %0, %%eax\n"
+ " fs movl %1, %%ecx\n"
+ " fs movl %2, %%edx\n"
+ " fs movl %3, %%ebx\n"
+ " fs movl %4, %%esp\n"
+ " fs movl %5, %%ebp\n"
+ " fs movl %6, %%esi\n"
+ " fs movl %7, %%edi\n"
+ " fs jmp *%9\n"
+ "exec_loop:\n"
+ " fs movl %%esp, %4\n"
+ " fs movl %12, %%esp\n"
+ " fs movl %%eax, %0\n"
+ " fs movl %%ecx, %1\n"
+ " fs movl %%edx, %2\n"
+ " fs movl %%ebx, %3\n"
+ " fs movl %%ebp, %5\n"
+ " fs movl %%esi, %6\n"
+ " fs movl %%edi, %7\n"
+ " pushf\n"
+ " popl %%eax\n"
+ " movl %%eax, %%ecx\n"
+ " andl $0x400, %%ecx\n"
+ " shrl $9, %%ecx\n"
+ " andl $0x8d5, %%eax\n"
+ " fs movl %%eax, %8\n"
+ " movl $1, %%eax\n"
+ " subl %%ecx, %%eax\n"
+ " fs movl %%eax, %11\n"
+ " fs movl %9, %%ebx\n" /* get T0 value */
+ " popl %%ebp\n"
+ :
+ : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
+ "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
+ "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
+ "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
+ "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
+ "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
+ "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
+ "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
+ "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
+ "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
+ "a" (gen_func),
+ "m" (*(uint8_t *)offsetof(CPUState, df)),
+ "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
+ : "%ecx", "%edx"
+ );
+ }
+}
+#elif defined(__ia64)
+ struct fptr {
+ void *ip;
+ void *gp;
+ } fp;
+
+ fp.ip = tc_ptr;
+ fp.gp = code_gen_buffer + 2 * (1 << 20);
+ (*(void (*)(void)) &fp)();
+#else
+ gen_func();
+#endif
+ env->current_tb = NULL;
+ /* reset soft MMU for next block (it can currently
+ only be set by a memory fault) */
+#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
+ if (env->hflags & HF_SOFTMMU_MASK) {
+ env->hflags &= ~HF_SOFTMMU_MASK;
+ /* do not allow linking to another block */
+ T0 = 0;
+ }
+#endif
+#if defined(USE_KQEMU)
+#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
+ if (kqemu_is_ok(env) &&
+ (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
+ cpu_loop_exit();
+ }
+#endif
+ }
+ } else {
+ env_to_regs();
+ }
+ } /* for(;;) */
+
+
+#if defined(TARGET_I386)
+#if defined(USE_CODE_COPY)
+ if (env->native_fp_regs) {
+ save_native_fp_state(env);
+ }
+#endif
+ /* restore flags in standard format */
+ env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
+
+ /* restore global registers */
+#ifdef reg_EAX
+ EAX = saved_EAX;
+#endif
+#ifdef reg_ECX
+ ECX = saved_ECX;
+#endif
+#ifdef reg_EDX
+ EDX = saved_EDX;
+#endif
+#ifdef reg_EBX
+ EBX = saved_EBX;
+#endif
+#ifdef reg_ESP
+ ESP = saved_ESP;
+#endif
+#ifdef reg_EBP
+ EBP = saved_EBP;
+#endif
+#ifdef reg_ESI
+ ESI = saved_ESI;
+#endif
+#ifdef reg_EDI
+ EDI = saved_EDI;
+#endif
+#elif defined(TARGET_ARM)
+ /* XXX: Save/restore host fpu exception state?. */
+#elif defined(TARGET_SPARC)
+#if defined(reg_REGWPTR)
+ REGWPTR = saved_regwptr;
+#endif
+#elif defined(TARGET_PPC)
+#elif defined(TARGET_MIPS)
+#elif defined(TARGET_SH4)
+ /* XXXXX */
+#else
+#error unsupported target CPU
+#endif
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
+#endif
+ T0 = saved_T0;
+ T1 = saved_T1;
+#if defined(reg_T2)
+ T2 = saved_T2;
+#endif
+ env = saved_env;
+ /* fail safe : never use cpu_single_env outside cpu_exec() */
+ cpu_single_env = NULL;
+ return ret;
+}
+
+/* must only be called from the generated code as an exception can be
+ generated */
+void tb_invalidate_page_range(target_ulong start, target_ulong end)
+{
+ /* XXX: cannot enable it yet because it yields to MMU exception
+ where NIP != read address on PowerPC */
+#if 0
+ target_ulong phys_addr;
+ phys_addr = get_phys_addr_code(env, start);
+ tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
+#endif
+}
+
+#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
+
+void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
+{
+ CPUX86State *saved_env;
+
+ saved_env = env;
+ env = s;
+ if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
+ selector &= 0xffff;
+ cpu_x86_load_seg_cache(env, seg_reg, selector,
+ (selector << 4), 0xffff, 0);
+ } else {
+ load_seg(seg_reg, selector);
+ }
+ env = saved_env;
+}
+
+void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
+{
+ CPUX86State *saved_env;
+
+ saved_env = env;
+ env = s;
+
+ helper_fsave((target_ulong)ptr, data32);
+
+ env = saved_env;
+}
+
+void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
+{
+ CPUX86State *saved_env;
+
+ saved_env = env;
+ env = s;
+
+ helper_frstor((target_ulong)ptr, data32);
+
+ env = saved_env;
+}
+
+#endif /* TARGET_I386 */
+
+#if !defined(CONFIG_SOFTMMU)
+
+#if defined(TARGET_I386)
+
+/* 'pc' is the host PC at which the exception was raised. 'address' is
+ the effective address of the memory exception. 'is_write' is 1 if a
+ write caused the exception and otherwise 0'. 'old_set' is the
+ signal set which should be restored */
+static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
+ int is_write, sigset_t *old_set,
+ void *puc)
+{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
+ return 1;
+ }
+
+ /* see if it is an MMU fault */
+ ret = cpu_x86_handle_mmu_fault(env, address, is_write,
+ ((env->hflags & HF_CPL_MASK) == 3), 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+ if (ret == 1) {
+#if 0
+ printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
+ env->eip, env->cr[2], env->error_code);
+#endif
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ raise_exception_err(env->exception_index, env->error_code);
+ } else {
+ /* activate soft MMU for this block */
+ env->hflags |= HF_SOFTMMU_MASK;
+ cpu_resume_from_signal(env, puc);
+ }
+ /* never comes here */
+ return 1;
+}
+
+#elif defined(TARGET_ARM)
+static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
+ int is_write, sigset_t *old_set,
+ void *puc)
+{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
+ return 1;
+ }
+ /* see if it is an MMU fault */
+ ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ cpu_loop_exit();
+}
+#elif defined(TARGET_SPARC)
+static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
+ int is_write, sigset_t *old_set,
+ void *puc)
+{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
+ return 1;
+ }
+ /* see if it is an MMU fault */
+ ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ cpu_loop_exit();
+}
+#elif defined (TARGET_PPC)
+static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
+ int is_write, sigset_t *old_set,
+ void *puc)
+{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
+ return 1;
+ }
+
+ /* see if it is an MMU fault */
+ ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+ if (ret == 1) {
+#if 0
+ printf("PF exception: NIP=0x%08x error=0x%x %p\n",
+ env->nip, env->error_code, tb);
+#endif
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ do_raise_exception_err(env->exception_index, env->error_code);
+ } else {
+ /* activate soft MMU for this block */
+ cpu_resume_from_signal(env, puc);
+ }
+ /* never comes here */
+ return 1;
+}
+
+#elif defined (TARGET_MIPS)
+static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
+ int is_write, sigset_t *old_set,
+ void *puc)
+{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
+ return 1;
+ }
+
+ /* see if it is an MMU fault */
+ ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+ if (ret == 1) {
+#if 0
+ printf("PF exception: NIP=0x%08x error=0x%x %p\n",
+ env->nip, env->error_code, tb);
+#endif
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ do_raise_exception_err(env->exception_index, env->error_code);
+ } else {
+ /* activate soft MMU for this block */
+ cpu_resume_from_signal(env, puc);
+ }
+ /* never comes here */
+ return 1;
+}
+
+#elif defined (TARGET_SH4)
+static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
+ int is_write, sigset_t *old_set,
+ void *puc)
+{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
+ return 1;
+ }
+
+ /* see if it is an MMU fault */
+ ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+#if 0
+ printf("PF exception: NIP=0x%08x error=0x%x %p\n",
+ env->nip, env->error_code, tb);
+#endif
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ cpu_loop_exit();
+ /* never comes here */
+ return 1;
+}
+#else
+#error unsupported target CPU
+#endif
+
+#if defined(__i386__)
+
+#if defined(USE_CODE_COPY)
+static void cpu_send_trap(unsigned long pc, int trap,
+ struct ucontext *uc)
+{
+ TranslationBlock *tb;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, uc);
+ }
+ sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
+ raise_exception_err(trap, env->error_code);
+}
+#endif
+
+int cpu_signal_handler(int host_signum, struct siginfo *info,
+ void *puc)
+{
+ struct ucontext *uc = puc;
+ unsigned long pc;
+ int trapno;
+
+#ifndef REG_EIP
+/* for glibc 2.1 */
+#define REG_EIP EIP
+#define REG_ERR ERR
+#define REG_TRAPNO TRAPNO
+#endif
+ pc = uc->uc_mcontext.gregs[REG_EIP];
+ trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
+#if defined(TARGET_I386) && defined(USE_CODE_COPY)
+ if (trapno == 0x00 || trapno == 0x05) {
+ /* send division by zero or bound exception */
+ cpu_send_trap(pc, trapno, uc);
+ return 1;
+ } else
+#endif
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ trapno == 0xe ?
+ (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
+ &uc->uc_sigmask, puc);
+}
+
+#elif defined(__x86_64__)
+
+int cpu_signal_handler(int host_signum, struct siginfo *info,
+ void *puc)
+{
+ struct ucontext *uc = puc;
+ unsigned long pc;
+
+ pc = uc->uc_mcontext.gregs[REG_RIP];
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
+ (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
+ &uc->uc_sigmask, puc);
+}
+
+#elif defined(__powerpc__)
+
+/***********************************************************************
+ * signal context platform-specific definitions
+ * From Wine
+ */
+#ifdef linux
+/* All Registers access - only for local access */
+# define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
+/* Gpr Registers access */
+# define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
+# define IAR_sig(context) REG_sig(nip, context) /* Program counter */
+# define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
+# define CTR_sig(context) REG_sig(ctr, context) /* Count register */
+# define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
+# define LR_sig(context) REG_sig(link, context) /* Link register */
+# define CR_sig(context) REG_sig(ccr, context) /* Condition register */
+/* Float Registers access */
+# define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
+# define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
+/* Exception Registers access */
+# define DAR_sig(context) REG_sig(dar, context)
+# define DSISR_sig(context) REG_sig(dsisr, context)
+# define TRAP_sig(context) REG_sig(trap, context)
+#endif /* linux */
+
+#ifdef __APPLE__
+# include <sys/ucontext.h>
+typedef struct ucontext SIGCONTEXT;
+/* All Registers access - only for local access */
+# define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
+# define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
+# define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
+# define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
+/* Gpr Registers access */
+# define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
+# define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
+# define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
+# define CTR_sig(context) REG_sig(ctr, context)
+# define XER_sig(context) REG_sig(xer, context) /* Link register */
+# define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
+# define CR_sig(context) REG_sig(cr, context) /* Condition register */
+/* Float Registers access */
+# define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
+# define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
+/* Exception Registers access */
+# define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
+# define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
+# define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
+#endif /* __APPLE__ */
+
+int cpu_signal_handler(int host_signum, struct siginfo *info,
+ void *puc)
+{
+ struct ucontext *uc = puc;
+ unsigned long pc;
+ int is_write;
+
+ pc = IAR_sig(uc);
+ is_write = 0;
+#if 0
+ /* ppc 4xx case */
+ if (DSISR_sig(uc) & 0x00800000)
+ is_write = 1;
+#else
+ if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
+ is_write = 1;
+#endif
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ is_write, &uc->uc_sigmask, puc);
+}
+
+#elif defined(__alpha__)
+
+int cpu_signal_handler(int host_signum, struct siginfo *info,
+ void *puc)
+{
+ struct ucontext *uc = puc;
+ uint32_t *pc = uc->uc_mcontext.sc_pc;
+ uint32_t insn = *pc;
+ int is_write = 0;
+
+ /* XXX: need kernel patch to get write flag faster */
+ switch (insn >> 26) {
+ case 0x0d: // stw
+ case 0x0e: // stb
+ case 0x0f: // stq_u
+ case 0x24: // stf
+ case 0x25: // stg
+ case 0x26: // sts
+ case 0x27: // stt
+ case 0x2c: // stl
+ case 0x2d: // stq
+ case 0x2e: // stl_c
+ case 0x2f: // stq_c
+ is_write = 1;
+ }
+
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ is_write, &uc->uc_sigmask, puc);
+}
+#elif defined(__sparc__)
+
+int cpu_signal_handler(int host_signum, struct siginfo *info,
+ void *puc)
+{
+ uint32_t *regs = (uint32_t *)(info + 1);
+ void *sigmask = (regs + 20);
+ unsigned long pc;
+ int is_write;
+ uint32_t insn;
+
+ /* XXX: is there a standard glibc define ? */
+ pc = regs[1];
+ /* XXX: need kernel patch to get write flag faster */
+ is_write = 0;
+ insn = *(uint32_t *)pc;
+ if ((insn >> 30) == 3) {
+ switch((insn >> 19) & 0x3f) {
+ case 0x05: // stb
+ case 0x06: // sth
+ case 0x04: // st
+ case 0x07: // std
+ case 0x24: // stf
+ case 0x27: // stdf
+ case 0x25: // stfsr
+ is_write = 1;
+ break;
+ }
+ }
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ is_write, sigmask, NULL);
+}
+
+#elif defined(__arm__)
+
+int cpu_signal_handler(int host_signum, struct siginfo *info,
+ void *puc)
+{
+ struct ucontext *uc = puc;
+ unsigned long pc;
+ int is_write;
+
+ pc = uc->uc_mcontext.gregs[R15];
+ /* XXX: compute is_write */
+ is_write = 0;
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ is_write,
+ &uc->uc_sigmask);
+}
+
+#elif defined(__mc68000)
+
+int cpu_signal_handler(int host_signum, struct siginfo *info,
+ void *puc)
+{
+ struct ucontext *uc = puc;
+ unsigned long pc;
+ int is_write;
+
+ pc = uc->uc_mcontext.gregs[16];
+ /* XXX: compute is_write */
+ is_write = 0;
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ is_write,
+ &uc->uc_sigmask, puc);
+}
+
+#elif defined(__ia64)
+
+#ifndef __ISR_VALID
+ /* This ought to be in <bits/siginfo.h>... */
+# define __ISR_VALID 1
+#endif
+
+int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc)
+{
+ struct ucontext *uc = puc;
+ unsigned long ip;
+ int is_write = 0;
+
+ ip = uc->uc_mcontext.sc_ip;
+ switch (host_signum) {
+ case SIGILL:
+ case SIGFPE:
+ case SIGSEGV:
+ case SIGBUS:
+ case SIGTRAP:
+ if (info->si_code && (info->si_segvflags & __ISR_VALID))
+ /* ISR.W (write-access) is bit 33: */
+ is_write = (info->si_isr >> 33) & 1;
+ break;
+
+ default:
+ break;
+ }
+ return handle_cpu_signal(ip, (unsigned long)info->si_addr,
+ is_write,
+ &uc->uc_sigmask, puc);
+}
+
+#elif defined(__s390__)
+
+int cpu_signal_handler(int host_signum, struct siginfo *info,
+ void *puc)
+{
+ struct ucontext *uc = puc;
+ unsigned long pc;
+ int is_write;
+
+ pc = uc->uc_mcontext.psw.addr;
+ /* XXX: compute is_write */
+ is_write = 0;
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ is_write,
+ &uc->uc_sigmask, puc);
+}
+
+#else
+
+#error host CPU specific signal handler needed
+
+#endif
+
+#endif /* !defined(CONFIG_SOFTMMU) */