aboutsummaryrefslogtreecommitdiffstats
path: root/fpu
diff options
context:
space:
mode:
authorDavid 'Digit' Turner <digit@android.com>2011-05-10 12:59:13 +0200
committerDavid 'Digit' Turner <digit@android.com>2011-06-01 17:08:17 +0200
commitbfec547677ddf2164ffd49a34c3ace2a41c938ad (patch)
treebffda26f99126ed94f1fa689a7d9142583170d3c /fpu
parent9bfb3d508627076720224208c299c05c25e63792 (diff)
downloadexternal_qemu-bfec547677ddf2164ffd49a34c3ace2a41c938ad.zip
external_qemu-bfec547677ddf2164ffd49a34c3ace2a41c938ad.tar.gz
external_qemu-bfec547677ddf2164ffd49a34c3ace2a41c938ad.tar.bz2
fpu: upstream integrate
Change-Id: Ifadcfe209b1d0891a6a81a60bcc1f0ab76dedc11
Diffstat (limited to 'fpu')
-rw-r--r--fpu/softfloat-macros.h216
-rw-r--r--fpu/softfloat-native.c38
-rw-r--r--fpu/softfloat-native.h69
-rw-r--r--fpu/softfloat-specialize.h662
-rw-r--r--fpu/softfloat.c1398
-rw-r--r--fpu/softfloat.h296
6 files changed, 1888 insertions, 791 deletions
diff --git a/fpu/softfloat-macros.h b/fpu/softfloat-macros.h
index 7838228..e82ce23 100644
--- a/fpu/softfloat-macros.h
+++ b/fpu/softfloat-macros.h
@@ -1,3 +1,8 @@
+/*
+ * QEMU float support macros
+ *
+ * Derived from SoftFloat.
+ */
/*============================================================================
@@ -31,6 +36,17 @@ these four paragraphs for those parts of this code that are retained.
=============================================================================*/
/*----------------------------------------------------------------------------
+| This macro tests for minimum version of the GNU C compiler.
+*----------------------------------------------------------------------------*/
+#if defined(__GNUC__) && defined(__GNUC_MINOR__)
+# define SOFTFLOAT_GNUC_PREREQ(maj, min) \
+ ((__GNUC__ << 16) + __GNUC_MINOR__ >= ((maj) << 16) + (min))
+#else
+# define SOFTFLOAT_GNUC_PREREQ(maj, min) 0
+#endif
+
+
+/*----------------------------------------------------------------------------
| Shifts `a' right by the number of bits given in `count'. If any nonzero
| bits are shifted off, they are ``jammed'' into the least significant bit of
| the result by setting the least significant bit to 1. The value of `count'
@@ -39,9 +55,9 @@ these four paragraphs for those parts of this code that are retained.
| The result is stored in the location pointed to by `zPtr'.
*----------------------------------------------------------------------------*/
-INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
+INLINE void shift32RightJamming( uint32_t a, int16 count, uint32_t *zPtr )
{
- bits32 z;
+ uint32_t z;
if ( count == 0 ) {
z = a;
@@ -65,9 +81,9 @@ INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
| The result is stored in the location pointed to by `zPtr'.
*----------------------------------------------------------------------------*/
-INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr )
+INLINE void shift64RightJamming( uint64_t a, int16 count, uint64_t *zPtr )
{
- bits64 z;
+ uint64_t z;
if ( count == 0 ) {
z = a;
@@ -101,9 +117,9 @@ INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr )
INLINE void
shift64ExtraRightJamming(
- bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
+ uint64_t a0, uint64_t a1, int16 count, uint64_t *z0Ptr, uint64_t *z1Ptr )
{
- bits64 z0, z1;
+ uint64_t z0, z1;
int8 negCount = ( - count ) & 63;
if ( count == 0 ) {
@@ -138,9 +154,9 @@ INLINE void
INLINE void
shift128Right(
- bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
+ uint64_t a0, uint64_t a1, int16 count, uint64_t *z0Ptr, uint64_t *z1Ptr )
{
- bits64 z0, z1;
+ uint64_t z0, z1;
int8 negCount = ( - count ) & 63;
if ( count == 0 ) {
@@ -173,9 +189,9 @@ INLINE void
INLINE void
shift128RightJamming(
- bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
+ uint64_t a0, uint64_t a1, int16 count, uint64_t *z0Ptr, uint64_t *z1Ptr )
{
- bits64 z0, z1;
+ uint64_t z0, z1;
int8 negCount = ( - count ) & 63;
if ( count == 0 ) {
@@ -224,16 +240,16 @@ INLINE void
INLINE void
shift128ExtraRightJamming(
- bits64 a0,
- bits64 a1,
- bits64 a2,
+ uint64_t a0,
+ uint64_t a1,
+ uint64_t a2,
int16 count,
- bits64 *z0Ptr,
- bits64 *z1Ptr,
- bits64 *z2Ptr
+ uint64_t *z0Ptr,
+ uint64_t *z1Ptr,
+ uint64_t *z2Ptr
)
{
- bits64 z0, z1, z2;
+ uint64_t z0, z1, z2;
int8 negCount = ( - count ) & 63;
if ( count == 0 ) {
@@ -282,7 +298,7 @@ INLINE void
INLINE void
shortShift128Left(
- bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
+ uint64_t a0, uint64_t a1, int16 count, uint64_t *z0Ptr, uint64_t *z1Ptr )
{
*z1Ptr = a1<<count;
@@ -301,16 +317,16 @@ INLINE void
INLINE void
shortShift192Left(
- bits64 a0,
- bits64 a1,
- bits64 a2,
+ uint64_t a0,
+ uint64_t a1,
+ uint64_t a2,
int16 count,
- bits64 *z0Ptr,
- bits64 *z1Ptr,
- bits64 *z2Ptr
+ uint64_t *z0Ptr,
+ uint64_t *z1Ptr,
+ uint64_t *z2Ptr
)
{
- bits64 z0, z1, z2;
+ uint64_t z0, z1, z2;
int8 negCount;
z2 = a2<<count;
@@ -336,9 +352,9 @@ INLINE void
INLINE void
add128(
- bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
+ uint64_t a0, uint64_t a1, uint64_t b0, uint64_t b1, uint64_t *z0Ptr, uint64_t *z1Ptr )
{
- bits64 z1;
+ uint64_t z1;
z1 = a1 + b1;
*z1Ptr = z1;
@@ -356,18 +372,18 @@ INLINE void
INLINE void
add192(
- bits64 a0,
- bits64 a1,
- bits64 a2,
- bits64 b0,
- bits64 b1,
- bits64 b2,
- bits64 *z0Ptr,
- bits64 *z1Ptr,
- bits64 *z2Ptr
+ uint64_t a0,
+ uint64_t a1,
+ uint64_t a2,
+ uint64_t b0,
+ uint64_t b1,
+ uint64_t b2,
+ uint64_t *z0Ptr,
+ uint64_t *z1Ptr,
+ uint64_t *z2Ptr
)
{
- bits64 z0, z1, z2;
+ uint64_t z0, z1, z2;
int8 carry0, carry1;
z2 = a2 + b2;
@@ -394,7 +410,7 @@ INLINE void
INLINE void
sub128(
- bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
+ uint64_t a0, uint64_t a1, uint64_t b0, uint64_t b1, uint64_t *z0Ptr, uint64_t *z1Ptr )
{
*z1Ptr = a1 - b1;
@@ -412,18 +428,18 @@ INLINE void
INLINE void
sub192(
- bits64 a0,
- bits64 a1,
- bits64 a2,
- bits64 b0,
- bits64 b1,
- bits64 b2,
- bits64 *z0Ptr,
- bits64 *z1Ptr,
- bits64 *z2Ptr
+ uint64_t a0,
+ uint64_t a1,
+ uint64_t a2,
+ uint64_t b0,
+ uint64_t b1,
+ uint64_t b2,
+ uint64_t *z0Ptr,
+ uint64_t *z1Ptr,
+ uint64_t *z2Ptr
)
{
- bits64 z0, z1, z2;
+ uint64_t z0, z1, z2;
int8 borrow0, borrow1;
z2 = a2 - b2;
@@ -446,21 +462,21 @@ INLINE void
| `z0Ptr' and `z1Ptr'.
*----------------------------------------------------------------------------*/
-INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr )
+INLINE void mul64To128( uint64_t a, uint64_t b, uint64_t *z0Ptr, uint64_t *z1Ptr )
{
- bits32 aHigh, aLow, bHigh, bLow;
- bits64 z0, zMiddleA, zMiddleB, z1;
+ uint32_t aHigh, aLow, bHigh, bLow;
+ uint64_t z0, zMiddleA, zMiddleB, z1;
aLow = a;
aHigh = a>>32;
bLow = b;
bHigh = b>>32;
- z1 = ( (bits64) aLow ) * bLow;
- zMiddleA = ( (bits64) aLow ) * bHigh;
- zMiddleB = ( (bits64) aHigh ) * bLow;
- z0 = ( (bits64) aHigh ) * bHigh;
+ z1 = ( (uint64_t) aLow ) * bLow;
+ zMiddleA = ( (uint64_t) aLow ) * bHigh;
+ zMiddleB = ( (uint64_t) aHigh ) * bLow;
+ z0 = ( (uint64_t) aHigh ) * bHigh;
zMiddleA += zMiddleB;
- z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 );
+ z0 += ( ( (uint64_t) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 );
zMiddleA <<= 32;
z1 += zMiddleA;
z0 += ( z1 < zMiddleA );
@@ -478,15 +494,15 @@ INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr )
INLINE void
mul128By64To192(
- bits64 a0,
- bits64 a1,
- bits64 b,
- bits64 *z0Ptr,
- bits64 *z1Ptr,
- bits64 *z2Ptr
+ uint64_t a0,
+ uint64_t a1,
+ uint64_t b,
+ uint64_t *z0Ptr,
+ uint64_t *z1Ptr,
+ uint64_t *z2Ptr
)
{
- bits64 z0, z1, z2, more1;
+ uint64_t z0, z1, z2, more1;
mul64To128( a1, b, &z1, &z2 );
mul64To128( a0, b, &z0, &more1 );
@@ -506,18 +522,18 @@ INLINE void
INLINE void
mul128To256(
- bits64 a0,
- bits64 a1,
- bits64 b0,
- bits64 b1,
- bits64 *z0Ptr,
- bits64 *z1Ptr,
- bits64 *z2Ptr,
- bits64 *z3Ptr
+ uint64_t a0,
+ uint64_t a1,
+ uint64_t b0,
+ uint64_t b1,
+ uint64_t *z0Ptr,
+ uint64_t *z1Ptr,
+ uint64_t *z2Ptr,
+ uint64_t *z3Ptr
)
{
- bits64 z0, z1, z2, z3;
- bits64 more1, more2;
+ uint64_t z0, z1, z2, z3;
+ uint64_t more1, more2;
mul64To128( a1, b1, &z2, &z3 );
mul64To128( a1, b0, &z1, &more2 );
@@ -543,18 +559,18 @@ INLINE void
| unsigned integer is returned.
*----------------------------------------------------------------------------*/
-static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b )
+static uint64_t estimateDiv128To64( uint64_t a0, uint64_t a1, uint64_t b )
{
- bits64 b0, b1;
- bits64 rem0, rem1, term0, term1;
- bits64 z;
+ uint64_t b0, b1;
+ uint64_t rem0, rem1, term0, term1;
+ uint64_t z;
if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF );
b0 = b>>32;
z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32;
mul64To128( b, z, &term0, &term1 );
sub128( a0, a1, term0, term1, &rem0, &rem1 );
- while ( ( (sbits64) rem0 ) < 0 ) {
+ while ( ( (int64_t) rem0 ) < 0 ) {
z -= LIT64( 0x100000000 );
b1 = b<<32;
add128( rem0, rem1, b0, b1, &rem0, &rem1 );
@@ -575,18 +591,18 @@ static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b )
| value.
*----------------------------------------------------------------------------*/
-static bits32 estimateSqrt32( int16 aExp, bits32 a )
+static uint32_t estimateSqrt32( int16 aExp, uint32_t a )
{
- static const bits16 sqrtOddAdjustments[] = {
+ static const uint16_t sqrtOddAdjustments[] = {
0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
};
- static const bits16 sqrtEvenAdjustments[] = {
+ static const uint16_t sqrtEvenAdjustments[] = {
0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
};
int8 index;
- bits32 z;
+ uint32_t z;
index = ( a>>27 ) & 15;
if ( aExp & 1 ) {
@@ -598,9 +614,9 @@ static bits32 estimateSqrt32( int16 aExp, bits32 a )
z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ (int)index ];
z = a / z + z;
z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
- if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
+ if ( z <= a ) return (uint32_t) ( ( (int32_t) a )>>1 );
}
- return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 );
+ return ( (uint32_t) ( ( ( (uint64_t) a )<<31 ) / z ) ) + ( z>>1 );
}
@@ -609,8 +625,15 @@ static bits32 estimateSqrt32( int16 aExp, bits32 a )
| `a'. If `a' is zero, 32 is returned.
*----------------------------------------------------------------------------*/
-static int8 countLeadingZeros32( bits32 a )
+static int8 countLeadingZeros32( uint32_t a )
{
+#if SOFTFLOAT_GNUC_PREREQ(3, 4)
+ if (a) {
+ return __builtin_clz(a);
+ } else {
+ return 32;
+ }
+#else
static const int8 countLeadingZerosHigh[] = {
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
@@ -642,7 +665,7 @@ static int8 countLeadingZeros32( bits32 a )
}
shiftCount += countLeadingZerosHigh[ a>>24 ];
return shiftCount;
-
+#endif
}
/*----------------------------------------------------------------------------
@@ -650,12 +673,19 @@ static int8 countLeadingZeros32( bits32 a )
| `a'. If `a' is zero, 64 is returned.
*----------------------------------------------------------------------------*/
-static int8 countLeadingZeros64( bits64 a )
+static int8 countLeadingZeros64( uint64_t a )
{
+#if SOFTFLOAT_GNUC_PREREQ(3, 4)
+ if (a) {
+ return __builtin_clzll(a);
+ } else {
+ return 64;
+ }
+#else
int8 shiftCount;
shiftCount = 0;
- if ( a < ( (bits64) 1 )<<32 ) {
+ if ( a < ( (uint64_t) 1 )<<32 ) {
shiftCount += 32;
}
else {
@@ -663,7 +693,7 @@ static int8 countLeadingZeros64( bits64 a )
}
shiftCount += countLeadingZeros32( a );
return shiftCount;
-
+#endif
}
/*----------------------------------------------------------------------------
@@ -672,7 +702,7 @@ static int8 countLeadingZeros64( bits64 a )
| Otherwise, returns 0.
*----------------------------------------------------------------------------*/
-INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
+INLINE flag eq128( uint64_t a0, uint64_t a1, uint64_t b0, uint64_t b1 )
{
return ( a0 == b0 ) && ( a1 == b1 );
@@ -685,7 +715,7 @@ INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
| Otherwise, returns 0.
*----------------------------------------------------------------------------*/
-INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
+INLINE flag le128( uint64_t a0, uint64_t a1, uint64_t b0, uint64_t b1 )
{
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
@@ -698,7 +728,7 @@ INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
| returns 0.
*----------------------------------------------------------------------------*/
-INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
+INLINE flag lt128( uint64_t a0, uint64_t a1, uint64_t b0, uint64_t b1 )
{
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
@@ -711,7 +741,7 @@ INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
| Otherwise, returns 0.
*----------------------------------------------------------------------------*/
-INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
+INLINE flag ne128( uint64_t a0, uint64_t a1, uint64_t b0, uint64_t b1 )
{
return ( a0 != b0 ) || ( a1 != b1 );
diff --git a/fpu/softfloat-native.c b/fpu/softfloat-native.c
index 049c830..8848651 100644
--- a/fpu/softfloat-native.c
+++ b/fpu/softfloat-native.c
@@ -254,7 +254,7 @@ int float32_is_signaling_nan( float32 a1)
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
}
-int float32_is_nan( float32 a1 )
+int float32_is_quiet_nan( float32 a1 )
{
float32u u;
uint64_t a;
@@ -263,6 +263,15 @@ int float32_is_nan( float32 a1 )
return ( 0xFF800000 < ( a<<1 ) );
}
+int float32_is_any_nan( float32 a1 )
+{
+ float32u u;
+ uint32_t a;
+ u.f = a1;
+ a = u.i;
+ return (a & ~(1 << 31)) > 0x7f800000U;
+}
+
/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision conversion routines.
*----------------------------------------------------------------------------*/
@@ -411,15 +420,25 @@ int float64_is_signaling_nan( float64 a1)
}
-int float64_is_nan( float64 a1 )
+int float64_is_quiet_nan( float64 a1 )
{
float64u u;
uint64_t a;
u.f = a1;
a = u.i;
- return ( LIT64( 0xFFF0000000000000 ) < (bits64) ( a<<1 ) );
+ return ( LIT64( 0xFFF0000000000000 ) < (uint64_t) ( a<<1 ) );
+
+}
+
+int float64_is_any_nan( float64 a1 )
+{
+ float64u u;
+ uint64_t a;
+ u.f = a1;
+ a = u.i;
+ return (a & ~(1ULL << 63)) > LIT64 (0x7FF0000000000000 );
}
#ifdef FLOATX80
@@ -500,15 +519,22 @@ int floatx80_is_signaling_nan( floatx80 a1)
aLow = u.i.low & ~ LIT64( 0x4000000000000000 );
return
( ( u.i.high & 0x7FFF ) == 0x7FFF )
- && (bits64) ( aLow<<1 )
+ && (uint64_t) ( aLow<<1 )
&& ( u.i.low == aLow );
}
-int floatx80_is_nan( floatx80 a1 )
+int floatx80_is_quiet_nan( floatx80 a1 )
+{
+ floatx80u u;
+ u.f = a1;
+ return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (uint64_t) ( u.i.low<<1 );
+}
+
+int floatx80_is_any_nan( floatx80 a1 )
{
floatx80u u;
u.f = a1;
- return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
+ return ((u.i.high & 0x7FFF) == 0x7FFF) && ( u.i.low<<1 );
}
#endif
diff --git a/fpu/softfloat-native.h b/fpu/softfloat-native.h
index 6da0bcb..6afb74a 100644
--- a/fpu/softfloat-native.h
+++ b/fpu/softfloat-native.h
@@ -172,6 +172,15 @@ float128 int64_to_float128( int64_t STATUS_PARAM);
#endif
/*----------------------------------------------------------------------------
+| Software IEC/IEEE single-precision conversion constants.
+*----------------------------------------------------------------------------*/
+#define float32_zero (0.0)
+#define float32_one (1.0)
+#define float32_ln2 (0.6931471)
+#define float32_pi (3.1415926)
+#define float32_half (0.5)
+
+/*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision conversion routines.
*----------------------------------------------------------------------------*/
int float32_to_int32( float32 STATUS_PARAM);
@@ -210,7 +219,7 @@ INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM)
}
float32 float32_rem( float32, float32 STATUS_PARAM);
float32 float32_sqrt( float32 STATUS_PARAM);
-INLINE int float32_eq( float32 a, float32 b STATUS_PARAM)
+INLINE int float32_eq_quiet( float32 a, float32 b STATUS_PARAM)
{
return a == b;
}
@@ -222,7 +231,7 @@ INLINE int float32_lt( float32 a, float32 b STATUS_PARAM)
{
return a < b;
}
-INLINE int float32_eq_signaling( float32 a, float32 b STATUS_PARAM)
+INLINE int float32_eq( float32 a, float32 b STATUS_PARAM)
{
return a <= b && a >= b;
}
@@ -237,12 +246,16 @@ INLINE int float32_lt_quiet( float32 a, float32 b STATUS_PARAM)
INLINE int float32_unordered( float32 a, float32 b STATUS_PARAM)
{
return isunordered(a, b);
-
+}
+INLINE int float32_unordered_quiet( float32 a, float32 b STATUS_PARAM)
+{
+ return isunordered(a, b);
}
int float32_compare( float32, float32 STATUS_PARAM );
int float32_compare_quiet( float32, float32 STATUS_PARAM );
int float32_is_signaling_nan( float32 );
-int float32_is_nan( float32 );
+int float32_is_quiet_nan( float32 );
+int float32_is_any_nan( float32 );
INLINE float32 float32_abs(float32 a)
{
@@ -271,12 +284,21 @@ INLINE float32 float32_is_zero(float32 a)
return fpclassify(a) == FP_ZERO;
}
-INLINE float32 float32_scalbn(float32 a, int n)
+INLINE float32 float32_scalbn(float32 a, int n STATUS_PARAM)
{
return scalbnf(a, n);
}
/*----------------------------------------------------------------------------
+| Software IEC/IEEE double-precision conversion constants.
+*----------------------------------------------------------------------------*/
+#define float64_zero (0.0)
+#define float64_one (1.0)
+#define float64_ln2 (0.693147180559945)
+#define float64_pi (3.141592653589793)
+#define float64_half (0.5)
+
+/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision conversion routines.
*----------------------------------------------------------------------------*/
int float64_to_int32( float64 STATUS_PARAM );
@@ -318,7 +340,7 @@ INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM)
}
float64 float64_rem( float64, float64 STATUS_PARAM );
float64 float64_sqrt( float64 STATUS_PARAM );
-INLINE int float64_eq( float64 a, float64 b STATUS_PARAM)
+INLINE int float64_eq_quiet( float64 a, float64 b STATUS_PARAM)
{
return a == b;
}
@@ -330,7 +352,7 @@ INLINE int float64_lt( float64 a, float64 b STATUS_PARAM)
{
return a < b;
}
-INLINE int float64_eq_signaling( float64 a, float64 b STATUS_PARAM)
+INLINE int float64_eq( float64 a, float64 b STATUS_PARAM)
{
return a <= b && a >= b;
}
@@ -346,12 +368,16 @@ INLINE int float64_lt_quiet( float64 a, float64 b STATUS_PARAM)
INLINE int float64_unordered( float64 a, float64 b STATUS_PARAM)
{
return isunordered(a, b);
-
+}
+INLINE int float64_unordered_quiet( float64 a, float64 b STATUS_PARAM)
+{
+ return isunordered(a, b);
}
int float64_compare( float64, float64 STATUS_PARAM );
int float64_compare_quiet( float64, float64 STATUS_PARAM );
int float64_is_signaling_nan( float64 );
-int float64_is_nan( float64 );
+int float64_is_any_nan( float64 );
+int float64_is_quiet_nan( float64 );
INLINE float64 float64_abs(float64 a)
{
@@ -380,7 +406,7 @@ INLINE float64 float64_is_zero(float64 a)
return fpclassify(a) == FP_ZERO;
}
-INLINE float64 float64_scalbn(float64 a, int n)
+INLINE float64 float64_scalbn(float64 a, int n STATUS_PARAM)
{
return scalbn(a, n);
}
@@ -388,6 +414,15 @@ INLINE float64 float64_scalbn(float64 a, int n)
#ifdef FLOATX80
/*----------------------------------------------------------------------------
+| Software IEC/IEEE extended double-precision conversion constants.
+*----------------------------------------------------------------------------*/
+#define floatx80_zero (0.0L)
+#define floatx80_one (1.0L)
+#define floatx80_ln2 (0.69314718055994530943L)
+#define floatx80_pi (3.14159265358979323851L)
+#define floatx80_half (0.5L)
+
+/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision conversion routines.
*----------------------------------------------------------------------------*/
int floatx80_to_int32( floatx80 STATUS_PARAM );
@@ -422,7 +457,7 @@ INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM)
}
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
-INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM)
+INLINE int floatx80_eq_quiet( floatx80 a, floatx80 b STATUS_PARAM)
{
return a == b;
}
@@ -434,7 +469,7 @@ INLINE int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM)
{
return a < b;
}
-INLINE int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM)
+INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM)
{
return a <= b && a >= b;
}
@@ -450,12 +485,16 @@ INLINE int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM)
INLINE int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM)
{
return isunordered(a, b);
-
+}
+INLINE int floatx80_unordered_quiet( floatx80 a, floatx80 b STATUS_PARAM)
+{
+ return isunordered(a, b);
}
int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
int floatx80_is_signaling_nan( floatx80 );
-int floatx80_is_nan( floatx80 );
+int floatx80_is_quiet_nan( floatx80 );
+int floatx80_is_any_nan( floatx80 );
INLINE floatx80 floatx80_abs(floatx80 a)
{
@@ -484,7 +523,7 @@ INLINE floatx80 floatx80_is_zero(floatx80 a)
return fpclassify(a) == FP_ZERO;
}
-INLINE floatx80 floatx80_scalbn(floatx80 a, int n)
+INLINE floatx80 floatx80_scalbn(floatx80 a, int n STATUS_PARAM)
{
return scalbnl(a, n);
}
diff --git a/fpu/softfloat-specialize.h b/fpu/softfloat-specialize.h
index 8e6aceb..9d68aae 100644
--- a/fpu/softfloat-specialize.h
+++ b/fpu/softfloat-specialize.h
@@ -1,3 +1,8 @@
+/*
+ * QEMU float support
+ *
+ * Derived from SoftFloat.
+ */
/*============================================================================
@@ -30,12 +35,6 @@ these four paragraphs for those parts of this code that are retained.
=============================================================================*/
-#if defined(TARGET_MIPS) || defined(TARGET_HPPA)
-#define SNAN_BIT_IS_ONE 1
-#else
-#define SNAN_BIT_IS_ONE 0
-#endif
-
/*----------------------------------------------------------------------------
| Raises the exceptions specified by `flags'. Floating-point traps can be
| defined here if desired. It is currently not possible for such a trap
@@ -53,36 +52,111 @@ void float_raise( int8 flags STATUS_PARAM )
*----------------------------------------------------------------------------*/
typedef struct {
flag sign;
- bits64 high, low;
+ uint64_t high, low;
} commonNaNT;
/*----------------------------------------------------------------------------
-| The pattern for a default generated single-precision NaN.
+| Returns 1 if the half-precision floating-point value `a' is a quiet
+| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
-#if defined(TARGET_SPARC)
-#define float32_default_nan make_float32(0x7FFFFFFF)
-#elif defined(TARGET_POWERPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
-#define float32_default_nan make_float32(0x7FC00000)
-#elif defined(TARGET_HPPA)
-#define float32_default_nan make_float32(0x7FA00000)
-#elif SNAN_BIT_IS_ONE
-#define float32_default_nan make_float32(0x7FBFFFFF)
+
+int float16_is_quiet_nan(float16 a_)
+{
+ uint16_t a = float16_val(a_);
+#if SNAN_BIT_IS_ONE
+ return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
#else
-#define float32_default_nan make_float32(0xFFC00000)
+ return ((a & ~0x8000) >= 0x7c80);
#endif
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the half-precision floating-point value `a' is a signaling
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+int float16_is_signaling_nan(float16 a_)
+{
+ uint16_t a = float16_val(a_);
+#if SNAN_BIT_IS_ONE
+ return ((a & ~0x8000) >= 0x7c80);
+#else
+ return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
+#endif
+}
+
+/*----------------------------------------------------------------------------
+| Returns a quiet NaN if the half-precision floating point value `a' is a
+| signaling NaN; otherwise returns `a'.
+*----------------------------------------------------------------------------*/
+float16 float16_maybe_silence_nan(float16 a_)
+{
+ if (float16_is_signaling_nan(a_)) {
+#if SNAN_BIT_IS_ONE
+# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
+ return float16_default_nan;
+# else
+# error Rules for silencing a signaling NaN are target-specific
+# endif
+#else
+ uint16_t a = float16_val(a_);
+ a |= (1 << 9);
+ return make_float16(a);
+#endif
+ }
+ return a_;
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the half-precision floating-point NaN
+| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
+| exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT float16ToCommonNaN( float16 a STATUS_PARAM )
+{
+ commonNaNT z;
+
+ if ( float16_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
+ z.sign = float16_val(a) >> 15;
+ z.low = 0;
+ z.high = ((uint64_t) float16_val(a))<<54;
+ return z;
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the half-
+| precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static float16 commonNaNToFloat16(commonNaNT a STATUS_PARAM)
+{
+ uint16_t mantissa = a.high>>54;
+
+ if (STATUS(default_nan_mode)) {
+ return float16_default_nan;
+ }
+
+ if (mantissa) {
+ return make_float16(((((uint16_t) a.sign) << 15)
+ | (0x1F << 10) | mantissa));
+ } else {
+ return float16_default_nan;
+ }
+}
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
-int float32_is_nan( float32 a_ )
+int float32_is_quiet_nan( float32 a_ )
{
uint32_t a = float32_val(a_);
#if SNAN_BIT_IS_ONE
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
#else
- return ( 0xFF800000 <= (bits32) ( a<<1 ) );
+ return ( 0xFF800000 <= (uint32_t) ( a<<1 ) );
#endif
}
@@ -95,13 +169,36 @@ int float32_is_signaling_nan( float32 a_ )
{
uint32_t a = float32_val(a_);
#if SNAN_BIT_IS_ONE
- return ( 0xFF800000 <= (bits32) ( a<<1 ) );
+ return ( 0xFF800000 <= (uint32_t) ( a<<1 ) );
#else
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
#endif
}
/*----------------------------------------------------------------------------
+| Returns a quiet NaN if the single-precision floating point value `a' is a
+| signaling NaN; otherwise returns `a'.
+*----------------------------------------------------------------------------*/
+
+float32 float32_maybe_silence_nan( float32 a_ )
+{
+ if (float32_is_signaling_nan(a_)) {
+#if SNAN_BIT_IS_ONE
+# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
+ return float32_default_nan;
+# else
+# error Rules for silencing a signaling NaN are target-specific
+# endif
+#else
+ uint32_t a = float32_val(a_);
+ a |= (1 << 22);
+ return make_float32(a);
+#endif
+ }
+ return a_;
+}
+
+/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point NaN
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
| exception is raised.
@@ -114,7 +211,7 @@ static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM )
if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
z.sign = float32_val(a)>>31;
z.low = 0;
- z.high = ( (bits64) float32_val(a) )<<41;
+ z.high = ( (uint64_t) float32_val(a) )<<41;
return z;
}
@@ -123,17 +220,134 @@ static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM )
| precision floating-point format.
*----------------------------------------------------------------------------*/
-static float32 commonNaNToFloat32( commonNaNT a )
+static float32 commonNaNToFloat32( commonNaNT a STATUS_PARAM)
{
- bits32 mantissa = a.high>>41;
+ uint32_t mantissa = a.high>>41;
+
+ if ( STATUS(default_nan_mode) ) {
+ return float32_default_nan;
+ }
+
if ( mantissa )
return make_float32(
- ( ( (bits32) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) );
+ ( ( (uint32_t) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) );
else
return float32_default_nan;
}
/*----------------------------------------------------------------------------
+| Select which NaN to propagate for a two-input operation.
+| IEEE754 doesn't specify all the details of this, so the
+| algorithm is target-specific.
+| The routine is passed various bits of information about the
+| two NaNs and should return 0 to select NaN a and 1 for NaN b.
+| Note that signalling NaNs are always squashed to quiet NaNs
+| by the caller, by calling floatXX_maybe_silence_nan() before
+| returning them.
+|
+| aIsLargerSignificand is only valid if both a and b are NaNs
+| of some kind, and is true if a has the larger significand,
+| or if both a and b have the same significand but a is
+| positive but b is negative. It is only needed for the x87
+| tie-break rule.
+*----------------------------------------------------------------------------*/
+
+#if defined(TARGET_ARM)
+static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
+ flag aIsLargerSignificand)
+{
+ /* ARM mandated NaN propagation rules: take the first of:
+ * 1. A if it is signaling
+ * 2. B if it is signaling
+ * 3. A (quiet)
+ * 4. B (quiet)
+ * A signaling NaN is always quietened before returning it.
+ */
+ if (aIsSNaN) {
+ return 0;
+ } else if (bIsSNaN) {
+ return 1;
+ } else if (aIsQNaN) {
+ return 0;
+ } else {
+ return 1;
+ }
+}
+#elif defined(TARGET_MIPS)
+static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
+ flag aIsLargerSignificand)
+{
+ /* According to MIPS specifications, if one of the two operands is
+ * a sNaN, a new qNaN has to be generated. This is done in
+ * floatXX_maybe_silence_nan(). For qNaN inputs the specifications
+ * says: "When possible, this QNaN result is one of the operand QNaN
+ * values." In practice it seems that most implementations choose
+ * the first operand if both operands are qNaN. In short this gives
+ * the following rules:
+ * 1. A if it is signaling
+ * 2. B if it is signaling
+ * 3. A (quiet)
+ * 4. B (quiet)
+ * A signaling NaN is always silenced before returning it.
+ */
+ if (aIsSNaN) {
+ return 0;
+ } else if (bIsSNaN) {
+ return 1;
+ } else if (aIsQNaN) {
+ return 0;
+ } else {
+ return 1;
+ }
+}
+#elif defined(TARGET_PPC)
+static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
+ flag aIsLargerSignificand)
+{
+ /* PowerPC propagation rules:
+ * 1. A if it sNaN or qNaN
+ * 2. B if it sNaN or qNaN
+ * A signaling NaN is always silenced before returning it.
+ */
+ if (aIsSNaN || aIsQNaN) {
+ return 0;
+ } else {
+ return 1;
+ }
+}
+#else
+static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
+ flag aIsLargerSignificand)
+{
+ /* This implements x87 NaN propagation rules:
+ * SNaN + QNaN => return the QNaN
+ * two SNaNs => return the one with the larger significand, silenced
+ * two QNaNs => return the one with the larger significand
+ * SNaN and a non-NaN => return the SNaN, silenced
+ * QNaN and a non-NaN => return the QNaN
+ *
+ * If we get down to comparing significands and they are the same,
+ * return the NaN with the positive sign bit (if any).
+ */
+ if (aIsSNaN) {
+ if (bIsSNaN) {
+ return aIsLargerSignificand ? 0 : 1;
+ }
+ return bIsQNaN ? 1 : 0;
+ }
+ else if (aIsQNaN) {
+ if (bIsSNaN || !bIsQNaN)
+ return 0;
+ else {
+ return aIsLargerSignificand ? 0 : 1;
+ }
+ } else {
+ return 1;
+ }
+}
+#endif
+
+/*----------------------------------------------------------------------------
| Takes two single-precision floating-point values `a' and `b', one of which
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
| signaling NaN, the invalid exception is raised.
@@ -141,78 +355,52 @@ static float32 commonNaNToFloat32( commonNaNT a )
static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM)
{
- flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
- bits32 av, bv, res;
+ flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
+ flag aIsLargerSignificand;
+ uint32_t av, bv;
- if ( STATUS(default_nan_mode) )
- return float32_default_nan;
-
- aIsNaN = float32_is_nan( a );
+ aIsQuietNaN = float32_is_quiet_nan( a );
aIsSignalingNaN = float32_is_signaling_nan( a );
- bIsNaN = float32_is_nan( b );
+ bIsQuietNaN = float32_is_quiet_nan( b );
bIsSignalingNaN = float32_is_signaling_nan( b );
av = float32_val(a);
bv = float32_val(b);
-#if SNAN_BIT_IS_ONE
- av &= ~0x00400000;
- bv &= ~0x00400000;
-#else
- av |= 0x00400000;
- bv |= 0x00400000;
-#endif
+
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
- if ( aIsSignalingNaN ) {
- if ( bIsSignalingNaN ) goto returnLargerSignificand;
- res = bIsNaN ? bv : av;
- }
- else if ( aIsNaN ) {
- if ( bIsSignalingNaN || ! bIsNaN )
- res = av;
- else {
- returnLargerSignificand:
- if ( (bits32) ( av<<1 ) < (bits32) ( bv<<1 ) )
- res = bv;
- else if ( (bits32) ( bv<<1 ) < (bits32) ( av<<1 ) )
- res = av;
- else
- res = ( av < bv ) ? av : bv;
- }
+
+ if ( STATUS(default_nan_mode) )
+ return float32_default_nan;
+
+ if ((uint32_t)(av<<1) < (uint32_t)(bv<<1)) {
+ aIsLargerSignificand = 0;
+ } else if ((uint32_t)(bv<<1) < (uint32_t)(av<<1)) {
+ aIsLargerSignificand = 1;
+ } else {
+ aIsLargerSignificand = (av < bv) ? 1 : 0;
}
- else {
- res = bv;
+
+ if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
+ aIsLargerSignificand)) {
+ return float32_maybe_silence_nan(b);
+ } else {
+ return float32_maybe_silence_nan(a);
}
- return make_float32(res);
}
/*----------------------------------------------------------------------------
-| The pattern for a default generated double-precision NaN.
-*----------------------------------------------------------------------------*/
-#if defined(TARGET_SPARC)
-#define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF ))
-#elif defined(TARGET_POWERPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
-#define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 ))
-#elif defined(TARGET_HPPA)
-#define float64_default_nan make_float64(LIT64( 0x7FF4000000000000 ))
-#elif SNAN_BIT_IS_ONE
-#define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF ))
-#else
-#define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
-#endif
-
-/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
-int float64_is_nan( float64 a_ )
+int float64_is_quiet_nan( float64 a_ )
{
- bits64 a = float64_val(a_);
+ uint64_t a = float64_val(a_);
#if SNAN_BIT_IS_ONE
return
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
#else
- return ( LIT64( 0xFFF0000000000000 ) <= (bits64) ( a<<1 ) );
+ return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) );
#endif
}
@@ -223,9 +411,9 @@ int float64_is_nan( float64 a_ )
int float64_is_signaling_nan( float64 a_ )
{
- bits64 a = float64_val(a_);
+ uint64_t a = float64_val(a_);
#if SNAN_BIT_IS_ONE
- return ( LIT64( 0xFFF0000000000000 ) <= (bits64) ( a<<1 ) );
+ return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) );
#else
return
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
@@ -234,6 +422,29 @@ int float64_is_signaling_nan( float64 a_ )
}
/*----------------------------------------------------------------------------
+| Returns a quiet NaN if the double-precision floating point value `a' is a
+| signaling NaN; otherwise returns `a'.
+*----------------------------------------------------------------------------*/
+
+float64 float64_maybe_silence_nan( float64 a_ )
+{
+ if (float64_is_signaling_nan(a_)) {
+#if SNAN_BIT_IS_ONE
+# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
+ return float64_default_nan;
+# else
+# error Rules for silencing a signaling NaN are target-specific
+# endif
+#else
+ uint64_t a = float64_val(a_);
+ a |= LIT64( 0x0008000000000000 );
+ return make_float64(a);
+#endif
+ }
+ return a_;
+}
+
+/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point NaN
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
| exception is raised.
@@ -255,13 +466,17 @@ static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM)
| precision floating-point format.
*----------------------------------------------------------------------------*/
-static float64 commonNaNToFloat64( commonNaNT a )
+static float64 commonNaNToFloat64( commonNaNT a STATUS_PARAM)
{
- bits64 mantissa = a.high>>12;
+ uint64_t mantissa = a.high>>12;
+
+ if ( STATUS(default_nan_mode) ) {
+ return float64_default_nan;
+ }
if ( mantissa )
return make_float64(
- ( ( (bits64) a.sign )<<63 )
+ ( ( (uint64_t) a.sign )<<63 )
| LIT64( 0x7FF0000000000000 )
| ( a.high>>12 ));
else
@@ -276,105 +491,108 @@ static float64 commonNaNToFloat64( commonNaNT a )
static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM)
{
- flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
- bits64 av, bv, res;
-
- if ( STATUS(default_nan_mode) )
- return float64_default_nan;
+ flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
+ flag aIsLargerSignificand;
+ uint64_t av, bv;
- aIsNaN = float64_is_nan( a );
+ aIsQuietNaN = float64_is_quiet_nan( a );
aIsSignalingNaN = float64_is_signaling_nan( a );
- bIsNaN = float64_is_nan( b );
+ bIsQuietNaN = float64_is_quiet_nan( b );
bIsSignalingNaN = float64_is_signaling_nan( b );
av = float64_val(a);
bv = float64_val(b);
-#if SNAN_BIT_IS_ONE
- av &= ~LIT64( 0x0008000000000000 );
- bv &= ~LIT64( 0x0008000000000000 );
-#else
- av |= LIT64( 0x0008000000000000 );
- bv |= LIT64( 0x0008000000000000 );
-#endif
+
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
- if ( aIsSignalingNaN ) {
- if ( bIsSignalingNaN ) goto returnLargerSignificand;
- res = bIsNaN ? bv : av;
- }
- else if ( aIsNaN ) {
- if ( bIsSignalingNaN || ! bIsNaN )
- res = av;
- else {
- returnLargerSignificand:
- if ( (bits64) ( av<<1 ) < (bits64) ( bv<<1 ) )
- res = bv;
- else if ( (bits64) ( bv<<1 ) < (bits64) ( av<<1 ) )
- res = av;
- else
- res = ( av < bv ) ? av : bv;
- }
+
+ if ( STATUS(default_nan_mode) )
+ return float64_default_nan;
+
+ if ((uint64_t)(av<<1) < (uint64_t)(bv<<1)) {
+ aIsLargerSignificand = 0;
+ } else if ((uint64_t)(bv<<1) < (uint64_t)(av<<1)) {
+ aIsLargerSignificand = 1;
+ } else {
+ aIsLargerSignificand = (av < bv) ? 1 : 0;
}
- else {
- res = bv;
+
+ if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
+ aIsLargerSignificand)) {
+ return float64_maybe_silence_nan(b);
+ } else {
+ return float64_maybe_silence_nan(a);
}
- return make_float64(res);
}
#ifdef FLOATX80
/*----------------------------------------------------------------------------
-| The pattern for a default generated extended double-precision NaN. The
-| `high' and `low' values hold the most- and least-significant bits,
-| respectively.
-*----------------------------------------------------------------------------*/
-#if SNAN_BIT_IS_ONE
-#define floatx80_default_nan_high 0x7FFF
-#define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF )
-#else
-#define floatx80_default_nan_high 0xFFFF
-#define floatx80_default_nan_low LIT64( 0xC000000000000000 )
-#endif
-
-/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is a
-| quiet NaN; otherwise returns 0.
+| quiet NaN; otherwise returns 0. This slightly differs from the same
+| function for other types as floatx80 has an explicit bit.
*----------------------------------------------------------------------------*/
-int floatx80_is_nan( floatx80 a )
+int floatx80_is_quiet_nan( floatx80 a )
{
#if SNAN_BIT_IS_ONE
- bits64 aLow;
+ uint64_t aLow;
aLow = a.low & ~ LIT64( 0x4000000000000000 );
return
( ( a.high & 0x7FFF ) == 0x7FFF )
- && (bits64) ( aLow<<1 )
+ && (uint64_t) ( aLow<<1 )
&& ( a.low == aLow );
#else
- return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
+ return ( ( a.high & 0x7FFF ) == 0x7FFF )
+ && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
#endif
}
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is a
-| signaling NaN; otherwise returns 0.
+| signaling NaN; otherwise returns 0. This slightly differs from the same
+| function for other types as floatx80 has an explicit bit.
*----------------------------------------------------------------------------*/
int floatx80_is_signaling_nan( floatx80 a )
{
#if SNAN_BIT_IS_ONE
- return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
+ return ( ( a.high & 0x7FFF ) == 0x7FFF )
+ && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
#else
- bits64 aLow;
+ uint64_t aLow;
aLow = a.low & ~ LIT64( 0x4000000000000000 );
return
( ( a.high & 0x7FFF ) == 0x7FFF )
- && (bits64) ( aLow<<1 )
+ && (uint64_t) ( aLow<<1 )
&& ( a.low == aLow );
#endif
}
/*----------------------------------------------------------------------------
+| Returns a quiet NaN if the extended double-precision floating point value
+| `a' is a signaling NaN; otherwise returns `a'.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_maybe_silence_nan( floatx80 a )
+{
+ if (floatx80_is_signaling_nan(a)) {
+#if SNAN_BIT_IS_ONE
+# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
+ a.low = floatx80_default_nan_low;
+ a.high = floatx80_default_nan_high;
+# else
+# error Rules for silencing a signaling NaN are target-specific
+# endif
+#else
+ a.low |= LIT64( 0xC000000000000000 );
+ return a;
+#endif
+ }
+ return a;
+}
+
+/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
| invalid exception is raised.
@@ -385,9 +603,15 @@ static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM)
commonNaNT z;
if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
- z.sign = a.high>>15;
- z.low = 0;
- z.high = a.low;
+ if ( a.low >> 63 ) {
+ z.sign = a.high >> 15;
+ z.low = 0;
+ z.high = a.low << 1;
+ } else {
+ z.sign = floatx80_default_nan_high >> 15;
+ z.low = 0;
+ z.high = floatx80_default_nan_low << 1;
+ }
return z;
}
@@ -396,15 +620,24 @@ static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM)
| double-precision floating-point format.
*----------------------------------------------------------------------------*/
-static floatx80 commonNaNToFloatx80( commonNaNT a )
+static floatx80 commonNaNToFloatx80( commonNaNT a STATUS_PARAM)
{
floatx80 z;
- if (a.high)
- z.low = a.high;
- else
+ if ( STATUS(default_nan_mode) ) {
z.low = floatx80_default_nan_low;
- z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
+ z.high = floatx80_default_nan_high;
+ return z;
+ }
+
+ if (a.high >> 1) {
+ z.low = LIT64( 0x8000000000000000 ) | a.high >> 1;
+ z.high = ( ( (uint16_t) a.sign )<<15 ) | 0x7FFF;
+ } else {
+ z.low = floatx80_default_nan_low;
+ z.high = floatx80_default_nan_high;
+ }
+
return z;
}
@@ -416,7 +649,15 @@ static floatx80 commonNaNToFloatx80( commonNaNT a )
static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM)
{
- flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+ flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
+ flag aIsLargerSignificand;
+
+ aIsQuietNaN = floatx80_is_quiet_nan( a );
+ aIsSignalingNaN = floatx80_is_signaling_nan( a );
+ bIsQuietNaN = floatx80_is_quiet_nan( b );
+ bIsSignalingNaN = floatx80_is_signaling_nan( b );
+
+ if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
if ( STATUS(default_nan_mode) ) {
a.low = floatx80_default_nan_low;
@@ -424,31 +665,19 @@ static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM)
return a;
}
- aIsNaN = floatx80_is_nan( a );
- aIsSignalingNaN = floatx80_is_signaling_nan( a );
- bIsNaN = floatx80_is_nan( b );
- bIsSignalingNaN = floatx80_is_signaling_nan( b );
-#if SNAN_BIT_IS_ONE
- a.low &= ~LIT64( 0xC000000000000000 );
- b.low &= ~LIT64( 0xC000000000000000 );
-#else
- a.low |= LIT64( 0xC000000000000000 );
- b.low |= LIT64( 0xC000000000000000 );
-#endif
- if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
- if ( aIsSignalingNaN ) {
- if ( bIsSignalingNaN ) goto returnLargerSignificand;
- return bIsNaN ? b : a;
+ if (a.low < b.low) {
+ aIsLargerSignificand = 0;
+ } else if (b.low < a.low) {
+ aIsLargerSignificand = 1;
+ } else {
+ aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
}
- else if ( aIsNaN ) {
- if ( bIsSignalingNaN || ! bIsNaN ) return a;
- returnLargerSignificand:
- if ( a.low < b.low ) return b;
- if ( b.low < a.low ) return a;
- return ( a.high < b.high ) ? a : b;
- }
- else {
- return b;
+
+ if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
+ aIsLargerSignificand)) {
+ return floatx80_maybe_silence_nan(b);
+ } else {
+ return floatx80_maybe_silence_nan(a);
}
}
@@ -457,23 +686,11 @@ static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM)
#ifdef FLOAT128
/*----------------------------------------------------------------------------
-| The pattern for a default generated quadruple-precision NaN. The `high' and
-| `low' values hold the most- and least-significant bits, respectively.
-*----------------------------------------------------------------------------*/
-#if SNAN_BIT_IS_ONE
-#define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
-#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
-#else
-#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
-#define float128_default_nan_low LIT64( 0x0000000000000000 )
-#endif
-
-/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
-int float128_is_nan( float128 a )
+int float128_is_quiet_nan( float128 a )
{
#if SNAN_BIT_IS_ONE
return
@@ -481,7 +698,7 @@ int float128_is_nan( float128 a )
&& ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
#else
return
- ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
+ ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) )
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
#endif
}
@@ -495,7 +712,7 @@ int float128_is_signaling_nan( float128 a )
{
#if SNAN_BIT_IS_ONE
return
- ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
+ ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) )
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
#else
return
@@ -505,6 +722,29 @@ int float128_is_signaling_nan( float128 a )
}
/*----------------------------------------------------------------------------
+| Returns a quiet NaN if the quadruple-precision floating point value `a' is
+| a signaling NaN; otherwise returns `a'.
+*----------------------------------------------------------------------------*/
+
+float128 float128_maybe_silence_nan( float128 a )
+{
+ if (float128_is_signaling_nan(a)) {
+#if SNAN_BIT_IS_ONE
+# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
+ a.low = float128_default_nan_low;
+ a.high = float128_default_nan_high;
+# else
+# error Rules for silencing a signaling NaN are target-specific
+# endif
+#else
+ a.high |= LIT64( 0x0000800000000000 );
+ return a;
+#endif
+ }
+ return a;
+}
+
+/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point NaN
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
| exception is raised.
@@ -525,12 +765,18 @@ static commonNaNT float128ToCommonNaN( float128 a STATUS_PARAM)
| precision floating-point format.
*----------------------------------------------------------------------------*/
-static float128 commonNaNToFloat128( commonNaNT a )
+static float128 commonNaNToFloat128( commonNaNT a STATUS_PARAM)
{
float128 z;
+ if ( STATUS(default_nan_mode) ) {
+ z.low = float128_default_nan_low;
+ z.high = float128_default_nan_high;
+ return z;
+ }
+
shift128Right( a.high, a.low, 16, &z.high, &z.low );
- z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 );
+ z.high |= ( ( (uint64_t) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 );
return z;
}
@@ -542,7 +788,15 @@ static float128 commonNaNToFloat128( commonNaNT a )
static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM)
{
- flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+ flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
+ flag aIsLargerSignificand;
+
+ aIsQuietNaN = float128_is_quiet_nan( a );
+ aIsSignalingNaN = float128_is_signaling_nan( a );
+ bIsQuietNaN = float128_is_quiet_nan( b );
+ bIsSignalingNaN = float128_is_signaling_nan( b );
+
+ if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
if ( STATUS(default_nan_mode) ) {
a.low = float128_default_nan_low;
@@ -550,31 +804,19 @@ static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM)
return a;
}
- aIsNaN = float128_is_nan( a );
- aIsSignalingNaN = float128_is_signaling_nan( a );
- bIsNaN = float128_is_nan( b );
- bIsSignalingNaN = float128_is_signaling_nan( b );
-#if SNAN_BIT_IS_ONE
- a.high &= ~LIT64( 0x0000800000000000 );
- b.high &= ~LIT64( 0x0000800000000000 );
-#else
- a.high |= LIT64( 0x0000800000000000 );
- b.high |= LIT64( 0x0000800000000000 );
-#endif
- if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
- if ( aIsSignalingNaN ) {
- if ( bIsSignalingNaN ) goto returnLargerSignificand;
- return bIsNaN ? b : a;
- }
- else if ( aIsNaN ) {
- if ( bIsSignalingNaN || ! bIsNaN ) return a;
- returnLargerSignificand:
- if ( lt128( a.high<<1, a.low, b.high<<1, b.low ) ) return b;
- if ( lt128( b.high<<1, b.low, a.high<<1, a.low ) ) return a;
- return ( a.high < b.high ) ? a : b;
+ if (lt128(a.high<<1, a.low, b.high<<1, b.low)) {
+ aIsLargerSignificand = 0;
+ } else if (lt128(b.high<<1, b.low, a.high<<1, a.low)) {
+ aIsLargerSignificand = 1;
+ } else {
+ aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
}
- else {
- return b;
+
+ if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
+ aIsLargerSignificand)) {
+ return float128_maybe_silence_nan(b);
+ } else {
+ return float128_maybe_silence_nan(a);
}
}
diff --git a/fpu/softfloat.c b/fpu/softfloat.c
index 0b82797..baba1dc 100644
--- a/fpu/softfloat.c
+++ b/fpu/softfloat.c
@@ -1,3 +1,8 @@
+/*
+ * QEMU float support
+ *
+ * Derived from SoftFloat.
+ */
/*============================================================================
@@ -30,8 +35,6 @@ these four paragraphs for those parts of this code that are retained.
=============================================================================*/
-/* FIXME: Flush-To-Zero only effects results. Denormal inputs should also
- be flushed to zero. */
#include "softfloat.h"
/*----------------------------------------------------------------------------
@@ -69,6 +72,33 @@ void set_floatx80_rounding_precision(int val STATUS_PARAM)
#endif
/*----------------------------------------------------------------------------
+| Returns the fraction bits of the half-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE uint32_t extractFloat16Frac(float16 a)
+{
+ return float16_val(a) & 0x3ff;
+}
+
+/*----------------------------------------------------------------------------
+| Returns the exponent bits of the half-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE int16 extractFloat16Exp(float16 a)
+{
+ return (float16_val(a) >> 10) & 0x1f;
+}
+
+/*----------------------------------------------------------------------------
+| Returns the sign bit of the single-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE flag extractFloat16Sign(float16 a)
+{
+ return float16_val(a)>>15;
+}
+
+/*----------------------------------------------------------------------------
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
| and 7, and returns the properly rounded 32-bit integer corresponding to the
| input. If `zSign' is 1, the input is negated before being converted to an
@@ -79,7 +109,7 @@ void set_floatx80_rounding_precision(int val STATUS_PARAM)
| positive or negative integer is returned.
*----------------------------------------------------------------------------*/
-static int32 roundAndPackInt32( flag zSign, bits64 absZ STATUS_PARAM)
+static int32 roundAndPackInt32( flag zSign, uint64_t absZ STATUS_PARAM)
{
int8 roundingMode;
flag roundNearestEven;
@@ -110,7 +140,7 @@ static int32 roundAndPackInt32( flag zSign, bits64 absZ STATUS_PARAM)
if ( zSign ) z = - z;
if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
float_raise( float_flag_invalid STATUS_VAR);
- return zSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
+ return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
}
if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
return z;
@@ -129,7 +159,7 @@ static int32 roundAndPackInt32( flag zSign, bits64 absZ STATUS_PARAM)
| returned.
*----------------------------------------------------------------------------*/
-static int64 roundAndPackInt64( flag zSign, bits64 absZ0, bits64 absZ1 STATUS_PARAM)
+static int64 roundAndPackInt64( flag zSign, uint64_t absZ0, uint64_t absZ1 STATUS_PARAM)
{
int8 roundingMode;
flag roundNearestEven, increment;
@@ -137,7 +167,7 @@ static int64 roundAndPackInt64( flag zSign, bits64 absZ0, bits64 absZ1 STATUS_PA
roundingMode = STATUS(float_rounding_mode);
roundNearestEven = ( roundingMode == float_round_nearest_even );
- increment = ( (sbits64) absZ1 < 0 );
+ increment = ( (int64_t) absZ1 < 0 );
if ( ! roundNearestEven ) {
if ( roundingMode == float_round_to_zero ) {
increment = 0;
@@ -154,7 +184,7 @@ static int64 roundAndPackInt64( flag zSign, bits64 absZ0, bits64 absZ1 STATUS_PA
if ( increment ) {
++absZ0;
if ( absZ0 == 0 ) goto overflow;
- absZ0 &= ~ ( ( (bits64) ( absZ1<<1 ) == 0 ) & roundNearestEven );
+ absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
}
z = absZ0;
if ( zSign ) z = - z;
@@ -162,7 +192,7 @@ static int64 roundAndPackInt64( flag zSign, bits64 absZ0, bits64 absZ1 STATUS_PA
overflow:
float_raise( float_flag_invalid STATUS_VAR);
return
- zSign ? (sbits64) LIT64( 0x8000000000000000 )
+ zSign ? (int64_t) LIT64( 0x8000000000000000 )
: LIT64( 0x7FFFFFFFFFFFFFFF );
}
if ( absZ1 ) STATUS(float_exception_flags) |= float_flag_inexact;
@@ -174,7 +204,7 @@ static int64 roundAndPackInt64( flag zSign, bits64 absZ0, bits64 absZ1 STATUS_PA
| Returns the fraction bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/
-INLINE bits32 extractFloat32Frac( float32 a )
+INLINE uint32_t extractFloat32Frac( float32 a )
{
return float32_val(a) & 0x007FFFFF;
@@ -204,6 +234,21 @@ INLINE flag extractFloat32Sign( float32 a )
}
/*----------------------------------------------------------------------------
+| If `a' is denormal and we are in flush-to-zero mode then set the
+| input-denormal exception and return zero. Otherwise just return the value.
+*----------------------------------------------------------------------------*/
+static float32 float32_squash_input_denormal(float32 a STATUS_PARAM)
+{
+ if (STATUS(flush_inputs_to_zero)) {
+ if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
+ float_raise(float_flag_input_denormal STATUS_VAR);
+ return make_float32(float32_val(a) & 0x80000000);
+ }
+ }
+ return a;
+}
+
+/*----------------------------------------------------------------------------
| Normalizes the subnormal single-precision floating-point value represented
| by the denormalized significand `aSig'. The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
@@ -211,7 +256,7 @@ INLINE flag extractFloat32Sign( float32 a )
*----------------------------------------------------------------------------*/
static void
- normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
+ normalizeFloat32Subnormal( uint32_t aSig, int16 *zExpPtr, uint32_t *zSigPtr )
{
int8 shiftCount;
@@ -232,11 +277,11 @@ static void
| significand.
*----------------------------------------------------------------------------*/
-INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
+INLINE float32 packFloat32( flag zSign, int16 zExp, uint32_t zSig )
{
return make_float32(
- ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig);
+ ( ( (uint32_t) zSign )<<31 ) + ( ( (uint32_t) zExp )<<23 ) + zSig);
}
@@ -262,7 +307,7 @@ INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
-static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig STATUS_PARAM)
+static float32 roundAndPackFloat32( flag zSign, int16 zExp, uint32_t zSig STATUS_PARAM)
{
int8 roundingMode;
flag roundNearestEven;
@@ -287,10 +332,10 @@ static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig STATUS_P
}
}
roundBits = zSig & 0x7F;
- if ( 0xFD <= (bits16) zExp ) {
+ if ( 0xFD <= (uint16_t) zExp ) {
if ( ( 0xFD < zExp )
|| ( ( zExp == 0xFD )
- && ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
+ && ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
) {
float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
@@ -325,7 +370,7 @@ static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig STATUS_P
*----------------------------------------------------------------------------*/
static float32
- normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig STATUS_PARAM)
+ normalizeRoundAndPackFloat32( flag zSign, int16 zExp, uint32_t zSig STATUS_PARAM)
{
int8 shiftCount;
@@ -338,7 +383,7 @@ static float32
| Returns the fraction bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/
-INLINE bits64 extractFloat64Frac( float64 a )
+INLINE uint64_t extractFloat64Frac( float64 a )
{
return float64_val(a) & LIT64( 0x000FFFFFFFFFFFFF );
@@ -368,6 +413,21 @@ INLINE flag extractFloat64Sign( float64 a )
}
/*----------------------------------------------------------------------------
+| If `a' is denormal and we are in flush-to-zero mode then set the
+| input-denormal exception and return zero. Otherwise just return the value.
+*----------------------------------------------------------------------------*/
+static float64 float64_squash_input_denormal(float64 a STATUS_PARAM)
+{
+ if (STATUS(flush_inputs_to_zero)) {
+ if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
+ float_raise(float_flag_input_denormal STATUS_VAR);
+ return make_float64(float64_val(a) & (1ULL << 63));
+ }
+ }
+ return a;
+}
+
+/*----------------------------------------------------------------------------
| Normalizes the subnormal double-precision floating-point value represented
| by the denormalized significand `aSig'. The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
@@ -375,7 +435,7 @@ INLINE flag extractFloat64Sign( float64 a )
*----------------------------------------------------------------------------*/
static void
- normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr )
+ normalizeFloat64Subnormal( uint64_t aSig, int16 *zExpPtr, uint64_t *zSigPtr )
{
int8 shiftCount;
@@ -396,11 +456,11 @@ static void
| significand.
*----------------------------------------------------------------------------*/
-INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig )
+INLINE float64 packFloat64( flag zSign, int16 zExp, uint64_t zSig )
{
return make_float64(
- ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig);
+ ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
}
@@ -426,7 +486,7 @@ INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig )
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
-static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig STATUS_PARAM)
+static float64 roundAndPackFloat64( flag zSign, int16 zExp, uint64_t zSig STATUS_PARAM)
{
int8 roundingMode;
flag roundNearestEven;
@@ -451,10 +511,10 @@ static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig STATUS_P
}
}
roundBits = zSig & 0x3FF;
- if ( 0x7FD <= (bits16) zExp ) {
+ if ( 0x7FD <= (uint16_t) zExp ) {
if ( ( 0x7FD < zExp )
|| ( ( zExp == 0x7FD )
- && ( (sbits64) ( zSig + roundIncrement ) < 0 ) )
+ && ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
) {
float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
return packFloat64( zSign, 0x7FF, - ( roundIncrement == 0 ));
@@ -489,7 +549,7 @@ static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig STATUS_P
*----------------------------------------------------------------------------*/
static float64
- normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig STATUS_PARAM)
+ normalizeRoundAndPackFloat64( flag zSign, int16 zExp, uint64_t zSig STATUS_PARAM)
{
int8 shiftCount;
@@ -505,7 +565,7 @@ static float64
| value `a'.
*----------------------------------------------------------------------------*/
-INLINE bits64 extractFloatx80Frac( floatx80 a )
+INLINE uint64_t extractFloatx80Frac( floatx80 a )
{
return a.low;
@@ -544,7 +604,7 @@ INLINE flag extractFloatx80Sign( floatx80 a )
*----------------------------------------------------------------------------*/
static void
- normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr )
+ normalizeFloatx80Subnormal( uint64_t aSig, int32 *zExpPtr, uint64_t *zSigPtr )
{
int8 shiftCount;
@@ -559,12 +619,12 @@ static void
| extended double-precision floating-point value, returning the result.
*----------------------------------------------------------------------------*/
-INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
+INLINE floatx80 packFloatx80( flag zSign, int32 zExp, uint64_t zSig )
{
floatx80 z;
z.low = zSig;
- z.high = ( ( (bits16) zSign )<<15 ) + zExp;
+ z.high = ( ( (uint16_t) zSign )<<15 ) + zExp;
return z;
}
@@ -595,7 +655,7 @@ INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
static floatx80
roundAndPackFloatx80(
- int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
+ int8 roundingPrecision, flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1
STATUS_PARAM)
{
int8 roundingMode;
@@ -632,7 +692,7 @@ static floatx80
}
}
roundBits = zSig0 & roundMask;
- if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
+ if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
if ( ( 0x7FFE < zExp )
|| ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
) {
@@ -650,7 +710,7 @@ static floatx80
if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
zSig0 += roundIncrement;
- if ( (sbits64) zSig0 < 0 ) zExp = 1;
+ if ( (int64_t) zSig0 < 0 ) zExp = 1;
roundIncrement = roundMask + 1;
if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
roundMask |= roundIncrement;
@@ -673,7 +733,7 @@ static floatx80
if ( zSig0 == 0 ) zExp = 0;
return packFloatx80( zSign, zExp, zSig0 );
precision80:
- increment = ( (sbits64) zSig1 < 0 );
+ increment = ( (int64_t) zSig1 < 0 );
if ( ! roundNearestEven ) {
if ( roundingMode == float_round_to_zero ) {
increment = 0;
@@ -687,7 +747,7 @@ static floatx80
}
}
}
- if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
+ if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
if ( ( 0x7FFE < zExp )
|| ( ( zExp == 0x7FFE )
&& ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
@@ -716,7 +776,7 @@ static floatx80
if ( isTiny && zSig1 ) float_raise( float_flag_underflow STATUS_VAR);
if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
if ( roundNearestEven ) {
- increment = ( (sbits64) zSig1 < 0 );
+ increment = ( (int64_t) zSig1 < 0 );
}
else {
if ( zSign ) {
@@ -729,8 +789,8 @@ static floatx80
if ( increment ) {
++zSig0;
zSig0 &=
- ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
- if ( (sbits64) zSig0 < 0 ) zExp = 1;
+ ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
+ if ( (int64_t) zSig0 < 0 ) zExp = 1;
}
return packFloatx80( zSign, zExp, zSig0 );
}
@@ -743,7 +803,7 @@ static floatx80
zSig0 = LIT64( 0x8000000000000000 );
}
else {
- zSig0 &= ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
+ zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
}
}
else {
@@ -764,7 +824,7 @@ static floatx80
static floatx80
normalizeRoundAndPackFloatx80(
- int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
+ int8 roundingPrecision, flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1
STATUS_PARAM)
{
int8 shiftCount;
@@ -791,7 +851,7 @@ static floatx80
| floating-point value `a'.
*----------------------------------------------------------------------------*/
-INLINE bits64 extractFloat128Frac1( float128 a )
+INLINE uint64_t extractFloat128Frac1( float128 a )
{
return a.low;
@@ -803,7 +863,7 @@ INLINE bits64 extractFloat128Frac1( float128 a )
| floating-point value `a'.
*----------------------------------------------------------------------------*/
-INLINE bits64 extractFloat128Frac0( float128 a )
+INLINE uint64_t extractFloat128Frac0( float128 a )
{
return a.high & LIT64( 0x0000FFFFFFFFFFFF );
@@ -845,11 +905,11 @@ INLINE flag extractFloat128Sign( float128 a )
static void
normalizeFloat128Subnormal(
- bits64 aSig0,
- bits64 aSig1,
+ uint64_t aSig0,
+ uint64_t aSig1,
int32 *zExpPtr,
- bits64 *zSig0Ptr,
- bits64 *zSig1Ptr
+ uint64_t *zSig0Ptr,
+ uint64_t *zSig1Ptr
)
{
int8 shiftCount;
@@ -888,12 +948,12 @@ static void
*----------------------------------------------------------------------------*/
INLINE float128
- packFloat128( flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
+ packFloat128( flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 )
{
float128 z;
z.low = zSig1;
- z.high = ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<48 ) + zSig0;
+ z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
return z;
}
@@ -921,14 +981,14 @@ INLINE float128
static float128
roundAndPackFloat128(
- flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1, bits64 zSig2 STATUS_PARAM)
+ flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1, uint64_t zSig2 STATUS_PARAM)
{
int8 roundingMode;
flag roundNearestEven, increment, isTiny;
roundingMode = STATUS(float_rounding_mode);
roundNearestEven = ( roundingMode == float_round_nearest_even );
- increment = ( (sbits64) zSig2 < 0 );
+ increment = ( (int64_t) zSig2 < 0 );
if ( ! roundNearestEven ) {
if ( roundingMode == float_round_to_zero ) {
increment = 0;
@@ -942,7 +1002,7 @@ static float128
}
}
}
- if ( 0x7FFD <= (bits32) zExp ) {
+ if ( 0x7FFD <= (uint32_t) zExp ) {
if ( ( 0x7FFD < zExp )
|| ( ( zExp == 0x7FFD )
&& eq128(
@@ -986,7 +1046,7 @@ static float128
zExp = 0;
if ( isTiny && zSig2 ) float_raise( float_flag_underflow STATUS_VAR);
if ( roundNearestEven ) {
- increment = ( (sbits64) zSig2 < 0 );
+ increment = ( (int64_t) zSig2 < 0 );
}
else {
if ( zSign ) {
@@ -1022,10 +1082,10 @@ static float128
static float128
normalizeRoundAndPackFloat128(
- flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 STATUS_PARAM)
+ flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 STATUS_PARAM)
{
int8 shiftCount;
- bits64 zSig2;
+ uint64_t zSig2;
if ( zSig0 == 0 ) {
zSig0 = zSig1;
@@ -1059,7 +1119,7 @@ float32 int32_to_float32( int32 a STATUS_PARAM )
flag zSign;
if ( a == 0 ) return float32_zero;
- if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
+ if ( a == (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
zSign = ( a < 0 );
return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a STATUS_VAR );
@@ -1076,7 +1136,7 @@ float64 int32_to_float64( int32 a STATUS_PARAM )
flag zSign;
uint32 absA;
int8 shiftCount;
- bits64 zSig;
+ uint64_t zSig;
if ( a == 0 ) return float64_zero;
zSign = ( a < 0 );
@@ -1101,7 +1161,7 @@ floatx80 int32_to_floatx80( int32 a STATUS_PARAM )
flag zSign;
uint32 absA;
int8 shiftCount;
- bits64 zSig;
+ uint64_t zSig;
if ( a == 0 ) return packFloatx80( 0, 0, 0 );
zSign = ( a < 0 );
@@ -1127,7 +1187,7 @@ float128 int32_to_float128( int32 a STATUS_PARAM )
flag zSign;
uint32 absA;
int8 shiftCount;
- bits64 zSig0;
+ uint64_t zSig0;
if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
zSign = ( a < 0 );
@@ -1204,7 +1264,7 @@ float64 int64_to_float64( int64 a STATUS_PARAM )
flag zSign;
if ( a == 0 ) return float64_zero;
- if ( a == (sbits64) LIT64( 0x8000000000000000 ) ) {
+ if ( a == (int64_t) LIT64( 0x8000000000000000 ) ) {
return packFloat64( 1, 0x43E, 0 );
}
zSign = ( a < 0 );
@@ -1258,7 +1318,7 @@ float128 int64_to_float128( int64 a STATUS_PARAM )
uint64 absA;
int8 shiftCount;
int32 zExp;
- bits64 zSig0, zSig1;
+ uint64_t zSig0, zSig1;
if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
zSign = ( a < 0 );
@@ -1295,9 +1355,10 @@ int32 float32_to_int32( float32 a STATUS_PARAM )
{
flag aSign;
int16 aExp, shiftCount;
- bits32 aSig;
- bits64 aSig64;
+ uint32_t aSig;
+ uint64_t aSig64;
+ a = float32_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
aSign = extractFloat32Sign( a );
@@ -1325,8 +1386,9 @@ int32 float32_to_int32_round_to_zero( float32 a STATUS_PARAM )
{
flag aSign;
int16 aExp, shiftCount;
- bits32 aSig;
+ uint32_t aSig;
int32 z;
+ a = float32_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
@@ -1337,7 +1399,7 @@ int32 float32_to_int32_round_to_zero( float32 a STATUS_PARAM )
float_raise( float_flag_invalid STATUS_VAR);
if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
}
- return (sbits32) 0x80000000;
+ return (int32_t) 0x80000000;
}
else if ( aExp <= 0x7E ) {
if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
@@ -1345,7 +1407,7 @@ int32 float32_to_int32_round_to_zero( float32 a STATUS_PARAM )
}
aSig = ( aSig | 0x00800000 )<<8;
z = aSig>>( - shiftCount );
- if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
+ if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
STATUS(float_exception_flags) |= float_flag_inexact;
}
if ( aSign ) z = - z;
@@ -1355,6 +1417,55 @@ int32 float32_to_int32_round_to_zero( float32 a STATUS_PARAM )
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
+| `a' to the 16-bit two's complement integer format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero.
+| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
+| the conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int16 float32_to_int16_round_to_zero( float32 a STATUS_PARAM )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ uint32_t aSig;
+ int32 z;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ shiftCount = aExp - 0x8E;
+ if ( 0 <= shiftCount ) {
+ if ( float32_val(a) != 0xC7000000 ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
+ return 0x7FFF;
+ }
+ }
+ return (int32_t) 0xffff8000;
+ }
+ else if ( aExp <= 0x7E ) {
+ if ( aExp | aSig ) {
+ STATUS(float_exception_flags) |= float_flag_inexact;
+ }
+ return 0;
+ }
+ shiftCount -= 0x10;
+ aSig = ( aSig | 0x00800000 )<<8;
+ z = aSig>>( - shiftCount );
+ if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
+ STATUS(float_exception_flags) |= float_flag_inexact;
+ }
+ if ( aSign ) {
+ z = - z;
+ }
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
| `a' to the 64-bit two's complement integer format. The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
@@ -1367,8 +1478,9 @@ int64 float32_to_int64( float32 a STATUS_PARAM )
{
flag aSign;
int16 aExp, shiftCount;
- bits32 aSig;
- bits64 aSig64, aSigExtra;
+ uint32_t aSig;
+ uint64_t aSig64, aSigExtra;
+ a = float32_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
@@ -1379,7 +1491,7 @@ int64 float32_to_int64( float32 a STATUS_PARAM )
if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
return LIT64( 0x7FFFFFFFFFFFFFFF );
}
- return (sbits64) LIT64( 0x8000000000000000 );
+ return (int64_t) LIT64( 0x8000000000000000 );
}
if ( aExp ) aSig |= 0x00800000;
aSig64 = aSig;
@@ -1403,9 +1515,10 @@ int64 float32_to_int64_round_to_zero( float32 a STATUS_PARAM )
{
flag aSign;
int16 aExp, shiftCount;
- bits32 aSig;
- bits64 aSig64;
+ uint32_t aSig;
+ uint64_t aSig64;
int64 z;
+ a = float32_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
@@ -1418,7 +1531,7 @@ int64 float32_to_int64_round_to_zero( float32 a STATUS_PARAM )
return LIT64( 0x7FFFFFFFFFFFFFFF );
}
}
- return (sbits64) LIT64( 0x8000000000000000 );
+ return (int64_t) LIT64( 0x8000000000000000 );
}
else if ( aExp <= 0x7E ) {
if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
@@ -1427,7 +1540,7 @@ int64 float32_to_int64_round_to_zero( float32 a STATUS_PARAM )
aSig64 = aSig | 0x00800000;
aSig64 <<= 40;
z = aSig64>>( - shiftCount );
- if ( (bits64) ( aSig64<<( shiftCount & 63 ) ) ) {
+ if ( (uint64_t) ( aSig64<<( shiftCount & 63 ) ) ) {
STATUS(float_exception_flags) |= float_flag_inexact;
}
if ( aSign ) z = - z;
@@ -1446,13 +1559,14 @@ float64 float32_to_float64( float32 a STATUS_PARAM )
{
flag aSign;
int16 aExp;
- bits32 aSig;
+ uint32_t aSig;
+ a = float32_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
aSign = extractFloat32Sign( a );
if ( aExp == 0xFF ) {
- if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a STATUS_VAR ));
+ if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
return packFloat64( aSign, 0x7FF, 0 );
}
if ( aExp == 0 ) {
@@ -1460,7 +1574,7 @@ float64 float32_to_float64( float32 a STATUS_PARAM )
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
--aExp;
}
- return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 );
+ return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 );
}
@@ -1477,13 +1591,14 @@ floatx80 float32_to_floatx80( float32 a STATUS_PARAM )
{
flag aSign;
int16 aExp;
- bits32 aSig;
+ uint32_t aSig;
+ a = float32_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
aSign = extractFloat32Sign( a );
if ( aExp == 0xFF ) {
- if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a STATUS_VAR ) );
+ if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
}
if ( aExp == 0 ) {
@@ -1491,7 +1606,7 @@ floatx80 float32_to_floatx80( float32 a STATUS_PARAM )
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
}
aSig |= 0x00800000;
- return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 );
+ return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
}
@@ -1510,13 +1625,14 @@ float128 float32_to_float128( float32 a STATUS_PARAM )
{
flag aSign;
int16 aExp;
- bits32 aSig;
+ uint32_t aSig;
+ a = float32_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
aSign = extractFloat32Sign( a );
if ( aExp == 0xFF ) {
- if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a STATUS_VAR ) );
+ if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
return packFloat128( aSign, 0x7FFF, 0, 0 );
}
if ( aExp == 0 ) {
@@ -1524,7 +1640,7 @@ float128 float32_to_float128( float32 a STATUS_PARAM )
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
--aExp;
}
- return packFloat128( aSign, aExp + 0x3F80, ( (bits64) aSig )<<25, 0 );
+ return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
}
@@ -1541,9 +1657,10 @@ float32 float32_round_to_int( float32 a STATUS_PARAM)
{
flag aSign;
int16 aExp;
- bits32 lastBitMask, roundBitsMask;
+ uint32_t lastBitMask, roundBitsMask;
int8 roundingMode;
- bits32 z;
+ uint32_t z;
+ a = float32_squash_input_denormal(a STATUS_VAR);
aExp = extractFloat32Exp( a );
if ( 0x96 <= aExp ) {
@@ -1553,7 +1670,7 @@ float32 float32_round_to_int( float32 a STATUS_PARAM)
return a;
}
if ( aExp <= 0x7E ) {
- if ( (bits32) ( float32_val(a)<<1 ) == 0 ) return a;
+ if ( (uint32_t) ( float32_val(a)<<1 ) == 0 ) return a;
STATUS(float_exception_flags) |= float_flag_inexact;
aSign = extractFloat32Sign( a );
switch ( STATUS(float_rounding_mode) ) {
@@ -1600,7 +1717,7 @@ float32 float32_round_to_int( float32 a STATUS_PARAM)
static float32 addFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM)
{
int16 aExp, bExp, zExp;
- bits32 aSig, bSig, zSig;
+ uint32_t aSig, bSig, zSig;
int16 expDiff;
aSig = extractFloat32Frac( a );
@@ -1654,7 +1771,7 @@ static float32 addFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM)
aSig |= 0x20000000;
zSig = ( aSig + bSig )<<1;
--zExp;
- if ( (sbits32) zSig < 0 ) {
+ if ( (int32_t) zSig < 0 ) {
zSig = aSig + bSig;
++zExp;
}
@@ -1674,7 +1791,7 @@ static float32 addFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM)
static float32 subFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM)
{
int16 aExp, bExp, zExp;
- bits32 aSig, bSig, zSig;
+ uint32_t aSig, bSig, zSig;
int16 expDiff;
aSig = extractFloat32Frac( a );
@@ -1747,6 +1864,8 @@ static float32 subFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM)
float32 float32_add( float32 a, float32 b STATUS_PARAM )
{
flag aSign, bSign;
+ a = float32_squash_input_denormal(a STATUS_VAR);
+ b = float32_squash_input_denormal(b STATUS_VAR);
aSign = extractFloat32Sign( a );
bSign = extractFloat32Sign( b );
@@ -1768,6 +1887,8 @@ float32 float32_add( float32 a, float32 b STATUS_PARAM )
float32 float32_sub( float32 a, float32 b STATUS_PARAM )
{
flag aSign, bSign;
+ a = float32_squash_input_denormal(a STATUS_VAR);
+ b = float32_squash_input_denormal(b STATUS_VAR);
aSign = extractFloat32Sign( a );
bSign = extractFloat32Sign( b );
@@ -1790,9 +1911,12 @@ float32 float32_mul( float32 a, float32 b STATUS_PARAM )
{
flag aSign, bSign, zSign;
int16 aExp, bExp, zExp;
- bits32 aSig, bSig;
- bits64 zSig64;
- bits32 zSig;
+ uint32_t aSig, bSig;
+ uint64_t zSig64;
+ uint32_t zSig;
+
+ a = float32_squash_input_denormal(a STATUS_VAR);
+ b = float32_squash_input_denormal(b STATUS_VAR);
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
@@ -1830,9 +1954,9 @@ float32 float32_mul( float32 a, float32 b STATUS_PARAM )
zExp = aExp + bExp - 0x7F;
aSig = ( aSig | 0x00800000 )<<7;
bSig = ( bSig | 0x00800000 )<<8;
- shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 );
+ shift64RightJamming( ( (uint64_t) aSig ) * bSig, 32, &zSig64 );
zSig = zSig64;
- if ( 0 <= (sbits32) ( zSig<<1 ) ) {
+ if ( 0 <= (int32_t) ( zSig<<1 ) ) {
zSig <<= 1;
--zExp;
}
@@ -1850,7 +1974,9 @@ float32 float32_div( float32 a, float32 b STATUS_PARAM )
{
flag aSign, bSign, zSign;
int16 aExp, bExp, zExp;
- bits32 aSig, bSig, zSig;
+ uint32_t aSig, bSig, zSig;
+ a = float32_squash_input_denormal(a STATUS_VAR);
+ b = float32_squash_input_denormal(b STATUS_VAR);
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
@@ -1894,9 +2020,9 @@ float32 float32_div( float32 a, float32 b STATUS_PARAM )
aSig >>= 1;
++zExp;
}
- zSig = ( ( (bits64) aSig )<<32 ) / bSig;
+ zSig = ( ( (uint64_t) aSig )<<32 ) / bSig;
if ( ( zSig & 0x3F ) == 0 ) {
- zSig |= ( (bits64) bSig * zSig != ( (bits64) aSig )<<32 );
+ zSig |= ( (uint64_t) bSig * zSig != ( (uint64_t) aSig )<<32 );
}
return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );
@@ -1912,11 +2038,13 @@ float32 float32_rem( float32 a, float32 b STATUS_PARAM )
{
flag aSign, zSign;
int16 aExp, bExp, expDiff;
- bits32 aSig, bSig;
- bits32 q;
- bits64 aSig64, bSig64, q64;
- bits32 alternateASig;
- sbits32 sigMean;
+ uint32_t aSig, bSig;
+ uint32_t q;
+ uint64_t aSig64, bSig64, q64;
+ uint32_t alternateASig;
+ int32_t sigMean;
+ a = float32_squash_input_denormal(a STATUS_VAR);
+ b = float32_squash_input_denormal(b STATUS_VAR);
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
@@ -1958,7 +2086,7 @@ float32 float32_rem( float32 a, float32 b STATUS_PARAM )
q = ( bSig <= aSig );
if ( q ) aSig -= bSig;
if ( 0 < expDiff ) {
- q = ( ( (bits64) aSig )<<32 ) / bSig;
+ q = ( ( (uint64_t) aSig )<<32 ) / bSig;
q >>= 32 - expDiff;
bSig >>= 2;
aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
@@ -1970,8 +2098,8 @@ float32 float32_rem( float32 a, float32 b STATUS_PARAM )
}
else {
if ( bSig <= aSig ) aSig -= bSig;
- aSig64 = ( (bits64) aSig )<<40;
- bSig64 = ( (bits64) bSig )<<40;
+ aSig64 = ( (uint64_t) aSig )<<40;
+ bSig64 = ( (uint64_t) bSig )<<40;
expDiff -= 64;
while ( 0 < expDiff ) {
q64 = estimateDiv128To64( aSig64, 0, bSig64 );
@@ -1990,12 +2118,12 @@ float32 float32_rem( float32 a, float32 b STATUS_PARAM )
alternateASig = aSig;
++q;
aSig -= bSig;
- } while ( 0 <= (sbits32) aSig );
+ } while ( 0 <= (int32_t) aSig );
sigMean = aSig + alternateASig;
if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
aSig = alternateASig;
}
- zSign = ( (sbits32) aSig < 0 );
+ zSign = ( (int32_t) aSig < 0 );
if ( zSign ) aSig = - aSig;
return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig STATUS_VAR );
@@ -2011,8 +2139,9 @@ float32 float32_sqrt( float32 a STATUS_PARAM )
{
flag aSign;
int16 aExp, zExp;
- bits32 aSig, zSig;
- bits64 rem, term;
+ uint32_t aSig, zSig;
+ uint64_t rem, term;
+ a = float32_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
@@ -2041,11 +2170,11 @@ float32 float32_sqrt( float32 a STATUS_PARAM )
goto roundAndPack;
}
aSig >>= aExp & 1;
- term = ( (bits64) zSig ) * zSig;
- rem = ( ( (bits64) aSig )<<32 ) - term;
- while ( (sbits64) rem < 0 ) {
+ term = ( (uint64_t) zSig ) * zSig;
+ rem = ( ( (uint64_t) aSig )<<32 ) - term;
+ while ( (int64_t) rem < 0 ) {
--zSig;
- rem += ( ( (bits64) zSig )<<1 ) | 1;
+ rem += ( ( (uint64_t) zSig )<<1 ) | 1;
}
zSig |= ( rem != 0 );
}
@@ -2075,30 +2204,31 @@ float32 float32_sqrt( float32 a STATUS_PARAM )
static const float64 float32_exp2_coefficients[15] =
{
- make_float64( 0x3ff0000000000000ll ), /* 1 */
- make_float64( 0x3fe0000000000000ll ), /* 2 */
- make_float64( 0x3fc5555555555555ll ), /* 3 */
- make_float64( 0x3fa5555555555555ll ), /* 4 */
- make_float64( 0x3f81111111111111ll ), /* 5 */
- make_float64( 0x3f56c16c16c16c17ll ), /* 6 */
- make_float64( 0x3f2a01a01a01a01all ), /* 7 */
- make_float64( 0x3efa01a01a01a01all ), /* 8 */
- make_float64( 0x3ec71de3a556c734ll ), /* 9 */
- make_float64( 0x3e927e4fb7789f5cll ), /* 10 */
- make_float64( 0x3e5ae64567f544e4ll ), /* 11 */
- make_float64( 0x3e21eed8eff8d898ll ), /* 12 */
- make_float64( 0x3de6124613a86d09ll ), /* 13 */
- make_float64( 0x3da93974a8c07c9dll ), /* 14 */
- make_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
+ const_float64( 0x3ff0000000000000ll ), /* 1 */
+ const_float64( 0x3fe0000000000000ll ), /* 2 */
+ const_float64( 0x3fc5555555555555ll ), /* 3 */
+ const_float64( 0x3fa5555555555555ll ), /* 4 */
+ const_float64( 0x3f81111111111111ll ), /* 5 */
+ const_float64( 0x3f56c16c16c16c17ll ), /* 6 */
+ const_float64( 0x3f2a01a01a01a01all ), /* 7 */
+ const_float64( 0x3efa01a01a01a01all ), /* 8 */
+ const_float64( 0x3ec71de3a556c734ll ), /* 9 */
+ const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
+ const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
+ const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
+ const_float64( 0x3de6124613a86d09ll ), /* 13 */
+ const_float64( 0x3da93974a8c07c9dll ), /* 14 */
+ const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
};
float32 float32_exp2( float32 a STATUS_PARAM )
{
flag aSign;
int16 aExp;
- bits32 aSig;
+ uint32_t aSig;
float64 r, x, xn;
int i;
+ a = float32_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
@@ -2143,8 +2273,9 @@ float32 float32_log2( float32 a STATUS_PARAM )
{
flag aSign, zSign;
int16 aExp;
- bits32 aSig, zSig, i;
+ uint32_t aSig, zSig, i;
+ a = float32_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
aSign = extractFloat32Sign( a );
@@ -2168,7 +2299,7 @@ float32 float32_log2( float32 a STATUS_PARAM )
zSig = aExp << 23;
for (i = 1 << 22; i > 0; i >>= 1) {
- aSig = ( (bits64)aSig * aSig ) >> 23;
+ aSig = ( (uint64_t)aSig * aSig ) >> 23;
if ( aSig & 0x01000000 ) {
aSig >>= 1;
zSig |= i;
@@ -2183,37 +2314,41 @@ float32 float32_log2( float32 a STATUS_PARAM )
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. The comparison is performed
+| the corresponding value `b', and 0 otherwise. The invalid exception is
+| raised if either operand is a NaN. Otherwise, the comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int float32_eq( float32 a, float32 b STATUS_PARAM )
{
+ uint32_t av, bv;
+ a = float32_squash_input_denormal(a STATUS_VAR);
+ b = float32_squash_input_denormal(b STATUS_VAR);
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
) {
- if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid STATUS_VAR);
- }
+ float_raise( float_flag_invalid STATUS_VAR);
return 0;
}
- return ( float32_val(a) == float32_val(b) ) ||
- ( (bits32) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
-
+ av = float32_val(a);
+ bv = float32_val(b);
+ return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
}
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
-| or equal to the corresponding value `b', and 0 otherwise. The comparison
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
+| or equal to the corresponding value `b', and 0 otherwise. The invalid
+| exception is raised if either operand is a NaN. The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int float32_le( float32 a, float32 b STATUS_PARAM )
{
flag aSign, bSign;
- bits32 av, bv;
+ uint32_t av, bv;
+ a = float32_squash_input_denormal(a STATUS_VAR);
+ b = float32_squash_input_denormal(b STATUS_VAR);
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
@@ -2225,21 +2360,24 @@ int float32_le( float32 a, float32 b STATUS_PARAM )
bSign = extractFloat32Sign( b );
av = float32_val(a);
bv = float32_val(b);
- if ( aSign != bSign ) return aSign || ( (bits32) ( ( av | bv )<<1 ) == 0 );
+ if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
return ( av == bv ) || ( aSign ^ ( av < bv ) );
}
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+| the corresponding value `b', and 0 otherwise. The invalid exception is
+| raised if either operand is a NaN. The comparison is performed according
+| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int float32_lt( float32 a, float32 b STATUS_PARAM )
{
flag aSign, bSign;
- bits32 av, bv;
+ uint32_t av, bv;
+ a = float32_squash_input_denormal(a STATUS_VAR);
+ b = float32_squash_input_denormal(b STATUS_VAR);
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
@@ -2251,32 +2389,54 @@ int float32_lt( float32 a, float32 b STATUS_PARAM )
bSign = extractFloat32Sign( b );
av = float32_val(a);
bv = float32_val(b);
- if ( aSign != bSign ) return aSign && ( (bits32) ( ( av | bv )<<1 ) != 0 );
+ if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
return ( av != bv ) && ( aSign ^ ( av < bv ) );
}
/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+| Returns 1 if the single-precision floating-point values `a' and `b' cannot
+| be compared, and 0 otherwise. The invalid exception is raised if either
+| operand is a NaN. The comparison is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
-int float32_eq_signaling( float32 a, float32 b STATUS_PARAM )
+int float32_unordered( float32 a, float32 b STATUS_PARAM )
{
- bits32 av, bv;
+ a = float32_squash_input_denormal(a STATUS_VAR);
+ b = float32_squash_input_denormal(b STATUS_VAR);
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
) {
float_raise( float_flag_invalid STATUS_VAR);
- return 0;
+ return 1;
}
- av = float32_val(a);
- bv = float32_val(b);
- return ( av == bv ) || ( (bits32) ( ( av | bv )<<1 ) == 0 );
+ return 0;
+}
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is equal to
+| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
+| exception. The comparison is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float32_eq_quiet( float32 a, float32 b STATUS_PARAM )
+{
+ a = float32_squash_input_denormal(a STATUS_VAR);
+ b = float32_squash_input_denormal(b STATUS_VAR);
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ }
+ return 0;
+ }
+ return ( float32_val(a) == float32_val(b) ) ||
+ ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
}
/*----------------------------------------------------------------------------
@@ -2289,7 +2449,9 @@ int float32_eq_signaling( float32 a, float32 b STATUS_PARAM )
int float32_le_quiet( float32 a, float32 b STATUS_PARAM )
{
flag aSign, bSign;
- bits32 av, bv;
+ uint32_t av, bv;
+ a = float32_squash_input_denormal(a STATUS_VAR);
+ b = float32_squash_input_denormal(b STATUS_VAR);
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
@@ -2303,7 +2465,7 @@ int float32_le_quiet( float32 a, float32 b STATUS_PARAM )
bSign = extractFloat32Sign( b );
av = float32_val(a);
bv = float32_val(b);
- if ( aSign != bSign ) return aSign || ( (bits32) ( ( av | bv )<<1 ) == 0 );
+ if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
return ( av == bv ) || ( aSign ^ ( av < bv ) );
}
@@ -2318,7 +2480,9 @@ int float32_le_quiet( float32 a, float32 b STATUS_PARAM )
int float32_lt_quiet( float32 a, float32 b STATUS_PARAM )
{
flag aSign, bSign;
- bits32 av, bv;
+ uint32_t av, bv;
+ a = float32_squash_input_denormal(a STATUS_VAR);
+ b = float32_squash_input_denormal(b STATUS_VAR);
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
@@ -2332,12 +2496,35 @@ int float32_lt_quiet( float32 a, float32 b STATUS_PARAM )
bSign = extractFloat32Sign( b );
av = float32_val(a);
bv = float32_val(b);
- if ( aSign != bSign ) return aSign && ( (bits32) ( ( av | bv )<<1 ) != 0 );
+ if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
return ( av != bv ) && ( aSign ^ ( av < bv ) );
}
/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point values `a' and `b' cannot
+| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
+| comparison is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float32_unordered_quiet( float32 a, float32 b STATUS_PARAM )
+{
+ a = float32_squash_input_denormal(a STATUS_VAR);
+ b = float32_squash_input_denormal(b STATUS_VAR);
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ }
+ return 1;
+ }
+ return 0;
+}
+
+/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 32-bit two's complement integer format. The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
@@ -2351,7 +2538,8 @@ int32 float64_to_int32( float64 a STATUS_PARAM )
{
flag aSign;
int16 aExp, shiftCount;
- bits64 aSig;
+ uint64_t aSig;
+ a = float64_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
@@ -2378,8 +2566,9 @@ int32 float64_to_int32_round_to_zero( float64 a STATUS_PARAM )
{
flag aSign;
int16 aExp, shiftCount;
- bits64 aSig, savedASig;
+ uint64_t aSig, savedASig;
int32 z;
+ a = float64_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
@@ -2401,7 +2590,7 @@ int32 float64_to_int32_round_to_zero( float64 a STATUS_PARAM )
if ( ( z < 0 ) ^ aSign ) {
invalid:
float_raise( float_flag_invalid STATUS_VAR);
- return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
+ return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
}
if ( ( aSig<<shiftCount ) != savedASig ) {
STATUS(float_exception_flags) |= float_flag_inexact;
@@ -2412,6 +2601,57 @@ int32 float64_to_int32_round_to_zero( float64 a STATUS_PARAM )
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
+| `a' to the 16-bit two's complement integer format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero.
+| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
+| the conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int16 float64_to_int16_round_to_zero( float64 a STATUS_PARAM )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ uint64_t aSig, savedASig;
+ int32 z;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( 0x40E < aExp ) {
+ if ( ( aExp == 0x7FF ) && aSig ) {
+ aSign = 0;
+ }
+ goto invalid;
+ }
+ else if ( aExp < 0x3FF ) {
+ if ( aExp || aSig ) {
+ STATUS(float_exception_flags) |= float_flag_inexact;
+ }
+ return 0;
+ }
+ aSig |= LIT64( 0x0010000000000000 );
+ shiftCount = 0x433 - aExp;
+ savedASig = aSig;
+ aSig >>= shiftCount;
+ z = aSig;
+ if ( aSign ) {
+ z = - z;
+ }
+ if ( ( (int16_t)z < 0 ) ^ aSign ) {
+ invalid:
+ float_raise( float_flag_invalid STATUS_VAR);
+ return aSign ? (int32_t) 0xffff8000 : 0x7FFF;
+ }
+ if ( ( aSig<<shiftCount ) != savedASig ) {
+ STATUS(float_exception_flags) |= float_flag_inexact;
+ }
+ return z;
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
| `a' to the 64-bit two's complement integer format. The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
@@ -2424,7 +2664,8 @@ int64 float64_to_int64( float64 a STATUS_PARAM )
{
flag aSign;
int16 aExp, shiftCount;
- bits64 aSig, aSigExtra;
+ uint64_t aSig, aSigExtra;
+ a = float64_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
@@ -2440,7 +2681,7 @@ int64 float64_to_int64( float64 a STATUS_PARAM )
) {
return LIT64( 0x7FFFFFFFFFFFFFFF );
}
- return (sbits64) LIT64( 0x8000000000000000 );
+ return (int64_t) LIT64( 0x8000000000000000 );
}
aSigExtra = 0;
aSig <<= - shiftCount;
@@ -2466,8 +2707,9 @@ int64 float64_to_int64_round_to_zero( float64 a STATUS_PARAM )
{
flag aSign;
int16 aExp, shiftCount;
- bits64 aSig;
+ uint64_t aSig;
int64 z;
+ a = float64_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
@@ -2485,7 +2727,7 @@ int64 float64_to_int64_round_to_zero( float64 a STATUS_PARAM )
return LIT64( 0x7FFFFFFFFFFFFFFF );
}
}
- return (sbits64) LIT64( 0x8000000000000000 );
+ return (int64_t) LIT64( 0x8000000000000000 );
}
z = aSig<<shiftCount;
}
@@ -2495,7 +2737,7 @@ int64 float64_to_int64_round_to_zero( float64 a STATUS_PARAM )
return 0;
}
z = aSig>>( - shiftCount );
- if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) {
+ if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
STATUS(float_exception_flags) |= float_flag_inexact;
}
}
@@ -2515,14 +2757,15 @@ float32 float64_to_float32( float64 a STATUS_PARAM )
{
flag aSign;
int16 aExp;
- bits64 aSig;
- bits32 zSig;
+ uint64_t aSig;
+ uint32_t zSig;
+ a = float64_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
aSign = extractFloat64Sign( a );
if ( aExp == 0x7FF ) {
- if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a STATUS_VAR ) );
+ if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
return packFloat32( aSign, 0xFF, 0 );
}
shift64RightJamming( aSig, 22, &aSig );
@@ -2546,29 +2789,28 @@ float32 float64_to_float32( float64 a STATUS_PARAM )
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/
-static bits16 packFloat16(flag zSign, int16 zExp, bits16 zSig)
+static float16 packFloat16(flag zSign, int16 zExp, uint16_t zSig)
{
- return (((bits32)zSign) << 15) + (((bits32)zExp) << 10) + zSig;
+ return make_float16(
+ (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig);
}
/* Half precision floats come in two formats: standard IEEE and "ARM" format.
The latter gains extra exponent range by omitting the NaN/Inf encodings. */
-
-float32 float16_to_float32( bits16 a, flag ieee STATUS_PARAM )
+
+float32 float16_to_float32(float16 a, flag ieee STATUS_PARAM)
{
flag aSign;
int16 aExp;
- bits32 aSig;
+ uint32_t aSig;
- aSign = a >> 15;
- aExp = (a >> 10) & 0x1f;
- aSig = a & 0x3ff;
+ aSign = extractFloat16Sign(a);
+ aExp = extractFloat16Exp(a);
+ aSig = extractFloat16Frac(a);
if (aExp == 0x1f && ieee) {
if (aSig) {
- /* Make sure correct exceptions are raised. */
- float32ToCommonNaN(a STATUS_VAR);
- aSig |= 0x200;
+ return commonNaNToFloat32(float16ToCommonNaN(a STATUS_VAR) STATUS_VAR);
}
return packFloat32(aSign, 0xff, aSig << 13);
}
@@ -2586,38 +2828,45 @@ float32 float16_to_float32( bits16 a, flag ieee STATUS_PARAM )
return packFloat32( aSign, aExp + 0x70, aSig << 13);
}
-bits16 float32_to_float16( float32 a, flag ieee STATUS_PARAM)
+float16 float32_to_float16(float32 a, flag ieee STATUS_PARAM)
{
flag aSign;
int16 aExp;
- bits32 aSig;
- bits32 mask;
- bits32 increment;
+ uint32_t aSig;
+ uint32_t mask;
+ uint32_t increment;
int8 roundingMode;
+ a = float32_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
aSign = extractFloat32Sign( a );
if ( aExp == 0xFF ) {
if (aSig) {
- /* Make sure correct exceptions are raised. */
- float32ToCommonNaN(a STATUS_VAR);
- aSig |= 0x00400000;
+ /* Input is a NaN */
+ float16 r = commonNaNToFloat16( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
+ if (!ieee) {
+ return packFloat16(aSign, 0, 0);
+ }
+ return r;
}
- return packFloat16(aSign, 0x1f, aSig >> 13);
+ /* Infinity */
+ if (!ieee) {
+ float_raise(float_flag_invalid STATUS_VAR);
+ return packFloat16(aSign, 0x1f, 0x3ff);
+ }
+ return packFloat16(aSign, 0x1f, 0);
}
- if (aExp == 0 && aSign == 0) {
+ if (aExp == 0 && aSig == 0) {
return packFloat16(aSign, 0, 0);
}
/* Decimal point between bits 22 and 23. */
aSig |= 0x00800000;
aExp -= 0x7f;
if (aExp < -14) {
- mask = 0x007fffff;
- if (aExp < -24) {
- aExp = -25;
- } else {
- mask >>= 24 + aExp;
+ mask = 0x00ffffff;
+ if (aExp >= -24) {
+ mask >>= 25 + aExp;
}
} else {
mask = 0x00001fff;
@@ -2659,7 +2908,7 @@ bits16 float32_to_float16( float32 a, flag ieee STATUS_PARAM)
}
} else {
if (aExp > 16) {
- float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
+ float_raise(float_flag_invalid | float_flag_inexact STATUS_VAR);
return packFloat16(aSign, 0x1f, 0x3ff);
}
}
@@ -2686,13 +2935,14 @@ floatx80 float64_to_floatx80( float64 a STATUS_PARAM )
{
flag aSign;
int16 aExp;
- bits64 aSig;
+ uint64_t aSig;
+ a = float64_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
aSign = extractFloat64Sign( a );
if ( aExp == 0x7FF ) {
- if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a STATUS_VAR ) );
+ if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
}
if ( aExp == 0 ) {
@@ -2720,13 +2970,14 @@ float128 float64_to_float128( float64 a STATUS_PARAM )
{
flag aSign;
int16 aExp;
- bits64 aSig, zSig0, zSig1;
+ uint64_t aSig, zSig0, zSig1;
+ a = float64_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
aSign = extractFloat64Sign( a );
if ( aExp == 0x7FF ) {
- if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a STATUS_VAR ) );
+ if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
return packFloat128( aSign, 0x7FFF, 0, 0 );
}
if ( aExp == 0 ) {
@@ -2752,9 +3003,10 @@ float64 float64_round_to_int( float64 a STATUS_PARAM )
{
flag aSign;
int16 aExp;
- bits64 lastBitMask, roundBitsMask;
+ uint64_t lastBitMask, roundBitsMask;
int8 roundingMode;
- bits64 z;
+ uint64_t z;
+ a = float64_squash_input_denormal(a STATUS_VAR);
aExp = extractFloat64Exp( a );
if ( 0x433 <= aExp ) {
@@ -2764,7 +3016,7 @@ float64 float64_round_to_int( float64 a STATUS_PARAM )
return a;
}
if ( aExp < 0x3FF ) {
- if ( (bits64) ( float64_val(a)<<1 ) == 0 ) return a;
+ if ( (uint64_t) ( float64_val(a)<<1 ) == 0 ) return a;
STATUS(float_exception_flags) |= float_flag_inexact;
aSign = extractFloat64Sign( a );
switch ( STATUS(float_rounding_mode) ) {
@@ -2824,7 +3076,7 @@ float64 float64_trunc_to_int( float64 a STATUS_PARAM)
static float64 addFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM )
{
int16 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig;
+ uint64_t aSig, bSig, zSig;
int16 expDiff;
aSig = extractFloat64Frac( a );
@@ -2878,7 +3130,7 @@ static float64 addFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM )
aSig |= LIT64( 0x2000000000000000 );
zSig = ( aSig + bSig )<<1;
--zExp;
- if ( (sbits64) zSig < 0 ) {
+ if ( (int64_t) zSig < 0 ) {
zSig = aSig + bSig;
++zExp;
}
@@ -2898,7 +3150,7 @@ static float64 addFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM )
static float64 subFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM )
{
int16 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig;
+ uint64_t aSig, bSig, zSig;
int16 expDiff;
aSig = extractFloat64Frac( a );
@@ -2971,6 +3223,8 @@ static float64 subFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM )
float64 float64_add( float64 a, float64 b STATUS_PARAM )
{
flag aSign, bSign;
+ a = float64_squash_input_denormal(a STATUS_VAR);
+ b = float64_squash_input_denormal(b STATUS_VAR);
aSign = extractFloat64Sign( a );
bSign = extractFloat64Sign( b );
@@ -2992,6 +3246,8 @@ float64 float64_add( float64 a, float64 b STATUS_PARAM )
float64 float64_sub( float64 a, float64 b STATUS_PARAM )
{
flag aSign, bSign;
+ a = float64_squash_input_denormal(a STATUS_VAR);
+ b = float64_squash_input_denormal(b STATUS_VAR);
aSign = extractFloat64Sign( a );
bSign = extractFloat64Sign( b );
@@ -3014,7 +3270,10 @@ float64 float64_mul( float64 a, float64 b STATUS_PARAM )
{
flag aSign, bSign, zSign;
int16 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig0, zSig1;
+ uint64_t aSig, bSig, zSig0, zSig1;
+
+ a = float64_squash_input_denormal(a STATUS_VAR);
+ b = float64_squash_input_denormal(b STATUS_VAR);
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
@@ -3054,7 +3313,7 @@ float64 float64_mul( float64 a, float64 b STATUS_PARAM )
bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
mul64To128( aSig, bSig, &zSig0, &zSig1 );
zSig0 |= ( zSig1 != 0 );
- if ( 0 <= (sbits64) ( zSig0<<1 ) ) {
+ if ( 0 <= (int64_t) ( zSig0<<1 ) ) {
zSig0 <<= 1;
--zExp;
}
@@ -3072,9 +3331,11 @@ float64 float64_div( float64 a, float64 b STATUS_PARAM )
{
flag aSign, bSign, zSign;
int16 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig;
- bits64 rem0, rem1;
- bits64 term0, term1;
+ uint64_t aSig, bSig, zSig;
+ uint64_t rem0, rem1;
+ uint64_t term0, term1;
+ a = float64_squash_input_denormal(a STATUS_VAR);
+ b = float64_squash_input_denormal(b STATUS_VAR);
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
@@ -3122,7 +3383,7 @@ float64 float64_div( float64 a, float64 b STATUS_PARAM )
if ( ( zSig & 0x1FF ) <= 2 ) {
mul64To128( bSig, zSig, &term0, &term1 );
sub128( aSig, 0, term0, term1, &rem0, &rem1 );
- while ( (sbits64) rem0 < 0 ) {
+ while ( (int64_t) rem0 < 0 ) {
--zSig;
add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
}
@@ -3142,10 +3403,12 @@ float64 float64_rem( float64 a, float64 b STATUS_PARAM )
{
flag aSign, zSign;
int16 aExp, bExp, expDiff;
- bits64 aSig, bSig;
- bits64 q, alternateASig;
- sbits64 sigMean;
+ uint64_t aSig, bSig;
+ uint64_t q, alternateASig;
+ int64_t sigMean;
+ a = float64_squash_input_denormal(a STATUS_VAR);
+ b = float64_squash_input_denormal(b STATUS_VAR);
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
aSign = extractFloat64Sign( a );
@@ -3205,12 +3468,12 @@ float64 float64_rem( float64 a, float64 b STATUS_PARAM )
alternateASig = aSig;
++q;
aSig -= bSig;
- } while ( 0 <= (sbits64) aSig );
+ } while ( 0 <= (int64_t) aSig );
sigMean = aSig + alternateASig;
if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
aSig = alternateASig;
}
- zSign = ( (sbits64) aSig < 0 );
+ zSign = ( (int64_t) aSig < 0 );
if ( zSign ) aSig = - aSig;
return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig STATUS_VAR );
@@ -3226,8 +3489,9 @@ float64 float64_sqrt( float64 a STATUS_PARAM )
{
flag aSign;
int16 aExp, zExp;
- bits64 aSig, zSig, doubleZSig;
- bits64 rem0, rem1, term0, term1;
+ uint64_t aSig, zSig, doubleZSig;
+ uint64_t rem0, rem1, term0, term1;
+ a = float64_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
@@ -3256,7 +3520,7 @@ float64 float64_sqrt( float64 a STATUS_PARAM )
doubleZSig = zSig<<1;
mul64To128( zSig, zSig, &term0, &term1 );
sub128( aSig, 0, term0, term1, &rem0, &rem1 );
- while ( (sbits64) rem0 < 0 ) {
+ while ( (int64_t) rem0 < 0 ) {
--zSig;
doubleZSig -= 2;
add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
@@ -3276,7 +3540,8 @@ float64 float64_log2( float64 a STATUS_PARAM )
{
flag aSign, zSign;
int16 aExp;
- bits64 aSig, aSig0, aSig1, zSig, i;
+ uint64_t aSig, aSig0, aSig1, zSig, i;
+ a = float64_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
@@ -3298,7 +3563,7 @@ float64 float64_log2( float64 a STATUS_PARAM )
aExp -= 0x3FF;
aSig |= LIT64( 0x0010000000000000 );
zSign = aExp < 0;
- zSig = (bits64)aExp << 52;
+ zSig = (uint64_t)aExp << 52;
for (i = 1LL << 51; i > 0; i >>= 1) {
mul64To128( aSig, aSig, &aSig0, &aSig1 );
aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
@@ -3315,39 +3580,42 @@ float64 float64_log2( float64 a STATUS_PARAM )
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
-| corresponding value `b', and 0 otherwise. The comparison is performed
+| corresponding value `b', and 0 otherwise. The invalid exception is raised
+| if either operand is a NaN. Otherwise, the comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int float64_eq( float64 a, float64 b STATUS_PARAM )
{
- bits64 av, bv;
+ uint64_t av, bv;
+ a = float64_squash_input_denormal(a STATUS_VAR);
+ b = float64_squash_input_denormal(b STATUS_VAR);
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
) {
- if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid STATUS_VAR);
- }
+ float_raise( float_flag_invalid STATUS_VAR);
return 0;
}
av = float64_val(a);
bv = float64_val(b);
- return ( av == bv ) || ( (bits64) ( ( av | bv )<<1 ) == 0 );
+ return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
}
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
-| equal to the corresponding value `b', and 0 otherwise. The comparison is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
+| equal to the corresponding value `b', and 0 otherwise. The invalid
+| exception is raised if either operand is a NaN. The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int float64_le( float64 a, float64 b STATUS_PARAM )
{
flag aSign, bSign;
- bits64 av, bv;
+ uint64_t av, bv;
+ a = float64_squash_input_denormal(a STATUS_VAR);
+ b = float64_squash_input_denormal(b STATUS_VAR);
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
@@ -3359,22 +3627,25 @@ int float64_le( float64 a, float64 b STATUS_PARAM )
bSign = extractFloat64Sign( b );
av = float64_val(a);
bv = float64_val(b);
- if ( aSign != bSign ) return aSign || ( (bits64) ( ( av | bv )<<1 ) == 0 );
+ if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
return ( av == bv ) || ( aSign ^ ( av < bv ) );
}
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+| the corresponding value `b', and 0 otherwise. The invalid exception is
+| raised if either operand is a NaN. The comparison is performed according
+| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int float64_lt( float64 a, float64 b STATUS_PARAM )
{
flag aSign, bSign;
- bits64 av, bv;
+ uint64_t av, bv;
+ a = float64_squash_input_denormal(a STATUS_VAR);
+ b = float64_squash_input_denormal(b STATUS_VAR);
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
) {
@@ -3385,31 +3656,56 @@ int float64_lt( float64 a, float64 b STATUS_PARAM )
bSign = extractFloat64Sign( b );
av = float64_val(a);
bv = float64_val(b);
- if ( aSign != bSign ) return aSign && ( (bits64) ( ( av | bv )<<1 ) != 0 );
+ if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
return ( av != bv ) && ( aSign ^ ( av < bv ) );
}
/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is equal to the
-| corresponding value `b', and 0 otherwise. The invalid exception is raised
-| if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+| Returns 1 if the double-precision floating-point values `a' and `b' cannot
+| be compared, and 0 otherwise. The invalid exception is raised if either
+| operand is a NaN. The comparison is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
-int float64_eq_signaling( float64 a, float64 b STATUS_PARAM )
+int float64_unordered( float64 a, float64 b STATUS_PARAM )
{
- bits64 av, bv;
+ a = float64_squash_input_denormal(a STATUS_VAR);
+ b = float64_squash_input_denormal(b STATUS_VAR);
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
) {
float_raise( float_flag_invalid STATUS_VAR);
+ return 1;
+ }
+ return 0;
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is equal to the
+| corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
+| exception.The comparison is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float64_eq_quiet( float64 a, float64 b STATUS_PARAM )
+{
+ uint64_t av, bv;
+ a = float64_squash_input_denormal(a STATUS_VAR);
+ b = float64_squash_input_denormal(b STATUS_VAR);
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ }
return 0;
}
av = float64_val(a);
bv = float64_val(b);
- return ( av == bv ) || ( (bits64) ( ( av | bv )<<1 ) == 0 );
+ return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
}
@@ -3423,7 +3719,9 @@ int float64_eq_signaling( float64 a, float64 b STATUS_PARAM )
int float64_le_quiet( float64 a, float64 b STATUS_PARAM )
{
flag aSign, bSign;
- bits64 av, bv;
+ uint64_t av, bv;
+ a = float64_squash_input_denormal(a STATUS_VAR);
+ b = float64_squash_input_denormal(b STATUS_VAR);
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
@@ -3437,7 +3735,7 @@ int float64_le_quiet( float64 a, float64 b STATUS_PARAM )
bSign = extractFloat64Sign( b );
av = float64_val(a);
bv = float64_val(b);
- if ( aSign != bSign ) return aSign || ( (bits64) ( ( av | bv )<<1 ) == 0 );
+ if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
return ( av == bv ) || ( aSign ^ ( av < bv ) );
}
@@ -3452,7 +3750,9 @@ int float64_le_quiet( float64 a, float64 b STATUS_PARAM )
int float64_lt_quiet( float64 a, float64 b STATUS_PARAM )
{
flag aSign, bSign;
- bits64 av, bv;
+ uint64_t av, bv;
+ a = float64_squash_input_denormal(a STATUS_VAR);
+ b = float64_squash_input_denormal(b STATUS_VAR);
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
@@ -3466,11 +3766,34 @@ int float64_lt_quiet( float64 a, float64 b STATUS_PARAM )
bSign = extractFloat64Sign( b );
av = float64_val(a);
bv = float64_val(b);
- if ( aSign != bSign ) return aSign && ( (bits64) ( ( av | bv )<<1 ) != 0 );
+ if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
return ( av != bv ) && ( aSign ^ ( av < bv ) );
}
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point values `a' and `b' cannot
+| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
+| comparison is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float64_unordered_quiet( float64 a, float64 b STATUS_PARAM )
+{
+ a = float64_squash_input_denormal(a STATUS_VAR);
+ b = float64_squash_input_denormal(b STATUS_VAR);
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ }
+ return 1;
+ }
+ return 0;
+}
+
#ifdef FLOATX80
/*----------------------------------------------------------------------------
@@ -3487,12 +3810,12 @@ int32 floatx80_to_int32( floatx80 a STATUS_PARAM )
{
flag aSign;
int32 aExp, shiftCount;
- bits64 aSig;
+ uint64_t aSig;
aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
aSign = extractFloatx80Sign( a );
- if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
+ if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
shiftCount = 0x4037 - aExp;
if ( shiftCount <= 0 ) shiftCount = 1;
shift64RightJamming( aSig, shiftCount, &aSig );
@@ -3514,14 +3837,14 @@ int32 floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM )
{
flag aSign;
int32 aExp, shiftCount;
- bits64 aSig, savedASig;
+ uint64_t aSig, savedASig;
int32 z;
aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
aSign = extractFloatx80Sign( a );
if ( 0x401E < aExp ) {
- if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
+ if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
goto invalid;
}
else if ( aExp < 0x3FFF ) {
@@ -3536,7 +3859,7 @@ int32 floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM )
if ( ( z < 0 ) ^ aSign ) {
invalid:
float_raise( float_flag_invalid STATUS_VAR);
- return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
+ return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
}
if ( ( aSig<<shiftCount ) != savedASig ) {
STATUS(float_exception_flags) |= float_flag_inexact;
@@ -3559,7 +3882,7 @@ int64 floatx80_to_int64( floatx80 a STATUS_PARAM )
{
flag aSign;
int32 aExp, shiftCount;
- bits64 aSig, aSigExtra;
+ uint64_t aSig, aSigExtra;
aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
@@ -3574,7 +3897,7 @@ int64 floatx80_to_int64( floatx80 a STATUS_PARAM )
) {
return LIT64( 0x7FFFFFFFFFFFFFFF );
}
- return (sbits64) LIT64( 0x8000000000000000 );
+ return (int64_t) LIT64( 0x8000000000000000 );
}
aSigExtra = 0;
}
@@ -3599,7 +3922,7 @@ int64 floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM )
{
flag aSign;
int32 aExp, shiftCount;
- bits64 aSig;
+ uint64_t aSig;
int64 z;
aSig = extractFloatx80Frac( a );
@@ -3614,14 +3937,14 @@ int64 floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM )
return LIT64( 0x7FFFFFFFFFFFFFFF );
}
}
- return (sbits64) LIT64( 0x8000000000000000 );
+ return (int64_t) LIT64( 0x8000000000000000 );
}
else if ( aExp < 0x3FFF ) {
if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
return 0;
}
z = aSig>>( - shiftCount );
- if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) {
+ if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
STATUS(float_exception_flags) |= float_flag_inexact;
}
if ( aSign ) z = - z;
@@ -3640,14 +3963,14 @@ float32 floatx80_to_float32( floatx80 a STATUS_PARAM )
{
flag aSign;
int32 aExp;
- bits64 aSig;
+ uint64_t aSig;
aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
aSign = extractFloatx80Sign( a );
if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 ) ) {
- return commonNaNToFloat32( floatx80ToCommonNaN( a STATUS_VAR ) );
+ if ( (uint64_t) ( aSig<<1 ) ) {
+ return commonNaNToFloat32( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
}
return packFloat32( aSign, 0xFF, 0 );
}
@@ -3668,14 +3991,14 @@ float64 floatx80_to_float64( floatx80 a STATUS_PARAM )
{
flag aSign;
int32 aExp;
- bits64 aSig, zSig;
+ uint64_t aSig, zSig;
aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
aSign = extractFloatx80Sign( a );
if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 ) ) {
- return commonNaNToFloat64( floatx80ToCommonNaN( a STATUS_VAR ) );
+ if ( (uint64_t) ( aSig<<1 ) ) {
+ return commonNaNToFloat64( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
}
return packFloat64( aSign, 0x7FF, 0 );
}
@@ -3698,13 +4021,13 @@ float128 floatx80_to_float128( floatx80 a STATUS_PARAM )
{
flag aSign;
int16 aExp;
- bits64 aSig, zSig0, zSig1;
+ uint64_t aSig, zSig0, zSig1;
aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
aSign = extractFloatx80Sign( a );
- if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) {
- return commonNaNToFloat128( floatx80ToCommonNaN( a STATUS_VAR ) );
+ if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
+ return commonNaNToFloat128( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
}
shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
return packFloat128( aSign, aExp, zSig0, zSig1 );
@@ -3724,27 +4047,27 @@ floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM )
{
flag aSign;
int32 aExp;
- bits64 lastBitMask, roundBitsMask;
+ uint64_t lastBitMask, roundBitsMask;
int8 roundingMode;
floatx80 z;
aExp = extractFloatx80Exp( a );
if ( 0x403E <= aExp ) {
- if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) {
+ if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
return propagateFloatx80NaN( a, a STATUS_VAR );
}
return a;
}
if ( aExp < 0x3FFF ) {
if ( ( aExp == 0 )
- && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
+ && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
return a;
}
STATUS(float_exception_flags) |= float_flag_inexact;
aSign = extractFloatx80Sign( a );
switch ( STATUS(float_rounding_mode) ) {
case float_round_nearest_even:
- if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 )
+ if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
) {
return
packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
@@ -3797,7 +4120,7 @@ floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM )
static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM)
{
int32 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig0, zSig1;
+ uint64_t aSig, bSig, zSig0, zSig1;
int32 expDiff;
aSig = extractFloatx80Frac( a );
@@ -3807,7 +4130,7 @@ static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM
expDiff = aExp - bExp;
if ( 0 < expDiff ) {
if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
+ if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
return a;
}
if ( bExp == 0 ) --expDiff;
@@ -3816,7 +4139,7 @@ static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM
}
else if ( expDiff < 0 ) {
if ( bExp == 0x7FFF ) {
- if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
+ if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
}
if ( aExp == 0 ) ++expDiff;
@@ -3825,7 +4148,7 @@ static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM
}
else {
if ( aExp == 0x7FFF ) {
- if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
+ if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
return propagateFloatx80NaN( a, b STATUS_VAR );
}
return a;
@@ -3840,7 +4163,7 @@ static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM
goto shiftRight1;
}
zSig0 = aSig + bSig;
- if ( (sbits64) zSig0 < 0 ) goto roundAndPack;
+ if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
shiftRight1:
shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
zSig0 |= LIT64( 0x8000000000000000 );
@@ -3863,7 +4186,7 @@ static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM
static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM )
{
int32 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig0, zSig1;
+ uint64_t aSig, bSig, zSig0, zSig1;
int32 expDiff;
floatx80 z;
@@ -3875,7 +4198,7 @@ static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM
if ( 0 < expDiff ) goto aExpBigger;
if ( expDiff < 0 ) goto bExpBigger;
if ( aExp == 0x7FFF ) {
- if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
+ if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
return propagateFloatx80NaN( a, b STATUS_VAR );
}
float_raise( float_flag_invalid STATUS_VAR);
@@ -3893,7 +4216,7 @@ static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM
return packFloatx80( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
bExpBigger:
if ( bExp == 0x7FFF ) {
- if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
+ if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
}
if ( aExp == 0 ) ++expDiff;
@@ -3905,7 +4228,7 @@ static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM
goto normalizeRoundAndPack;
aExpBigger:
if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
+ if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
return a;
}
if ( bExp == 0 ) --expDiff;
@@ -3972,7 +4295,7 @@ floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM )
{
flag aSign, bSign, zSign;
int32 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig0, zSig1;
+ uint64_t aSig, bSig, zSig0, zSig1;
floatx80 z;
aSig = extractFloatx80Frac( a );
@@ -3983,15 +4306,15 @@ floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM )
bSign = extractFloatx80Sign( b );
zSign = aSign ^ bSign;
if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 )
- || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
+ if ( (uint64_t) ( aSig<<1 )
+ || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
return propagateFloatx80NaN( a, b STATUS_VAR );
}
if ( ( bExp | bSig ) == 0 ) goto invalid;
return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
}
if ( bExp == 0x7FFF ) {
- if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
+ if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
if ( ( aExp | aSig ) == 0 ) {
invalid:
float_raise( float_flag_invalid STATUS_VAR);
@@ -4011,7 +4334,7 @@ floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM )
}
zExp = aExp + bExp - 0x3FFE;
mul64To128( aSig, bSig, &zSig0, &zSig1 );
- if ( 0 < (sbits64) zSig0 ) {
+ if ( 0 < (int64_t) zSig0 ) {
shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
--zExp;
}
@@ -4031,8 +4354,8 @@ floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM )
{
flag aSign, bSign, zSign;
int32 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig0, zSig1;
- bits64 rem0, rem1, rem2, term0, term1, term2;
+ uint64_t aSig, bSig, zSig0, zSig1;
+ uint64_t rem0, rem1, rem2, term0, term1, term2;
floatx80 z;
aSig = extractFloatx80Frac( a );
@@ -4043,15 +4366,15 @@ floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM )
bSign = extractFloatx80Sign( b );
zSign = aSign ^ bSign;
if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
+ if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
if ( bExp == 0x7FFF ) {
- if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
+ if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
goto invalid;
}
return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
}
if ( bExp == 0x7FFF ) {
- if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
+ if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
return packFloatx80( zSign, 0, 0 );
}
if ( bExp == 0 ) {
@@ -4081,15 +4404,15 @@ floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM )
zSig0 = estimateDiv128To64( aSig, rem1, bSig );
mul64To128( bSig, zSig0, &term0, &term1 );
sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
- while ( (sbits64) rem0 < 0 ) {
+ while ( (int64_t) rem0 < 0 ) {
--zSig0;
add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
}
zSig1 = estimateDiv128To64( rem1, 0, bSig );
- if ( (bits64) ( zSig1<<1 ) <= 8 ) {
+ if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
mul64To128( bSig, zSig1, &term1, &term2 );
sub128( rem1, 0, term1, term2, &rem1, &rem2 );
- while ( (sbits64) rem1 < 0 ) {
+ while ( (int64_t) rem1 < 0 ) {
--zSig1;
add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
}
@@ -4111,8 +4434,8 @@ floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM )
{
flag aSign, zSign;
int32 aExp, bExp, expDiff;
- bits64 aSig0, aSig1, bSig;
- bits64 q, term0, term1, alternateASig0, alternateASig1;
+ uint64_t aSig0, aSig1, bSig;
+ uint64_t q, term0, term1, alternateASig0, alternateASig1;
floatx80 z;
aSig0 = extractFloatx80Frac( a );
@@ -4121,14 +4444,14 @@ floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM )
bSig = extractFloatx80Frac( b );
bExp = extractFloatx80Exp( b );
if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig0<<1 )
- || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
+ if ( (uint64_t) ( aSig0<<1 )
+ || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
return propagateFloatx80NaN( a, b STATUS_VAR );
}
goto invalid;
}
if ( bExp == 0x7FFF ) {
- if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
+ if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
return a;
}
if ( bExp == 0 ) {
@@ -4142,7 +4465,7 @@ floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM )
normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
}
if ( aExp == 0 ) {
- if ( (bits64) ( aSig0<<1 ) == 0 ) return a;
+ if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
}
bSig |= LIT64( 0x8000000000000000 );
@@ -4207,15 +4530,15 @@ floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM )
{
flag aSign;
int32 aExp, zExp;
- bits64 aSig0, aSig1, zSig0, zSig1, doubleZSig0;
- bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
+ uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
+ uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
floatx80 z;
aSig0 = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
aSign = extractFloatx80Sign( a );
if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a STATUS_VAR );
+ if ( (uint64_t) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a STATUS_VAR );
if ( ! aSign ) return a;
goto invalid;
}
@@ -4238,7 +4561,7 @@ floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM )
doubleZSig0 = zSig0<<1;
mul64To128( zSig0, zSig0, &term0, &term1 );
sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
- while ( (sbits64) rem0 < 0 ) {
+ while ( (int64_t) rem0 < 0 ) {
--zSig0;
doubleZSig0 -= 2;
add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
@@ -4250,7 +4573,7 @@ floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM )
sub128( rem1, 0, term1, term2, &rem1, &rem2 );
mul64To128( zSig1, zSig1, &term2, &term3 );
sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
- while ( (sbits64) rem1 < 0 ) {
+ while ( (int64_t) rem1 < 0 ) {
--zSig1;
shortShift128Left( 0, zSig1, 1, &term2, &term3 );
term3 |= 1;
@@ -4268,31 +4591,28 @@ floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM )
}
/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is
-| equal to the corresponding value `b', and 0 otherwise. The comparison is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
+| Returns 1 if the extended double-precision floating-point value `a' is equal
+| to the corresponding value `b', and 0 otherwise. The invalid exception is
+| raised if either operand is a NaN. Otherwise, the comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM )
{
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
) {
- if ( floatx80_is_signaling_nan( a )
- || floatx80_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid STATUS_VAR);
- }
+ float_raise( float_flag_invalid STATUS_VAR);
return 0;
}
return
( a.low == b.low )
&& ( ( a.high == b.high )
|| ( ( a.low == 0 )
- && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
+ && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
);
}
@@ -4300,8 +4620,9 @@ int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM )
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
| less than or equal to the corresponding value `b', and 0 otherwise. The
-| comparison is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
+| invalid exception is raised if either operand is a NaN. The comparison is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
*----------------------------------------------------------------------------*/
int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM )
@@ -4309,9 +4630,9 @@ int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM )
flag aSign, bSign;
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
) {
float_raise( float_flag_invalid STATUS_VAR);
return 0;
@@ -4321,7 +4642,7 @@ int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM )
if ( aSign != bSign ) {
return
aSign
- || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
== 0 );
}
return
@@ -4332,9 +4653,9 @@ int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM )
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
-| less than the corresponding value `b', and 0 otherwise. The comparison
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
+| less than the corresponding value `b', and 0 otherwise. The invalid
+| exception is raised if either operand is a NaN. The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM )
@@ -4342,9 +4663,9 @@ int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM )
flag aSign, bSign;
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
) {
float_raise( float_flag_invalid STATUS_VAR);
return 0;
@@ -4354,7 +4675,7 @@ int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM )
if ( aSign != bSign ) {
return
aSign
- && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
!= 0 );
}
return
@@ -4364,28 +4685,50 @@ int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM )
}
/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is equal
-| to the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+| Returns 1 if the extended double-precision floating-point values `a' and `b'
+| cannot be compared, and 0 otherwise. The invalid exception is raised if
+| either operand is a NaN. The comparison is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
+int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM )
+{
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ return 1;
+ }
+ return 0;
+}
-int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM )
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is
+| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
+| cause an exception. The comparison is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int floatx80_eq_quiet( floatx80 a, floatx80 b STATUS_PARAM )
{
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
) {
- float_raise( float_flag_invalid STATUS_VAR);
+ if ( floatx80_is_signaling_nan( a )
+ || floatx80_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ }
return 0;
}
return
( a.low == b.low )
&& ( ( a.high == b.high )
|| ( ( a.low == 0 )
- && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
+ && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
);
}
@@ -4402,9 +4745,9 @@ int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM )
flag aSign, bSign;
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
) {
if ( floatx80_is_signaling_nan( a )
|| floatx80_is_signaling_nan( b ) ) {
@@ -4417,7 +4760,7 @@ int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM )
if ( aSign != bSign ) {
return
aSign
- || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
== 0 );
}
return
@@ -4438,9 +4781,9 @@ int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM )
flag aSign, bSign;
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
) {
if ( floatx80_is_signaling_nan( a )
|| floatx80_is_signaling_nan( b ) ) {
@@ -4453,7 +4796,7 @@ int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM )
if ( aSign != bSign ) {
return
aSign
- && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
!= 0 );
}
return
@@ -4462,6 +4805,28 @@ int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM )
}
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point values `a' and `b'
+| cannot be compared, and 0 otherwise. Quiet NaNs do not cause an exception.
+| The comparison is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+int floatx80_unordered_quiet( floatx80 a, floatx80 b STATUS_PARAM )
+{
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ if ( floatx80_is_signaling_nan( a )
+ || floatx80_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ }
+ return 1;
+ }
+ return 0;
+}
+
#endif
#ifdef FLOAT128
@@ -4480,7 +4845,7 @@ int32 float128_to_int32( float128 a STATUS_PARAM )
{
flag aSign;
int32 aExp, shiftCount;
- bits64 aSig0, aSig1;
+ uint64_t aSig0, aSig1;
aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a );
@@ -4509,7 +4874,7 @@ int32 float128_to_int32_round_to_zero( float128 a STATUS_PARAM )
{
flag aSign;
int32 aExp, shiftCount;
- bits64 aSig0, aSig1, savedASig;
+ uint64_t aSig0, aSig1, savedASig;
int32 z;
aSig1 = extractFloat128Frac1( a );
@@ -4534,7 +4899,7 @@ int32 float128_to_int32_round_to_zero( float128 a STATUS_PARAM )
if ( ( z < 0 ) ^ aSign ) {
invalid:
float_raise( float_flag_invalid STATUS_VAR);
- return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
+ return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
}
if ( ( aSig0<<shiftCount ) != savedASig ) {
STATUS(float_exception_flags) |= float_flag_inexact;
@@ -4557,7 +4922,7 @@ int64 float128_to_int64( float128 a STATUS_PARAM )
{
flag aSign;
int32 aExp, shiftCount;
- bits64 aSig0, aSig1;
+ uint64_t aSig0, aSig1;
aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a );
@@ -4575,7 +4940,7 @@ int64 float128_to_int64( float128 a STATUS_PARAM )
) {
return LIT64( 0x7FFFFFFFFFFFFFFF );
}
- return (sbits64) LIT64( 0x8000000000000000 );
+ return (int64_t) LIT64( 0x8000000000000000 );
}
shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
}
@@ -4600,7 +4965,7 @@ int64 float128_to_int64_round_to_zero( float128 a STATUS_PARAM )
{
flag aSign;
int32 aExp, shiftCount;
- bits64 aSig0, aSig1;
+ uint64_t aSig0, aSig1;
int64 z;
aSig1 = extractFloat128Frac1( a );
@@ -4622,10 +4987,10 @@ int64 float128_to_int64_round_to_zero( float128 a STATUS_PARAM )
return LIT64( 0x7FFFFFFFFFFFFFFF );
}
}
- return (sbits64) LIT64( 0x8000000000000000 );
+ return (int64_t) LIT64( 0x8000000000000000 );
}
z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
- if ( (bits64) ( aSig1<<shiftCount ) ) {
+ if ( (uint64_t) ( aSig1<<shiftCount ) ) {
STATUS(float_exception_flags) |= float_flag_inexact;
}
}
@@ -4638,7 +5003,7 @@ int64 float128_to_int64_round_to_zero( float128 a STATUS_PARAM )
}
z = aSig0>>( - shiftCount );
if ( aSig1
- || ( shiftCount && (bits64) ( aSig0<<( shiftCount & 63 ) ) ) ) {
+ || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
STATUS(float_exception_flags) |= float_flag_inexact;
}
}
@@ -4658,8 +5023,8 @@ float32 float128_to_float32( float128 a STATUS_PARAM )
{
flag aSign;
int32 aExp;
- bits64 aSig0, aSig1;
- bits32 zSig;
+ uint64_t aSig0, aSig1;
+ uint32_t zSig;
aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a );
@@ -4667,7 +5032,7 @@ float32 float128_to_float32( float128 a STATUS_PARAM )
aSign = extractFloat128Sign( a );
if ( aExp == 0x7FFF ) {
if ( aSig0 | aSig1 ) {
- return commonNaNToFloat32( float128ToCommonNaN( a STATUS_VAR ) );
+ return commonNaNToFloat32( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
}
return packFloat32( aSign, 0xFF, 0 );
}
@@ -4693,7 +5058,7 @@ float64 float128_to_float64( float128 a STATUS_PARAM )
{
flag aSign;
int32 aExp;
- bits64 aSig0, aSig1;
+ uint64_t aSig0, aSig1;
aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a );
@@ -4701,7 +5066,7 @@ float64 float128_to_float64( float128 a STATUS_PARAM )
aSign = extractFloat128Sign( a );
if ( aExp == 0x7FFF ) {
if ( aSig0 | aSig1 ) {
- return commonNaNToFloat64( float128ToCommonNaN( a STATUS_VAR ) );
+ return commonNaNToFloat64( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
}
return packFloat64( aSign, 0x7FF, 0 );
}
@@ -4728,7 +5093,7 @@ floatx80 float128_to_floatx80( float128 a STATUS_PARAM )
{
flag aSign;
int32 aExp;
- bits64 aSig0, aSig1;
+ uint64_t aSig0, aSig1;
aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a );
@@ -4736,7 +5101,7 @@ floatx80 float128_to_floatx80( float128 a STATUS_PARAM )
aSign = extractFloat128Sign( a );
if ( aExp == 0x7FFF ) {
if ( aSig0 | aSig1 ) {
- return commonNaNToFloatx80( float128ToCommonNaN( a STATUS_VAR ) );
+ return commonNaNToFloatx80( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
}
return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
}
@@ -4765,7 +5130,7 @@ float128 float128_round_to_int( float128 a STATUS_PARAM )
{
flag aSign;
int32 aExp;
- bits64 lastBitMask, roundBitsMask;
+ uint64_t lastBitMask, roundBitsMask;
int8 roundingMode;
float128 z;
@@ -4790,9 +5155,9 @@ float128 float128_round_to_int( float128 a STATUS_PARAM )
if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
}
else {
- if ( (sbits64) z.low < 0 ) {
+ if ( (int64_t) z.low < 0 ) {
++z.high;
- if ( (bits64) ( z.low<<1 ) == 0 ) z.high &= ~1;
+ if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
}
}
}
@@ -4806,7 +5171,7 @@ float128 float128_round_to_int( float128 a STATUS_PARAM )
}
else {
if ( aExp < 0x3FFF ) {
- if ( ( ( (bits64) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
+ if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
STATUS(float_exception_flags) |= float_flag_inexact;
aSign = extractFloat128Sign( a );
switch ( STATUS(float_rounding_mode) ) {
@@ -4868,7 +5233,7 @@ float128 float128_round_to_int( float128 a STATUS_PARAM )
static float128 addFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM)
{
int32 aExp, bExp, zExp;
- bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
+ uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
int32 expDiff;
aSig1 = extractFloat128Frac1( a );
@@ -4949,7 +5314,7 @@ static float128 addFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM
static float128 subFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM)
{
int32 aExp, bExp, zExp;
- bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
+ uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
int32 expDiff;
float128 z;
@@ -5074,7 +5439,7 @@ float128 float128_mul( float128 a, float128 b STATUS_PARAM )
{
flag aSign, bSign, zSign;
int32 aExp, bExp, zExp;
- bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
+ uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
float128 z;
aSig1 = extractFloat128Frac1( a );
@@ -5138,8 +5503,8 @@ float128 float128_div( float128 a, float128 b STATUS_PARAM )
{
flag aSign, bSign, zSign;
int32 aExp, bExp, zExp;
- bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
- bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
+ uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
+ uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
float128 z;
aSig1 = extractFloat128Frac1( a );
@@ -5193,7 +5558,7 @@ float128 float128_div( float128 a, float128 b STATUS_PARAM )
zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
- while ( (sbits64) rem0 < 0 ) {
+ while ( (int64_t) rem0 < 0 ) {
--zSig0;
add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
}
@@ -5201,7 +5566,7 @@ float128 float128_div( float128 a, float128 b STATUS_PARAM )
if ( ( zSig1 & 0x3FFF ) <= 4 ) {
mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
- while ( (sbits64) rem1 < 0 ) {
+ while ( (int64_t) rem1 < 0 ) {
--zSig1;
add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
}
@@ -5222,9 +5587,9 @@ float128 float128_rem( float128 a, float128 b STATUS_PARAM )
{
flag aSign, zSign;
int32 aExp, bExp, expDiff;
- bits64 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
- bits64 allZero, alternateASig0, alternateASig1, sigMean1;
- sbits64 sigMean0;
+ uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
+ uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
+ int64_t sigMean0;
float128 z;
aSig1 = extractFloat128Frac1( a );
@@ -5306,15 +5671,15 @@ float128 float128_rem( float128 a, float128 b STATUS_PARAM )
alternateASig1 = aSig1;
++q;
sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
- } while ( 0 <= (sbits64) aSig0 );
+ } while ( 0 <= (int64_t) aSig0 );
add128(
- aSig0, aSig1, alternateASig0, alternateASig1, (bits64 *)&sigMean0, &sigMean1 );
+ aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
if ( ( sigMean0 < 0 )
|| ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
aSig0 = alternateASig0;
aSig1 = alternateASig1;
}
- zSign = ( (sbits64) aSig0 < 0 );
+ zSign = ( (int64_t) aSig0 < 0 );
if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
return
normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 STATUS_VAR );
@@ -5331,8 +5696,8 @@ float128 float128_sqrt( float128 a STATUS_PARAM )
{
flag aSign;
int32 aExp, zExp;
- bits64 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
- bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
+ uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
+ uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
float128 z;
aSig1 = extractFloat128Frac1( a );
@@ -5364,7 +5729,7 @@ float128 float128_sqrt( float128 a STATUS_PARAM )
doubleZSig0 = zSig0<<1;
mul64To128( zSig0, zSig0, &term0, &term1 );
sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
- while ( (sbits64) rem0 < 0 ) {
+ while ( (int64_t) rem0 < 0 ) {
--zSig0;
doubleZSig0 -= 2;
add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
@@ -5376,7 +5741,7 @@ float128 float128_sqrt( float128 a STATUS_PARAM )
sub128( rem1, 0, term1, term2, &rem1, &rem2 );
mul64To128( zSig1, zSig1, &term2, &term3 );
sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
- while ( (sbits64) rem1 < 0 ) {
+ while ( (int64_t) rem1 < 0 ) {
--zSig1;
shortShift128Left( 0, zSig1, 1, &term2, &term3 );
term3 |= 1;
@@ -5392,7 +5757,8 @@ float128 float128_sqrt( float128 a STATUS_PARAM )
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. The comparison is performed
+| the corresponding value `b', and 0 otherwise. The invalid exception is
+| raised if either operand is a NaN. Otherwise, the comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
@@ -5404,26 +5770,23 @@ int float128_eq( float128 a, float128 b STATUS_PARAM )
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
) {
- if ( float128_is_signaling_nan( a )
- || float128_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid STATUS_VAR);
- }
+ float_raise( float_flag_invalid STATUS_VAR);
return 0;
}
return
( a.low == b.low )
&& ( ( a.high == b.high )
|| ( ( a.low == 0 )
- && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
+ && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
);
}
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
-| or equal to the corresponding value `b', and 0 otherwise. The comparison
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
+| or equal to the corresponding value `b', and 0 otherwise. The invalid
+| exception is raised if either operand is a NaN. The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int float128_le( float128 a, float128 b STATUS_PARAM )
@@ -5443,7 +5806,7 @@ int float128_le( float128 a, float128 b STATUS_PARAM )
if ( aSign != bSign ) {
return
aSign
- || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
== 0 );
}
return
@@ -5454,8 +5817,9 @@ int float128_le( float128 a, float128 b STATUS_PARAM )
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+| the corresponding value `b', and 0 otherwise. The invalid exception is
+| raised if either operand is a NaN. The comparison is performed according
+| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int float128_lt( float128 a, float128 b STATUS_PARAM )
@@ -5475,7 +5839,7 @@ int float128_lt( float128 a, float128 b STATUS_PARAM )
if ( aSign != bSign ) {
return
aSign
- && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
!= 0 );
}
return
@@ -5485,13 +5849,33 @@ int float128_lt( float128 a, float128 b STATUS_PARAM )
}
/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
+| be compared, and 0 otherwise. The invalid exception is raised if either
+| operand is a NaN. The comparison is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float128_unordered( float128 a, float128 b STATUS_PARAM )
+{
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ return 1;
+ }
+ return 0;
+}
+
+/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
+| exception. The comparison is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
-int float128_eq_signaling( float128 a, float128 b STATUS_PARAM )
+int float128_eq_quiet( float128 a, float128 b STATUS_PARAM )
{
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
@@ -5499,14 +5883,17 @@ int float128_eq_signaling( float128 a, float128 b STATUS_PARAM )
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
) {
- float_raise( float_flag_invalid STATUS_VAR);
+ if ( float128_is_signaling_nan( a )
+ || float128_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ }
return 0;
}
return
( a.low == b.low )
&& ( ( a.high == b.high )
|| ( ( a.low == 0 )
- && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
+ && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
);
}
@@ -5538,7 +5925,7 @@ int float128_le_quiet( float128 a, float128 b STATUS_PARAM )
if ( aSign != bSign ) {
return
aSign
- || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
== 0 );
}
return
@@ -5574,7 +5961,7 @@ int float128_lt_quiet( float128 a, float128 b STATUS_PARAM )
if ( aSign != bSign ) {
return
aSign
- && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
!= 0 );
}
return
@@ -5583,6 +5970,29 @@ int float128_lt_quiet( float128 a, float128 b STATUS_PARAM )
}
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
+| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
+| comparison is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+int float128_unordered_quiet( float128 a, float128 b STATUS_PARAM )
+{
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ if ( float128_is_signaling_nan( a )
+ || float128_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ }
+ return 1;
+ }
+ return 0;
+}
+
#endif
/* misc functions */
@@ -5632,6 +6042,24 @@ unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM )
return res;
}
+unsigned int float32_to_uint16_round_to_zero( float32 a STATUS_PARAM )
+{
+ int64_t v;
+ unsigned int res;
+
+ v = float32_to_int64_round_to_zero(a STATUS_VAR);
+ if (v < 0) {
+ res = 0;
+ float_raise( float_flag_invalid STATUS_VAR);
+ } else if (v > 0xffff) {
+ res = 0xffff;
+ float_raise( float_flag_invalid STATUS_VAR);
+ } else {
+ res = v;
+ }
+ return res;
+}
+
unsigned int float64_to_uint32( float64 a STATUS_PARAM )
{
int64_t v;
@@ -5668,6 +6096,24 @@ unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM )
return res;
}
+unsigned int float64_to_uint16_round_to_zero( float64 a STATUS_PARAM )
+{
+ int64_t v;
+ unsigned int res;
+
+ v = float64_to_int64_round_to_zero(a STATUS_VAR);
+ if (v < 0) {
+ res = 0;
+ float_raise( float_flag_invalid STATUS_VAR);
+ } else if (v > 0xffff) {
+ res = 0xffff;
+ float_raise( float_flag_invalid STATUS_VAR);
+ } else {
+ res = v;
+ }
+ return res;
+}
+
/* FIXME: This looks broken. */
uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
{
@@ -5696,7 +6142,9 @@ INLINE int float ## s ## _compare_internal( float ## s a, float ## s b, \
int is_quiet STATUS_PARAM ) \
{ \
flag aSign, bSign; \
- bits ## s av, bv; \
+ uint ## s ## _t av, bv; \
+ a = float ## s ## _squash_input_denormal(a STATUS_VAR); \
+ b = float ## s ## _squash_input_denormal(b STATUS_VAR); \
\
if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) && \
extractFloat ## s ## Frac( a ) ) || \
@@ -5714,7 +6162,7 @@ INLINE int float ## s ## _compare_internal( float ## s a, float ## s b, \
av = float ## s ## _val(a); \
bv = float ## s ## _val(b); \
if ( aSign != bSign ) { \
- if ( (bits ## s) ( ( av | bv )<<1 ) == 0 ) { \
+ if ( (uint ## s ## _t) ( ( av | bv )<<1 ) == 0 ) { \
/* zero case */ \
return float_relation_equal; \
} else { \
@@ -5742,6 +6190,52 @@ int float ## s ## _compare_quiet( float ## s a, float ## s b STATUS_PARAM ) \
COMPARE(32, 0xff)
COMPARE(64, 0x7ff)
+INLINE int floatx80_compare_internal( floatx80 a, floatx80 b,
+ int is_quiet STATUS_PARAM )
+{
+ flag aSign, bSign;
+
+ if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
+ ( extractFloatx80Frac( a )<<1 ) ) ||
+ ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
+ ( extractFloatx80Frac( b )<<1 ) )) {
+ if (!is_quiet ||
+ floatx80_is_signaling_nan( a ) ||
+ floatx80_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid STATUS_VAR);
+ }
+ return float_relation_unordered;
+ }
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign != bSign ) {
+
+ if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
+ ( ( a.low | b.low ) == 0 ) ) {
+ /* zero case */
+ return float_relation_equal;
+ } else {
+ return 1 - (2 * aSign);
+ }
+ } else {
+ if (a.low == b.low && a.high == b.high) {
+ return float_relation_equal;
+ } else {
+ return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
+ }
+ }
+}
+
+int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
+{
+ return floatx80_compare_internal(a, b, 0 STATUS_VAR);
+}
+
+int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
+{
+ return floatx80_compare_internal(a, b, 1 STATUS_VAR);
+}
+
INLINE int float128_compare_internal( float128 a, float128 b,
int is_quiet STATUS_PARAM )
{
@@ -5786,18 +6280,71 @@ int float128_compare_quiet( float128 a, float128 b STATUS_PARAM )
return float128_compare_internal(a, b, 1 STATUS_VAR);
}
+/* min() and max() functions. These can't be implemented as
+ * 'compare and pick one input' because that would mishandle
+ * NaNs and +0 vs -0.
+ */
+#define MINMAX(s, nan_exp) \
+INLINE float ## s float ## s ## _minmax(float ## s a, float ## s b, \
+ int ismin STATUS_PARAM ) \
+{ \
+ flag aSign, bSign; \
+ uint ## s ## _t av, bv; \
+ a = float ## s ## _squash_input_denormal(a STATUS_VAR); \
+ b = float ## s ## _squash_input_denormal(b STATUS_VAR); \
+ if (float ## s ## _is_any_nan(a) || \
+ float ## s ## _is_any_nan(b)) { \
+ return propagateFloat ## s ## NaN(a, b STATUS_VAR); \
+ } \
+ aSign = extractFloat ## s ## Sign(a); \
+ bSign = extractFloat ## s ## Sign(b); \
+ av = float ## s ## _val(a); \
+ bv = float ## s ## _val(b); \
+ if (aSign != bSign) { \
+ if (ismin) { \
+ return aSign ? a : b; \
+ } else { \
+ return aSign ? b : a; \
+ } \
+ } else { \
+ if (ismin) { \
+ return (aSign ^ (av < bv)) ? a : b; \
+ } else { \
+ return (aSign ^ (av < bv)) ? b : a; \
+ } \
+ } \
+} \
+ \
+float ## s float ## s ## _min(float ## s a, float ## s b STATUS_PARAM) \
+{ \
+ return float ## s ## _minmax(a, b, 1 STATUS_VAR); \
+} \
+ \
+float ## s float ## s ## _max(float ## s a, float ## s b STATUS_PARAM) \
+{ \
+ return float ## s ## _minmax(a, b, 0 STATUS_VAR); \
+}
+
+MINMAX(32, 0xff)
+MINMAX(64, 0x7ff)
+
+
/* Multiply A by 2 raised to the power N. */
float32 float32_scalbn( float32 a, int n STATUS_PARAM )
{
flag aSign;
- int16 aExp;
- bits32 aSig;
+ int16_t aExp;
+ uint32_t aSig;
+ a = float32_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
aSign = extractFloat32Sign( a );
if ( aExp == 0xFF ) {
+ if ( aSig ) {
+ return propagateFloat32NaN( a, a STATUS_VAR );
+ }
return a;
}
if ( aExp != 0 )
@@ -5805,6 +6352,12 @@ float32 float32_scalbn( float32 a, int n STATUS_PARAM )
else if ( aSig == 0 )
return a;
+ if (n > 0x200) {
+ n = 0x200;
+ } else if (n < -0x200) {
+ n = -0x200;
+ }
+
aExp += n - 1;
aSig <<= 7;
return normalizeRoundAndPackFloat32( aSign, aExp, aSig STATUS_VAR );
@@ -5813,14 +6366,18 @@ float32 float32_scalbn( float32 a, int n STATUS_PARAM )
float64 float64_scalbn( float64 a, int n STATUS_PARAM )
{
flag aSign;
- int16 aExp;
- bits64 aSig;
+ int16_t aExp;
+ uint64_t aSig;
+ a = float64_squash_input_denormal(a STATUS_VAR);
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
aSign = extractFloat64Sign( a );
if ( aExp == 0x7FF ) {
+ if ( aSig ) {
+ return propagateFloat64NaN( a, a STATUS_VAR );
+ }
return a;
}
if ( aExp != 0 )
@@ -5828,6 +6385,12 @@ float64 float64_scalbn( float64 a, int n STATUS_PARAM )
else if ( aSig == 0 )
return a;
+ if (n > 0x1000) {
+ n = 0x1000;
+ } else if (n < -0x1000) {
+ n = -0x1000;
+ }
+
aExp += n - 1;
aSig <<= 10;
return normalizeRoundAndPackFloat64( aSign, aExp, aSig STATUS_VAR );
@@ -5837,19 +6400,29 @@ float64 float64_scalbn( float64 a, int n STATUS_PARAM )
floatx80 floatx80_scalbn( floatx80 a, int n STATUS_PARAM )
{
flag aSign;
- int16 aExp;
- bits64 aSig;
+ int32_t aExp;
+ uint64_t aSig;
aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
aSign = extractFloatx80Sign( a );
- if ( aExp == 0x7FF ) {
+ if ( aExp == 0x7FFF ) {
+ if ( aSig<<1 ) {
+ return propagateFloatx80NaN( a, a STATUS_VAR );
+ }
return a;
}
+
if (aExp == 0 && aSig == 0)
return a;
+ if (n > 0x10000) {
+ n = 0x10000;
+ } else if (n < -0x10000) {
+ n = -0x10000;
+ }
+
aExp += n;
return normalizeRoundAndPackFloatx80( STATUS(floatx80_rounding_precision),
aSign, aExp, aSig, 0 STATUS_VAR );
@@ -5860,14 +6433,17 @@ floatx80 floatx80_scalbn( floatx80 a, int n STATUS_PARAM )
float128 float128_scalbn( float128 a, int n STATUS_PARAM )
{
flag aSign;
- int32 aExp;
- bits64 aSig0, aSig1;
+ int32_t aExp;
+ uint64_t aSig0, aSig1;
aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a );
aExp = extractFloat128Exp( a );
aSign = extractFloat128Sign( a );
if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 ) {
+ return propagateFloat128NaN( a, a STATUS_VAR );
+ }
return a;
}
if ( aExp != 0 )
@@ -5875,6 +6451,12 @@ float128 float128_scalbn( float128 a, int n STATUS_PARAM )
else if ( aSig0 == 0 && aSig1 == 0 )
return a;
+ if (n > 0x10000) {
+ n = 0x10000;
+ } else if (n < -0x10000) {
+ n = -0x10000;
+ }
+
aExp += n - 1;
return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
STATUS_VAR );
diff --git a/fpu/softfloat.h b/fpu/softfloat.h
index 9528825..5eff085 100644
--- a/fpu/softfloat.h
+++ b/fpu/softfloat.h
@@ -1,3 +1,9 @@
+/*
+ * QEMU float support
+ *
+ * Derived from SoftFloat.
+ */
+
/*============================================================================
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
@@ -59,24 +65,15 @@ typedef signed int int32;
typedef uint64_t uint64;
typedef int64_t int64;
-/*----------------------------------------------------------------------------
-| Each of the following `typedef's defines a type that holds integers
-| of _exactly_ the number of bits specified. For instance, for most
-| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
-| `unsigned short int' and `signed short int' (or `short int'), respectively.
-*----------------------------------------------------------------------------*/
-typedef uint8_t bits8;
-typedef int8_t sbits8;
-typedef uint16_t bits16;
-typedef int16_t sbits16;
-typedef uint32_t bits32;
-typedef int32_t sbits32;
-typedef uint64_t bits64;
-typedef int64_t sbits64;
-
#define LIT64( a ) a##LL
#define INLINE static inline
+#if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
+#define SNAN_BIT_IS_ONE 1
+#else
+#define SNAN_BIT_IS_ONE 0
+#endif
+
/*----------------------------------------------------------------------------
| The macro `FLOATX80' must be defined to enable the extended double-precision
| floating-point format `floatx80'. If this macro is not defined, the
@@ -120,29 +117,44 @@ enum {
//#define USE_SOFTFLOAT_STRUCT_TYPES
#ifdef USE_SOFTFLOAT_STRUCT_TYPES
typedef struct {
+ uint16_t v;
+} float16;
+#define float16_val(x) (((float16)(x)).v)
+#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
+#define const_float16(x) { x }
+typedef struct {
uint32_t v;
} float32;
/* The cast ensures an error if the wrong type is passed. */
#define float32_val(x) (((float32)(x)).v)
#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
+#define const_float32(x) { x }
typedef struct {
uint64_t v;
} float64;
#define float64_val(x) (((float64)(x)).v)
#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
+#define const_float64(x) { x }
#else
+typedef uint16_t float16;
typedef uint32_t float32;
typedef uint64_t float64;
+#define float16_val(x) (x)
#define float32_val(x) (x)
#define float64_val(x) (x)
+#define make_float16(x) (x)
#define make_float32(x) (x)
#define make_float64(x) (x)
+#define const_float16(x) (x)
+#define const_float32(x) (x)
+#define const_float64(x) (x)
#endif
#ifdef FLOATX80
typedef struct {
uint64_t low;
uint16_t high;
} floatx80;
+#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
#endif
#ifdef FLOAT128
typedef struct {
@@ -180,7 +192,8 @@ enum {
float_flag_divbyzero = 4,
float_flag_overflow = 8,
float_flag_underflow = 16,
- float_flag_inexact = 32
+ float_flag_inexact = 32,
+ float_flag_input_denormal = 64
};
typedef struct float_status {
@@ -190,16 +203,27 @@ typedef struct float_status {
#ifdef FLOATX80
signed char floatx80_rounding_precision;
#endif
+ /* should denormalised results go to zero and set the inexact flag? */
flag flush_to_zero;
+ /* should denormalised inputs go to zero and set the input_denormal flag? */
+ flag flush_inputs_to_zero;
flag default_nan_mode;
} float_status;
void set_float_rounding_mode(int val STATUS_PARAM);
void set_float_exception_flags(int val STATUS_PARAM);
+INLINE void set_float_detect_tininess(int val STATUS_PARAM)
+{
+ STATUS(float_detect_tininess) = val;
+}
INLINE void set_flush_to_zero(flag val STATUS_PARAM)
{
STATUS(flush_to_zero) = val;
}
+INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
+{
+ STATUS(flush_inputs_to_zero) = val;
+}
INLINE void set_default_nan_mode(flag val STATUS_PARAM)
{
STATUS(default_nan_mode) = val;
@@ -221,42 +245,62 @@ void float_raise( int8 flags STATUS_PARAM);
/*----------------------------------------------------------------------------
| Software IEC/IEEE integer-to-floating-point conversion routines.
*----------------------------------------------------------------------------*/
-float32 int32_to_float32( int STATUS_PARAM );
-float64 int32_to_float64( int STATUS_PARAM );
+float32 int32_to_float32( int32 STATUS_PARAM );
+float64 int32_to_float64( int32 STATUS_PARAM );
float32 uint32_to_float32( unsigned int STATUS_PARAM );
float64 uint32_to_float64( unsigned int STATUS_PARAM );
#ifdef FLOATX80
-floatx80 int32_to_floatx80( int STATUS_PARAM );
+floatx80 int32_to_floatx80( int32 STATUS_PARAM );
#endif
#ifdef FLOAT128
-float128 int32_to_float128( int STATUS_PARAM );
+float128 int32_to_float128( int32 STATUS_PARAM );
#endif
-float32 int64_to_float32( int64_t STATUS_PARAM );
-float32 uint64_to_float32( uint64_t STATUS_PARAM );
-float64 int64_to_float64( int64_t STATUS_PARAM );
-float64 uint64_to_float64( uint64_t STATUS_PARAM );
+float32 int64_to_float32( int64 STATUS_PARAM );
+float32 uint64_to_float32( uint64 STATUS_PARAM );
+float64 int64_to_float64( int64 STATUS_PARAM );
+float64 uint64_to_float64( uint64 STATUS_PARAM );
#ifdef FLOATX80
-floatx80 int64_to_floatx80( int64_t STATUS_PARAM );
+floatx80 int64_to_floatx80( int64 STATUS_PARAM );
#endif
#ifdef FLOAT128
-float128 int64_to_float128( int64_t STATUS_PARAM );
+float128 int64_to_float128( int64 STATUS_PARAM );
#endif
/*----------------------------------------------------------------------------
| Software half-precision conversion routines.
*----------------------------------------------------------------------------*/
-bits16 float32_to_float16( float32, flag STATUS_PARAM );
-float32 float16_to_float32( bits16, flag STATUS_PARAM );
+float16 float32_to_float16( float32, flag STATUS_PARAM );
+float32 float16_to_float32( float16, flag STATUS_PARAM );
+
+/*----------------------------------------------------------------------------
+| Software half-precision operations.
+*----------------------------------------------------------------------------*/
+int float16_is_quiet_nan( float16 );
+int float16_is_signaling_nan( float16 );
+float16 float16_maybe_silence_nan( float16 );
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated half-precision NaN.
+*----------------------------------------------------------------------------*/
+#if defined(TARGET_ARM)
+#define float16_default_nan make_float16(0x7E00)
+#elif SNAN_BIT_IS_ONE
+#define float16_default_nan make_float16(0x7DFF)
+#else
+#define float16_default_nan make_float16(0xFE00)
+#endif
/*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision conversion routines.
*----------------------------------------------------------------------------*/
-int float32_to_int32( float32 STATUS_PARAM );
-int float32_to_int32_round_to_zero( float32 STATUS_PARAM );
-unsigned int float32_to_uint32( float32 STATUS_PARAM );
-unsigned int float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
-int64_t float32_to_int64( float32 STATUS_PARAM );
-int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM );
+int16 float32_to_int16_round_to_zero( float32 STATUS_PARAM );
+unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
+int32 float32_to_int32( float32 STATUS_PARAM );
+int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
+uint32 float32_to_uint32( float32 STATUS_PARAM );
+uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
+int64 float32_to_int64( float32 STATUS_PARAM );
+int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
float64 float32_to_float64( float32 STATUS_PARAM );
#ifdef FLOATX80
floatx80 float32_to_floatx80( float32 STATUS_PARAM );
@@ -280,22 +324,33 @@ float32 float32_log2( float32 STATUS_PARAM );
int float32_eq( float32, float32 STATUS_PARAM );
int float32_le( float32, float32 STATUS_PARAM );
int float32_lt( float32, float32 STATUS_PARAM );
-int float32_eq_signaling( float32, float32 STATUS_PARAM );
+int float32_unordered( float32, float32 STATUS_PARAM );
+int float32_eq_quiet( float32, float32 STATUS_PARAM );
int float32_le_quiet( float32, float32 STATUS_PARAM );
int float32_lt_quiet( float32, float32 STATUS_PARAM );
+int float32_unordered_quiet( float32, float32 STATUS_PARAM );
int float32_compare( float32, float32 STATUS_PARAM );
int float32_compare_quiet( float32, float32 STATUS_PARAM );
-int float32_is_nan( float32 );
+float32 float32_min(float32, float32 STATUS_PARAM);
+float32 float32_max(float32, float32 STATUS_PARAM);
+int float32_is_quiet_nan( float32 );
int float32_is_signaling_nan( float32 );
+float32 float32_maybe_silence_nan( float32 );
float32 float32_scalbn( float32, int STATUS_PARAM );
INLINE float32 float32_abs(float32 a)
{
+ /* Note that abs does *not* handle NaN specially, nor does
+ * it flush denormal inputs to zero.
+ */
return make_float32(float32_val(a) & 0x7fffffff);
}
INLINE float32 float32_chs(float32 a)
{
+ /* Note that chs does *not* handle NaN specially, nor does
+ * it flush denormal inputs to zero.
+ */
return make_float32(float32_val(a) ^ 0x80000000);
}
@@ -314,21 +369,55 @@ INLINE int float32_is_zero(float32 a)
return (float32_val(a) & 0x7fffffff) == 0;
}
+INLINE int float32_is_any_nan(float32 a)
+{
+ return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
+}
+
+INLINE int float32_is_zero_or_denormal(float32 a)
+{
+ return (float32_val(a) & 0x7f800000) == 0;
+}
+
+INLINE float32 float32_set_sign(float32 a, int sign)
+{
+ return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
+}
+
#define float32_zero make_float32(0)
#define float32_one make_float32(0x3f800000)
#define float32_ln2 make_float32(0x3f317218)
+#define float32_pi make_float32(0x40490fdb)
+#define float32_half make_float32(0x3f000000)
+#define float32_infinity make_float32(0x7f800000)
+
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated single-precision NaN.
+*----------------------------------------------------------------------------*/
+#if defined(TARGET_SPARC)
+#define float32_default_nan make_float32(0x7FFFFFFF)
+#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
+#define float32_default_nan make_float32(0x7FC00000)
+#elif SNAN_BIT_IS_ONE
+#define float32_default_nan make_float32(0x7FBFFFFF)
+#else
+#define float32_default_nan make_float32(0xFFC00000)
+#endif
/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision conversion routines.
*----------------------------------------------------------------------------*/
-int float64_to_int32( float64 STATUS_PARAM );
-int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
-unsigned int float64_to_uint32( float64 STATUS_PARAM );
-unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
-int64_t float64_to_int64( float64 STATUS_PARAM );
-int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
-uint64_t float64_to_uint64 (float64 a STATUS_PARAM);
-uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
+int16 float64_to_int16_round_to_zero( float64 STATUS_PARAM );
+unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
+int32 float64_to_int32( float64 STATUS_PARAM );
+int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
+uint32 float64_to_uint32( float64 STATUS_PARAM );
+uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
+int64 float64_to_int64( float64 STATUS_PARAM );
+int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
+uint64 float64_to_uint64 (float64 a STATUS_PARAM);
+uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
float32 float64_to_float32( float64 STATUS_PARAM );
#ifdef FLOATX80
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
@@ -352,22 +441,33 @@ float64 float64_log2( float64 STATUS_PARAM );
int float64_eq( float64, float64 STATUS_PARAM );
int float64_le( float64, float64 STATUS_PARAM );
int float64_lt( float64, float64 STATUS_PARAM );
-int float64_eq_signaling( float64, float64 STATUS_PARAM );
+int float64_unordered( float64, float64 STATUS_PARAM );
+int float64_eq_quiet( float64, float64 STATUS_PARAM );
int float64_le_quiet( float64, float64 STATUS_PARAM );
int float64_lt_quiet( float64, float64 STATUS_PARAM );
+int float64_unordered_quiet( float64, float64 STATUS_PARAM );
int float64_compare( float64, float64 STATUS_PARAM );
int float64_compare_quiet( float64, float64 STATUS_PARAM );
-int float64_is_nan( float64 a );
+float64 float64_min(float64, float64 STATUS_PARAM);
+float64 float64_max(float64, float64 STATUS_PARAM);
+int float64_is_quiet_nan( float64 a );
int float64_is_signaling_nan( float64 );
+float64 float64_maybe_silence_nan( float64 );
float64 float64_scalbn( float64, int STATUS_PARAM );
INLINE float64 float64_abs(float64 a)
{
+ /* Note that abs does *not* handle NaN specially, nor does
+ * it flush denormal inputs to zero.
+ */
return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
}
INLINE float64 float64_chs(float64 a)
{
+ /* Note that chs does *not* handle NaN specially, nor does
+ * it flush denormal inputs to zero.
+ */
return make_float64(float64_val(a) ^ 0x8000000000000000LL);
}
@@ -386,19 +486,46 @@ INLINE int float64_is_zero(float64 a)
return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
}
+INLINE int float64_is_any_nan(float64 a)
+{
+ return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
+}
+
+INLINE float64 float64_set_sign(float64 a, int sign)
+{
+ return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
+ | ((int64_t)sign << 63));
+}
+
#define float64_zero make_float64(0)
#define float64_one make_float64(0x3ff0000000000000LL)
#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
+#define float64_pi make_float64(0x400921fb54442d18LL)
+#define float64_half make_float64(0x3fe0000000000000LL)
+#define float64_infinity make_float64(0x7ff0000000000000LL)
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated double-precision NaN.
+*----------------------------------------------------------------------------*/
+#if defined(TARGET_SPARC)
+#define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF ))
+#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
+#define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 ))
+#elif SNAN_BIT_IS_ONE
+#define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF ))
+#else
+#define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
+#endif
#ifdef FLOATX80
/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision conversion routines.
*----------------------------------------------------------------------------*/
-int floatx80_to_int32( floatx80 STATUS_PARAM );
-int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
-int64_t floatx80_to_int64( floatx80 STATUS_PARAM );
-int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
+int32 floatx80_to_int32( floatx80 STATUS_PARAM );
+int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
+int64 floatx80_to_int64( floatx80 STATUS_PARAM );
+int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
#ifdef FLOAT128
@@ -418,11 +545,16 @@ floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
int floatx80_le( floatx80, floatx80 STATUS_PARAM );
int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
-int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
+int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
+int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
-int floatx80_is_nan( floatx80 );
+int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
+int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
+int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
+int floatx80_is_quiet_nan( floatx80 );
int floatx80_is_signaling_nan( floatx80 );
+floatx80 floatx80_maybe_silence_nan( floatx80 );
floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
INLINE floatx80 floatx80_abs(floatx80 a)
@@ -439,7 +571,7 @@ INLINE floatx80 floatx80_chs(floatx80 a)
INLINE int floatx80_is_infinity(floatx80 a)
{
- return (a.high & 0x7fff) == 0x7fff && a.low == 0;
+ return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
}
INLINE int floatx80_is_neg(floatx80 a)
@@ -452,6 +584,31 @@ INLINE int floatx80_is_zero(floatx80 a)
return (a.high & 0x7fff) == 0 && a.low == 0;
}
+INLINE int floatx80_is_any_nan(floatx80 a)
+{
+ return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
+}
+
+#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
+#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
+#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
+#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
+#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
+#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated extended double-precision NaN. The
+| `high' and `low' values hold the most- and least-significant bits,
+| respectively.
+*----------------------------------------------------------------------------*/
+#if SNAN_BIT_IS_ONE
+#define floatx80_default_nan_high 0x7FFF
+#define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF )
+#else
+#define floatx80_default_nan_high 0xFFFF
+#define floatx80_default_nan_low LIT64( 0xC000000000000000 )
+#endif
+
#endif
#ifdef FLOAT128
@@ -459,10 +616,10 @@ INLINE int floatx80_is_zero(floatx80 a)
/*----------------------------------------------------------------------------
| Software IEC/IEEE quadruple-precision conversion routines.
*----------------------------------------------------------------------------*/
-int float128_to_int32( float128 STATUS_PARAM );
-int float128_to_int32_round_to_zero( float128 STATUS_PARAM );
-int64_t float128_to_int64( float128 STATUS_PARAM );
-int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM );
+int32 float128_to_int32( float128 STATUS_PARAM );
+int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
+int64 float128_to_int64( float128 STATUS_PARAM );
+int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
float32 float128_to_float32( float128 STATUS_PARAM );
float64 float128_to_float64( float128 STATUS_PARAM );
#ifdef FLOATX80
@@ -482,13 +639,16 @@ float128 float128_sqrt( float128 STATUS_PARAM );
int float128_eq( float128, float128 STATUS_PARAM );
int float128_le( float128, float128 STATUS_PARAM );
int float128_lt( float128, float128 STATUS_PARAM );
-int float128_eq_signaling( float128, float128 STATUS_PARAM );
+int float128_unordered( float128, float128 STATUS_PARAM );
+int float128_eq_quiet( float128, float128 STATUS_PARAM );
int float128_le_quiet( float128, float128 STATUS_PARAM );
int float128_lt_quiet( float128, float128 STATUS_PARAM );
+int float128_unordered_quiet( float128, float128 STATUS_PARAM );
int float128_compare( float128, float128 STATUS_PARAM );
int float128_compare_quiet( float128, float128 STATUS_PARAM );
-int float128_is_nan( float128 );
+int float128_is_quiet_nan( float128 );
int float128_is_signaling_nan( float128 );
+float128 float128_maybe_silence_nan( float128 );
float128 float128_scalbn( float128, int STATUS_PARAM );
INLINE float128 float128_abs(float128 a)
@@ -518,6 +678,24 @@ INLINE int float128_is_zero(float128 a)
return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
}
+INLINE int float128_is_any_nan(float128 a)
+{
+ return ((a.high >> 48) & 0x7fff) == 0x7fff &&
+ ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
+}
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated quadruple-precision NaN. The `high' and
+| `low' values hold the most- and least-significant bits, respectively.
+*----------------------------------------------------------------------------*/
+#if SNAN_BIT_IS_ONE
+#define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
+#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
+#else
+#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
+#define float128_default_nan_low LIT64( 0x0000000000000000 )
+#endif
+
#endif
#else /* CONFIG_SOFTFLOAT */