aboutsummaryrefslogtreecommitdiffstats
path: root/exec.c
diff options
context:
space:
mode:
authorThe Android Open Source Project <initial-contribution@android.com>2009-03-03 19:30:32 -0800
committerThe Android Open Source Project <initial-contribution@android.com>2009-03-03 19:30:32 -0800
commit8b23a6c7e1aee255004dd19098d4c2462b61b849 (patch)
tree7a4d682ba51f0ff0364c5ca2509f515bdaf96de9 /exec.c
parentf721e3ac031f892af46f255a47d7f54a91317b30 (diff)
downloadexternal_qemu-8b23a6c7e1aee255004dd19098d4c2462b61b849.zip
external_qemu-8b23a6c7e1aee255004dd19098d4c2462b61b849.tar.gz
external_qemu-8b23a6c7e1aee255004dd19098d4c2462b61b849.tar.bz2
auto import from //depot/cupcake/@135843
Diffstat (limited to 'exec.c')
-rw-r--r--exec.c3201
1 files changed, 3201 insertions, 0 deletions
diff --git a/exec.c b/exec.c
new file mode 100644
index 0000000..547801b
--- /dev/null
+++ b/exec.c
@@ -0,0 +1,3201 @@
+/*
+ * virtual page mapping and translated block handling
+ *
+ * Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+#include "config.h"
+#ifdef _WIN32
+#define WIN32_LEAN_AND_MEAN
+#include <windows.h>
+#else
+#include <sys/types.h>
+#include <sys/mman.h>
+#endif
+#include <stdlib.h>
+#include <stdio.h>
+#include <stdarg.h>
+#include <string.h>
+#include <errno.h>
+#include <unistd.h>
+#include <inttypes.h>
+
+#include "cpu.h"
+#include "exec-all.h"
+#include "qemu-common.h"
+#include "tcg.h"
+#include "hw/hw.h"
+#if defined(CONFIG_USER_ONLY)
+#include <qemu.h>
+#endif
+
+//#define DEBUG_TB_INVALIDATE
+//#define DEBUG_FLUSH
+//#define DEBUG_TLB
+//#define DEBUG_UNASSIGNED
+
+/* make various TB consistency checks */
+//#define DEBUG_TB_CHECK
+//#define DEBUG_TLB_CHECK
+
+//#define DEBUG_IOPORT
+//#define DEBUG_SUBPAGE
+
+#if !defined(CONFIG_USER_ONLY)
+/* TB consistency checks only implemented for usermode emulation. */
+#undef DEBUG_TB_CHECK
+#endif
+
+#define SMC_BITMAP_USE_THRESHOLD 10
+
+#define MMAP_AREA_START 0x00000000
+#define MMAP_AREA_END 0xa8000000
+
+#if defined(TARGET_SPARC64)
+#define TARGET_PHYS_ADDR_SPACE_BITS 41
+#elif defined(TARGET_SPARC)
+#define TARGET_PHYS_ADDR_SPACE_BITS 36
+#elif defined(TARGET_ALPHA)
+#define TARGET_PHYS_ADDR_SPACE_BITS 42
+#define TARGET_VIRT_ADDR_SPACE_BITS 42
+#elif defined(TARGET_PPC64)
+#define TARGET_PHYS_ADDR_SPACE_BITS 42
+#elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
+#define TARGET_PHYS_ADDR_SPACE_BITS 42
+#elif defined(TARGET_I386) && !defined(USE_KQEMU)
+#define TARGET_PHYS_ADDR_SPACE_BITS 36
+#else
+/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
+#define TARGET_PHYS_ADDR_SPACE_BITS 32
+#endif
+
+TranslationBlock *tbs;
+int code_gen_max_blocks;
+TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
+int nb_tbs;
+/* any access to the tbs or the page table must use this lock */
+spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
+
+#if defined(__arm__) || defined(__sparc_v9__)
+/* The prologue must be reachable with a direct jump. ARM and Sparc64
+ have limited branch ranges (possibly also PPC) so place it in a
+ section close to code segment. */
+#define code_gen_section \
+ __attribute__((__section__(".gen_code"))) \
+ __attribute__((aligned (32)))
+#else
+#define code_gen_section \
+ __attribute__((aligned (32)))
+#endif
+
+uint8_t code_gen_prologue[1024] code_gen_section;
+uint8_t *code_gen_buffer;
+unsigned long code_gen_buffer_size;
+/* threshold to flush the translated code buffer */
+unsigned long code_gen_buffer_max_size;
+uint8_t *code_gen_ptr;
+
+#if !defined(CONFIG_USER_ONLY)
+ram_addr_t phys_ram_size;
+int phys_ram_fd;
+uint8_t *phys_ram_base;
+uint8_t *phys_ram_dirty;
+static ram_addr_t phys_ram_alloc_offset = 0;
+#endif
+
+CPUState *first_cpu;
+/* current CPU in the current thread. It is only valid inside
+ cpu_exec() */
+CPUState *cpu_single_env;
+/* 0 = Do not count executed instructions.
+ 1 = Precise instruction counting.
+ 2 = Adaptive rate instruction counting. */
+int use_icount = 0;
+/* Current instruction counter. While executing translated code this may
+ include some instructions that have not yet been executed. */
+int64_t qemu_icount;
+
+typedef struct PageDesc {
+ /* list of TBs intersecting this ram page */
+ TranslationBlock *first_tb;
+ /* in order to optimize self modifying code, we count the number
+ of lookups we do to a given page to use a bitmap */
+ unsigned int code_write_count;
+ uint8_t *code_bitmap;
+#if defined(CONFIG_USER_ONLY)
+ unsigned long flags;
+#endif
+} PageDesc;
+
+typedef struct PhysPageDesc {
+ /* offset in host memory of the page + io_index in the low bits */
+ ram_addr_t phys_offset;
+} PhysPageDesc;
+
+#define L2_BITS 10
+#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
+/* XXX: this is a temporary hack for alpha target.
+ * In the future, this is to be replaced by a multi-level table
+ * to actually be able to handle the complete 64 bits address space.
+ */
+#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
+#else
+#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
+#endif
+
+#define L1_SIZE (1 << L1_BITS)
+#define L2_SIZE (1 << L2_BITS)
+
+unsigned long qemu_real_host_page_size;
+unsigned long qemu_host_page_bits;
+unsigned long qemu_host_page_size;
+unsigned long qemu_host_page_mask;
+
+/* XXX: for system emulation, it could just be an array */
+static PageDesc *l1_map[L1_SIZE];
+PhysPageDesc **l1_phys_map;
+
+#if !defined(CONFIG_USER_ONLY)
+static void io_mem_init(void);
+
+/* io memory support */
+CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
+CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
+void *io_mem_opaque[IO_MEM_NB_ENTRIES];
+static int io_mem_nb;
+static int io_mem_watch;
+#endif
+
+/* log support */
+const char *logfilename = "/tmp/qemu.log";
+FILE *logfile;
+int loglevel;
+static int log_append = 0;
+
+/* statistics */
+static int tlb_flush_count;
+static int tb_flush_count;
+static int tb_phys_invalidate_count;
+
+#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
+typedef struct subpage_t {
+ target_phys_addr_t base;
+ CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
+ CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
+ void *opaque[TARGET_PAGE_SIZE][2][4];
+} subpage_t;
+
+#ifdef _WIN32
+static void map_exec(void *addr, long size)
+{
+ DWORD old_protect;
+ VirtualProtect(addr, size,
+ PAGE_EXECUTE_READWRITE, &old_protect);
+
+}
+#else
+static void map_exec(void *addr, long size)
+{
+ unsigned long start, end, page_size;
+
+ page_size = getpagesize();
+ start = (unsigned long)addr;
+ start &= ~(page_size - 1);
+
+ end = (unsigned long)addr + size;
+ end += page_size - 1;
+ end &= ~(page_size - 1);
+
+ mprotect((void *)start, end - start,
+ PROT_READ | PROT_WRITE | PROT_EXEC);
+}
+#endif
+
+static void page_init(void)
+{
+ /* NOTE: we can always suppose that qemu_host_page_size >=
+ TARGET_PAGE_SIZE */
+#ifdef _WIN32
+ {
+ SYSTEM_INFO system_info;
+ DWORD old_protect;
+
+ GetSystemInfo(&system_info);
+ qemu_real_host_page_size = system_info.dwPageSize;
+ }
+#else
+ qemu_real_host_page_size = getpagesize();
+#endif
+ if (qemu_host_page_size == 0)
+ qemu_host_page_size = qemu_real_host_page_size;
+ if (qemu_host_page_size < TARGET_PAGE_SIZE)
+ qemu_host_page_size = TARGET_PAGE_SIZE;
+ qemu_host_page_bits = 0;
+ while ((1 << qemu_host_page_bits) < qemu_host_page_size)
+ qemu_host_page_bits++;
+ qemu_host_page_mask = ~(qemu_host_page_size - 1);
+ l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
+ memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
+
+#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
+ {
+ long long startaddr, endaddr;
+ FILE *f;
+ int n;
+
+ mmap_lock();
+ last_brk = (unsigned long)sbrk(0);
+ f = fopen("/proc/self/maps", "r");
+ if (f) {
+ do {
+ n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
+ if (n == 2) {
+ startaddr = MIN(startaddr,
+ (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
+ endaddr = MIN(endaddr,
+ (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
+ page_set_flags(startaddr & TARGET_PAGE_MASK,
+ TARGET_PAGE_ALIGN(endaddr),
+ PAGE_RESERVED);
+ }
+ } while (!feof(f));
+ fclose(f);
+ }
+ mmap_unlock();
+ }
+#endif
+}
+
+static inline PageDesc **page_l1_map(target_ulong index)
+{
+#if TARGET_LONG_BITS > 32
+ /* Host memory outside guest VM. For 32-bit targets we have already
+ excluded high addresses. */
+ if (index > ((target_ulong)L2_SIZE * L1_SIZE))
+ return NULL;
+#endif
+ return &l1_map[index >> L2_BITS];
+}
+
+static inline PageDesc *page_find_alloc(target_ulong index)
+{
+ PageDesc **lp, *p;
+ lp = page_l1_map(index);
+ if (!lp)
+ return NULL;
+
+ p = *lp;
+ if (!p) {
+ /* allocate if not found */
+#if defined(CONFIG_USER_ONLY)
+ unsigned long addr;
+ size_t len = sizeof(PageDesc) * L2_SIZE;
+ /* Don't use qemu_malloc because it may recurse. */
+ p = mmap(0, len, PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+ *lp = p;
+ addr = h2g(p);
+ if (addr == (target_ulong)addr) {
+ page_set_flags(addr & TARGET_PAGE_MASK,
+ TARGET_PAGE_ALIGN(addr + len),
+ PAGE_RESERVED);
+ }
+#else
+ p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
+ *lp = p;
+#endif
+ }
+ return p + (index & (L2_SIZE - 1));
+}
+
+static inline PageDesc *page_find(target_ulong index)
+{
+ PageDesc **lp, *p;
+ lp = page_l1_map(index);
+ if (!lp)
+ return NULL;
+
+ p = *lp;
+ if (!p)
+ return 0;
+ return p + (index & (L2_SIZE - 1));
+}
+
+static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
+{
+ void **lp, **p;
+ PhysPageDesc *pd;
+
+ p = (void **)l1_phys_map;
+#if TARGET_PHYS_ADDR_SPACE_BITS > 32
+
+#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
+#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
+#endif
+ lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
+ p = *lp;
+ if (!p) {
+ /* allocate if not found */
+ if (!alloc)
+ return NULL;
+ p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
+ memset(p, 0, sizeof(void *) * L1_SIZE);
+ *lp = p;
+ }
+#endif
+ lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
+ pd = *lp;
+ if (!pd) {
+ int i;
+ /* allocate if not found */
+ if (!alloc)
+ return NULL;
+ pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
+ *lp = pd;
+ for (i = 0; i < L2_SIZE; i++)
+ pd[i].phys_offset = IO_MEM_UNASSIGNED;
+ }
+ return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
+}
+
+static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
+{
+ return phys_page_find_alloc(index, 0);
+}
+
+#if !defined(CONFIG_USER_ONLY)
+static void tlb_protect_code(ram_addr_t ram_addr);
+static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
+ target_ulong vaddr);
+#define mmap_lock() do { } while(0)
+#define mmap_unlock() do { } while(0)
+#endif
+
+#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
+
+#if defined(CONFIG_USER_ONLY)
+/* Currently it is not recommanded to allocate big chunks of data in
+ user mode. It will change when a dedicated libc will be used */
+#define USE_STATIC_CODE_GEN_BUFFER
+#endif
+
+#ifdef USE_STATIC_CODE_GEN_BUFFER
+static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
+#endif
+
+static void code_gen_alloc(unsigned long tb_size)
+{
+#ifdef USE_STATIC_CODE_GEN_BUFFER
+ code_gen_buffer = static_code_gen_buffer;
+ code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
+ map_exec(code_gen_buffer, code_gen_buffer_size);
+#else
+ code_gen_buffer_size = tb_size;
+ if (code_gen_buffer_size == 0) {
+#if defined(CONFIG_USER_ONLY)
+ /* in user mode, phys_ram_size is not meaningful */
+ code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
+#else
+ /* XXX: needs ajustments */
+ code_gen_buffer_size = (int)(phys_ram_size / 4);
+#endif
+ }
+ if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
+ code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
+ /* The code gen buffer location may have constraints depending on
+ the host cpu and OS */
+#if defined(__linux__)
+ {
+ int flags;
+ void *start = NULL;
+
+ flags = MAP_PRIVATE | MAP_ANONYMOUS;
+#if defined(__x86_64__)
+ flags |= MAP_32BIT;
+ /* Cannot map more than that */
+ if (code_gen_buffer_size > (800 * 1024 * 1024))
+ code_gen_buffer_size = (800 * 1024 * 1024);
+#elif defined(__sparc_v9__)
+ // Map the buffer below 2G, so we can use direct calls and branches
+ flags |= MAP_FIXED;
+ start = (void *) 0x60000000UL;
+ if (code_gen_buffer_size > (512 * 1024 * 1024))
+ code_gen_buffer_size = (512 * 1024 * 1024);
+#endif
+ code_gen_buffer = mmap(start, code_gen_buffer_size,
+ PROT_WRITE | PROT_READ | PROT_EXEC,
+ flags, -1, 0);
+ if (code_gen_buffer == MAP_FAILED) {
+ fprintf(stderr, "Could not allocate dynamic translator buffer\n");
+ exit(1);
+ }
+ }
+#else
+ code_gen_buffer = qemu_malloc(code_gen_buffer_size);
+ if (!code_gen_buffer) {
+ fprintf(stderr, "Could not allocate dynamic translator buffer\n");
+ exit(1);
+ }
+ map_exec(code_gen_buffer, code_gen_buffer_size);
+#endif
+#endif /* !USE_STATIC_CODE_GEN_BUFFER */
+ map_exec(code_gen_prologue, sizeof(code_gen_prologue));
+ code_gen_buffer_max_size = code_gen_buffer_size -
+ code_gen_max_block_size();
+ code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
+ tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
+}
+
+/* Must be called before using the QEMU cpus. 'tb_size' is the size
+ (in bytes) allocated to the translation buffer. Zero means default
+ size. */
+void cpu_exec_init_all(unsigned long tb_size)
+{
+ cpu_gen_init();
+ code_gen_alloc(tb_size);
+ code_gen_ptr = code_gen_buffer;
+ page_init();
+#if !defined(CONFIG_USER_ONLY)
+ io_mem_init();
+#endif
+}
+
+#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
+
+#define CPU_COMMON_SAVE_VERSION 1
+
+static void cpu_common_save(QEMUFile *f, void *opaque)
+{
+ CPUState *env = opaque;
+
+ qemu_put_be32s(f, &env->halted);
+ qemu_put_be32s(f, &env->interrupt_request);
+}
+
+static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
+{
+ CPUState *env = opaque;
+
+ if (version_id != CPU_COMMON_SAVE_VERSION)
+ return -EINVAL;
+
+ qemu_get_be32s(f, &env->halted);
+ qemu_get_be32s(f, &env->interrupt_request);
+ tlb_flush(env, 1);
+
+ return 0;
+}
+#endif
+
+void cpu_exec_init(CPUState *env)
+{
+ CPUState **penv;
+ int cpu_index;
+
+ env->next_cpu = NULL;
+ penv = &first_cpu;
+ cpu_index = 0;
+ while (*penv != NULL) {
+ penv = (CPUState **)&(*penv)->next_cpu;
+ cpu_index++;
+ }
+ env->cpu_index = cpu_index;
+ env->nb_watchpoints = 0;
+ *penv = env;
+#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
+ register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
+ cpu_common_save, cpu_common_load, env);
+ register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
+ cpu_save, cpu_load, env);
+#endif
+}
+
+static inline void invalidate_page_bitmap(PageDesc *p)
+{
+ if (p->code_bitmap) {
+ qemu_free(p->code_bitmap);
+ p->code_bitmap = NULL;
+ }
+ p->code_write_count = 0;
+}
+
+/* set to NULL all the 'first_tb' fields in all PageDescs */
+static void page_flush_tb(void)
+{
+ int i, j;
+ PageDesc *p;
+
+ for(i = 0; i < L1_SIZE; i++) {
+ p = l1_map[i];
+ if (p) {
+ for(j = 0; j < L2_SIZE; j++) {
+ p->first_tb = NULL;
+ invalidate_page_bitmap(p);
+ p++;
+ }
+ }
+ }
+}
+
+/* flush all the translation blocks */
+/* XXX: tb_flush is currently not thread safe */
+void tb_flush(CPUState *env1)
+{
+ CPUState *env;
+#if defined(DEBUG_FLUSH)
+ printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
+ (unsigned long)(code_gen_ptr - code_gen_buffer),
+ nb_tbs, nb_tbs > 0 ?
+ ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
+#endif
+ if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
+ cpu_abort(env1, "Internal error: code buffer overflow\n");
+
+ nb_tbs = 0;
+
+ for(env = first_cpu; env != NULL; env = env->next_cpu) {
+ memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
+ }
+
+ memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
+ page_flush_tb();
+
+ code_gen_ptr = code_gen_buffer;
+ /* XXX: flush processor icache at this point if cache flush is
+ expensive */
+ tb_flush_count++;
+}
+
+#ifdef DEBUG_TB_CHECK
+
+static void tb_invalidate_check(target_ulong address)
+{
+ TranslationBlock *tb;
+ int i;
+ address &= TARGET_PAGE_MASK;
+ for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
+ for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
+ if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
+ address >= tb->pc + tb->size)) {
+ printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
+ address, (long)tb->pc, tb->size);
+ }
+ }
+ }
+}
+
+/* verify that all the pages have correct rights for code */
+static void tb_page_check(void)
+{
+ TranslationBlock *tb;
+ int i, flags1, flags2;
+
+ for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
+ for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
+ flags1 = page_get_flags(tb->pc);
+ flags2 = page_get_flags(tb->pc + tb->size - 1);
+ if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
+ printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
+ (long)tb->pc, tb->size, flags1, flags2);
+ }
+ }
+ }
+}
+
+void tb_jmp_check(TranslationBlock *tb)
+{
+ TranslationBlock *tb1;
+ unsigned int n1;
+
+ /* suppress any remaining jumps to this TB */
+ tb1 = tb->jmp_first;
+ for(;;) {
+ n1 = (long)tb1 & 3;
+ tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ if (n1 == 2)
+ break;
+ tb1 = tb1->jmp_next[n1];
+ }
+ /* check end of list */
+ if (tb1 != tb) {
+ printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
+ }
+}
+
+#endif
+
+/* invalidate one TB */
+static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
+ int next_offset)
+{
+ TranslationBlock *tb1;
+ for(;;) {
+ tb1 = *ptb;
+ if (tb1 == tb) {
+ *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
+ break;
+ }
+ ptb = (TranslationBlock **)((char *)tb1 + next_offset);
+ }
+}
+
+static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
+{
+ TranslationBlock *tb1;
+ unsigned int n1;
+
+ for(;;) {
+ tb1 = *ptb;
+ n1 = (long)tb1 & 3;
+ tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ if (tb1 == tb) {
+ *ptb = tb1->page_next[n1];
+ break;
+ }
+ ptb = &tb1->page_next[n1];
+ }
+}
+
+static inline void tb_jmp_remove(TranslationBlock *tb, int n)
+{
+ TranslationBlock *tb1, **ptb;
+ unsigned int n1;
+
+ ptb = &tb->jmp_next[n];
+ tb1 = *ptb;
+ if (tb1) {
+ /* find tb(n) in circular list */
+ for(;;) {
+ tb1 = *ptb;
+ n1 = (long)tb1 & 3;
+ tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ if (n1 == n && tb1 == tb)
+ break;
+ if (n1 == 2) {
+ ptb = &tb1->jmp_first;
+ } else {
+ ptb = &tb1->jmp_next[n1];
+ }
+ }
+ /* now we can suppress tb(n) from the list */
+ *ptb = tb->jmp_next[n];
+
+ tb->jmp_next[n] = NULL;
+ }
+}
+
+/* reset the jump entry 'n' of a TB so that it is not chained to
+ another TB */
+static inline void tb_reset_jump(TranslationBlock *tb, int n)
+{
+ tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
+}
+
+void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
+{
+ CPUState *env;
+ PageDesc *p;
+ unsigned int h, n1;
+ target_phys_addr_t phys_pc;
+ TranslationBlock *tb1, *tb2;
+
+ /* remove the TB from the hash list */
+ phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
+ h = tb_phys_hash_func(phys_pc);
+ tb_remove(&tb_phys_hash[h], tb,
+ offsetof(TranslationBlock, phys_hash_next));
+
+ /* remove the TB from the page list */
+ if (tb->page_addr[0] != page_addr) {
+ p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
+ tb_page_remove(&p->first_tb, tb);
+ invalidate_page_bitmap(p);
+ }
+ if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
+ p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
+ tb_page_remove(&p->first_tb, tb);
+ invalidate_page_bitmap(p);
+ }
+
+ tb_invalidated_flag = 1;
+
+ /* remove the TB from the hash list */
+ h = tb_jmp_cache_hash_func(tb->pc);
+ for(env = first_cpu; env != NULL; env = env->next_cpu) {
+ if (env->tb_jmp_cache[h] == tb)
+ env->tb_jmp_cache[h] = NULL;
+ }
+
+ /* suppress this TB from the two jump lists */
+ tb_jmp_remove(tb, 0);
+ tb_jmp_remove(tb, 1);
+
+ /* suppress any remaining jumps to this TB */
+ tb1 = tb->jmp_first;
+ for(;;) {
+ n1 = (long)tb1 & 3;
+ if (n1 == 2)
+ break;
+ tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ tb2 = tb1->jmp_next[n1];
+ tb_reset_jump(tb1, n1);
+ tb1->jmp_next[n1] = NULL;
+ tb1 = tb2;
+ }
+ tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
+
+ tb_phys_invalidate_count++;
+}
+
+static inline void set_bits(uint8_t *tab, int start, int len)
+{
+ int end, mask, end1;
+
+ end = start + len;
+ tab += start >> 3;
+ mask = 0xff << (start & 7);
+ if ((start & ~7) == (end & ~7)) {
+ if (start < end) {
+ mask &= ~(0xff << (end & 7));
+ *tab |= mask;
+ }
+ } else {
+ *tab++ |= mask;
+ start = (start + 8) & ~7;
+ end1 = end & ~7;
+ while (start < end1) {
+ *tab++ = 0xff;
+ start += 8;
+ }
+ if (start < end) {
+ mask = ~(0xff << (end & 7));
+ *tab |= mask;
+ }
+ }
+}
+
+static void build_page_bitmap(PageDesc *p)
+{
+ int n, tb_start, tb_end;
+ TranslationBlock *tb;
+
+ p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
+ if (!p->code_bitmap)
+ return;
+
+ tb = p->first_tb;
+ while (tb != NULL) {
+ n = (long)tb & 3;
+ tb = (TranslationBlock *)((long)tb & ~3);
+ /* NOTE: this is subtle as a TB may span two physical pages */
+ if (n == 0) {
+ /* NOTE: tb_end may be after the end of the page, but
+ it is not a problem */
+ tb_start = tb->pc & ~TARGET_PAGE_MASK;
+ tb_end = tb_start + tb->size;
+ if (tb_end > TARGET_PAGE_SIZE)
+ tb_end = TARGET_PAGE_SIZE;
+ } else {
+ tb_start = 0;
+ tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
+ }
+ set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
+ tb = tb->page_next[n];
+ }
+}
+
+TranslationBlock *tb_gen_code(CPUState *env,
+ target_ulong pc, target_ulong cs_base,
+ int flags, int cflags)
+{
+ TranslationBlock *tb;
+ uint8_t *tc_ptr;
+ target_ulong phys_pc, phys_page2, virt_page2;
+ int code_gen_size;
+
+ phys_pc = get_phys_addr_code(env, pc);
+ tb = tb_alloc(pc);
+ if (!tb) {
+ /* flush must be done */
+ tb_flush(env);
+ /* cannot fail at this point */
+ tb = tb_alloc(pc);
+ /* Don't forget to invalidate previous TB info. */
+ tb_invalidated_flag = 1;
+ }
+ tc_ptr = code_gen_ptr;
+ tb->tc_ptr = tc_ptr;
+ tb->cs_base = cs_base;
+ tb->flags = flags;
+ tb->cflags = cflags;
+#ifdef CONFIG_TRACE
+ tb->bb_rec = NULL;
+ tb->prev_time = 0;
+#endif
+ cpu_gen_code(env, tb, &code_gen_size);
+ code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
+
+ /* check next page if needed */
+ virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
+ phys_page2 = -1;
+ if ((pc & TARGET_PAGE_MASK) != virt_page2) {
+ phys_page2 = get_phys_addr_code(env, virt_page2);
+ }
+ tb_link_phys(tb, phys_pc, phys_page2);
+ return tb;
+}
+
+/* invalidate all TBs which intersect with the target physical page
+ starting in range [start;end[. NOTE: start and end must refer to
+ the same physical page. 'is_cpu_write_access' should be true if called
+ from a real cpu write access: the virtual CPU will exit the current
+ TB if code is modified inside this TB. */
+void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
+ int is_cpu_write_access)
+{
+ int n, current_tb_modified, current_tb_not_found, current_flags;
+ CPUState *env = cpu_single_env;
+ PageDesc *p;
+ TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
+ target_ulong tb_start, tb_end;
+ target_ulong current_pc, current_cs_base;
+
+ p = page_find(start >> TARGET_PAGE_BITS);
+ if (!p)
+ return;
+ if (!p->code_bitmap &&
+ ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
+ is_cpu_write_access) {
+ /* build code bitmap */
+ build_page_bitmap(p);
+ }
+
+ /* we remove all the TBs in the range [start, end[ */
+ /* XXX: see if in some cases it could be faster to invalidate all the code */
+ current_tb_not_found = is_cpu_write_access;
+ current_tb_modified = 0;
+ current_tb = NULL; /* avoid warning */
+ current_pc = 0; /* avoid warning */
+ current_cs_base = 0; /* avoid warning */
+ current_flags = 0; /* avoid warning */
+ tb = p->first_tb;
+ while (tb != NULL) {
+ n = (long)tb & 3;
+ tb = (TranslationBlock *)((long)tb & ~3);
+ tb_next = tb->page_next[n];
+ /* NOTE: this is subtle as a TB may span two physical pages */
+ if (n == 0) {
+ /* NOTE: tb_end may be after the end of the page, but
+ it is not a problem */
+ tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
+ tb_end = tb_start + tb->size;
+ } else {
+ tb_start = tb->page_addr[1];
+ tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
+ }
+ if (!(tb_end <= start || tb_start >= end)) {
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb_not_found) {
+ current_tb_not_found = 0;
+ current_tb = NULL;
+ if (env->mem_io_pc) {
+ /* now we have a real cpu fault */
+ current_tb = tb_find_pc(env->mem_io_pc);
+ }
+ }
+ if (current_tb == tb &&
+ (current_tb->cflags & CF_COUNT_MASK) != 1) {
+ /* If we are modifying the current TB, we must stop
+ its execution. We could be more precise by checking
+ that the modification is after the current PC, but it
+ would require a specialized function to partially
+ restore the CPU state */
+
+ current_tb_modified = 1;
+ cpu_restore_state(current_tb, env,
+ env->mem_io_pc, NULL);
+#if defined(TARGET_I386)
+ current_flags = env->hflags;
+ current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
+ current_cs_base = (target_ulong)env->segs[R_CS].base;
+ current_pc = current_cs_base + env->eip;
+#else
+#error unsupported CPU
+#endif
+ }
+#endif /* TARGET_HAS_PRECISE_SMC */
+ /* we need to do that to handle the case where a signal
+ occurs while doing tb_phys_invalidate() */
+ saved_tb = NULL;
+ if (env) {
+ saved_tb = env->current_tb;
+ env->current_tb = NULL;
+ }
+ tb_phys_invalidate(tb, -1);
+ if (env) {
+ env->current_tb = saved_tb;
+ if (env->interrupt_request && env->current_tb)
+ cpu_interrupt(env, env->interrupt_request);
+ }
+ }
+ tb = tb_next;
+ }
+#if !defined(CONFIG_USER_ONLY)
+ /* if no code remaining, no need to continue to use slow writes */
+ if (!p->first_tb) {
+ invalidate_page_bitmap(p);
+ if (is_cpu_write_access) {
+ tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
+ }
+ }
+#endif
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb_modified) {
+ /* we generate a block containing just the instruction
+ modifying the memory. It will ensure that it cannot modify
+ itself */
+ env->current_tb = NULL;
+ tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
+ cpu_resume_from_signal(env, NULL);
+ }
+#endif
+}
+
+/* len must be <= 8 and start must be a multiple of len */
+static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
+{
+ PageDesc *p;
+ int offset, b;
+#if 0
+ if (1) {
+ if (loglevel) {
+ fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
+ cpu_single_env->mem_io_vaddr, len,
+ cpu_single_env->eip,
+ cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
+ }
+ }
+#endif
+ p = page_find(start >> TARGET_PAGE_BITS);
+ if (!p)
+ return;
+ if (p->code_bitmap) {
+ offset = start & ~TARGET_PAGE_MASK;
+ b = p->code_bitmap[offset >> 3] >> (offset & 7);
+ if (b & ((1 << len) - 1))
+ goto do_invalidate;
+ } else {
+ do_invalidate:
+ tb_invalidate_phys_page_range(start, start + len, 1);
+ }
+}
+
+#if !defined(CONFIG_SOFTMMU)
+static void tb_invalidate_phys_page(target_phys_addr_t addr,
+ unsigned long pc, void *puc)
+{
+ int n, current_flags, current_tb_modified;
+ target_ulong current_pc, current_cs_base;
+ PageDesc *p;
+ TranslationBlock *tb, *current_tb;
+#ifdef TARGET_HAS_PRECISE_SMC
+ CPUState *env = cpu_single_env;
+#endif
+
+ addr &= TARGET_PAGE_MASK;
+ p = page_find(addr >> TARGET_PAGE_BITS);
+ if (!p)
+ return;
+ tb = p->first_tb;
+ current_tb_modified = 0;
+ current_tb = NULL;
+ current_pc = 0; /* avoid warning */
+ current_cs_base = 0; /* avoid warning */
+ current_flags = 0; /* avoid warning */
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (tb && pc != 0) {
+ current_tb = tb_find_pc(pc);
+ }
+#endif
+ while (tb != NULL) {
+ n = (long)tb & 3;
+ tb = (TranslationBlock *)((long)tb & ~3);
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb == tb &&
+ (current_tb->cflags & CF_COUNT_MASK) != 1) {
+ /* If we are modifying the current TB, we must stop
+ its execution. We could be more precise by checking
+ that the modification is after the current PC, but it
+ would require a specialized function to partially
+ restore the CPU state */
+
+ current_tb_modified = 1;
+ cpu_restore_state(current_tb, env, pc, puc);
+#if defined(TARGET_I386)
+ current_flags = env->hflags;
+ current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
+ current_cs_base = (target_ulong)env->segs[R_CS].base;
+ current_pc = current_cs_base + env->eip;
+#else
+#error unsupported CPU
+#endif
+ }
+#endif /* TARGET_HAS_PRECISE_SMC */
+ tb_phys_invalidate(tb, addr);
+ tb = tb->page_next[n];
+ }
+ p->first_tb = NULL;
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb_modified) {
+ /* we generate a block containing just the instruction
+ modifying the memory. It will ensure that it cannot modify
+ itself */
+ env->current_tb = NULL;
+ tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
+ cpu_resume_from_signal(env, puc);
+ }
+#endif
+}
+#endif
+
+/* add the tb in the target page and protect it if necessary */
+static inline void tb_alloc_page(TranslationBlock *tb,
+ unsigned int n, target_ulong page_addr)
+{
+ PageDesc *p;
+ TranslationBlock *last_first_tb;
+
+ tb->page_addr[n] = page_addr;
+ p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
+ tb->page_next[n] = p->first_tb;
+ last_first_tb = p->first_tb;
+ p->first_tb = (TranslationBlock *)((long)tb | n);
+ invalidate_page_bitmap(p);
+
+#if defined(TARGET_HAS_SMC) || 1
+
+#if defined(CONFIG_USER_ONLY)
+ if (p->flags & PAGE_WRITE) {
+ target_ulong addr;
+ PageDesc *p2;
+ int prot;
+
+ /* force the host page as non writable (writes will have a
+ page fault + mprotect overhead) */
+ page_addr &= qemu_host_page_mask;
+ prot = 0;
+ for(addr = page_addr; addr < page_addr + qemu_host_page_size;
+ addr += TARGET_PAGE_SIZE) {
+
+ p2 = page_find (addr >> TARGET_PAGE_BITS);
+ if (!p2)
+ continue;
+ prot |= p2->flags;
+ p2->flags &= ~PAGE_WRITE;
+ page_get_flags(addr);
+ }
+ mprotect(g2h(page_addr), qemu_host_page_size,
+ (prot & PAGE_BITS) & ~PAGE_WRITE);
+#ifdef DEBUG_TB_INVALIDATE
+ printf("protecting code page: 0x" TARGET_FMT_lx "\n",
+ page_addr);
+#endif
+ }
+#else
+ /* if some code is already present, then the pages are already
+ protected. So we handle the case where only the first TB is
+ allocated in a physical page */
+ if (!last_first_tb) {
+ tlb_protect_code(page_addr);
+ }
+#endif
+
+#endif /* TARGET_HAS_SMC */
+}
+
+/* Allocate a new translation block. Flush the translation buffer if
+ too many translation blocks or too much generated code. */
+TranslationBlock *tb_alloc(target_ulong pc)
+{
+ TranslationBlock *tb;
+
+ if (nb_tbs >= code_gen_max_blocks ||
+ (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
+ return NULL;
+ tb = &tbs[nb_tbs++];
+ tb->pc = pc;
+ tb->cflags = 0;
+ return tb;
+}
+
+void tb_free(TranslationBlock *tb)
+{
+ /* In practice this is mostly used for single use temporary TB
+ Ignore the hard cases and just back up if this TB happens to
+ be the last one generated. */
+ if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
+ code_gen_ptr = tb->tc_ptr;
+ nb_tbs--;
+ }
+}
+
+/* add a new TB and link it to the physical page tables. phys_page2 is
+ (-1) to indicate that only one page contains the TB. */
+void tb_link_phys(TranslationBlock *tb,
+ target_ulong phys_pc, target_ulong phys_page2)
+{
+ unsigned int h;
+ TranslationBlock **ptb;
+
+ /* Grab the mmap lock to stop another thread invalidating this TB
+ before we are done. */
+ mmap_lock();
+ /* add in the physical hash table */
+ h = tb_phys_hash_func(phys_pc);
+ ptb = &tb_phys_hash[h];
+ tb->phys_hash_next = *ptb;
+ *ptb = tb;
+
+ /* add in the page list */
+ tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
+ if (phys_page2 != -1)
+ tb_alloc_page(tb, 1, phys_page2);
+ else
+ tb->page_addr[1] = -1;
+
+ tb->jmp_first = (TranslationBlock *)((long)tb | 2);
+ tb->jmp_next[0] = NULL;
+ tb->jmp_next[1] = NULL;
+
+ /* init original jump addresses */
+ if (tb->tb_next_offset[0] != 0xffff)
+ tb_reset_jump(tb, 0);
+ if (tb->tb_next_offset[1] != 0xffff)
+ tb_reset_jump(tb, 1);
+
+#ifdef DEBUG_TB_CHECK
+ tb_page_check();
+#endif
+ mmap_unlock();
+}
+
+/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
+ tb[1].tc_ptr. Return NULL if not found */
+TranslationBlock *tb_find_pc(unsigned long tc_ptr)
+{
+ int m_min, m_max, m;
+ unsigned long v;
+ TranslationBlock *tb;
+
+ if (nb_tbs <= 0)
+ return NULL;
+ if (tc_ptr < (unsigned long)code_gen_buffer ||
+ tc_ptr >= (unsigned long)code_gen_ptr)
+ return NULL;
+ /* binary search (cf Knuth) */
+ m_min = 0;
+ m_max = nb_tbs - 1;
+ while (m_min <= m_max) {
+ m = (m_min + m_max) >> 1;
+ tb = &tbs[m];
+ v = (unsigned long)tb->tc_ptr;
+ if (v == tc_ptr)
+ return tb;
+ else if (tc_ptr < v) {
+ m_max = m - 1;
+ } else {
+ m_min = m + 1;
+ }
+ }
+ return &tbs[m_max];
+}
+
+static void tb_reset_jump_recursive(TranslationBlock *tb);
+
+static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
+{
+ TranslationBlock *tb1, *tb_next, **ptb;
+ unsigned int n1;
+
+ tb1 = tb->jmp_next[n];
+ if (tb1 != NULL) {
+ /* find head of list */
+ for(;;) {
+ n1 = (long)tb1 & 3;
+ tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ if (n1 == 2)
+ break;
+ tb1 = tb1->jmp_next[n1];
+ }
+ /* we are now sure now that tb jumps to tb1 */
+ tb_next = tb1;
+
+ /* remove tb from the jmp_first list */
+ ptb = &tb_next->jmp_first;
+ for(;;) {
+ tb1 = *ptb;
+ n1 = (long)tb1 & 3;
+ tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ if (n1 == n && tb1 == tb)
+ break;
+ ptb = &tb1->jmp_next[n1];
+ }
+ *ptb = tb->jmp_next[n];
+ tb->jmp_next[n] = NULL;
+
+ /* suppress the jump to next tb in generated code */
+ tb_reset_jump(tb, n);
+
+ /* suppress jumps in the tb on which we could have jumped */
+ tb_reset_jump_recursive(tb_next);
+ }
+}
+
+static void tb_reset_jump_recursive(TranslationBlock *tb)
+{
+ tb_reset_jump_recursive2(tb, 0);
+ tb_reset_jump_recursive2(tb, 1);
+}
+
+#if defined(TARGET_HAS_ICE)
+static void breakpoint_invalidate(CPUState *env, target_ulong pc)
+{
+ target_phys_addr_t addr;
+ target_ulong pd;
+ ram_addr_t ram_addr;
+ PhysPageDesc *p;
+
+ addr = cpu_get_phys_page_debug(env, pc);
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+ ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
+ tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
+}
+#endif
+
+/* Add a watchpoint. */
+int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type)
+{
+ int i;
+
+ for (i = 0; i < env->nb_watchpoints; i++) {
+ if (addr == env->watchpoint[i].vaddr)
+ return 0;
+ }
+ if (env->nb_watchpoints >= MAX_WATCHPOINTS)
+ return -1;
+
+ i = env->nb_watchpoints++;
+ env->watchpoint[i].vaddr = addr;
+ env->watchpoint[i].type = type;
+ tlb_flush_page(env, addr);
+ /* FIXME: This flush is needed because of the hack to make memory ops
+ terminate the TB. It can be removed once the proper IO trap and
+ re-execute bits are in. */
+ tb_flush(env);
+ return i;
+}
+
+/* Remove a watchpoint. */
+int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
+{
+ int i;
+
+ for (i = 0; i < env->nb_watchpoints; i++) {
+ if (addr == env->watchpoint[i].vaddr) {
+ env->nb_watchpoints--;
+ env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
+ tlb_flush_page(env, addr);
+ return 0;
+ }
+ }
+ return -1;
+}
+
+/* Remove all watchpoints. */
+void cpu_watchpoint_remove_all(CPUState *env) {
+ int i;
+
+ for (i = 0; i < env->nb_watchpoints; i++) {
+ tlb_flush_page(env, env->watchpoint[i].vaddr);
+ }
+ env->nb_watchpoints = 0;
+}
+
+/* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
+ breakpoint is reached */
+int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
+{
+#if defined(TARGET_HAS_ICE)
+ int i;
+
+ for(i = 0; i < env->nb_breakpoints; i++) {
+ if (env->breakpoints[i] == pc)
+ return 0;
+ }
+
+ if (env->nb_breakpoints >= MAX_BREAKPOINTS)
+ return -1;
+ env->breakpoints[env->nb_breakpoints++] = pc;
+
+ breakpoint_invalidate(env, pc);
+ return 0;
+#else
+ return -1;
+#endif
+}
+
+/* remove all breakpoints */
+void cpu_breakpoint_remove_all(CPUState *env) {
+#if defined(TARGET_HAS_ICE)
+ int i;
+ for(i = 0; i < env->nb_breakpoints; i++) {
+ breakpoint_invalidate(env, env->breakpoints[i]);
+ }
+ env->nb_breakpoints = 0;
+#endif
+}
+
+/* remove a breakpoint */
+int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
+{
+#if defined(TARGET_HAS_ICE)
+ int i;
+ for(i = 0; i < env->nb_breakpoints; i++) {
+ if (env->breakpoints[i] == pc)
+ goto found;
+ }
+ return -1;
+ found:
+ env->nb_breakpoints--;
+ if (i < env->nb_breakpoints)
+ env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
+
+ breakpoint_invalidate(env, pc);
+ return 0;
+#else
+ return -1;
+#endif
+}
+
+/* enable or disable single step mode. EXCP_DEBUG is returned by the
+ CPU loop after each instruction */
+void cpu_single_step(CPUState *env, int enabled)
+{
+#if defined(TARGET_HAS_ICE)
+ if (env->singlestep_enabled != enabled) {
+ env->singlestep_enabled = enabled;
+ /* must flush all the translated code to avoid inconsistancies */
+ /* XXX: only flush what is necessary */
+ tb_flush(env);
+ }
+#endif
+}
+
+/* enable or disable low levels log */
+void cpu_set_log(int log_flags)
+{
+ loglevel = log_flags;
+ if (loglevel && !logfile) {
+ logfile = fopen(logfilename, log_append ? "a" : "w");
+ if (!logfile) {
+ perror(logfilename);
+ _exit(1);
+ }
+#if !defined(CONFIG_SOFTMMU)
+ /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
+ {
+ static uint8_t logfile_buf[4096];
+ setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
+ }
+#else
+ setvbuf(logfile, NULL, _IOLBF, 0);
+#endif
+ log_append = 1;
+ }
+ if (!loglevel && logfile) {
+ fclose(logfile);
+ logfile = NULL;
+ }
+}
+
+void cpu_set_log_filename(const char *filename)
+{
+ logfilename = strdup(filename);
+ if (logfile) {
+ fclose(logfile);
+ logfile = NULL;
+ }
+ cpu_set_log(loglevel);
+}
+
+/* mask must never be zero, except for A20 change call */
+void cpu_interrupt(CPUState *env, int mask)
+{
+#if !defined(USE_NPTL)
+ TranslationBlock *tb;
+ static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
+#endif
+ int old_mask;
+
+ old_mask = env->interrupt_request;
+ /* FIXME: This is probably not threadsafe. A different thread could
+ be in the middle of a read-modify-write operation. */
+ env->interrupt_request |= mask;
+#if defined(USE_NPTL)
+ /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
+ problem and hope the cpu will stop of its own accord. For userspace
+ emulation this often isn't actually as bad as it sounds. Often
+ signals are used primarily to interrupt blocking syscalls. */
+#else
+ if (use_icount) {
+ env->icount_decr.u16.high = 0xffff;
+#ifndef CONFIG_USER_ONLY
+ /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
+ an async event happened and we need to process it. */
+ if (!can_do_io(env)
+ && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
+ cpu_abort(env, "Raised interrupt while not in I/O function");
+ }
+#endif
+ } else {
+ tb = env->current_tb;
+ /* if the cpu is currently executing code, we must unlink it and
+ all the potentially executing TB */
+ if (tb && !testandset(&interrupt_lock)) {
+ env->current_tb = NULL;
+ tb_reset_jump_recursive(tb);
+ resetlock(&interrupt_lock);
+ }
+ }
+#endif
+}
+
+void cpu_reset_interrupt(CPUState *env, int mask)
+{
+ env->interrupt_request &= ~mask;
+}
+
+CPULogItem cpu_log_items[] = {
+ { CPU_LOG_TB_OUT_ASM, "out_asm",
+ "show generated host assembly code for each compiled TB" },
+ { CPU_LOG_TB_IN_ASM, "in_asm",
+ "show target assembly code for each compiled TB" },
+ { CPU_LOG_TB_OP, "op",
+ "show micro ops for each compiled TB" },
+ { CPU_LOG_TB_OP_OPT, "op_opt",
+ "show micro ops "
+#ifdef TARGET_I386
+ "before eflags optimization and "
+#endif
+ "after liveness analysis" },
+ { CPU_LOG_INT, "int",
+ "show interrupts/exceptions in short format" },
+ { CPU_LOG_EXEC, "exec",
+ "show trace before each executed TB (lots of logs)" },
+ { CPU_LOG_TB_CPU, "cpu",
+ "show CPU state before block translation" },
+#ifdef TARGET_I386
+ { CPU_LOG_PCALL, "pcall",
+ "show protected mode far calls/returns/exceptions" },
+#endif
+#ifdef DEBUG_IOPORT
+ { CPU_LOG_IOPORT, "ioport",
+ "show all i/o ports accesses" },
+#endif
+ { 0, NULL, NULL },
+};
+
+static int cmp1(const char *s1, int n, const char *s2)
+{
+ if (strlen(s2) != n)
+ return 0;
+ return memcmp(s1, s2, n) == 0;
+}
+
+/* takes a comma separated list of log masks. Return 0 if error. */
+int cpu_str_to_log_mask(const char *str)
+{
+ CPULogItem *item;
+ int mask;
+ const char *p, *p1;
+
+ p = str;
+ mask = 0;
+ for(;;) {
+ p1 = strchr(p, ',');
+ if (!p1)
+ p1 = p + strlen(p);
+ if(cmp1(p,p1-p,"all")) {
+ for(item = cpu_log_items; item->mask != 0; item++) {
+ mask |= item->mask;
+ }
+ } else {
+ for(item = cpu_log_items; item->mask != 0; item++) {
+ if (cmp1(p, p1 - p, item->name))
+ goto found;
+ }
+ return 0;
+ }
+ found:
+ mask |= item->mask;
+ if (*p1 != ',')
+ break;
+ p = p1 + 1;
+ }
+ return mask;
+}
+
+void cpu_abort(CPUState *env, const char *fmt, ...)
+{
+ va_list ap;
+ va_list ap2;
+
+ va_start(ap, fmt);
+ va_copy(ap2, ap);
+ fprintf(stderr, "qemu: fatal: ");
+ vfprintf(stderr, fmt, ap);
+ fprintf(stderr, "\n");
+#ifdef TARGET_I386
+ cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
+#else
+ cpu_dump_state(env, stderr, fprintf, 0);
+#endif
+ if (logfile) {
+ fprintf(logfile, "qemu: fatal: ");
+ vfprintf(logfile, fmt, ap2);
+ fprintf(logfile, "\n");
+#ifdef TARGET_I386
+ cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
+#else
+ cpu_dump_state(env, logfile, fprintf, 0);
+#endif
+ fflush(logfile);
+ fclose(logfile);
+ }
+ va_end(ap2);
+ va_end(ap);
+ abort();
+}
+
+CPUState *cpu_copy(CPUState *env)
+{
+ CPUState *new_env = cpu_init(env->cpu_model_str);
+ /* preserve chaining and index */
+ CPUState *next_cpu = new_env->next_cpu;
+ int cpu_index = new_env->cpu_index;
+ memcpy(new_env, env, sizeof(CPUState));
+ new_env->next_cpu = next_cpu;
+ new_env->cpu_index = cpu_index;
+ return new_env;
+}
+
+#if !defined(CONFIG_USER_ONLY)
+
+static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
+{
+ unsigned int i;
+
+ /* Discard jump cache entries for any tb which might potentially
+ overlap the flushed page. */
+ i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
+ memset (&env->tb_jmp_cache[i], 0,
+ TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
+
+ i = tb_jmp_cache_hash_page(addr);
+ memset (&env->tb_jmp_cache[i], 0,
+ TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
+}
+
+/* NOTE: if flush_global is true, also flush global entries (not
+ implemented yet) */
+void tlb_flush(CPUState *env, int flush_global)
+{
+ int i;
+
+#if defined(DEBUG_TLB)
+ printf("tlb_flush:\n");
+#endif
+ /* must reset current TB so that interrupts cannot modify the
+ links while we are modifying them */
+ env->current_tb = NULL;
+
+ for(i = 0; i < CPU_TLB_SIZE; i++) {
+ env->tlb_table[0][i].addr_read = -1;
+ env->tlb_table[0][i].addr_write = -1;
+ env->tlb_table[0][i].addr_code = -1;
+ env->tlb_table[1][i].addr_read = -1;
+ env->tlb_table[1][i].addr_write = -1;
+ env->tlb_table[1][i].addr_code = -1;
+#if (NB_MMU_MODES >= 3)
+ env->tlb_table[2][i].addr_read = -1;
+ env->tlb_table[2][i].addr_write = -1;
+ env->tlb_table[2][i].addr_code = -1;
+#if (NB_MMU_MODES == 4)
+ env->tlb_table[3][i].addr_read = -1;
+ env->tlb_table[3][i].addr_write = -1;
+ env->tlb_table[3][i].addr_code = -1;
+#endif
+#endif
+ }
+
+ memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
+
+#ifdef USE_KQEMU
+ if (env->kqemu_enabled) {
+ kqemu_flush(env, flush_global);
+ }
+#endif
+ tlb_flush_count++;
+}
+
+static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
+{
+ if (addr == (tlb_entry->addr_read &
+ (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
+ addr == (tlb_entry->addr_write &
+ (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
+ addr == (tlb_entry->addr_code &
+ (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
+ tlb_entry->addr_read = -1;
+ tlb_entry->addr_write = -1;
+ tlb_entry->addr_code = -1;
+ }
+}
+
+void tlb_flush_page(CPUState *env, target_ulong addr)
+{
+ int i;
+
+#if defined(DEBUG_TLB)
+ printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
+#endif
+ /* must reset current TB so that interrupts cannot modify the
+ links while we are modifying them */
+ env->current_tb = NULL;
+
+ addr &= TARGET_PAGE_MASK;
+ i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ tlb_flush_entry(&env->tlb_table[0][i], addr);
+ tlb_flush_entry(&env->tlb_table[1][i], addr);
+#if (NB_MMU_MODES >= 3)
+ tlb_flush_entry(&env->tlb_table[2][i], addr);
+#if (NB_MMU_MODES == 4)
+ tlb_flush_entry(&env->tlb_table[3][i], addr);
+#endif
+#endif
+
+ tlb_flush_jmp_cache(env, addr);
+
+#ifdef USE_KQEMU
+ if (env->kqemu_enabled) {
+ kqemu_flush_page(env, addr);
+ }
+#endif
+}
+
+/* update the TLBs so that writes to code in the virtual page 'addr'
+ can be detected */
+static void tlb_protect_code(ram_addr_t ram_addr)
+{
+ cpu_physical_memory_reset_dirty(ram_addr,
+ ram_addr + TARGET_PAGE_SIZE,
+ CODE_DIRTY_FLAG);
+}
+
+/* update the TLB so that writes in physical page 'phys_addr' are no longer
+ tested for self modifying code */
+static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
+ target_ulong vaddr)
+{
+ phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
+}
+
+static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
+ unsigned long start, unsigned long length)
+{
+ unsigned long addr;
+ if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
+ addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
+ if ((addr - start) < length) {
+ tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
+ }
+ }
+}
+
+void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
+ int dirty_flags)
+{
+ CPUState *env;
+ unsigned long length, start1;
+ int i, mask, len;
+ uint8_t *p;
+
+ start &= TARGET_PAGE_MASK;
+ end = TARGET_PAGE_ALIGN(end);
+
+ length = end - start;
+ if (length == 0)
+ return;
+ len = length >> TARGET_PAGE_BITS;
+#ifdef USE_KQEMU
+ /* XXX: should not depend on cpu context */
+ env = first_cpu;
+ if (env->kqemu_enabled) {
+ ram_addr_t addr;
+ addr = start;
+ for(i = 0; i < len; i++) {
+ kqemu_set_notdirty(env, addr);
+ addr += TARGET_PAGE_SIZE;
+ }
+ }
+#endif
+ mask = ~dirty_flags;
+ p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
+ for(i = 0; i < len; i++)
+ p[i] &= mask;
+
+ /* we modify the TLB cache so that the dirty bit will be set again
+ when accessing the range */
+ start1 = start + (unsigned long)phys_ram_base;
+ for(env = first_cpu; env != NULL; env = env->next_cpu) {
+ for(i = 0; i < CPU_TLB_SIZE; i++)
+ tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
+ for(i = 0; i < CPU_TLB_SIZE; i++)
+ tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
+#if (NB_MMU_MODES >= 3)
+ for(i = 0; i < CPU_TLB_SIZE; i++)
+ tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
+#if (NB_MMU_MODES == 4)
+ for(i = 0; i < CPU_TLB_SIZE; i++)
+ tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
+#endif
+#endif
+ }
+}
+
+static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
+{
+ ram_addr_t ram_addr;
+
+ if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
+ ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
+ tlb_entry->addend - (unsigned long)phys_ram_base;
+ if (!cpu_physical_memory_is_dirty(ram_addr)) {
+ tlb_entry->addr_write |= TLB_NOTDIRTY;
+ }
+ }
+}
+
+/* update the TLB according to the current state of the dirty bits */
+void cpu_tlb_update_dirty(CPUState *env)
+{
+ int i;
+ for(i = 0; i < CPU_TLB_SIZE; i++)
+ tlb_update_dirty(&env->tlb_table[0][i]);
+ for(i = 0; i < CPU_TLB_SIZE; i++)
+ tlb_update_dirty(&env->tlb_table[1][i]);
+#if (NB_MMU_MODES >= 3)
+ for(i = 0; i < CPU_TLB_SIZE; i++)
+ tlb_update_dirty(&env->tlb_table[2][i]);
+#if (NB_MMU_MODES == 4)
+ for(i = 0; i < CPU_TLB_SIZE; i++)
+ tlb_update_dirty(&env->tlb_table[3][i]);
+#endif
+#endif
+}
+
+static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
+{
+ if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
+ tlb_entry->addr_write = vaddr;
+}
+
+/* update the TLB corresponding to virtual page vaddr
+ so that it is no longer dirty */
+static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
+{
+ int i;
+
+ vaddr &= TARGET_PAGE_MASK;
+ i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
+ tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
+#if (NB_MMU_MODES >= 3)
+ tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
+#if (NB_MMU_MODES == 4)
+ tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
+#endif
+#endif
+}
+
+/* add a new TLB entry. At most one entry for a given virtual address
+ is permitted. Return 0 if OK or 2 if the page could not be mapped
+ (can only happen in non SOFTMMU mode for I/O pages or pages
+ conflicting with the host address space). */
+int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
+ target_phys_addr_t paddr, int prot,
+ int mmu_idx, int is_softmmu)
+{
+ PhysPageDesc *p;
+ unsigned long pd;
+ unsigned int index;
+ target_ulong address;
+ target_ulong code_address;
+ target_phys_addr_t addend;
+ int ret;
+ CPUTLBEntry *te;
+ int i;
+ target_phys_addr_t iotlb;
+
+ p = phys_page_find(paddr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+#if defined(DEBUG_TLB)
+ printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
+ vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
+#endif
+
+ ret = 0;
+ address = vaddr;
+ if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
+ /* IO memory case (romd handled later) */
+ address |= TLB_MMIO;
+ }
+ addend = (target_phys_addr_t)phys_ram_base + (pd & TARGET_PAGE_MASK);
+ if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
+ /* Normal RAM. */
+ iotlb = pd & TARGET_PAGE_MASK;
+ if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
+ iotlb |= IO_MEM_NOTDIRTY;
+ else
+ iotlb |= IO_MEM_ROM;
+ } else {
+ /* IO handlers are currently passed a phsical address.
+ It would be nice to pass an offset from the base address
+ of that region. This would avoid having to special case RAM,
+ and avoid full address decoding in every device.
+ We can't use the high bits of pd for this because
+ IO_MEM_ROMD uses these as a ram address. */
+ iotlb = (pd & ~TARGET_PAGE_MASK) + paddr;
+ }
+
+ code_address = address;
+ /* Make accesses to pages with watchpoints go via the
+ watchpoint trap routines. */
+ for (i = 0; i < env->nb_watchpoints; i++) {
+ if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
+ iotlb = io_mem_watch + paddr;
+ /* TODO: The memory case can be optimized by not trapping
+ reads of pages with a write breakpoint. */
+ address |= TLB_MMIO;
+ }
+ }
+
+ index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ env->iotlb[mmu_idx][index] = iotlb - vaddr;
+ te = &env->tlb_table[mmu_idx][index];
+ te->addend = addend - vaddr;
+ if (prot & PAGE_READ) {
+ te->addr_read = address;
+ } else {
+ te->addr_read = -1;
+ }
+
+ if (prot & PAGE_EXEC) {
+ te->addr_code = code_address;
+ } else {
+ te->addr_code = -1;
+ }
+ if (prot & PAGE_WRITE) {
+ if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
+ (pd & IO_MEM_ROMD)) {
+ /* Write access calls the I/O callback. */
+ te->addr_write = address | TLB_MMIO;
+ } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
+ !cpu_physical_memory_is_dirty(pd)) {
+ te->addr_write = address | TLB_NOTDIRTY;
+ } else {
+ te->addr_write = address;
+ }
+ } else {
+ te->addr_write = -1;
+ }
+ return ret;
+}
+
+#else
+
+void tlb_flush(CPUState *env, int flush_global)
+{
+}
+
+void tlb_flush_page(CPUState *env, target_ulong addr)
+{
+}
+
+int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
+ target_phys_addr_t paddr, int prot,
+ int mmu_idx, int is_softmmu)
+{
+ return 0;
+}
+
+/* dump memory mappings */
+void page_dump(FILE *f)
+{
+ unsigned long start, end;
+ int i, j, prot, prot1;
+ PageDesc *p;
+
+ fprintf(f, "%-8s %-8s %-8s %s\n",
+ "start", "end", "size", "prot");
+ start = -1;
+ end = -1;
+ prot = 0;
+ for(i = 0; i <= L1_SIZE; i++) {
+ if (i < L1_SIZE)
+ p = l1_map[i];
+ else
+ p = NULL;
+ for(j = 0;j < L2_SIZE; j++) {
+ if (!p)
+ prot1 = 0;
+ else
+ prot1 = p[j].flags;
+ if (prot1 != prot) {
+ end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
+ if (start != -1) {
+ fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
+ start, end, end - start,
+ prot & PAGE_READ ? 'r' : '-',
+ prot & PAGE_WRITE ? 'w' : '-',
+ prot & PAGE_EXEC ? 'x' : '-');
+ }
+ if (prot1 != 0)
+ start = end;
+ else
+ start = -1;
+ prot = prot1;
+ }
+ if (!p)
+ break;
+ }
+ }
+}
+
+int page_get_flags(target_ulong address)
+{
+ PageDesc *p;
+
+ p = page_find(address >> TARGET_PAGE_BITS);
+ if (!p)
+ return 0;
+ return p->flags;
+}
+
+/* modify the flags of a page and invalidate the code if
+ necessary. The flag PAGE_WRITE_ORG is positionned automatically
+ depending on PAGE_WRITE */
+void page_set_flags(target_ulong start, target_ulong end, int flags)
+{
+ PageDesc *p;
+ target_ulong addr;
+
+ /* mmap_lock should already be held. */
+ start = start & TARGET_PAGE_MASK;
+ end = TARGET_PAGE_ALIGN(end);
+ if (flags & PAGE_WRITE)
+ flags |= PAGE_WRITE_ORG;
+ for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
+ p = page_find_alloc(addr >> TARGET_PAGE_BITS);
+ /* We may be called for host regions that are outside guest
+ address space. */
+ if (!p)
+ return;
+ /* if the write protection is set, then we invalidate the code
+ inside */
+ if (!(p->flags & PAGE_WRITE) &&
+ (flags & PAGE_WRITE) &&
+ p->first_tb) {
+ tb_invalidate_phys_page(addr, 0, NULL);
+ }
+ p->flags = flags;
+ }
+}
+
+int page_check_range(target_ulong start, target_ulong len, int flags)
+{
+ PageDesc *p;
+ target_ulong end;
+ target_ulong addr;
+
+ end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
+ start = start & TARGET_PAGE_MASK;
+
+ if( end < start )
+ /* we've wrapped around */
+ return -1;
+ for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
+ p = page_find(addr >> TARGET_PAGE_BITS);
+ if( !p )
+ return -1;
+ if( !(p->flags & PAGE_VALID) )
+ return -1;
+
+ if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
+ return -1;
+ if (flags & PAGE_WRITE) {
+ if (!(p->flags & PAGE_WRITE_ORG))
+ return -1;
+ /* unprotect the page if it was put read-only because it
+ contains translated code */
+ if (!(p->flags & PAGE_WRITE)) {
+ if (!page_unprotect(addr, 0, NULL))
+ return -1;
+ }
+ return 0;
+ }
+ }
+ return 0;
+}
+
+/* called from signal handler: invalidate the code and unprotect the
+ page. Return TRUE if the fault was succesfully handled. */
+int page_unprotect(target_ulong address, unsigned long pc, void *puc)
+{
+ unsigned int page_index, prot, pindex;
+ PageDesc *p, *p1;
+ target_ulong host_start, host_end, addr;
+
+ /* Technically this isn't safe inside a signal handler. However we
+ know this only ever happens in a synchronous SEGV handler, so in
+ practice it seems to be ok. */
+ mmap_lock();
+
+ host_start = address & qemu_host_page_mask;
+ page_index = host_start >> TARGET_PAGE_BITS;
+ p1 = page_find(page_index);
+ if (!p1) {
+ mmap_unlock();
+ return 0;
+ }
+ host_end = host_start + qemu_host_page_size;
+ p = p1;
+ prot = 0;
+ for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
+ prot |= p->flags;
+ p++;
+ }
+ /* if the page was really writable, then we change its
+ protection back to writable */
+ if (prot & PAGE_WRITE_ORG) {
+ pindex = (address - host_start) >> TARGET_PAGE_BITS;
+ if (!(p1[pindex].flags & PAGE_WRITE)) {
+ mprotect((void *)g2h(host_start), qemu_host_page_size,
+ (prot & PAGE_BITS) | PAGE_WRITE);
+ p1[pindex].flags |= PAGE_WRITE;
+ /* and since the content will be modified, we must invalidate
+ the corresponding translated code. */
+ tb_invalidate_phys_page(address, pc, puc);
+#ifdef DEBUG_TB_CHECK
+ tb_invalidate_check(address);
+#endif
+ mmap_unlock();
+ return 1;
+ }
+ }
+ mmap_unlock();
+ return 0;
+}
+
+static inline void tlb_set_dirty(CPUState *env,
+ unsigned long addr, target_ulong vaddr)
+{
+}
+#endif /* defined(CONFIG_USER_ONLY) */
+
+#if !defined(CONFIG_USER_ONLY)
+static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
+ ram_addr_t memory);
+static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
+ ram_addr_t orig_memory);
+#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
+ need_subpage) \
+ do { \
+ if (addr > start_addr) \
+ start_addr2 = 0; \
+ else { \
+ start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
+ if (start_addr2 > 0) \
+ need_subpage = 1; \
+ } \
+ \
+ if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
+ end_addr2 = TARGET_PAGE_SIZE - 1; \
+ else { \
+ end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
+ if (end_addr2 < TARGET_PAGE_SIZE - 1) \
+ need_subpage = 1; \
+ } \
+ } while (0)
+
+/* register physical memory. 'size' must be a multiple of the target
+ page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
+ io memory page */
+void cpu_register_physical_memory(target_phys_addr_t start_addr,
+ ram_addr_t size,
+ ram_addr_t phys_offset)
+{
+ target_phys_addr_t addr, end_addr;
+ PhysPageDesc *p;
+ CPUState *env;
+ ram_addr_t orig_size = size;
+ void *subpage;
+
+#ifdef USE_KQEMU
+ /* XXX: should not depend on cpu context */
+ env = first_cpu;
+ if (env->kqemu_enabled) {
+ kqemu_set_phys_mem(start_addr, size, phys_offset);
+ }
+#endif
+ size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
+ end_addr = start_addr + (target_phys_addr_t)size;
+ for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
+ ram_addr_t orig_memory = p->phys_offset;
+ target_phys_addr_t start_addr2, end_addr2;
+ int need_subpage = 0;
+
+ CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
+ need_subpage);
+ if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
+ if (!(orig_memory & IO_MEM_SUBPAGE)) {
+ subpage = subpage_init((addr & TARGET_PAGE_MASK),
+ &p->phys_offset, orig_memory);
+ } else {
+ subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
+ >> IO_MEM_SHIFT];
+ }
+ subpage_register(subpage, start_addr2, end_addr2, phys_offset);
+ } else {
+ p->phys_offset = phys_offset;
+ if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
+ (phys_offset & IO_MEM_ROMD))
+ phys_offset += TARGET_PAGE_SIZE;
+ }
+ } else {
+ p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
+ p->phys_offset = phys_offset;
+ if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
+ (phys_offset & IO_MEM_ROMD))
+ phys_offset += TARGET_PAGE_SIZE;
+ else {
+ target_phys_addr_t start_addr2, end_addr2;
+ int need_subpage = 0;
+
+ CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
+ end_addr2, need_subpage);
+
+ if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
+ subpage = subpage_init((addr & TARGET_PAGE_MASK),
+ &p->phys_offset, IO_MEM_UNASSIGNED);
+ subpage_register(subpage, start_addr2, end_addr2,
+ phys_offset);
+ }
+ }
+ }
+ }
+
+ /* since each CPU stores ram addresses in its TLB cache, we must
+ reset the modified entries */
+ /* XXX: slow ! */
+ for(env = first_cpu; env != NULL; env = env->next_cpu) {
+ tlb_flush(env, 1);
+ }
+}
+
+/* XXX: temporary until new memory mapping API */
+ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
+{
+ PhysPageDesc *p;
+
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p)
+ return IO_MEM_UNASSIGNED;
+ return p->phys_offset;
+}
+
+/* XXX: better than nothing */
+ram_addr_t qemu_ram_alloc(ram_addr_t size)
+{
+ ram_addr_t addr;
+ if ((phys_ram_alloc_offset + size) > phys_ram_size) {
+ fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 "\n",
+ (uint64_t)size, (uint64_t)phys_ram_size);
+ abort();
+ }
+ addr = phys_ram_alloc_offset;
+ phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
+ return addr;
+}
+
+void qemu_ram_free(ram_addr_t addr)
+{
+}
+
+static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
+{
+#ifdef DEBUG_UNASSIGNED
+ printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
+#endif
+#ifdef TARGET_SPARC
+ do_unassigned_access(addr, 0, 0, 0);
+#elif defined(TARGET_CRIS)
+ do_unassigned_access(addr, 0, 0, 0);
+#endif
+ return 0;
+}
+
+static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+#ifdef DEBUG_UNASSIGNED
+ printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
+#endif
+#ifdef TARGET_SPARC
+ do_unassigned_access(addr, 1, 0, 0);
+#elif defined(TARGET_CRIS)
+ do_unassigned_access(addr, 1, 0, 0);
+#endif
+}
+
+static CPUReadMemoryFunc *unassigned_mem_read[3] = {
+ unassigned_mem_readb,
+ unassigned_mem_readb,
+ unassigned_mem_readb,
+};
+
+static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
+ unassigned_mem_writeb,
+ unassigned_mem_writeb,
+ unassigned_mem_writeb,
+};
+
+static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
+ uint32_t val)
+{
+ int dirty_flags;
+ dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
+ if (!(dirty_flags & CODE_DIRTY_FLAG)) {
+#if !defined(CONFIG_USER_ONLY)
+ tb_invalidate_phys_page_fast(ram_addr, 1);
+ dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
+#endif
+ }
+ stb_p(phys_ram_base + ram_addr, val);
+#ifdef USE_KQEMU
+ if (cpu_single_env->kqemu_enabled &&
+ (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
+ kqemu_modify_page(cpu_single_env, ram_addr);
+#endif
+ dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
+ phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
+ /* we remove the notdirty callback only if the code has been
+ flushed */
+ if (dirty_flags == 0xff)
+ tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
+}
+
+static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
+ uint32_t val)
+{
+ int dirty_flags;
+ dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
+ if (!(dirty_flags & CODE_DIRTY_FLAG)) {
+#if !defined(CONFIG_USER_ONLY)
+ tb_invalidate_phys_page_fast(ram_addr, 2);
+ dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
+#endif
+ }
+ stw_p(phys_ram_base + ram_addr, val);
+#ifdef USE_KQEMU
+ if (cpu_single_env->kqemu_enabled &&
+ (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
+ kqemu_modify_page(cpu_single_env, ram_addr);
+#endif
+ dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
+ phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
+ /* we remove the notdirty callback only if the code has been
+ flushed */
+ if (dirty_flags == 0xff)
+ tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
+}
+
+static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
+ uint32_t val)
+{
+ int dirty_flags;
+ dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
+ if (!(dirty_flags & CODE_DIRTY_FLAG)) {
+#if !defined(CONFIG_USER_ONLY)
+ tb_invalidate_phys_page_fast(ram_addr, 4);
+ dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
+#endif
+ }
+ stl_p(phys_ram_base + ram_addr, val);
+#ifdef USE_KQEMU
+ if (cpu_single_env->kqemu_enabled &&
+ (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
+ kqemu_modify_page(cpu_single_env, ram_addr);
+#endif
+ dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
+ phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
+ /* we remove the notdirty callback only if the code has been
+ flushed */
+ if (dirty_flags == 0xff)
+ tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
+}
+
+static CPUReadMemoryFunc *error_mem_read[3] = {
+ NULL, /* never used */
+ NULL, /* never used */
+ NULL, /* never used */
+};
+
+static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
+ notdirty_mem_writeb,
+ notdirty_mem_writew,
+ notdirty_mem_writel,
+};
+
+/* Generate a debug exception if a watchpoint has been hit. */
+static void check_watchpoint(int offset, int flags)
+{
+ CPUState *env = cpu_single_env;
+ target_ulong vaddr;
+ int i;
+
+ vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
+ for (i = 0; i < env->nb_watchpoints; i++) {
+ if (vaddr == env->watchpoint[i].vaddr
+ && (env->watchpoint[i].type & flags)) {
+ env->watchpoint_hit = i + 1;
+ cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
+ break;
+ }
+ }
+}
+
+/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
+ so these check for a hit then pass through to the normal out-of-line
+ phys routines. */
+static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
+{
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
+ return ldub_phys(addr);
+}
+
+static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
+{
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
+ return lduw_phys(addr);
+}
+
+static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
+{
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
+ return ldl_phys(addr);
+}
+
+static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
+ uint32_t val)
+{
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
+ stb_phys(addr, val);
+}
+
+static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
+ uint32_t val)
+{
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
+ stw_phys(addr, val);
+}
+
+static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
+ uint32_t val)
+{
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
+ stl_phys(addr, val);
+}
+
+static CPUReadMemoryFunc *watch_mem_read[3] = {
+ watch_mem_readb,
+ watch_mem_readw,
+ watch_mem_readl,
+};
+
+static CPUWriteMemoryFunc *watch_mem_write[3] = {
+ watch_mem_writeb,
+ watch_mem_writew,
+ watch_mem_writel,
+};
+
+static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
+ unsigned int len)
+{
+ uint32_t ret;
+ unsigned int idx;
+
+ idx = SUBPAGE_IDX(addr - mmio->base);
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
+ mmio, len, addr, idx);
+#endif
+ ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
+
+ return ret;
+}
+
+static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
+ uint32_t value, unsigned int len)
+{
+ unsigned int idx;
+
+ idx = SUBPAGE_IDX(addr - mmio->base);
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
+ mmio, len, addr, idx, value);
+#endif
+ (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
+}
+
+static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
+{
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
+#endif
+
+ return subpage_readlen(opaque, addr, 0);
+}
+
+static void subpage_writeb (void *opaque, target_phys_addr_t addr,
+ uint32_t value)
+{
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
+#endif
+ subpage_writelen(opaque, addr, value, 0);
+}
+
+static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
+{
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
+#endif
+
+ return subpage_readlen(opaque, addr, 1);
+}
+
+static void subpage_writew (void *opaque, target_phys_addr_t addr,
+ uint32_t value)
+{
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
+#endif
+ subpage_writelen(opaque, addr, value, 1);
+}
+
+static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
+{
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
+#endif
+
+ return subpage_readlen(opaque, addr, 2);
+}
+
+static void subpage_writel (void *opaque,
+ target_phys_addr_t addr, uint32_t value)
+{
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
+#endif
+ subpage_writelen(opaque, addr, value, 2);
+}
+
+static CPUReadMemoryFunc *subpage_read[] = {
+ &subpage_readb,
+ &subpage_readw,
+ &subpage_readl,
+};
+
+static CPUWriteMemoryFunc *subpage_write[] = {
+ &subpage_writeb,
+ &subpage_writew,
+ &subpage_writel,
+};
+
+static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
+ ram_addr_t memory)
+{
+ int idx, eidx;
+ unsigned int i;
+
+ if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
+ return -1;
+ idx = SUBPAGE_IDX(start);
+ eidx = SUBPAGE_IDX(end);
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
+ mmio, start, end, idx, eidx, memory);
+#endif
+ memory >>= IO_MEM_SHIFT;
+ for (; idx <= eidx; idx++) {
+ for (i = 0; i < 4; i++) {
+ if (io_mem_read[memory][i]) {
+ mmio->mem_read[idx][i] = &io_mem_read[memory][i];
+ mmio->opaque[idx][0][i] = io_mem_opaque[memory];
+ }
+ if (io_mem_write[memory][i]) {
+ mmio->mem_write[idx][i] = &io_mem_write[memory][i];
+ mmio->opaque[idx][1][i] = io_mem_opaque[memory];
+ }
+ }
+ }
+
+ return 0;
+}
+
+static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
+ ram_addr_t orig_memory)
+{
+ subpage_t *mmio;
+ int subpage_memory;
+
+ mmio = qemu_mallocz(sizeof(subpage_t));
+ if (mmio != NULL) {
+ mmio->base = base;
+ subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
+ mmio, base, TARGET_PAGE_SIZE, subpage_memory);
+#endif
+ *phys = subpage_memory | IO_MEM_SUBPAGE;
+ subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
+ }
+
+ return mmio;
+}
+
+static void io_mem_init(void)
+{
+ cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
+ cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
+ cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
+ io_mem_nb = 5;
+
+ io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
+ watch_mem_write, NULL);
+ /* alloc dirty bits array */
+ phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
+ memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
+}
+
+/* mem_read and mem_write are arrays of functions containing the
+ function to access byte (index 0), word (index 1) and dword (index
+ 2). Functions can be omitted with a NULL function pointer. The
+ registered functions may be modified dynamically later.
+ If io_index is non zero, the corresponding io zone is
+ modified. If it is zero, a new io zone is allocated. The return
+ value can be used with cpu_register_physical_memory(). (-1) is
+ returned if error. */
+int cpu_register_io_memory(int io_index,
+ CPUReadMemoryFunc **mem_read,
+ CPUWriteMemoryFunc **mem_write,
+ void *opaque)
+{
+ int i, subwidth = 0;
+
+ if (io_index <= 0) {
+ if (io_mem_nb >= IO_MEM_NB_ENTRIES)
+ return -1;
+ io_index = io_mem_nb++;
+ } else {
+ if (io_index >= IO_MEM_NB_ENTRIES)
+ return -1;
+ }
+
+ for(i = 0;i < 3; i++) {
+ if (!mem_read[i] || !mem_write[i])
+ subwidth = IO_MEM_SUBWIDTH;
+ io_mem_read[io_index][i] = mem_read[i];
+ io_mem_write[io_index][i] = mem_write[i];
+ }
+ io_mem_opaque[io_index] = opaque;
+ return (io_index << IO_MEM_SHIFT) | subwidth;
+}
+
+CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
+{
+ return io_mem_write[io_index >> IO_MEM_SHIFT];
+}
+
+CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
+{
+ return io_mem_read[io_index >> IO_MEM_SHIFT];
+}
+
+#endif /* !defined(CONFIG_USER_ONLY) */
+
+/* physical memory access (slow version, mainly for debug) */
+#if defined(CONFIG_USER_ONLY)
+void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
+ int len, int is_write)
+{
+ int l, flags;
+ target_ulong page;
+ void * p;
+
+ while (len > 0) {
+ page = addr & TARGET_PAGE_MASK;
+ l = (page + TARGET_PAGE_SIZE) - addr;
+ if (l > len)
+ l = len;
+ flags = page_get_flags(page);
+ if (!(flags & PAGE_VALID))
+ return;
+ if (is_write) {
+ if (!(flags & PAGE_WRITE))
+ return;
+ /* XXX: this code should not depend on lock_user */
+ if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
+ /* FIXME - should this return an error rather than just fail? */
+ return;
+ memcpy(p, buf, l);
+ unlock_user(p, addr, l);
+ } else {
+ if (!(flags & PAGE_READ))
+ return;
+ /* XXX: this code should not depend on lock_user */
+ if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
+ /* FIXME - should this return an error rather than just fail? */
+ return;
+ memcpy(buf, p, l);
+ unlock_user(p, addr, 0);
+ }
+ len -= l;
+ buf += l;
+ addr += l;
+ }
+}
+
+#else
+void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
+ int len, int is_write)
+{
+ int l, io_index;
+ uint8_t *ptr;
+ uint32_t val;
+ target_phys_addr_t page;
+ unsigned long pd;
+ PhysPageDesc *p;
+
+ while (len > 0) {
+ page = addr & TARGET_PAGE_MASK;
+ l = (page + TARGET_PAGE_SIZE) - addr;
+ if (l > len)
+ l = len;
+ p = phys_page_find(page >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if (is_write) {
+ if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ /* XXX: could force cpu_single_env to NULL to avoid
+ potential bugs */
+ if (l >= 4 && ((addr & 3) == 0)) {
+ /* 32 bit write access */
+ val = ldl_p(buf);
+ io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
+ l = 4;
+ } else if (l >= 2 && ((addr & 1) == 0)) {
+ /* 16 bit write access */
+ val = lduw_p(buf);
+ io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
+ l = 2;
+ } else {
+ /* 8 bit write access */
+ val = ldub_p(buf);
+ io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
+ l = 1;
+ }
+ } else {
+ unsigned long addr1;
+ addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ /* RAM case */
+ ptr = phys_ram_base + addr1;
+ memcpy(ptr, buf, l);
+ if (!cpu_physical_memory_is_dirty(addr1)) {
+ /* invalidate code */
+ tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
+ /* set dirty bit */
+ phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
+ (0xff & ~CODE_DIRTY_FLAG);
+ }
+ }
+ } else {
+ if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
+ !(pd & IO_MEM_ROMD)) {
+ /* I/O case */
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ if (l >= 4 && ((addr & 3) == 0)) {
+ /* 32 bit read access */
+ val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
+ stl_p(buf, val);
+ l = 4;
+ } else if (l >= 2 && ((addr & 1) == 0)) {
+ /* 16 bit read access */
+ val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
+ stw_p(buf, val);
+ l = 2;
+ } else {
+ /* 8 bit read access */
+ val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
+ stb_p(buf, val);
+ l = 1;
+ }
+ } else {
+ /* RAM case */
+ ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
+ (addr & ~TARGET_PAGE_MASK);
+ memcpy(buf, ptr, l);
+ }
+ }
+ len -= l;
+ buf += l;
+ addr += l;
+ }
+}
+
+/* used for ROM loading : can write in RAM and ROM */
+void cpu_physical_memory_write_rom(target_phys_addr_t addr,
+ const uint8_t *buf, int len)
+{
+ int l;
+ uint8_t *ptr;
+ target_phys_addr_t page;
+ unsigned long pd;
+ PhysPageDesc *p;
+
+ while (len > 0) {
+ page = addr & TARGET_PAGE_MASK;
+ l = (page + TARGET_PAGE_SIZE) - addr;
+ if (l > len)
+ l = len;
+ p = phys_page_find(page >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
+ (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
+ !(pd & IO_MEM_ROMD)) {
+ /* do nothing */
+ } else {
+ unsigned long addr1;
+ addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ /* ROM/RAM case */
+ ptr = phys_ram_base + addr1;
+ memcpy(ptr, buf, l);
+ }
+ len -= l;
+ buf += l;
+ addr += l;
+ }
+}
+
+
+/* warning: addr must be aligned */
+uint32_t ldl_phys(target_phys_addr_t addr)
+{
+ int io_index;
+ uint8_t *ptr;
+ uint32_t val;
+ unsigned long pd;
+ PhysPageDesc *p;
+
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
+ !(pd & IO_MEM_ROMD)) {
+ /* I/O case */
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
+ } else {
+ /* RAM case */
+ ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
+ (addr & ~TARGET_PAGE_MASK);
+ val = ldl_p(ptr);
+ }
+ return val;
+}
+
+/* warning: addr must be aligned */
+uint64_t ldq_phys(target_phys_addr_t addr)
+{
+ int io_index;
+ uint8_t *ptr;
+ uint64_t val;
+ unsigned long pd;
+ PhysPageDesc *p;
+
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
+ !(pd & IO_MEM_ROMD)) {
+ /* I/O case */
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+#ifdef TARGET_WORDS_BIGENDIAN
+ val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
+ val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
+#else
+ val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
+ val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
+#endif
+ } else {
+ /* RAM case */
+ ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
+ (addr & ~TARGET_PAGE_MASK);
+ val = ldq_p(ptr);
+ }
+ return val;
+}
+
+/* XXX: optimize */
+uint32_t ldub_phys(target_phys_addr_t addr)
+{
+ uint8_t val;
+ cpu_physical_memory_read(addr, &val, 1);
+ return val;
+}
+
+/* XXX: optimize */
+uint32_t lduw_phys(target_phys_addr_t addr)
+{
+ uint16_t val;
+ cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
+ return tswap16(val);
+}
+
+/* warning: addr must be aligned. The ram page is not masked as dirty
+ and the code inside is not invalidated. It is useful if the dirty
+ bits are used to track modified PTEs */
+void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
+{
+ int io_index;
+ uint8_t *ptr;
+ unsigned long pd;
+ PhysPageDesc *p;
+
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
+ } else {
+ ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
+ (addr & ~TARGET_PAGE_MASK);
+ stl_p(ptr, val);
+ }
+}
+
+void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
+{
+ int io_index;
+ uint8_t *ptr;
+ unsigned long pd;
+ PhysPageDesc *p;
+
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+#ifdef TARGET_WORDS_BIGENDIAN
+ io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
+ io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
+#else
+ io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
+ io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
+#endif
+ } else {
+ ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
+ (addr & ~TARGET_PAGE_MASK);
+ stq_p(ptr, val);
+ }
+}
+
+/* warning: addr must be aligned */
+void stl_phys(target_phys_addr_t addr, uint32_t val)
+{
+ int io_index;
+ uint8_t *ptr;
+ unsigned long pd;
+ PhysPageDesc *p;
+
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
+ } else {
+ unsigned long addr1;
+ addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ /* RAM case */
+ ptr = phys_ram_base + addr1;
+ stl_p(ptr, val);
+ if (!cpu_physical_memory_is_dirty(addr1)) {
+ /* invalidate code */
+ tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
+ /* set dirty bit */
+ phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
+ (0xff & ~CODE_DIRTY_FLAG);
+ }
+ }
+}
+
+/* XXX: optimize */
+void stb_phys(target_phys_addr_t addr, uint32_t val)
+{
+ uint8_t v = val;
+ cpu_physical_memory_write(addr, &v, 1);
+}
+
+/* XXX: optimize */
+void stw_phys(target_phys_addr_t addr, uint32_t val)
+{
+ uint16_t v = tswap16(val);
+ cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
+}
+
+/* XXX: optimize */
+void stq_phys(target_phys_addr_t addr, uint64_t val)
+{
+ val = tswap64(val);
+ cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
+}
+
+#endif
+
+/* virtual memory access for debug */
+int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
+ uint8_t *buf, int len, int is_write)
+{
+ int l;
+ target_phys_addr_t phys_addr;
+ target_ulong page;
+
+ while (len > 0) {
+ page = addr & TARGET_PAGE_MASK;
+ phys_addr = cpu_get_phys_page_debug(env, page);
+ /* if no physical page mapped, return an error */
+ if (phys_addr == -1)
+ return -1;
+ l = (page + TARGET_PAGE_SIZE) - addr;
+ if (l > len)
+ l = len;
+ cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
+ buf, l, is_write);
+ len -= l;
+ buf += l;
+ addr += l;
+ }
+ return 0;
+}
+
+/* in deterministic execution mode, instructions doing device I/Os
+ must be at the end of the TB */
+void cpu_io_recompile(CPUState *env, void *retaddr)
+{
+ TranslationBlock *tb;
+ uint32_t n, cflags;
+ target_ulong pc, cs_base;
+ uint64_t flags;
+
+ tb = tb_find_pc((unsigned long)retaddr);
+ if (!tb) {
+ cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
+ retaddr);
+ }
+ n = env->icount_decr.u16.low + tb->icount;
+ cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
+ /* Calculate how many instructions had been executed before the fault
+ occurred. */
+ n = n - env->icount_decr.u16.low;
+ /* Generate a new TB ending on the I/O insn. */
+ n++;
+ /* On MIPS and SH, delay slot instructions can only be restarted if
+ they were already the first instruction in the TB. If this is not
+ the first instruction in a TB then re-execute the preceding
+ branch. */
+#if defined(TARGET_MIPS)
+ if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
+ env->active_tc.PC -= 4;
+ env->icount_decr.u16.low++;
+ env->hflags &= ~MIPS_HFLAG_BMASK;
+ }
+#elif defined(TARGET_SH4)
+ if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
+ && n > 1) {
+ env->pc -= 2;
+ env->icount_decr.u16.low++;
+ env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
+ }
+#endif
+ /* This should never happen. */
+ if (n > CF_COUNT_MASK)
+ cpu_abort(env, "TB too big during recompile");
+
+ cflags = n | CF_LAST_IO;
+ pc = tb->pc;
+ cs_base = tb->cs_base;
+ flags = tb->flags;
+ tb_phys_invalidate(tb, -1);
+ /* FIXME: In theory this could raise an exception. In practice
+ we have already translated the block once so it's probably ok. */
+ tb_gen_code(env, pc, cs_base, flags, cflags);
+ /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
+ the first in the TB) then we end up generating a whole new TB and
+ repeating the fault, which is horribly inefficient.
+ Better would be to execute just this insn uncached, or generate a
+ second new TB. */
+ cpu_resume_from_signal(env, NULL);
+}
+
+void dump_exec_info(FILE *f,
+ int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
+{
+ int i, target_code_size, max_target_code_size;
+ int direct_jmp_count, direct_jmp2_count, cross_page;
+ TranslationBlock *tb;
+
+ target_code_size = 0;
+ max_target_code_size = 0;
+ cross_page = 0;
+ direct_jmp_count = 0;
+ direct_jmp2_count = 0;
+ for(i = 0; i < nb_tbs; i++) {
+ tb = &tbs[i];
+ target_code_size += tb->size;
+ if (tb->size > max_target_code_size)
+ max_target_code_size = tb->size;
+ if (tb->page_addr[1] != -1)
+ cross_page++;
+ if (tb->tb_next_offset[0] != 0xffff) {
+ direct_jmp_count++;
+ if (tb->tb_next_offset[1] != 0xffff) {
+ direct_jmp2_count++;
+ }
+ }
+ }
+ /* XXX: avoid using doubles ? */
+ cpu_fprintf(f, "Translation buffer state:\n");
+ cpu_fprintf(f, "gen code size %ld/%ld\n",
+ code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
+ cpu_fprintf(f, "TB count %d/%d\n",
+ nb_tbs, code_gen_max_blocks);
+ cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
+ nb_tbs ? target_code_size / nb_tbs : 0,
+ max_target_code_size);
+ cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
+ nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
+ target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
+ cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
+ cross_page,
+ nb_tbs ? (cross_page * 100) / nb_tbs : 0);
+ cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
+ direct_jmp_count,
+ nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
+ direct_jmp2_count,
+ nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
+ cpu_fprintf(f, "\nStatistics:\n");
+ cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
+ cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
+ cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
+ tcg_dump_info(f, cpu_fprintf);
+}
+
+#if !defined(CONFIG_USER_ONLY)
+
+#define MMUSUFFIX _cmmu
+#define GETPC() NULL
+#define env cpu_single_env
+#define SOFTMMU_CODE_ACCESS
+
+#define SHIFT 0
+#include "softmmu_template.h"
+
+#define SHIFT 1
+#include "softmmu_template.h"
+
+#define SHIFT 2
+#include "softmmu_template.h"
+
+#define SHIFT 3
+#include "softmmu_template.h"
+
+#undef env
+
+#endif