aboutsummaryrefslogtreecommitdiffstats
path: root/cpu-exec.c
diff options
context:
space:
mode:
authorThe Android Open Source Project <initial-contribution@android.com>2009-03-03 19:30:32 -0800
committerThe Android Open Source Project <initial-contribution@android.com>2009-03-03 19:30:32 -0800
commit8b23a6c7e1aee255004dd19098d4c2462b61b849 (patch)
tree7a4d682ba51f0ff0364c5ca2509f515bdaf96de9 /cpu-exec.c
parentf721e3ac031f892af46f255a47d7f54a91317b30 (diff)
downloadexternal_qemu-8b23a6c7e1aee255004dd19098d4c2462b61b849.zip
external_qemu-8b23a6c7e1aee255004dd19098d4c2462b61b849.tar.gz
external_qemu-8b23a6c7e1aee255004dd19098d4c2462b61b849.tar.bz2
auto import from //depot/cupcake/@135843
Diffstat (limited to 'cpu-exec.c')
-rw-r--r--cpu-exec.c1487
1 files changed, 1487 insertions, 0 deletions
diff --git a/cpu-exec.c b/cpu-exec.c
new file mode 100644
index 0000000..8637e2a
--- /dev/null
+++ b/cpu-exec.c
@@ -0,0 +1,1487 @@
+/*
+ * i386 emulator main execution loop
+ *
+ * Copyright (c) 2003-2005 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+#include "config.h"
+#define CPU_NO_GLOBAL_REGS
+#include "exec.h"
+#include "disas.h"
+#include "tcg.h"
+
+#if !defined(CONFIG_SOFTMMU)
+#undef EAX
+#undef ECX
+#undef EDX
+#undef EBX
+#undef ESP
+#undef EBP
+#undef ESI
+#undef EDI
+#undef EIP
+#include <signal.h>
+#include <sys/ucontext.h>
+#endif
+
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+// Work around ugly bugs in glibc that mangle global register contents
+#undef env
+#define env cpu_single_env
+#endif
+
+int tb_invalidated_flag;
+
+//#define DEBUG_EXEC
+//#define DEBUG_SIGNAL
+
+void cpu_loop_exit(void)
+{
+ /* NOTE: the register at this point must be saved by hand because
+ longjmp restore them */
+ regs_to_env();
+ longjmp(env->jmp_env, 1);
+}
+
+#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
+#define reg_T2
+#endif
+
+/* exit the current TB from a signal handler. The host registers are
+ restored in a state compatible with the CPU emulator
+ */
+void cpu_resume_from_signal(CPUState *env1, void *puc)
+{
+#if !defined(CONFIG_SOFTMMU)
+ struct ucontext *uc = puc;
+#endif
+
+ env = env1;
+
+ /* XXX: restore cpu registers saved in host registers */
+
+#if !defined(CONFIG_SOFTMMU)
+ if (puc) {
+ /* XXX: use siglongjmp ? */
+ sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
+ }
+#endif
+ longjmp(env->jmp_env, 1);
+}
+
+/* Execute the code without caching the generated code. An interpreter
+ could be used if available. */
+static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
+{
+ unsigned long next_tb;
+ TranslationBlock *tb;
+
+ /* Should never happen.
+ We only end up here when an existing TB is too long. */
+ if (max_cycles > CF_COUNT_MASK)
+ max_cycles = CF_COUNT_MASK;
+
+ tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
+ max_cycles);
+ env->current_tb = tb;
+ /* execute the generated code */
+ next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
+
+ if ((next_tb & 3) == 2) {
+ /* Restore PC. This may happen if async event occurs before
+ the TB starts executing. */
+ CPU_PC_FROM_TB(env, tb);
+ }
+ tb_phys_invalidate(tb, -1);
+ tb_free(tb);
+}
+
+static TranslationBlock *tb_find_slow(target_ulong pc,
+ target_ulong cs_base,
+ uint64_t flags)
+{
+ TranslationBlock *tb, **ptb1;
+ unsigned int h;
+ target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
+
+ tb_invalidated_flag = 0;
+
+ regs_to_env(); /* XXX: do it just before cpu_gen_code() */
+
+ /* find translated block using physical mappings */
+ phys_pc = get_phys_addr_code(env, pc);
+ phys_page1 = phys_pc & TARGET_PAGE_MASK;
+ phys_page2 = -1;
+ h = tb_phys_hash_func(phys_pc);
+ ptb1 = &tb_phys_hash[h];
+ for(;;) {
+ tb = *ptb1;
+ if (!tb)
+ goto not_found;
+ if (tb->pc == pc &&
+ tb->page_addr[0] == phys_page1 &&
+ tb->cs_base == cs_base &&
+ tb->flags == flags) {
+ /* check next page if needed */
+ if (tb->page_addr[1] != -1) {
+ virt_page2 = (pc & TARGET_PAGE_MASK) +
+ TARGET_PAGE_SIZE;
+ phys_page2 = get_phys_addr_code(env, virt_page2);
+ if (tb->page_addr[1] == phys_page2)
+ goto found;
+ } else {
+ goto found;
+ }
+ }
+ ptb1 = &tb->phys_hash_next;
+ }
+ not_found:
+ /* if no translated code available, then translate it now */
+ tb = tb_gen_code(env, pc, cs_base, flags, 0);
+
+ found:
+ /* we add the TB in the virtual pc hash table */
+ env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
+ return tb;
+}
+
+static inline TranslationBlock *tb_find_fast(void)
+{
+ TranslationBlock *tb;
+ target_ulong cs_base, pc;
+ uint64_t flags;
+
+ /* we record a subset of the CPU state. It will
+ always be the same before a given translated block
+ is executed. */
+#if defined(TARGET_I386)
+ flags = env->hflags;
+ flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
+ cs_base = env->segs[R_CS].base;
+ pc = cs_base + env->eip;
+#elif defined(TARGET_ARM)
+ flags = env->thumb | (env->vfp.vec_len << 1)
+ | (env->vfp.vec_stride << 4);
+ if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
+ flags |= (1 << 6);
+ if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
+ flags |= (1 << 7);
+ flags |= (env->condexec_bits << 8);
+ cs_base = 0;
+ pc = env->regs[15];
+#elif defined(TARGET_SPARC)
+#ifdef TARGET_SPARC64
+ // AM . Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
+ flags = ((env->pstate & PS_AM) << 2)
+ | (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
+ | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
+#else
+ // FPU enable . Supervisor
+ flags = (env->psref << 4) | env->psrs;
+#endif
+ cs_base = env->npc;
+ pc = env->pc;
+#elif defined(TARGET_PPC)
+ flags = env->hflags;
+ cs_base = 0;
+ pc = env->nip;
+#elif defined(TARGET_MIPS)
+ flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
+ cs_base = 0;
+ pc = env->active_tc.PC;
+#elif defined(TARGET_M68K)
+ flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */
+ | (env->sr & SR_S) /* Bit 13 */
+ | ((env->macsr >> 4) & 0xf); /* Bits 0-3 */
+ cs_base = 0;
+ pc = env->pc;
+#elif defined(TARGET_SH4)
+ flags = (env->flags & (DELAY_SLOT | DELAY_SLOT_CONDITIONAL
+ | DELAY_SLOT_TRUE | DELAY_SLOT_CLEARME)) /* Bits 0- 3 */
+ | (env->fpscr & (FPSCR_FR | FPSCR_SZ | FPSCR_PR)) /* Bits 19-21 */
+ | (env->sr & (SR_MD | SR_RB)); /* Bits 29-30 */
+ cs_base = 0;
+ pc = env->pc;
+#elif defined(TARGET_ALPHA)
+ flags = env->ps;
+ cs_base = 0;
+ pc = env->pc;
+#elif defined(TARGET_CRIS)
+ flags = env->pregs[PR_CCS] & (P_FLAG | U_FLAG | X_FLAG);
+ flags |= env->dslot;
+ cs_base = 0;
+ pc = env->pc;
+#else
+#error unsupported CPU
+#endif
+ tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
+ if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
+ tb->flags != flags)) {
+ tb = tb_find_slow(pc, cs_base, flags);
+ }
+ return tb;
+}
+
+/* main execution loop */
+
+int cpu_exec(CPUState *env1)
+{
+#define DECLARE_HOST_REGS 1
+#include "hostregs_helper.h"
+ int ret, interrupt_request;
+ TranslationBlock *tb;
+ uint8_t *tc_ptr;
+ unsigned long next_tb;
+
+ if (cpu_halted(env1) == EXCP_HALTED)
+ return EXCP_HALTED;
+
+ cpu_single_env = env1;
+
+ /* first we save global registers */
+#define SAVE_HOST_REGS 1
+#include "hostregs_helper.h"
+ env = env1;
+
+ env_to_regs();
+#if defined(TARGET_I386)
+ /* put eflags in CPU temporary format */
+ CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
+ DF = 1 - (2 * ((env->eflags >> 10) & 1));
+ CC_OP = CC_OP_EFLAGS;
+ env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
+#elif defined(TARGET_SPARC)
+#elif defined(TARGET_M68K)
+ env->cc_op = CC_OP_FLAGS;
+ env->cc_dest = env->sr & 0xf;
+ env->cc_x = (env->sr >> 4) & 1;
+#elif defined(TARGET_ALPHA)
+#elif defined(TARGET_ARM)
+#elif defined(TARGET_PPC)
+#elif defined(TARGET_MIPS)
+#elif defined(TARGET_SH4)
+#elif defined(TARGET_CRIS)
+ /* XXXXX */
+#else
+#error unsupported target CPU
+#endif
+ env->exception_index = -1;
+
+ /* prepare setjmp context for exception handling */
+ for(;;) {
+ if (setjmp(env->jmp_env) == 0) {
+ env->current_tb = NULL;
+ /* if an exception is pending, we execute it here */
+ if (env->exception_index >= 0) {
+ if (env->exception_index >= EXCP_INTERRUPT) {
+ /* exit request from the cpu execution loop */
+ ret = env->exception_index;
+ break;
+ } else if (env->user_mode_only) {
+ /* if user mode only, we simulate a fake exception
+ which will be handled outside the cpu execution
+ loop */
+#if defined(TARGET_I386)
+ do_interrupt_user(env->exception_index,
+ env->exception_is_int,
+ env->error_code,
+ env->exception_next_eip);
+ /* successfully delivered */
+ env->old_exception = -1;
+#endif
+ ret = env->exception_index;
+ break;
+ } else {
+#if defined(TARGET_I386)
+ /* simulate a real cpu exception. On i386, it can
+ trigger new exceptions, but we do not handle
+ double or triple faults yet. */
+ do_interrupt(env->exception_index,
+ env->exception_is_int,
+ env->error_code,
+ env->exception_next_eip, 0);
+ /* successfully delivered */
+ env->old_exception = -1;
+#elif defined(TARGET_PPC)
+ do_interrupt(env);
+#elif defined(TARGET_MIPS)
+ do_interrupt(env);
+#elif defined(TARGET_SPARC)
+ do_interrupt(env);
+#elif defined(TARGET_ARM)
+ do_interrupt(env);
+#elif defined(TARGET_SH4)
+ do_interrupt(env);
+#elif defined(TARGET_ALPHA)
+ do_interrupt(env);
+#elif defined(TARGET_CRIS)
+ do_interrupt(env);
+#elif defined(TARGET_M68K)
+ do_interrupt(0);
+#endif
+ }
+ env->exception_index = -1;
+ }
+#ifdef USE_KQEMU
+ if (kqemu_is_ok(env) && env->interrupt_request == 0) {
+ int ret;
+ env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
+ ret = kqemu_cpu_exec(env);
+ /* put eflags in CPU temporary format */
+ CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
+ DF = 1 - (2 * ((env->eflags >> 10) & 1));
+ CC_OP = CC_OP_EFLAGS;
+ env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
+ if (ret == 1) {
+ /* exception */
+ longjmp(env->jmp_env, 1);
+ } else if (ret == 2) {
+ /* softmmu execution needed */
+ } else {
+ if (env->interrupt_request != 0) {
+ /* hardware interrupt will be executed just after */
+ } else {
+ /* otherwise, we restart */
+ longjmp(env->jmp_env, 1);
+ }
+ }
+ }
+#endif
+
+ next_tb = 0; /* force lookup of first TB */
+ for(;;) {
+ interrupt_request = env->interrupt_request;
+ if (unlikely(interrupt_request) &&
+ likely(!(env->singlestep_enabled & SSTEP_NOIRQ))) {
+ if (interrupt_request & CPU_INTERRUPT_DEBUG) {
+ env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
+ env->exception_index = EXCP_DEBUG;
+ cpu_loop_exit();
+ }
+#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
+ defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
+ if (interrupt_request & CPU_INTERRUPT_HALT) {
+ env->interrupt_request &= ~CPU_INTERRUPT_HALT;
+ env->halted = 1;
+ env->exception_index = EXCP_HLT;
+ cpu_loop_exit();
+ }
+#endif
+#if defined(TARGET_I386)
+ if (env->hflags2 & HF2_GIF_MASK) {
+ if ((interrupt_request & CPU_INTERRUPT_SMI) &&
+ !(env->hflags & HF_SMM_MASK)) {
+ svm_check_intercept(SVM_EXIT_SMI);
+ env->interrupt_request &= ~CPU_INTERRUPT_SMI;
+ do_smm_enter();
+ next_tb = 0;
+ } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
+ !(env->hflags2 & HF2_NMI_MASK)) {
+ env->interrupt_request &= ~CPU_INTERRUPT_NMI;
+ env->hflags2 |= HF2_NMI_MASK;
+ do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
+ next_tb = 0;
+ } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
+ (((env->hflags2 & HF2_VINTR_MASK) &&
+ (env->hflags2 & HF2_HIF_MASK)) ||
+ (!(env->hflags2 & HF2_VINTR_MASK) &&
+ (env->eflags & IF_MASK &&
+ !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
+ int intno;
+ svm_check_intercept(SVM_EXIT_INTR);
+ env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
+ intno = cpu_get_pic_interrupt(env);
+ if (loglevel & CPU_LOG_TB_IN_ASM) {
+ fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
+ }
+ do_interrupt(intno, 0, 0, 0, 1);
+ /* ensure that no TB jump will be modified as
+ the program flow was changed */
+ next_tb = 0;
+#if !defined(CONFIG_USER_ONLY)
+ } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
+ (env->eflags & IF_MASK) &&
+ !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
+ int intno;
+ /* FIXME: this should respect TPR */
+ svm_check_intercept(SVM_EXIT_VINTR);
+ env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
+ intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
+ if (loglevel & CPU_LOG_TB_IN_ASM)
+ fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno);
+ do_interrupt(intno, 0, 0, 0, 1);
+ next_tb = 0;
+#endif
+ }
+ }
+#elif defined(TARGET_PPC)
+#if 0
+ if ((interrupt_request & CPU_INTERRUPT_RESET)) {
+ cpu_ppc_reset(env);
+ }
+#endif
+ if (interrupt_request & CPU_INTERRUPT_HARD) {
+ ppc_hw_interrupt(env);
+ if (env->pending_interrupts == 0)
+ env->interrupt_request &= ~CPU_INTERRUPT_HARD;
+ next_tb = 0;
+ }
+#elif defined(TARGET_MIPS)
+ if ((interrupt_request & CPU_INTERRUPT_HARD) &&
+ (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
+ (env->CP0_Status & (1 << CP0St_IE)) &&
+ !(env->CP0_Status & (1 << CP0St_EXL)) &&
+ !(env->CP0_Status & (1 << CP0St_ERL)) &&
+ !(env->hflags & MIPS_HFLAG_DM)) {
+ /* Raise it */
+ env->exception_index = EXCP_EXT_INTERRUPT;
+ env->error_code = 0;
+ do_interrupt(env);
+ next_tb = 0;
+ }
+#elif defined(TARGET_SPARC)
+ if ((interrupt_request & CPU_INTERRUPT_HARD) &&
+ (env->psret != 0)) {
+ int pil = env->interrupt_index & 15;
+ int type = env->interrupt_index & 0xf0;
+
+ if (((type == TT_EXTINT) &&
+ (pil == 15 || pil > env->psrpil)) ||
+ type != TT_EXTINT) {
+ env->interrupt_request &= ~CPU_INTERRUPT_HARD;
+ env->exception_index = env->interrupt_index;
+ do_interrupt(env);
+ env->interrupt_index = 0;
+#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
+ cpu_check_irqs(env);
+#endif
+ next_tb = 0;
+ }
+ } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
+ //do_interrupt(0, 0, 0, 0, 0);
+ env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
+ }
+#elif defined(TARGET_ARM)
+ if (interrupt_request & CPU_INTERRUPT_FIQ
+ && !(env->uncached_cpsr & CPSR_F)) {
+ env->exception_index = EXCP_FIQ;
+ do_interrupt(env);
+ next_tb = 0;
+ }
+ /* ARMv7-M interrupt return works by loading a magic value
+ into the PC. On real hardware the load causes the
+ return to occur. The qemu implementation performs the
+ jump normally, then does the exception return when the
+ CPU tries to execute code at the magic address.
+ This will cause the magic PC value to be pushed to
+ the stack if an interrupt occured at the wrong time.
+ We avoid this by disabling interrupts when
+ pc contains a magic address. */
+ if (interrupt_request & CPU_INTERRUPT_HARD
+ && ((IS_M(env) && env->regs[15] < 0xfffffff0)
+ || !(env->uncached_cpsr & CPSR_I))) {
+ env->exception_index = EXCP_IRQ;
+ do_interrupt(env);
+ next_tb = 0;
+ }
+#elif defined(TARGET_SH4)
+ if (interrupt_request & CPU_INTERRUPT_HARD) {
+ do_interrupt(env);
+ next_tb = 0;
+ }
+#elif defined(TARGET_ALPHA)
+ if (interrupt_request & CPU_INTERRUPT_HARD) {
+ do_interrupt(env);
+ next_tb = 0;
+ }
+#elif defined(TARGET_CRIS)
+ if (interrupt_request & CPU_INTERRUPT_HARD
+ && (env->pregs[PR_CCS] & I_FLAG)) {
+ env->exception_index = EXCP_IRQ;
+ do_interrupt(env);
+ next_tb = 0;
+ }
+ if (interrupt_request & CPU_INTERRUPT_NMI
+ && (env->pregs[PR_CCS] & M_FLAG)) {
+ env->exception_index = EXCP_NMI;
+ do_interrupt(env);
+ next_tb = 0;
+ }
+#elif defined(TARGET_M68K)
+ if (interrupt_request & CPU_INTERRUPT_HARD
+ && ((env->sr & SR_I) >> SR_I_SHIFT)
+ < env->pending_level) {
+ /* Real hardware gets the interrupt vector via an
+ IACK cycle at this point. Current emulated
+ hardware doesn't rely on this, so we
+ provide/save the vector when the interrupt is
+ first signalled. */
+ env->exception_index = env->pending_vector;
+ do_interrupt(1);
+ next_tb = 0;
+ }
+#endif
+ /* Don't use the cached interupt_request value,
+ do_interrupt may have updated the EXITTB flag. */
+ if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
+ env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
+ /* ensure that no TB jump will be modified as
+ the program flow was changed */
+ next_tb = 0;
+ }
+ if (interrupt_request & CPU_INTERRUPT_EXIT) {
+ env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
+ env->exception_index = EXCP_INTERRUPT;
+ cpu_loop_exit();
+ }
+ }
+#ifdef DEBUG_EXEC
+ if ((loglevel & CPU_LOG_TB_CPU)) {
+ /* restore flags in standard format */
+ regs_to_env();
+#if defined(TARGET_I386)
+ env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
+ cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
+ env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
+#elif defined(TARGET_ARM)
+ cpu_dump_state(env, logfile, fprintf, 0);
+#elif defined(TARGET_SPARC)
+ cpu_dump_state(env, logfile, fprintf, 0);
+#elif defined(TARGET_PPC)
+ cpu_dump_state(env, logfile, fprintf, 0);
+#elif defined(TARGET_M68K)
+ cpu_m68k_flush_flags(env, env->cc_op);
+ env->cc_op = CC_OP_FLAGS;
+ env->sr = (env->sr & 0xffe0)
+ | env->cc_dest | (env->cc_x << 4);
+ cpu_dump_state(env, logfile, fprintf, 0);
+#elif defined(TARGET_MIPS)
+ cpu_dump_state(env, logfile, fprintf, 0);
+#elif defined(TARGET_SH4)
+ cpu_dump_state(env, logfile, fprintf, 0);
+#elif defined(TARGET_ALPHA)
+ cpu_dump_state(env, logfile, fprintf, 0);
+#elif defined(TARGET_CRIS)
+ cpu_dump_state(env, logfile, fprintf, 0);
+#else
+#error unsupported target CPU
+#endif
+ }
+#endif
+ spin_lock(&tb_lock);
+ tb = tb_find_fast();
+ /* Note: we do it here to avoid a gcc bug on Mac OS X when
+ doing it in tb_find_slow */
+ if (tb_invalidated_flag) {
+ /* as some TB could have been invalidated because
+ of memory exceptions while generating the code, we
+ must recompute the hash index here */
+ next_tb = 0;
+ tb_invalidated_flag = 0;
+ }
+#ifdef DEBUG_EXEC
+ if ((loglevel & CPU_LOG_EXEC)) {
+ fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
+ (long)tb->tc_ptr, tb->pc,
+ lookup_symbol(tb->pc));
+ }
+#endif
+ /* see if we can patch the calling TB. When the TB
+ spans two pages, we cannot safely do a direct
+ jump. */
+ {
+ if (next_tb != 0 &&
+#ifdef USE_KQEMU
+ (env->kqemu_enabled != 2) &&
+#endif
+ tb->page_addr[1] == -1) {
+ tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
+ }
+ }
+ spin_unlock(&tb_lock);
+ env->current_tb = tb;
+ while (env->current_tb) {
+ tc_ptr = tb->tc_ptr;
+ /* execute the generated code */
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+#undef env
+ env = cpu_single_env;
+#define env cpu_single_env
+#endif
+ next_tb = tcg_qemu_tb_exec(tc_ptr);
+ env->current_tb = NULL;
+ if ((next_tb & 3) == 2) {
+ /* Instruction counter expired. */
+ int insns_left;
+ tb = (TranslationBlock *)(long)(next_tb & ~3);
+ /* Restore PC. */
+ CPU_PC_FROM_TB(env, tb);
+ insns_left = env->icount_decr.u32;
+ if (env->icount_extra && insns_left >= 0) {
+ /* Refill decrementer and continue execution. */
+ env->icount_extra += insns_left;
+ if (env->icount_extra > 0xffff) {
+ insns_left = 0xffff;
+ } else {
+ insns_left = env->icount_extra;
+ }
+ env->icount_extra -= insns_left;
+ env->icount_decr.u16.low = insns_left;
+ } else {
+ if (insns_left > 0) {
+ /* Execute remaining instructions. */
+ cpu_exec_nocache(insns_left, tb);
+ }
+ env->exception_index = EXCP_INTERRUPT;
+ next_tb = 0;
+ cpu_loop_exit();
+ }
+ }
+ }
+ /* reset soft MMU for next block (it can currently
+ only be set by a memory fault) */
+#if defined(USE_KQEMU)
+#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
+ if (kqemu_is_ok(env) &&
+ (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
+ cpu_loop_exit();
+ }
+#endif
+ } /* for(;;) */
+ } else {
+ env_to_regs();
+ }
+ } /* for(;;) */
+
+
+#if defined(TARGET_I386)
+ /* restore flags in standard format */
+ env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
+#elif defined(TARGET_ARM)
+ /* XXX: Save/restore host fpu exception state?. */
+#elif defined(TARGET_SPARC)
+#elif defined(TARGET_PPC)
+#elif defined(TARGET_M68K)
+ cpu_m68k_flush_flags(env, env->cc_op);
+ env->cc_op = CC_OP_FLAGS;
+ env->sr = (env->sr & 0xffe0)
+ | env->cc_dest | (env->cc_x << 4);
+#elif defined(TARGET_MIPS)
+#elif defined(TARGET_SH4)
+#elif defined(TARGET_ALPHA)
+#elif defined(TARGET_CRIS)
+ /* XXXXX */
+#else
+#error unsupported target CPU
+#endif
+
+ /* restore global registers */
+#include "hostregs_helper.h"
+
+ /* fail safe : never use cpu_single_env outside cpu_exec() */
+ cpu_single_env = NULL;
+ return ret;
+}
+
+/* must only be called from the generated code as an exception can be
+ generated */
+void tb_invalidate_page_range(target_ulong start, target_ulong end)
+{
+ /* XXX: cannot enable it yet because it yields to MMU exception
+ where NIP != read address on PowerPC */
+#if 0
+ target_ulong phys_addr;
+ phys_addr = get_phys_addr_code(env, start);
+ tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
+#endif
+}
+
+#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
+
+void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
+{
+ CPUX86State *saved_env;
+
+ saved_env = env;
+ env = s;
+ if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
+ selector &= 0xffff;
+ cpu_x86_load_seg_cache(env, seg_reg, selector,
+ (selector << 4), 0xffff, 0);
+ } else {
+ helper_load_seg(seg_reg, selector);
+ }
+ env = saved_env;
+}
+
+void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
+{
+ CPUX86State *saved_env;
+
+ saved_env = env;
+ env = s;
+
+ helper_fsave(ptr, data32);
+
+ env = saved_env;
+}
+
+void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
+{
+ CPUX86State *saved_env;
+
+ saved_env = env;
+ env = s;
+
+ helper_frstor(ptr, data32);
+
+ env = saved_env;
+}
+
+#endif /* TARGET_I386 */
+
+#if !defined(CONFIG_SOFTMMU)
+
+#if defined(TARGET_I386)
+
+/* 'pc' is the host PC at which the exception was raised. 'address' is
+ the effective address of the memory exception. 'is_write' is 1 if a
+ write caused the exception and otherwise 0'. 'old_set' is the
+ signal set which should be restored */
+static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
+ int is_write, sigset_t *old_set,
+ void *puc)
+{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
+ return 1;
+ }
+
+ /* see if it is an MMU fault */
+ ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+ if (ret == 1) {
+#if 0
+ printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
+ env->eip, env->cr[2], env->error_code);
+#endif
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ raise_exception_err(env->exception_index, env->error_code);
+ } else {
+ /* activate soft MMU for this block */
+ env->hflags |= HF_SOFTMMU_MASK;
+ cpu_resume_from_signal(env, puc);
+ }
+ /* never comes here */
+ return 1;
+}
+
+#elif defined(TARGET_ARM)
+static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
+ int is_write, sigset_t *old_set,
+ void *puc)
+{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
+ return 1;
+ }
+ /* see if it is an MMU fault */
+ ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ cpu_loop_exit();
+ /* never comes here */
+ return 1;
+}
+#elif defined(TARGET_SPARC)
+static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
+ int is_write, sigset_t *old_set,
+ void *puc)
+{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
+ return 1;
+ }
+ /* see if it is an MMU fault */
+ ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ cpu_loop_exit();
+ /* never comes here */
+ return 1;
+}
+#elif defined (TARGET_PPC)
+static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
+ int is_write, sigset_t *old_set,
+ void *puc)
+{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
+ return 1;
+ }
+
+ /* see if it is an MMU fault */
+ ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+ if (ret == 1) {
+#if 0
+ printf("PF exception: NIP=0x%08x error=0x%x %p\n",
+ env->nip, env->error_code, tb);
+#endif
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ do_raise_exception_err(env->exception_index, env->error_code);
+ } else {
+ /* activate soft MMU for this block */
+ cpu_resume_from_signal(env, puc);
+ }
+ /* never comes here */
+ return 1;
+}
+
+#elif defined(TARGET_M68K)
+static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
+ int is_write, sigset_t *old_set,
+ void *puc)
+{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(address, pc, puc)) {
+ return 1;
+ }
+ /* see if it is an MMU fault */
+ ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ cpu_loop_exit();
+ /* never comes here */
+ return 1;
+}
+
+#elif defined (TARGET_MIPS)
+static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
+ int is_write, sigset_t *old_set,
+ void *puc)
+{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
+ return 1;
+ }
+
+ /* see if it is an MMU fault */
+ ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+ if (ret == 1) {
+#if 0
+ printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
+ env->PC, env->error_code, tb);
+#endif
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ do_raise_exception_err(env->exception_index, env->error_code);
+ } else {
+ /* activate soft MMU for this block */
+ cpu_resume_from_signal(env, puc);
+ }
+ /* never comes here */
+ return 1;
+}
+
+#elif defined (TARGET_SH4)
+static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
+ int is_write, sigset_t *old_set,
+ void *puc)
+{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
+ return 1;
+ }
+
+ /* see if it is an MMU fault */
+ ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+#if 0
+ printf("PF exception: NIP=0x%08x error=0x%x %p\n",
+ env->nip, env->error_code, tb);
+#endif
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ cpu_loop_exit();
+ /* never comes here */
+ return 1;
+}
+
+#elif defined (TARGET_ALPHA)
+static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
+ int is_write, sigset_t *old_set,
+ void *puc)
+{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
+ return 1;
+ }
+
+ /* see if it is an MMU fault */
+ ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+#if 0
+ printf("PF exception: NIP=0x%08x error=0x%x %p\n",
+ env->nip, env->error_code, tb);
+#endif
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ cpu_loop_exit();
+ /* never comes here */
+ return 1;
+}
+#elif defined (TARGET_CRIS)
+static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
+ int is_write, sigset_t *old_set,
+ void *puc)
+{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
+ return 1;
+ }
+
+ /* see if it is an MMU fault */
+ ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ cpu_loop_exit();
+ /* never comes here */
+ return 1;
+}
+
+#else
+#error unsupported target CPU
+#endif
+
+#if defined(__i386__)
+
+#if defined(__APPLE__)
+# include <sys/ucontext.h>
+
+# define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
+# define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
+# define ERROR_sig(context) ((context)->uc_mcontext->es.err)
+#else
+# define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
+# define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
+# define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
+#endif
+
+int cpu_signal_handler(int host_signum, void *pinfo,
+ void *puc)
+{
+ siginfo_t *info = pinfo;
+ struct ucontext *uc = puc;
+ unsigned long pc;
+ int trapno;
+
+#ifndef REG_EIP
+/* for glibc 2.1 */
+#define REG_EIP EIP
+#define REG_ERR ERR
+#define REG_TRAPNO TRAPNO
+#endif
+ pc = EIP_sig(uc);
+ trapno = TRAP_sig(uc);
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ trapno == 0xe ?
+ (ERROR_sig(uc) >> 1) & 1 : 0,
+ &uc->uc_sigmask, puc);
+}
+
+#elif defined(__x86_64__)
+
+int cpu_signal_handler(int host_signum, void *pinfo,
+ void *puc)
+{
+ siginfo_t *info = pinfo;
+ struct ucontext *uc = puc;
+ unsigned long pc;
+
+ pc = uc->uc_mcontext.gregs[REG_RIP];
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
+ (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
+ &uc->uc_sigmask, puc);
+}
+
+#elif defined(__powerpc__)
+
+/***********************************************************************
+ * signal context platform-specific definitions
+ * From Wine
+ */
+#ifdef linux
+/* All Registers access - only for local access */
+# define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
+/* Gpr Registers access */
+# define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
+# define IAR_sig(context) REG_sig(nip, context) /* Program counter */
+# define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
+# define CTR_sig(context) REG_sig(ctr, context) /* Count register */
+# define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
+# define LR_sig(context) REG_sig(link, context) /* Link register */
+# define CR_sig(context) REG_sig(ccr, context) /* Condition register */
+/* Float Registers access */
+# define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
+# define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
+/* Exception Registers access */
+# define DAR_sig(context) REG_sig(dar, context)
+# define DSISR_sig(context) REG_sig(dsisr, context)
+# define TRAP_sig(context) REG_sig(trap, context)
+#endif /* linux */
+
+#ifdef __APPLE__
+# include <sys/ucontext.h>
+typedef struct ucontext SIGCONTEXT;
+/* All Registers access - only for local access */
+# define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
+# define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
+# define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
+# define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
+/* Gpr Registers access */
+# define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
+# define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
+# define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
+# define CTR_sig(context) REG_sig(ctr, context)
+# define XER_sig(context) REG_sig(xer, context) /* Link register */
+# define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
+# define CR_sig(context) REG_sig(cr, context) /* Condition register */
+/* Float Registers access */
+# define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
+# define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
+/* Exception Registers access */
+# define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
+# define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
+# define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
+#endif /* __APPLE__ */
+
+int cpu_signal_handler(int host_signum, void *pinfo,
+ void *puc)
+{
+ siginfo_t *info = pinfo;
+ struct ucontext *uc = puc;
+ unsigned long pc;
+ int is_write;
+
+ pc = IAR_sig(uc);
+ is_write = 0;
+#if 0
+ /* ppc 4xx case */
+ if (DSISR_sig(uc) & 0x00800000)
+ is_write = 1;
+#else
+ if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
+ is_write = 1;
+#endif
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ is_write, &uc->uc_sigmask, puc);
+}
+
+#elif defined(__alpha__)
+
+int cpu_signal_handler(int host_signum, void *pinfo,
+ void *puc)
+{
+ siginfo_t *info = pinfo;
+ struct ucontext *uc = puc;
+ uint32_t *pc = uc->uc_mcontext.sc_pc;
+ uint32_t insn = *pc;
+ int is_write = 0;
+
+ /* XXX: need kernel patch to get write flag faster */
+ switch (insn >> 26) {
+ case 0x0d: // stw
+ case 0x0e: // stb
+ case 0x0f: // stq_u
+ case 0x24: // stf
+ case 0x25: // stg
+ case 0x26: // sts
+ case 0x27: // stt
+ case 0x2c: // stl
+ case 0x2d: // stq
+ case 0x2e: // stl_c
+ case 0x2f: // stq_c
+ is_write = 1;
+ }
+
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ is_write, &uc->uc_sigmask, puc);
+}
+#elif defined(__sparc__)
+
+int cpu_signal_handler(int host_signum, void *pinfo,
+ void *puc)
+{
+ siginfo_t *info = pinfo;
+ int is_write;
+ uint32_t insn;
+#if !defined(__arch64__) || defined(HOST_SOLARIS)
+ uint32_t *regs = (uint32_t *)(info + 1);
+ void *sigmask = (regs + 20);
+ /* XXX: is there a standard glibc define ? */
+ unsigned long pc = regs[1];
+#else
+ struct sigcontext *sc = puc;
+ unsigned long pc = sc->sigc_regs.tpc;
+ void *sigmask = (void *)sc->sigc_mask;
+#endif
+
+ /* XXX: need kernel patch to get write flag faster */
+ is_write = 0;
+ insn = *(uint32_t *)pc;
+ if ((insn >> 30) == 3) {
+ switch((insn >> 19) & 0x3f) {
+ case 0x05: // stb
+ case 0x06: // sth
+ case 0x04: // st
+ case 0x07: // std
+ case 0x24: // stf
+ case 0x27: // stdf
+ case 0x25: // stfsr
+ is_write = 1;
+ break;
+ }
+ }
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ is_write, sigmask, NULL);
+}
+
+#elif defined(__arm__)
+
+int cpu_signal_handler(int host_signum, void *pinfo,
+ void *puc)
+{
+ siginfo_t *info = pinfo;
+ struct ucontext *uc = puc;
+ unsigned long pc;
+ int is_write;
+
+#if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
+ pc = uc->uc_mcontext.gregs[R15];
+#else
+ pc = uc->uc_mcontext.arm_pc;
+#endif
+ /* XXX: compute is_write */
+ is_write = 0;
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ is_write,
+ &uc->uc_sigmask, puc);
+}
+
+#elif defined(__mc68000)
+
+int cpu_signal_handler(int host_signum, void *pinfo,
+ void *puc)
+{
+ siginfo_t *info = pinfo;
+ struct ucontext *uc = puc;
+ unsigned long pc;
+ int is_write;
+
+ pc = uc->uc_mcontext.gregs[16];
+ /* XXX: compute is_write */
+ is_write = 0;
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ is_write,
+ &uc->uc_sigmask, puc);
+}
+
+#elif defined(__ia64)
+
+#ifndef __ISR_VALID
+ /* This ought to be in <bits/siginfo.h>... */
+# define __ISR_VALID 1
+#endif
+
+int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
+{
+ siginfo_t *info = pinfo;
+ struct ucontext *uc = puc;
+ unsigned long ip;
+ int is_write = 0;
+
+ ip = uc->uc_mcontext.sc_ip;
+ switch (host_signum) {
+ case SIGILL:
+ case SIGFPE:
+ case SIGSEGV:
+ case SIGBUS:
+ case SIGTRAP:
+ if (info->si_code && (info->si_segvflags & __ISR_VALID))
+ /* ISR.W (write-access) is bit 33: */
+ is_write = (info->si_isr >> 33) & 1;
+ break;
+
+ default:
+ break;
+ }
+ return handle_cpu_signal(ip, (unsigned long)info->si_addr,
+ is_write,
+ &uc->uc_sigmask, puc);
+}
+
+#elif defined(__s390__)
+
+int cpu_signal_handler(int host_signum, void *pinfo,
+ void *puc)
+{
+ siginfo_t *info = pinfo;
+ struct ucontext *uc = puc;
+ unsigned long pc;
+ int is_write;
+
+ pc = uc->uc_mcontext.psw.addr;
+ /* XXX: compute is_write */
+ is_write = 0;
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ is_write, &uc->uc_sigmask, puc);
+}
+
+#elif defined(__mips__)
+
+int cpu_signal_handler(int host_signum, void *pinfo,
+ void *puc)
+{
+ siginfo_t *info = pinfo;
+ struct ucontext *uc = puc;
+ greg_t pc = uc->uc_mcontext.pc;
+ int is_write;
+
+ /* XXX: compute is_write */
+ is_write = 0;
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ is_write, &uc->uc_sigmask, puc);
+}
+
+#elif defined(__hppa__)
+
+int cpu_signal_handler(int host_signum, void *pinfo,
+ void *puc)
+{
+ struct siginfo *info = pinfo;
+ struct ucontext *uc = puc;
+ unsigned long pc;
+ int is_write;
+
+ pc = uc->uc_mcontext.sc_iaoq[0];
+ /* FIXME: compute is_write */
+ is_write = 0;
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ is_write,
+ &uc->uc_sigmask, puc);
+}
+
+#else
+
+#error host CPU specific signal handler needed
+
+#endif
+
+#endif /* !defined(CONFIG_SOFTMMU) */