aboutsummaryrefslogtreecommitdiffstats
path: root/distrib/sdl-1.2.15/src/video/SDL_RLEaccel.c
diff options
context:
space:
mode:
Diffstat (limited to 'distrib/sdl-1.2.15/src/video/SDL_RLEaccel.c')
-rw-r--r--distrib/sdl-1.2.15/src/video/SDL_RLEaccel.c1941
1 files changed, 1941 insertions, 0 deletions
diff --git a/distrib/sdl-1.2.15/src/video/SDL_RLEaccel.c b/distrib/sdl-1.2.15/src/video/SDL_RLEaccel.c
new file mode 100644
index 0000000..d4b191c
--- /dev/null
+++ b/distrib/sdl-1.2.15/src/video/SDL_RLEaccel.c
@@ -0,0 +1,1941 @@
+/*
+ SDL - Simple DirectMedia Layer
+ Copyright (C) 1997-2012 Sam Lantinga
+
+ This library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ This library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with this library; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+
+ Sam Lantinga
+ slouken@libsdl.org
+*/
+#include "SDL_config.h"
+
+/*
+ * RLE encoding for software colorkey and alpha-channel acceleration
+ *
+ * Original version by Sam Lantinga
+ *
+ * Mattias Engdegård (Yorick): Rewrite. New encoding format, encoder and
+ * decoder. Added per-surface alpha blitter. Added per-pixel alpha
+ * format, encoder and blitter.
+ *
+ * Many thanks to Xark and johns for hints, benchmarks and useful comments
+ * leading to this code.
+ *
+ * Welcome to Macro Mayhem.
+ */
+
+/*
+ * The encoding translates the image data to a stream of segments of the form
+ *
+ * <skip> <run> <data>
+ *
+ * where <skip> is the number of transparent pixels to skip,
+ * <run> is the number of opaque pixels to blit,
+ * and <data> are the pixels themselves.
+ *
+ * This basic structure is used both for colorkeyed surfaces, used for simple
+ * binary transparency and for per-surface alpha blending, and for surfaces
+ * with per-pixel alpha. The details differ, however:
+ *
+ * Encoding of colorkeyed surfaces:
+ *
+ * Encoded pixels always have the same format as the target surface.
+ * <skip> and <run> are unsigned 8 bit integers, except for 32 bit depth
+ * where they are 16 bit. This makes the pixel data aligned at all times.
+ * Segments never wrap around from one scan line to the next.
+ *
+ * The end of the sequence is marked by a zero <skip>,<run> pair at the *
+ * beginning of a line.
+ *
+ * Encoding of surfaces with per-pixel alpha:
+ *
+ * The sequence begins with a struct RLEDestFormat describing the target
+ * pixel format, to provide reliable un-encoding.
+ *
+ * Each scan line is encoded twice: First all completely opaque pixels,
+ * encoded in the target format as described above, and then all
+ * partially transparent (translucent) pixels (where 1 <= alpha <= 254),
+ * in the following 32-bit format:
+ *
+ * For 32-bit targets, each pixel has the target RGB format but with
+ * the alpha value occupying the highest 8 bits. The <skip> and <run>
+ * counts are 16 bit.
+ *
+ * For 16-bit targets, each pixel has the target RGB format, but with
+ * the middle component (usually green) shifted 16 steps to the left,
+ * and the hole filled with the 5 most significant bits of the alpha value.
+ * i.e. if the target has the format rrrrrggggggbbbbb,
+ * the encoded pixel will be 00000gggggg00000rrrrr0aaaaabbbbb.
+ * The <skip> and <run> counts are 8 bit for the opaque lines, 16 bit
+ * for the translucent lines. Two padding bytes may be inserted
+ * before each translucent line to keep them 32-bit aligned.
+ *
+ * The end of the sequence is marked by a zero <skip>,<run> pair at the
+ * beginning of an opaque line.
+ */
+
+#include "SDL_video.h"
+#include "SDL_sysvideo.h"
+#include "SDL_blit.h"
+#include "SDL_RLEaccel_c.h"
+
+/* Force MMX to 0; this blows up on almost every major compiler now. --ryan. */
+#if 0 && defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && SDL_ASSEMBLY_ROUTINES
+#define MMX_ASMBLIT
+#endif
+
+#ifdef MMX_ASMBLIT
+#include "mmx.h"
+#include "SDL_cpuinfo.h"
+#endif
+
+#ifndef MAX
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+#endif
+#ifndef MIN
+#define MIN(a, b) ((a) < (b) ? (a) : (b))
+#endif
+
+#define PIXEL_COPY(to, from, len, bpp) \
+do { \
+ if(bpp == 4) { \
+ SDL_memcpy4(to, from, (size_t)(len)); \
+ } else { \
+ SDL_memcpy(to, from, (size_t)(len) * (bpp)); \
+ } \
+} while(0)
+
+/*
+ * Various colorkey blit methods, for opaque and per-surface alpha
+ */
+
+#define OPAQUE_BLIT(to, from, length, bpp, alpha) \
+ PIXEL_COPY(to, from, length, bpp)
+
+#ifdef MMX_ASMBLIT
+
+#define ALPHA_BLIT32_888MMX(to, from, length, bpp, alpha) \
+ do { \
+ Uint32 *srcp = (Uint32 *)(from); \
+ Uint32 *dstp = (Uint32 *)(to); \
+ int i = 0x00FF00FF; \
+ movd_m2r(*(&i), mm3); \
+ punpckldq_r2r(mm3, mm3); \
+ i = 0xFF000000; \
+ movd_m2r(*(&i), mm7); \
+ punpckldq_r2r(mm7, mm7); \
+ i = alpha | alpha << 16; \
+ movd_m2r(*(&i), mm4); \
+ punpckldq_r2r(mm4, mm4); \
+ pcmpeqd_r2r(mm5,mm5); /* set mm5 to "1" */ \
+ pxor_r2r(mm7, mm5); /* make clear alpha mask */ \
+ i = length; \
+ if(i & 1) { \
+ movd_m2r((*srcp), mm1); /* src -> mm1 */ \
+ punpcklbw_r2r(mm1, mm1); \
+ pand_r2r(mm3, mm1); \
+ movd_m2r((*dstp), mm2); /* dst -> mm2 */ \
+ punpcklbw_r2r(mm2, mm2); \
+ pand_r2r(mm3, mm2); \
+ psubw_r2r(mm2, mm1); \
+ pmullw_r2r(mm4, mm1); \
+ psrlw_i2r(8, mm1); \
+ paddw_r2r(mm1, mm2); \
+ pand_r2r(mm3, mm2); \
+ packuswb_r2r(mm2, mm2); \
+ pand_r2r(mm5, mm2); /* 00000RGB -> mm2 */ \
+ movd_r2m(mm2, *dstp); \
+ ++srcp; \
+ ++dstp; \
+ i--; \
+ } \
+ for(; i > 0; --i) { \
+ movq_m2r((*srcp), mm0); \
+ movq_r2r(mm0, mm1); \
+ punpcklbw_r2r(mm0, mm0); \
+ movq_m2r((*dstp), mm2); \
+ punpckhbw_r2r(mm1, mm1); \
+ movq_r2r(mm2, mm6); \
+ pand_r2r(mm3, mm0); \
+ punpcklbw_r2r(mm2, mm2); \
+ pand_r2r(mm3, mm1); \
+ punpckhbw_r2r(mm6, mm6); \
+ pand_r2r(mm3, mm2); \
+ psubw_r2r(mm2, mm0); \
+ pmullw_r2r(mm4, mm0); \
+ pand_r2r(mm3, mm6); \
+ psubw_r2r(mm6, mm1); \
+ pmullw_r2r(mm4, mm1); \
+ psrlw_i2r(8, mm0); \
+ paddw_r2r(mm0, mm2); \
+ psrlw_i2r(8, mm1); \
+ paddw_r2r(mm1, mm6); \
+ pand_r2r(mm3, mm2); \
+ pand_r2r(mm3, mm6); \
+ packuswb_r2r(mm2, mm2); \
+ packuswb_r2r(mm6, mm6); \
+ psrlq_i2r(32, mm2); \
+ psllq_i2r(32, mm6); \
+ por_r2r(mm6, mm2); \
+ pand_r2r(mm5, mm2); /* 00000RGB -> mm2 */ \
+ movq_r2m(mm2, *dstp); \
+ srcp += 2; \
+ dstp += 2; \
+ i--; \
+ } \
+ emms(); \
+ } while(0)
+
+#define ALPHA_BLIT16_565MMX(to, from, length, bpp, alpha) \
+ do { \
+ int i, n = 0; \
+ Uint16 *srcp = (Uint16 *)(from); \
+ Uint16 *dstp = (Uint16 *)(to); \
+ Uint32 ALPHA = 0xF800; \
+ movd_m2r(*(&ALPHA), mm1); \
+ punpcklwd_r2r(mm1, mm1); \
+ punpcklwd_r2r(mm1, mm1); \
+ ALPHA = 0x07E0; \
+ movd_m2r(*(&ALPHA), mm4); \
+ punpcklwd_r2r(mm4, mm4); \
+ punpcklwd_r2r(mm4, mm4); \
+ ALPHA = 0x001F; \
+ movd_m2r(*(&ALPHA), mm7); \
+ punpcklwd_r2r(mm7, mm7); \
+ punpcklwd_r2r(mm7, mm7); \
+ alpha &= ~(1+2+4); \
+ i = (Uint32)alpha | (Uint32)alpha << 16; \
+ movd_m2r(*(&i), mm0); \
+ punpckldq_r2r(mm0, mm0); \
+ ALPHA = alpha >> 3; \
+ i = ((int)(length) & 3); \
+ for(; i > 0; --i) { \
+ Uint32 s = *srcp++; \
+ Uint32 d = *dstp; \
+ s = (s | s << 16) & 0x07e0f81f; \
+ d = (d | d << 16) & 0x07e0f81f; \
+ d += (s - d) * ALPHA >> 5; \
+ d &= 0x07e0f81f; \
+ *dstp++ = d | d >> 16; \
+ n++; \
+ } \
+ i = (int)(length) - n; \
+ for(; i > 0; --i) { \
+ movq_m2r((*dstp), mm3); \
+ movq_m2r((*srcp), mm2); \
+ movq_r2r(mm2, mm5); \
+ pand_r2r(mm1 , mm5); \
+ psrlq_i2r(11, mm5); \
+ movq_r2r(mm3, mm6); \
+ pand_r2r(mm1 , mm6); \
+ psrlq_i2r(11, mm6); \
+ psubw_r2r(mm6, mm5); \
+ pmullw_r2r(mm0, mm5); \
+ psrlw_i2r(8, mm5); \
+ paddw_r2r(mm5, mm6); \
+ psllq_i2r(11, mm6); \
+ pand_r2r(mm1, mm6); \
+ movq_r2r(mm4, mm5); \
+ por_r2r(mm7, mm5); \
+ pand_r2r(mm5, mm3); \
+ por_r2r(mm6, mm3); \
+ movq_r2r(mm2, mm5); \
+ pand_r2r(mm4 , mm5); \
+ psrlq_i2r(5, mm5); \
+ movq_r2r(mm3, mm6); \
+ pand_r2r(mm4 , mm6); \
+ psrlq_i2r(5, mm6); \
+ psubw_r2r(mm6, mm5); \
+ pmullw_r2r(mm0, mm5); \
+ psrlw_i2r(8, mm5); \
+ paddw_r2r(mm5, mm6); \
+ psllq_i2r(5, mm6); \
+ pand_r2r(mm4, mm6); \
+ movq_r2r(mm1, mm5); \
+ por_r2r(mm7, mm5); \
+ pand_r2r(mm5, mm3); \
+ por_r2r(mm6, mm3); \
+ movq_r2r(mm2, mm5); \
+ pand_r2r(mm7 , mm5); \
+ movq_r2r(mm3, mm6); \
+ pand_r2r(mm7 , mm6); \
+ psubw_r2r(mm6, mm5); \
+ pmullw_r2r(mm0, mm5); \
+ psrlw_i2r(8, mm5); \
+ paddw_r2r(mm5, mm6); \
+ pand_r2r(mm7, mm6); \
+ movq_r2r(mm1, mm5); \
+ por_r2r(mm4, mm5); \
+ pand_r2r(mm5, mm3); \
+ por_r2r(mm6, mm3); \
+ movq_r2m(mm3, *dstp); \
+ srcp += 4; \
+ dstp += 4; \
+ i -= 3; \
+ } \
+ emms(); \
+ } while(0)
+
+#define ALPHA_BLIT16_555MMX(to, from, length, bpp, alpha) \
+ do { \
+ int i, n = 0; \
+ Uint16 *srcp = (Uint16 *)(from); \
+ Uint16 *dstp = (Uint16 *)(to); \
+ Uint32 ALPHA = 0x7C00; \
+ movd_m2r(*(&ALPHA), mm1); \
+ punpcklwd_r2r(mm1, mm1); \
+ punpcklwd_r2r(mm1, mm1); \
+ ALPHA = 0x03E0; \
+ movd_m2r(*(&ALPHA), mm4); \
+ punpcklwd_r2r(mm4, mm4); \
+ punpcklwd_r2r(mm4, mm4); \
+ ALPHA = 0x001F; \
+ movd_m2r(*(&ALPHA), mm7); \
+ punpcklwd_r2r(mm7, mm7); \
+ punpcklwd_r2r(mm7, mm7); \
+ alpha &= ~(1+2+4); \
+ i = (Uint32)alpha | (Uint32)alpha << 16; \
+ movd_m2r(*(&i), mm0); \
+ punpckldq_r2r(mm0, mm0); \
+ i = ((int)(length) & 3); \
+ ALPHA = alpha >> 3; \
+ for(; i > 0; --i) { \
+ Uint32 s = *srcp++; \
+ Uint32 d = *dstp; \
+ s = (s | s << 16) & 0x03e07c1f; \
+ d = (d | d << 16) & 0x03e07c1f; \
+ d += (s - d) * ALPHA >> 5; \
+ d &= 0x03e07c1f; \
+ *dstp++ = d | d >> 16; \
+ n++; \
+ } \
+ i = (int)(length) - n; \
+ for(; i > 0; --i) { \
+ movq_m2r((*dstp), mm3); \
+ movq_m2r((*srcp), mm2); \
+ movq_r2r(mm2, mm5); \
+ pand_r2r(mm1 , mm5); \
+ psrlq_i2r(10, mm5); \
+ movq_r2r(mm3, mm6); \
+ pand_r2r(mm1 , mm6); \
+ psrlq_i2r(10, mm6); \
+ psubw_r2r(mm6, mm5); \
+ pmullw_r2r(mm0, mm5); \
+ psrlw_i2r(8, mm5); \
+ paddw_r2r(mm5, mm6); \
+ psllq_i2r(10, mm6); \
+ pand_r2r(mm1, mm6); \
+ movq_r2r(mm4, mm5); \
+ por_r2r(mm7, mm5); \
+ pand_r2r(mm5, mm3); \
+ por_r2r(mm6, mm3); \
+ movq_r2r(mm2, mm5); \
+ pand_r2r(mm4 , mm5); \
+ psrlq_i2r(5, mm5); \
+ movq_r2r(mm3, mm6); \
+ pand_r2r(mm4 , mm6); \
+ psrlq_i2r(5, mm6); \
+ psubw_r2r(mm6, mm5); \
+ pmullw_r2r(mm0, mm5); \
+ psrlw_i2r(8, mm5); \
+ paddw_r2r(mm5, mm6); \
+ psllq_i2r(5, mm6); \
+ pand_r2r(mm4, mm6); \
+ movq_r2r(mm1, mm5); \
+ por_r2r(mm7, mm5); \
+ pand_r2r(mm5, mm3); \
+ por_r2r(mm6, mm3); \
+ movq_r2r(mm2, mm5); \
+ pand_r2r(mm7 , mm5); \
+ movq_r2r(mm3, mm6); \
+ pand_r2r(mm7 , mm6); \
+ psubw_r2r(mm6, mm5); \
+ pmullw_r2r(mm0, mm5); \
+ psrlw_i2r(8, mm5); \
+ paddw_r2r(mm5, mm6); \
+ pand_r2r(mm7, mm6); \
+ movq_r2r(mm1, mm5); \
+ por_r2r(mm4, mm5); \
+ pand_r2r(mm5, mm3); \
+ por_r2r(mm6, mm3); \
+ movq_r2m(mm3, *dstp); \
+ srcp += 4; \
+ dstp += 4; \
+ i -= 3; \
+ } \
+ emms(); \
+ } while(0)
+
+#endif
+
+/*
+ * For 32bpp pixels on the form 0x00rrggbb:
+ * If we treat the middle component separately, we can process the two
+ * remaining in parallel. This is safe to do because of the gap to the left
+ * of each component, so the bits from the multiplication don't collide.
+ * This can be used for any RGB permutation of course.
+ */
+#define ALPHA_BLIT32_888(to, from, length, bpp, alpha) \
+ do { \
+ int i; \
+ Uint32 *src = (Uint32 *)(from); \
+ Uint32 *dst = (Uint32 *)(to); \
+ for(i = 0; i < (int)(length); i++) { \
+ Uint32 s = *src++; \
+ Uint32 d = *dst; \
+ Uint32 s1 = s & 0xff00ff; \
+ Uint32 d1 = d & 0xff00ff; \
+ d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff; \
+ s &= 0xff00; \
+ d &= 0xff00; \
+ d = (d + ((s - d) * alpha >> 8)) & 0xff00; \
+ *dst++ = d1 | d; \
+ } \
+ } while(0)
+
+/*
+ * For 16bpp pixels we can go a step further: put the middle component
+ * in the high 16 bits of a 32 bit word, and process all three RGB
+ * components at the same time. Since the smallest gap is here just
+ * 5 bits, we have to scale alpha down to 5 bits as well.
+ */
+#define ALPHA_BLIT16_565(to, from, length, bpp, alpha) \
+ do { \
+ int i; \
+ Uint16 *src = (Uint16 *)(from); \
+ Uint16 *dst = (Uint16 *)(to); \
+ Uint32 ALPHA = alpha >> 3; \
+ for(i = 0; i < (int)(length); i++) { \
+ Uint32 s = *src++; \
+ Uint32 d = *dst; \
+ s = (s | s << 16) & 0x07e0f81f; \
+ d = (d | d << 16) & 0x07e0f81f; \
+ d += (s - d) * ALPHA >> 5; \
+ d &= 0x07e0f81f; \
+ *dst++ = (Uint16)(d | d >> 16); \
+ } \
+ } while(0)
+
+#define ALPHA_BLIT16_555(to, from, length, bpp, alpha) \
+ do { \
+ int i; \
+ Uint16 *src = (Uint16 *)(from); \
+ Uint16 *dst = (Uint16 *)(to); \
+ Uint32 ALPHA = alpha >> 3; \
+ for(i = 0; i < (int)(length); i++) { \
+ Uint32 s = *src++; \
+ Uint32 d = *dst; \
+ s = (s | s << 16) & 0x03e07c1f; \
+ d = (d | d << 16) & 0x03e07c1f; \
+ d += (s - d) * ALPHA >> 5; \
+ d &= 0x03e07c1f; \
+ *dst++ = (Uint16)(d | d >> 16); \
+ } \
+ } while(0)
+
+/*
+ * The general slow catch-all function, for remaining depths and formats
+ */
+#define ALPHA_BLIT_ANY(to, from, length, bpp, alpha) \
+ do { \
+ int i; \
+ Uint8 *src = from; \
+ Uint8 *dst = to; \
+ for(i = 0; i < (int)(length); i++) { \
+ Uint32 s, d; \
+ unsigned rs, gs, bs, rd, gd, bd; \
+ switch(bpp) { \
+ case 2: \
+ s = *(Uint16 *)src; \
+ d = *(Uint16 *)dst; \
+ break; \
+ case 3: \
+ if(SDL_BYTEORDER == SDL_BIG_ENDIAN) { \
+ s = (src[0] << 16) | (src[1] << 8) | src[2]; \
+ d = (dst[0] << 16) | (dst[1] << 8) | dst[2]; \
+ } else { \
+ s = (src[2] << 16) | (src[1] << 8) | src[0]; \
+ d = (dst[2] << 16) | (dst[1] << 8) | dst[0]; \
+ } \
+ break; \
+ case 4: \
+ s = *(Uint32 *)src; \
+ d = *(Uint32 *)dst; \
+ break; \
+ } \
+ RGB_FROM_PIXEL(s, fmt, rs, gs, bs); \
+ RGB_FROM_PIXEL(d, fmt, rd, gd, bd); \
+ rd += (rs - rd) * alpha >> 8; \
+ gd += (gs - gd) * alpha >> 8; \
+ bd += (bs - bd) * alpha >> 8; \
+ PIXEL_FROM_RGB(d, fmt, rd, gd, bd); \
+ switch(bpp) { \
+ case 2: \
+ *(Uint16 *)dst = (Uint16)d; \
+ break; \
+ case 3: \
+ if(SDL_BYTEORDER == SDL_BIG_ENDIAN) { \
+ dst[0] = (Uint8)(d >> 16); \
+ dst[1] = (Uint8)(d >> 8); \
+ dst[2] = (Uint8)(d); \
+ } else { \
+ dst[0] = (Uint8)d; \
+ dst[1] = (Uint8)(d >> 8); \
+ dst[2] = (Uint8)(d >> 16); \
+ } \
+ break; \
+ case 4: \
+ *(Uint32 *)dst = d; \
+ break; \
+ } \
+ src += bpp; \
+ dst += bpp; \
+ } \
+ } while(0)
+
+#ifdef MMX_ASMBLIT
+
+#define ALPHA_BLIT32_888_50MMX(to, from, length, bpp, alpha) \
+ do { \
+ Uint32 *srcp = (Uint32 *)(from); \
+ Uint32 *dstp = (Uint32 *)(to); \
+ int i = 0x00fefefe; \
+ movd_m2r(*(&i), mm4); \
+ punpckldq_r2r(mm4, mm4); \
+ i = 0x00010101; \
+ movd_m2r(*(&i), mm3); \
+ punpckldq_r2r(mm3, mm3); \
+ i = (int)(length); \
+ if( i & 1 ) { \
+ Uint32 s = *srcp++; \
+ Uint32 d = *dstp; \
+ *dstp++ = (((s & 0x00fefefe) + (d & 0x00fefefe)) >> 1) \
+ + (s & d & 0x00010101); \
+ i--; \
+ } \
+ for(; i > 0; --i) { \
+ movq_m2r((*dstp), mm2); /* dst -> mm2 */ \
+ movq_r2r(mm2, mm6); /* dst -> mm6 */ \
+ movq_m2r((*srcp), mm1); /* src -> mm1 */ \
+ movq_r2r(mm1, mm5); /* src -> mm5 */ \
+ pand_r2r(mm4, mm6); /* dst & 0x00fefefe -> mm6 */ \
+ pand_r2r(mm4, mm5); /* src & 0x00fefefe -> mm5 */ \
+ paddd_r2r(mm6, mm5); /* (dst & 0x00fefefe) + (dst & 0x00fefefe) -> mm5 */ \
+ psrld_i2r(1, mm5); \
+ pand_r2r(mm1, mm2); /* s & d -> mm2 */ \
+ pand_r2r(mm3, mm2); /* s & d & 0x00010101 -> mm2 */ \
+ paddd_r2r(mm5, mm2); \
+ movq_r2m(mm2, (*dstp)); \
+ dstp += 2; \
+ srcp += 2; \
+ i--; \
+ } \
+ emms(); \
+ } while(0)
+
+#endif
+
+/*
+ * Special case: 50% alpha (alpha=128)
+ * This is treated specially because it can be optimized very well, and
+ * since it is good for many cases of semi-translucency.
+ * The theory is to do all three components at the same time:
+ * First zero the lowest bit of each component, which gives us room to
+ * add them. Then shift right and add the sum of the lowest bits.
+ */
+#define ALPHA_BLIT32_888_50(to, from, length, bpp, alpha) \
+ do { \
+ int i; \
+ Uint32 *src = (Uint32 *)(from); \
+ Uint32 *dst = (Uint32 *)(to); \
+ for(i = 0; i < (int)(length); i++) { \
+ Uint32 s = *src++; \
+ Uint32 d = *dst; \
+ *dst++ = (((s & 0x00fefefe) + (d & 0x00fefefe)) >> 1) \
+ + (s & d & 0x00010101); \
+ } \
+ } while(0)
+
+/*
+ * For 16bpp, we can actually blend two pixels in parallel, if we take
+ * care to shift before we add, not after.
+ */
+
+/* helper: blend a single 16 bit pixel at 50% */
+#define BLEND16_50(dst, src, mask) \
+ do { \
+ Uint32 s = *src++; \
+ Uint32 d = *dst; \
+ *dst++ = (Uint16)((((s & mask) + (d & mask)) >> 1) + \
+ (s & d & (~mask & 0xffff))); \
+ } while(0)
+
+/* basic 16bpp blender. mask is the pixels to keep when adding. */
+#define ALPHA_BLIT16_50(to, from, length, bpp, alpha, mask) \
+ do { \
+ unsigned n = (length); \
+ Uint16 *src = (Uint16 *)(from); \
+ Uint16 *dst = (Uint16 *)(to); \
+ if(((uintptr_t)src ^ (uintptr_t)dst) & 3) { \
+ /* source and destination not in phase, blit one by one */ \
+ while(n--) \
+ BLEND16_50(dst, src, mask); \
+ } else { \
+ if((uintptr_t)src & 3) { \
+ /* first odd pixel */ \
+ BLEND16_50(dst, src, mask); \
+ n--; \
+ } \
+ for(; n > 1; n -= 2) { \
+ Uint32 s = *(Uint32 *)src; \
+ Uint32 d = *(Uint32 *)dst; \
+ *(Uint32 *)dst = ((s & (mask | mask << 16)) >> 1) \
+ + ((d & (mask | mask << 16)) >> 1) \
+ + (s & d & (~(mask | mask << 16))); \
+ src += 2; \
+ dst += 2; \
+ } \
+ if(n) \
+ BLEND16_50(dst, src, mask); /* last odd pixel */ \
+ } \
+ } while(0)
+
+#define ALPHA_BLIT16_565_50(to, from, length, bpp, alpha) \
+ ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xf7de)
+
+#define ALPHA_BLIT16_555_50(to, from, length, bpp, alpha) \
+ ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xfbde)
+
+#ifdef MMX_ASMBLIT
+
+#define CHOOSE_BLIT(blitter, alpha, fmt) \
+ do { \
+ if(alpha == 255) { \
+ switch(fmt->BytesPerPixel) { \
+ case 1: blitter(1, Uint8, OPAQUE_BLIT); break; \
+ case 2: blitter(2, Uint8, OPAQUE_BLIT); break; \
+ case 3: blitter(3, Uint8, OPAQUE_BLIT); break; \
+ case 4: blitter(4, Uint16, OPAQUE_BLIT); break; \
+ } \
+ } else { \
+ switch(fmt->BytesPerPixel) { \
+ case 1: \
+ /* No 8bpp alpha blitting */ \
+ break; \
+ \
+ case 2: \
+ switch(fmt->Rmask | fmt->Gmask | fmt->Bmask) { \
+ case 0xffff: \
+ if(fmt->Gmask == 0x07e0 \
+ || fmt->Rmask == 0x07e0 \
+ || fmt->Bmask == 0x07e0) { \
+ if(alpha == 128) \
+ blitter(2, Uint8, ALPHA_BLIT16_565_50); \
+ else { \
+ if(SDL_HasMMX()) \
+ blitter(2, Uint8, ALPHA_BLIT16_565MMX); \
+ else \
+ blitter(2, Uint8, ALPHA_BLIT16_565); \
+ } \
+ } else \
+ goto general16; \
+ break; \
+ \
+ case 0x7fff: \
+ if(fmt->Gmask == 0x03e0 \
+ || fmt->Rmask == 0x03e0 \
+ || fmt->Bmask == 0x03e0) { \
+ if(alpha == 128) \
+ blitter(2, Uint8, ALPHA_BLIT16_555_50); \
+ else { \
+ if(SDL_HasMMX()) \
+ blitter(2, Uint8, ALPHA_BLIT16_555MMX); \
+ else \
+ blitter(2, Uint8, ALPHA_BLIT16_555); \
+ } \
+ break; \
+ } \
+ /* fallthrough */ \
+ \
+ default: \
+ general16: \
+ blitter(2, Uint8, ALPHA_BLIT_ANY); \
+ } \
+ break; \
+ \
+ case 3: \
+ blitter(3, Uint8, ALPHA_BLIT_ANY); \
+ break; \
+ \
+ case 4: \
+ if((fmt->Rmask | fmt->Gmask | fmt->Bmask) == 0x00ffffff \
+ && (fmt->Gmask == 0xff00 || fmt->Rmask == 0xff00 \
+ || fmt->Bmask == 0xff00)) { \
+ if(alpha == 128) \
+ { \
+ if(SDL_HasMMX()) \
+ blitter(4, Uint16, ALPHA_BLIT32_888_50MMX);\
+ else \
+ blitter(4, Uint16, ALPHA_BLIT32_888_50);\
+ } \
+ else \
+ { \
+ if(SDL_HasMMX()) \
+ blitter(4, Uint16, ALPHA_BLIT32_888MMX);\
+ else \
+ blitter(4, Uint16, ALPHA_BLIT32_888); \
+ } \
+ } else \
+ blitter(4, Uint16, ALPHA_BLIT_ANY); \
+ break; \
+ } \
+ } \
+ } while(0)
+
+#else
+
+#define CHOOSE_BLIT(blitter, alpha, fmt) \
+ do { \
+ if(alpha == 255) { \
+ switch(fmt->BytesPerPixel) { \
+ case 1: blitter(1, Uint8, OPAQUE_BLIT); break; \
+ case 2: blitter(2, Uint8, OPAQUE_BLIT); break; \
+ case 3: blitter(3, Uint8, OPAQUE_BLIT); break; \
+ case 4: blitter(4, Uint16, OPAQUE_BLIT); break; \
+ } \
+ } else { \
+ switch(fmt->BytesPerPixel) { \
+ case 1: \
+ /* No 8bpp alpha blitting */ \
+ break; \
+ \
+ case 2: \
+ switch(fmt->Rmask | fmt->Gmask | fmt->Bmask) { \
+ case 0xffff: \
+ if(fmt->Gmask == 0x07e0 \
+ || fmt->Rmask == 0x07e0 \
+ || fmt->Bmask == 0x07e0) { \
+ if(alpha == 128) \
+ blitter(2, Uint8, ALPHA_BLIT16_565_50); \
+ else { \
+ blitter(2, Uint8, ALPHA_BLIT16_565); \
+ } \
+ } else \
+ goto general16; \
+ break; \
+ \
+ case 0x7fff: \
+ if(fmt->Gmask == 0x03e0 \
+ || fmt->Rmask == 0x03e0 \
+ || fmt->Bmask == 0x03e0) { \
+ if(alpha == 128) \
+ blitter(2, Uint8, ALPHA_BLIT16_555_50); \
+ else { \
+ blitter(2, Uint8, ALPHA_BLIT16_555); \
+ } \
+ break; \
+ } \
+ /* fallthrough */ \
+ \
+ default: \
+ general16: \
+ blitter(2, Uint8, ALPHA_BLIT_ANY); \
+ } \
+ break; \
+ \
+ case 3: \
+ blitter(3, Uint8, ALPHA_BLIT_ANY); \
+ break; \
+ \
+ case 4: \
+ if((fmt->Rmask | fmt->Gmask | fmt->Bmask) == 0x00ffffff \
+ && (fmt->Gmask == 0xff00 || fmt->Rmask == 0xff00 \
+ || fmt->Bmask == 0xff00)) { \
+ if(alpha == 128) \
+ blitter(4, Uint16, ALPHA_BLIT32_888_50); \
+ else \
+ blitter(4, Uint16, ALPHA_BLIT32_888); \
+ } else \
+ blitter(4, Uint16, ALPHA_BLIT_ANY); \
+ break; \
+ } \
+ } \
+ } while(0)
+
+#endif
+
+/*
+ * This takes care of the case when the surface is clipped on the left and/or
+ * right. Top clipping has already been taken care of.
+ */
+static void RLEClipBlit(int w, Uint8 *srcbuf, SDL_Surface *dst,
+ Uint8 *dstbuf, SDL_Rect *srcrect, unsigned alpha)
+{
+ SDL_PixelFormat *fmt = dst->format;
+
+#define RLECLIPBLIT(bpp, Type, do_blit) \
+ do { \
+ int linecount = srcrect->h; \
+ int ofs = 0; \
+ int left = srcrect->x; \
+ int right = left + srcrect->w; \
+ dstbuf -= left * bpp; \
+ for(;;) { \
+ int run; \
+ ofs += *(Type *)srcbuf; \
+ run = ((Type *)srcbuf)[1]; \
+ srcbuf += 2 * sizeof(Type); \
+ if(run) { \
+ /* clip to left and right borders */ \
+ if(ofs < right) { \
+ int start = 0; \
+ int len = run; \
+ int startcol; \
+ if(left - ofs > 0) { \
+ start = left - ofs; \
+ len -= start; \
+ if(len <= 0) \
+ goto nocopy ## bpp ## do_blit; \
+ } \
+ startcol = ofs + start; \
+ if(len > right - startcol) \
+ len = right - startcol; \
+ do_blit(dstbuf + startcol * bpp, srcbuf + start * bpp, \
+ len, bpp, alpha); \
+ } \
+ nocopy ## bpp ## do_blit: \
+ srcbuf += run * bpp; \
+ ofs += run; \
+ } else if(!ofs) \
+ break; \
+ if(ofs == w) { \
+ ofs = 0; \
+ dstbuf += dst->pitch; \
+ if(!--linecount) \
+ break; \
+ } \
+ } \
+ } while(0)
+
+ CHOOSE_BLIT(RLECLIPBLIT, alpha, fmt);
+
+#undef RLECLIPBLIT
+
+}
+
+
+/* blit a colorkeyed RLE surface */
+int SDL_RLEBlit(SDL_Surface *src, SDL_Rect *srcrect,
+ SDL_Surface *dst, SDL_Rect *dstrect)
+{
+ Uint8 *dstbuf;
+ Uint8 *srcbuf;
+ int x, y;
+ int w = src->w;
+ unsigned alpha;
+
+ /* Lock the destination if necessary */
+ if ( SDL_MUSTLOCK(dst) ) {
+ if ( SDL_LockSurface(dst) < 0 ) {
+ return(-1);
+ }
+ }
+
+ /* Set up the source and destination pointers */
+ x = dstrect->x;
+ y = dstrect->y;
+ dstbuf = (Uint8 *)dst->pixels
+ + y * dst->pitch + x * src->format->BytesPerPixel;
+ srcbuf = (Uint8 *)src->map->sw_data->aux_data;
+
+ {
+ /* skip lines at the top if neccessary */
+ int vskip = srcrect->y;
+ int ofs = 0;
+ if(vskip) {
+
+#define RLESKIP(bpp, Type) \
+ for(;;) { \
+ int run; \
+ ofs += *(Type *)srcbuf; \
+ run = ((Type *)srcbuf)[1]; \
+ srcbuf += sizeof(Type) * 2; \
+ if(run) { \
+ srcbuf += run * bpp; \
+ ofs += run; \
+ } else if(!ofs) \
+ goto done; \
+ if(ofs == w) { \
+ ofs = 0; \
+ if(!--vskip) \
+ break; \
+ } \
+ }
+
+ switch(src->format->BytesPerPixel) {
+ case 1: RLESKIP(1, Uint8); break;
+ case 2: RLESKIP(2, Uint8); break;
+ case 3: RLESKIP(3, Uint8); break;
+ case 4: RLESKIP(4, Uint16); break;
+ }
+
+#undef RLESKIP
+
+ }
+ }
+
+ alpha = (src->flags & SDL_SRCALPHA) == SDL_SRCALPHA
+ ? src->format->alpha : 255;
+ /* if left or right edge clipping needed, call clip blit */
+ if ( srcrect->x || srcrect->w != src->w ) {
+ RLEClipBlit(w, srcbuf, dst, dstbuf, srcrect, alpha);
+ } else {
+ SDL_PixelFormat *fmt = src->format;
+
+#define RLEBLIT(bpp, Type, do_blit) \
+ do { \
+ int linecount = srcrect->h; \
+ int ofs = 0; \
+ for(;;) { \
+ unsigned run; \
+ ofs += *(Type *)srcbuf; \
+ run = ((Type *)srcbuf)[1]; \
+ srcbuf += 2 * sizeof(Type); \
+ if(run) { \
+ do_blit(dstbuf + ofs * bpp, srcbuf, run, bpp, alpha); \
+ srcbuf += run * bpp; \
+ ofs += run; \
+ } else if(!ofs) \
+ break; \
+ if(ofs == w) { \
+ ofs = 0; \
+ dstbuf += dst->pitch; \
+ if(!--linecount) \
+ break; \
+ } \
+ } \
+ } while(0)
+
+ CHOOSE_BLIT(RLEBLIT, alpha, fmt);
+
+#undef RLEBLIT
+ }
+
+done:
+ /* Unlock the destination if necessary */
+ if ( SDL_MUSTLOCK(dst) ) {
+ SDL_UnlockSurface(dst);
+ }
+ return(0);
+}
+
+#undef OPAQUE_BLIT
+
+/*
+ * Per-pixel blitting macros for translucent pixels:
+ * These use the same techniques as the per-surface blitting macros
+ */
+
+/*
+ * For 32bpp pixels, we have made sure the alpha is stored in the top
+ * 8 bits, so proceed as usual
+ */
+#define BLIT_TRANSL_888(src, dst) \
+ do { \
+ Uint32 s = src; \
+ Uint32 d = dst; \
+ unsigned alpha = s >> 24; \
+ Uint32 s1 = s & 0xff00ff; \
+ Uint32 d1 = d & 0xff00ff; \
+ d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff; \
+ s &= 0xff00; \
+ d &= 0xff00; \
+ d = (d + ((s - d) * alpha >> 8)) & 0xff00; \
+ dst = d1 | d; \
+ } while(0)
+
+/*
+ * For 16bpp pixels, we have stored the 5 most significant alpha bits in
+ * bits 5-10. As before, we can process all 3 RGB components at the same time.
+ */
+#define BLIT_TRANSL_565(src, dst) \
+ do { \
+ Uint32 s = src; \
+ Uint32 d = dst; \
+ unsigned alpha = (s & 0x3e0) >> 5; \
+ s &= 0x07e0f81f; \
+ d = (d | d << 16) & 0x07e0f81f; \
+ d += (s - d) * alpha >> 5; \
+ d &= 0x07e0f81f; \
+ dst = (Uint16)(d | d >> 16); \
+ } while(0)
+
+#define BLIT_TRANSL_555(src, dst) \
+ do { \
+ Uint32 s = src; \
+ Uint32 d = dst; \
+ unsigned alpha = (s & 0x3e0) >> 5; \
+ s &= 0x03e07c1f; \
+ d = (d | d << 16) & 0x03e07c1f; \
+ d += (s - d) * alpha >> 5; \
+ d &= 0x03e07c1f; \
+ dst = (Uint16)(d | d >> 16); \
+ } while(0)
+
+/* used to save the destination format in the encoding. Designed to be
+ macro-compatible with SDL_PixelFormat but without the unneeded fields */
+typedef struct {
+ Uint8 BytesPerPixel;
+ Uint8 Rloss;
+ Uint8 Gloss;
+ Uint8 Bloss;
+ Uint8 Rshift;
+ Uint8 Gshift;
+ Uint8 Bshift;
+ Uint8 Ashift;
+ Uint32 Rmask;
+ Uint32 Gmask;
+ Uint32 Bmask;
+ Uint32 Amask;
+} RLEDestFormat;
+
+/* blit a pixel-alpha RLE surface clipped at the right and/or left edges */
+static void RLEAlphaClipBlit(int w, Uint8 *srcbuf, SDL_Surface *dst,
+ Uint8 *dstbuf, SDL_Rect *srcrect)
+{
+ SDL_PixelFormat *df = dst->format;
+ /*
+ * clipped blitter: Ptype is the destination pixel type,
+ * Ctype the translucent count type, and do_blend the macro
+ * to blend one pixel.
+ */
+#define RLEALPHACLIPBLIT(Ptype, Ctype, do_blend) \
+ do { \
+ int linecount = srcrect->h; \
+ int left = srcrect->x; \
+ int right = left + srcrect->w; \
+ dstbuf -= left * sizeof(Ptype); \
+ do { \
+ int ofs = 0; \
+ /* blit opaque pixels on one line */ \
+ do { \
+ unsigned run; \
+ ofs += ((Ctype *)srcbuf)[0]; \
+ run = ((Ctype *)srcbuf)[1]; \
+ srcbuf += 2 * sizeof(Ctype); \
+ if(run) { \
+ /* clip to left and right borders */ \
+ int cofs = ofs; \
+ int crun = run; \
+ if(left - cofs > 0) { \
+ crun -= left - cofs; \
+ cofs = left; \
+ } \
+ if(crun > right - cofs) \
+ crun = right - cofs; \
+ if(crun > 0) \
+ PIXEL_COPY(dstbuf + cofs * sizeof(Ptype), \
+ srcbuf + (cofs - ofs) * sizeof(Ptype), \
+ (unsigned)crun, sizeof(Ptype)); \
+ srcbuf += run * sizeof(Ptype); \
+ ofs += run; \
+ } else if(!ofs) \
+ return; \
+ } while(ofs < w); \
+ /* skip padding if necessary */ \
+ if(sizeof(Ptype) == 2) \
+ srcbuf += (uintptr_t)srcbuf & 2; \
+ /* blit translucent pixels on the same line */ \
+ ofs = 0; \
+ do { \
+ unsigned run; \
+ ofs += ((Uint16 *)srcbuf)[0]; \
+ run = ((Uint16 *)srcbuf)[1]; \
+ srcbuf += 4; \
+ if(run) { \
+ /* clip to left and right borders */ \
+ int cofs = ofs; \
+ int crun = run; \
+ if(left - cofs > 0) { \
+ crun -= left - cofs; \
+ cofs = left; \
+ } \
+ if(crun > right - cofs) \
+ crun = right - cofs; \
+ if(crun > 0) { \
+ Ptype *dst = (Ptype *)dstbuf + cofs; \
+ Uint32 *src = (Uint32 *)srcbuf + (cofs - ofs); \
+ int i; \
+ for(i = 0; i < crun; i++) \
+ do_blend(src[i], dst[i]); \
+ } \
+ srcbuf += run * 4; \
+ ofs += run; \
+ } \
+ } while(ofs < w); \
+ dstbuf += dst->pitch; \
+ } while(--linecount); \
+ } while(0)
+
+ switch(df->BytesPerPixel) {
+ case 2:
+ if(df->Gmask == 0x07e0 || df->Rmask == 0x07e0
+ || df->Bmask == 0x07e0)
+ RLEALPHACLIPBLIT(Uint16, Uint8, BLIT_TRANSL_565);
+ else
+ RLEALPHACLIPBLIT(Uint16, Uint8, BLIT_TRANSL_555);
+ break;
+ case 4:
+ RLEALPHACLIPBLIT(Uint32, Uint16, BLIT_TRANSL_888);
+ break;
+ }
+}
+
+/* blit a pixel-alpha RLE surface */
+int SDL_RLEAlphaBlit(SDL_Surface *src, SDL_Rect *srcrect,
+ SDL_Surface *dst, SDL_Rect *dstrect)
+{
+ int x, y;
+ int w = src->w;
+ Uint8 *srcbuf, *dstbuf;
+ SDL_PixelFormat *df = dst->format;
+
+ /* Lock the destination if necessary */
+ if ( SDL_MUSTLOCK(dst) ) {
+ if ( SDL_LockSurface(dst) < 0 ) {
+ return -1;
+ }
+ }
+
+ x = dstrect->x;
+ y = dstrect->y;
+ dstbuf = (Uint8 *)dst->pixels
+ + y * dst->pitch + x * df->BytesPerPixel;
+ srcbuf = (Uint8 *)src->map->sw_data->aux_data + sizeof(RLEDestFormat);
+
+ {
+ /* skip lines at the top if necessary */
+ int vskip = srcrect->y;
+ if(vskip) {
+ int ofs;
+ if(df->BytesPerPixel == 2) {
+ /* the 16/32 interleaved format */
+ do {
+ /* skip opaque line */
+ ofs = 0;
+ do {
+ int run;
+ ofs += srcbuf[0];
+ run = srcbuf[1];
+ srcbuf += 2;
+ if(run) {
+ srcbuf += 2 * run;
+ ofs += run;
+ } else if(!ofs)
+ goto done;
+ } while(ofs < w);
+
+ /* skip padding */
+ srcbuf += (uintptr_t)srcbuf & 2;
+
+ /* skip translucent line */
+ ofs = 0;
+ do {
+ int run;
+ ofs += ((Uint16 *)srcbuf)[0];
+ run = ((Uint16 *)srcbuf)[1];
+ srcbuf += 4 * (run + 1);
+ ofs += run;
+ } while(ofs < w);
+ } while(--vskip);
+ } else {
+ /* the 32/32 interleaved format */
+ vskip <<= 1; /* opaque and translucent have same format */
+ do {
+ ofs = 0;
+ do {
+ int run;
+ ofs += ((Uint16 *)srcbuf)[0];
+ run = ((Uint16 *)srcbuf)[1];
+ srcbuf += 4;
+ if(run) {
+ srcbuf += 4 * run;
+ ofs += run;
+ } else if(!ofs)
+ goto done;
+ } while(ofs < w);
+ } while(--vskip);
+ }
+ }
+ }
+
+ /* if left or right edge clipping needed, call clip blit */
+ if(srcrect->x || srcrect->w != src->w) {
+ RLEAlphaClipBlit(w, srcbuf, dst, dstbuf, srcrect);
+ } else {
+
+ /*
+ * non-clipped blitter. Ptype is the destination pixel type,
+ * Ctype the translucent count type, and do_blend the
+ * macro to blend one pixel.
+ */
+#define RLEALPHABLIT(Ptype, Ctype, do_blend) \
+ do { \
+ int linecount = srcrect->h; \
+ do { \
+ int ofs = 0; \
+ /* blit opaque pixels on one line */ \
+ do { \
+ unsigned run; \
+ ofs += ((Ctype *)srcbuf)[0]; \
+ run = ((Ctype *)srcbuf)[1]; \
+ srcbuf += 2 * sizeof(Ctype); \
+ if(run) { \
+ PIXEL_COPY(dstbuf + ofs * sizeof(Ptype), srcbuf, \
+ run, sizeof(Ptype)); \
+ srcbuf += run * sizeof(Ptype); \
+ ofs += run; \
+ } else if(!ofs) \
+ goto done; \
+ } while(ofs < w); \
+ /* skip padding if necessary */ \
+ if(sizeof(Ptype) == 2) \
+ srcbuf += (uintptr_t)srcbuf & 2; \
+ /* blit translucent pixels on the same line */ \
+ ofs = 0; \
+ do { \
+ unsigned run; \
+ ofs += ((Uint16 *)srcbuf)[0]; \
+ run = ((Uint16 *)srcbuf)[1]; \
+ srcbuf += 4; \
+ if(run) { \
+ Ptype *dst = (Ptype *)dstbuf + ofs; \
+ unsigned i; \
+ for(i = 0; i < run; i++) { \
+ Uint32 src = *(Uint32 *)srcbuf; \
+ do_blend(src, *dst); \
+ srcbuf += 4; \
+ dst++; \
+ } \
+ ofs += run; \
+ } \
+ } while(ofs < w); \
+ dstbuf += dst->pitch; \
+ } while(--linecount); \
+ } while(0)
+
+ switch(df->BytesPerPixel) {
+ case 2:
+ if(df->Gmask == 0x07e0 || df->Rmask == 0x07e0
+ || df->Bmask == 0x07e0)
+ RLEALPHABLIT(Uint16, Uint8, BLIT_TRANSL_565);
+ else
+ RLEALPHABLIT(Uint16, Uint8, BLIT_TRANSL_555);
+ break;
+ case 4:
+ RLEALPHABLIT(Uint32, Uint16, BLIT_TRANSL_888);
+ break;
+ }
+ }
+
+ done:
+ /* Unlock the destination if necessary */
+ if ( SDL_MUSTLOCK(dst) ) {
+ SDL_UnlockSurface(dst);
+ }
+ return 0;
+}
+
+/*
+ * Auxiliary functions:
+ * The encoding functions take 32bpp rgb + a, and
+ * return the number of bytes copied to the destination.
+ * The decoding functions copy to 32bpp rgb + a, and
+ * return the number of bytes copied from the source.
+ * These are only used in the encoder and un-RLE code and are therefore not
+ * highly optimised.
+ */
+
+/* encode 32bpp rgb + a into 16bpp rgb, losing alpha */
+static int copy_opaque_16(void *dst, Uint32 *src, int n,
+ SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt)
+{
+ int i;
+ Uint16 *d = dst;
+ for(i = 0; i < n; i++) {
+ unsigned r, g, b;
+ RGB_FROM_PIXEL(*src, sfmt, r, g, b);
+ PIXEL_FROM_RGB(*d, dfmt, r, g, b);
+ src++;
+ d++;
+ }
+ return n * 2;
+}
+
+/* decode opaque pixels from 16bpp to 32bpp rgb + a */
+static int uncopy_opaque_16(Uint32 *dst, void *src, int n,
+ RLEDestFormat *sfmt, SDL_PixelFormat *dfmt)
+{
+ int i;
+ Uint16 *s = src;
+ unsigned alpha = dfmt->Amask ? 255 : 0;
+ for(i = 0; i < n; i++) {
+ unsigned r, g, b;
+ RGB_FROM_PIXEL(*s, sfmt, r, g, b);
+ PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, alpha);
+ s++;
+ dst++;
+ }
+ return n * 2;
+}
+
+
+
+/* encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 565 */
+static int copy_transl_565(void *dst, Uint32 *src, int n,
+ SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt)
+{
+ int i;
+ Uint32 *d = dst;
+ for(i = 0; i < n; i++) {
+ unsigned r, g, b, a;
+ Uint16 pix;
+ RGBA_FROM_8888(*src, sfmt, r, g, b, a);
+ PIXEL_FROM_RGB(pix, dfmt, r, g, b);
+ *d = ((pix & 0x7e0) << 16) | (pix & 0xf81f) | ((a << 2) & 0x7e0);
+ src++;
+ d++;
+ }
+ return n * 4;
+}
+
+/* encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 555 */
+static int copy_transl_555(void *dst, Uint32 *src, int n,
+ SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt)
+{
+ int i;
+ Uint32 *d = dst;
+ for(i = 0; i < n; i++) {
+ unsigned r, g, b, a;
+ Uint16 pix;
+ RGBA_FROM_8888(*src, sfmt, r, g, b, a);
+ PIXEL_FROM_RGB(pix, dfmt, r, g, b);
+ *d = ((pix & 0x3e0) << 16) | (pix & 0xfc1f) | ((a << 2) & 0x3e0);
+ src++;
+ d++;
+ }
+ return n * 4;
+}
+
+/* decode translucent pixels from 32bpp GORAB to 32bpp rgb + a */
+static int uncopy_transl_16(Uint32 *dst, void *src, int n,
+ RLEDestFormat *sfmt, SDL_PixelFormat *dfmt)
+{
+ int i;
+ Uint32 *s = src;
+ for(i = 0; i < n; i++) {
+ unsigned r, g, b, a;
+ Uint32 pix = *s++;
+ a = (pix & 0x3e0) >> 2;
+ pix = (pix & ~0x3e0) | pix >> 16;
+ RGB_FROM_PIXEL(pix, sfmt, r, g, b);
+ PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, a);
+ dst++;
+ }
+ return n * 4;
+}
+
+/* encode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) */
+static int copy_32(void *dst, Uint32 *src, int n,
+ SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt)
+{
+ int i;
+ Uint32 *d = dst;
+ for(i = 0; i < n; i++) {
+ unsigned r, g, b, a;
+ Uint32 pixel;
+ RGBA_FROM_8888(*src, sfmt, r, g, b, a);
+ PIXEL_FROM_RGB(pixel, dfmt, r, g, b);
+ *d++ = pixel | a << 24;
+ src++;
+ }
+ return n * 4;
+}
+
+/* decode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) */
+static int uncopy_32(Uint32 *dst, void *src, int n,
+ RLEDestFormat *sfmt, SDL_PixelFormat *dfmt)
+{
+ int i;
+ Uint32 *s = src;
+ for(i = 0; i < n; i++) {
+ unsigned r, g, b, a;
+ Uint32 pixel = *s++;
+ RGB_FROM_PIXEL(pixel, sfmt, r, g, b);
+ a = pixel >> 24;
+ PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, a);
+ dst++;
+ }
+ return n * 4;
+}
+
+#define ISOPAQUE(pixel, fmt) ((((pixel) & fmt->Amask) >> fmt->Ashift) == 255)
+
+#define ISTRANSL(pixel, fmt) \
+ ((unsigned)((((pixel) & fmt->Amask) >> fmt->Ashift) - 1U) < 254U)
+
+/* convert surface to be quickly alpha-blittable onto dest, if possible */
+static int RLEAlphaSurface(SDL_Surface *surface)
+{
+ SDL_Surface *dest;
+ SDL_PixelFormat *df;
+ int maxsize = 0;
+ int max_opaque_run;
+ int max_transl_run = 65535;
+ unsigned masksum;
+ Uint8 *rlebuf, *dst;
+ int (*copy_opaque)(void *, Uint32 *, int,
+ SDL_PixelFormat *, SDL_PixelFormat *);
+ int (*copy_transl)(void *, Uint32 *, int,
+ SDL_PixelFormat *, SDL_PixelFormat *);
+
+ dest = surface->map->dst;
+ if(!dest)
+ return -1;
+ df = dest->format;
+ if(surface->format->BitsPerPixel != 32)
+ return -1; /* only 32bpp source supported */
+
+ /* find out whether the destination is one we support,
+ and determine the max size of the encoded result */
+ masksum = df->Rmask | df->Gmask | df->Bmask;
+ switch(df->BytesPerPixel) {
+ case 2:
+ /* 16bpp: only support 565 and 555 formats */
+ switch(masksum) {
+ case 0xffff:
+ if(df->Gmask == 0x07e0
+ || df->Rmask == 0x07e0 || df->Bmask == 0x07e0) {
+ copy_opaque = copy_opaque_16;
+ copy_transl = copy_transl_565;
+ } else
+ return -1;
+ break;
+ case 0x7fff:
+ if(df->Gmask == 0x03e0
+ || df->Rmask == 0x03e0 || df->Bmask == 0x03e0) {
+ copy_opaque = copy_opaque_16;
+ copy_transl = copy_transl_555;
+ } else
+ return -1;
+ break;
+ default:
+ return -1;
+ }
+ max_opaque_run = 255; /* runs stored as bytes */
+
+ /* worst case is alternating opaque and translucent pixels,
+ with room for alignment padding between lines */
+ maxsize = surface->h * (2 + (4 + 2) * (surface->w + 1)) + 2;
+ break;
+ case 4:
+ if(masksum != 0x00ffffff)
+ return -1; /* requires unused high byte */
+ copy_opaque = copy_32;
+ copy_transl = copy_32;
+ max_opaque_run = 255; /* runs stored as short ints */
+
+ /* worst case is alternating opaque and translucent pixels */
+ maxsize = surface->h * 2 * 4 * (surface->w + 1) + 4;
+ break;
+ default:
+ return -1; /* anything else unsupported right now */
+ }
+
+ maxsize += sizeof(RLEDestFormat);
+ rlebuf = (Uint8 *)SDL_malloc(maxsize);
+ if(!rlebuf) {
+ SDL_OutOfMemory();
+ return -1;
+ }
+ {
+ /* save the destination format so we can undo the encoding later */
+ RLEDestFormat *r = (RLEDestFormat *)rlebuf;
+ r->BytesPerPixel = df->BytesPerPixel;
+ r->Rloss = df->Rloss;
+ r->Gloss = df->Gloss;
+ r->Bloss = df->Bloss;
+ r->Rshift = df->Rshift;
+ r->Gshift = df->Gshift;
+ r->Bshift = df->Bshift;
+ r->Ashift = df->Ashift;
+ r->Rmask = df->Rmask;
+ r->Gmask = df->Gmask;
+ r->Bmask = df->Bmask;
+ r->Amask = df->Amask;
+ }
+ dst = rlebuf + sizeof(RLEDestFormat);
+
+ /* Do the actual encoding */
+ {
+ int x, y;
+ int h = surface->h, w = surface->w;
+ SDL_PixelFormat *sf = surface->format;
+ Uint32 *src = (Uint32 *)surface->pixels;
+ Uint8 *lastline = dst; /* end of last non-blank line */
+
+ /* opaque counts are 8 or 16 bits, depending on target depth */
+#define ADD_OPAQUE_COUNTS(n, m) \
+ if(df->BytesPerPixel == 4) { \
+ ((Uint16 *)dst)[0] = n; \
+ ((Uint16 *)dst)[1] = m; \
+ dst += 4; \
+ } else { \
+ dst[0] = n; \
+ dst[1] = m; \
+ dst += 2; \
+ }
+
+ /* translucent counts are always 16 bit */
+#define ADD_TRANSL_COUNTS(n, m) \
+ (((Uint16 *)dst)[0] = n, ((Uint16 *)dst)[1] = m, dst += 4)
+
+ for(y = 0; y < h; y++) {
+ int runstart, skipstart;
+ int blankline = 0;
+ /* First encode all opaque pixels of a scan line */
+ x = 0;
+ do {
+ int run, skip, len;
+ skipstart = x;
+ while(x < w && !ISOPAQUE(src[x], sf))
+ x++;
+ runstart = x;
+ while(x < w && ISOPAQUE(src[x], sf))
+ x++;
+ skip = runstart - skipstart;
+ if(skip == w)
+ blankline = 1;
+ run = x - runstart;
+ while(skip > max_opaque_run) {
+ ADD_OPAQUE_COUNTS(max_opaque_run, 0);
+ skip -= max_opaque_run;
+ }
+ len = MIN(run, max_opaque_run);
+ ADD_OPAQUE_COUNTS(skip, len);
+ dst += copy_opaque(dst, src + runstart, len, sf, df);
+ runstart += len;
+ run -= len;
+ while(run) {
+ len = MIN(run, max_opaque_run);
+ ADD_OPAQUE_COUNTS(0, len);
+ dst += copy_opaque(dst, src + runstart, len, sf, df);
+ runstart += len;
+ run -= len;
+ }
+ } while(x < w);
+
+ /* Make sure the next output address is 32-bit aligned */
+ dst += (uintptr_t)dst & 2;
+
+ /* Next, encode all translucent pixels of the same scan line */
+ x = 0;
+ do {
+ int run, skip, len;
+ skipstart = x;
+ while(x < w && !ISTRANSL(src[x], sf))
+ x++;
+ runstart = x;
+ while(x < w && ISTRANSL(src[x], sf))
+ x++;
+ skip = runstart - skipstart;
+ blankline &= (skip == w);
+ run = x - runstart;
+ while(skip > max_transl_run) {
+ ADD_TRANSL_COUNTS(max_transl_run, 0);
+ skip -= max_transl_run;
+ }
+ len = MIN(run, max_transl_run);
+ ADD_TRANSL_COUNTS(skip, len);
+ dst += copy_transl(dst, src + runstart, len, sf, df);
+ runstart += len;
+ run -= len;
+ while(run) {
+ len = MIN(run, max_transl_run);
+ ADD_TRANSL_COUNTS(0, len);
+ dst += copy_transl(dst, src + runstart, len, sf, df);
+ runstart += len;
+ run -= len;
+ }
+ if(!blankline)
+ lastline = dst;
+ } while(x < w);
+
+ src += surface->pitch >> 2;
+ }
+ dst = lastline; /* back up past trailing blank lines */
+ ADD_OPAQUE_COUNTS(0, 0);
+ }
+
+#undef ADD_OPAQUE_COUNTS
+#undef ADD_TRANSL_COUNTS
+
+ /* Now that we have it encoded, release the original pixels */
+ if((surface->flags & SDL_PREALLOC) != SDL_PREALLOC
+ && (surface->flags & SDL_HWSURFACE) != SDL_HWSURFACE) {
+ SDL_free( surface->pixels );
+ surface->pixels = NULL;
+ }
+
+ /* realloc the buffer to release unused memory */
+ {
+ Uint8 *p = SDL_realloc(rlebuf, dst - rlebuf);
+ if(!p)
+ p = rlebuf;
+ surface->map->sw_data->aux_data = p;
+ }
+
+ return 0;
+}
+
+static Uint32 getpix_8(Uint8 *srcbuf)
+{
+ return *srcbuf;
+}
+
+static Uint32 getpix_16(Uint8 *srcbuf)
+{
+ return *(Uint16 *)srcbuf;
+}
+
+static Uint32 getpix_24(Uint8 *srcbuf)
+{
+#if SDL_BYTEORDER == SDL_LIL_ENDIAN
+ return srcbuf[0] + (srcbuf[1] << 8) + (srcbuf[2] << 16);
+#else
+ return (srcbuf[0] << 16) + (srcbuf[1] << 8) + srcbuf[2];
+#endif
+}
+
+static Uint32 getpix_32(Uint8 *srcbuf)
+{
+ return *(Uint32 *)srcbuf;
+}
+
+typedef Uint32 (*getpix_func)(Uint8 *);
+
+static getpix_func getpixes[4] = {
+ getpix_8, getpix_16, getpix_24, getpix_32
+};
+
+static int RLEColorkeySurface(SDL_Surface *surface)
+{
+ Uint8 *rlebuf, *dst;
+ int maxn;
+ int y;
+ Uint8 *srcbuf, *lastline;
+ int maxsize = 0;
+ int bpp = surface->format->BytesPerPixel;
+ getpix_func getpix;
+ Uint32 ckey, rgbmask;
+ int w, h;
+
+ /* calculate the worst case size for the compressed surface */
+ switch(bpp) {
+ case 1:
+ /* worst case is alternating opaque and transparent pixels,
+ starting with an opaque pixel */
+ maxsize = surface->h * 3 * (surface->w / 2 + 1) + 2;
+ break;
+ case 2:
+ case 3:
+ /* worst case is solid runs, at most 255 pixels wide */
+ maxsize = surface->h * (2 * (surface->w / 255 + 1)
+ + surface->w * bpp) + 2;
+ break;
+ case 4:
+ /* worst case is solid runs, at most 65535 pixels wide */
+ maxsize = surface->h * (4 * (surface->w / 65535 + 1)
+ + surface->w * 4) + 4;
+ break;
+ }
+
+ rlebuf = (Uint8 *)SDL_malloc(maxsize);
+ if ( rlebuf == NULL ) {
+ SDL_OutOfMemory();
+ return(-1);
+ }
+
+ /* Set up the conversion */
+ srcbuf = (Uint8 *)surface->pixels;
+ maxn = bpp == 4 ? 65535 : 255;
+ dst = rlebuf;
+ rgbmask = ~surface->format->Amask;
+ ckey = surface->format->colorkey & rgbmask;
+ lastline = dst;
+ getpix = getpixes[bpp - 1];
+ w = surface->w;
+ h = surface->h;
+
+#define ADD_COUNTS(n, m) \
+ if(bpp == 4) { \
+ ((Uint16 *)dst)[0] = n; \
+ ((Uint16 *)dst)[1] = m; \
+ dst += 4; \
+ } else { \
+ dst[0] = n; \
+ dst[1] = m; \
+ dst += 2; \
+ }
+
+ for(y = 0; y < h; y++) {
+ int x = 0;
+ int blankline = 0;
+ do {
+ int run, skip, len;
+ int runstart;
+ int skipstart = x;
+
+ /* find run of transparent, then opaque pixels */
+ while(x < w && (getpix(srcbuf + x * bpp) & rgbmask) == ckey)
+ x++;
+ runstart = x;
+ while(x < w && (getpix(srcbuf + x * bpp) & rgbmask) != ckey)
+ x++;
+ skip = runstart - skipstart;
+ if(skip == w)
+ blankline = 1;
+ run = x - runstart;
+
+ /* encode segment */
+ while(skip > maxn) {
+ ADD_COUNTS(maxn, 0);
+ skip -= maxn;
+ }
+ len = MIN(run, maxn);
+ ADD_COUNTS(skip, len);
+ SDL_memcpy(dst, srcbuf + runstart * bpp, len * bpp);
+ dst += len * bpp;
+ run -= len;
+ runstart += len;
+ while(run) {
+ len = MIN(run, maxn);
+ ADD_COUNTS(0, len);
+ SDL_memcpy(dst, srcbuf + runstart * bpp, len * bpp);
+ dst += len * bpp;
+ runstart += len;
+ run -= len;
+ }
+ if(!blankline)
+ lastline = dst;
+ } while(x < w);
+
+ srcbuf += surface->pitch;
+ }
+ dst = lastline; /* back up bast trailing blank lines */
+ ADD_COUNTS(0, 0);
+
+#undef ADD_COUNTS
+
+ /* Now that we have it encoded, release the original pixels */
+ if((surface->flags & SDL_PREALLOC) != SDL_PREALLOC
+ && (surface->flags & SDL_HWSURFACE) != SDL_HWSURFACE) {
+ SDL_free( surface->pixels );
+ surface->pixels = NULL;
+ }
+
+ /* realloc the buffer to release unused memory */
+ {
+ /* If realloc returns NULL, the original block is left intact */
+ Uint8 *p = SDL_realloc(rlebuf, dst - rlebuf);
+ if(!p)
+ p = rlebuf;
+ surface->map->sw_data->aux_data = p;
+ }
+
+ return(0);
+}
+
+int SDL_RLESurface(SDL_Surface *surface)
+{
+ int retcode;
+
+ /* Clear any previous RLE conversion */
+ if ( (surface->flags & SDL_RLEACCEL) == SDL_RLEACCEL ) {
+ SDL_UnRLESurface(surface, 1);
+ }
+
+ /* We don't support RLE encoding of bitmaps */
+ if ( surface->format->BitsPerPixel < 8 ) {
+ return(-1);
+ }
+
+ /* Lock the surface if it's in hardware */
+ if ( SDL_MUSTLOCK(surface) ) {
+ if ( SDL_LockSurface(surface) < 0 ) {
+ return(-1);
+ }
+ }
+
+ /* Encode */
+ if((surface->flags & SDL_SRCCOLORKEY) == SDL_SRCCOLORKEY) {
+ retcode = RLEColorkeySurface(surface);
+ } else {
+ if((surface->flags & SDL_SRCALPHA) == SDL_SRCALPHA
+ && surface->format->Amask != 0)
+ retcode = RLEAlphaSurface(surface);
+ else
+ retcode = -1; /* no RLE for per-surface alpha sans ckey */
+ }
+
+ /* Unlock the surface if it's in hardware */
+ if ( SDL_MUSTLOCK(surface) ) {
+ SDL_UnlockSurface(surface);
+ }
+
+ if(retcode < 0)
+ return -1;
+
+ /* The surface is now accelerated */
+ surface->flags |= SDL_RLEACCEL;
+
+ return(0);
+}
+
+/*
+ * Un-RLE a surface with pixel alpha
+ * This may not give back exactly the image before RLE-encoding; all
+ * completely transparent pixels will be lost, and colour and alpha depth
+ * may have been reduced (when encoding for 16bpp targets).
+ */
+static SDL_bool UnRLEAlpha(SDL_Surface *surface)
+{
+ Uint8 *srcbuf;
+ Uint32 *dst;
+ SDL_PixelFormat *sf = surface->format;
+ RLEDestFormat *df = surface->map->sw_data->aux_data;
+ int (*uncopy_opaque)(Uint32 *, void *, int,
+ RLEDestFormat *, SDL_PixelFormat *);
+ int (*uncopy_transl)(Uint32 *, void *, int,
+ RLEDestFormat *, SDL_PixelFormat *);
+ int w = surface->w;
+ int bpp = df->BytesPerPixel;
+
+ if(bpp == 2) {
+ uncopy_opaque = uncopy_opaque_16;
+ uncopy_transl = uncopy_transl_16;
+ } else {
+ uncopy_opaque = uncopy_transl = uncopy_32;
+ }
+
+ surface->pixels = SDL_malloc(surface->h * surface->pitch);
+ if ( !surface->pixels ) {
+ return(SDL_FALSE);
+ }
+ /* fill background with transparent pixels */
+ SDL_memset(surface->pixels, 0, surface->h * surface->pitch);
+
+ dst = surface->pixels;
+ srcbuf = (Uint8 *)(df + 1);
+ for(;;) {
+ /* copy opaque pixels */
+ int ofs = 0;
+ do {
+ unsigned run;
+ if(bpp == 2) {
+ ofs += srcbuf[0];
+ run = srcbuf[1];
+ srcbuf += 2;
+ } else {
+ ofs += ((Uint16 *)srcbuf)[0];
+ run = ((Uint16 *)srcbuf)[1];
+ srcbuf += 4;
+ }
+ if(run) {
+ srcbuf += uncopy_opaque(dst + ofs, srcbuf, run, df, sf);
+ ofs += run;
+ } else if(!ofs)
+ return(SDL_TRUE);
+ } while(ofs < w);
+
+ /* skip padding if needed */
+ if(bpp == 2)
+ srcbuf += (uintptr_t)srcbuf & 2;
+
+ /* copy translucent pixels */
+ ofs = 0;
+ do {
+ unsigned run;
+ ofs += ((Uint16 *)srcbuf)[0];
+ run = ((Uint16 *)srcbuf)[1];
+ srcbuf += 4;
+ if(run) {
+ srcbuf += uncopy_transl(dst + ofs, srcbuf, run, df, sf);
+ ofs += run;
+ }
+ } while(ofs < w);
+ dst += surface->pitch >> 2;
+ }
+ /* Make the compiler happy */
+ return(SDL_TRUE);
+}
+
+void SDL_UnRLESurface(SDL_Surface *surface, int recode)
+{
+ if ( (surface->flags & SDL_RLEACCEL) == SDL_RLEACCEL ) {
+ surface->flags &= ~SDL_RLEACCEL;
+
+ if(recode && (surface->flags & SDL_PREALLOC) != SDL_PREALLOC
+ && (surface->flags & SDL_HWSURFACE) != SDL_HWSURFACE) {
+ if((surface->flags & SDL_SRCCOLORKEY) == SDL_SRCCOLORKEY) {
+ SDL_Rect full;
+ unsigned alpha_flag;
+
+ /* re-create the original surface */
+ surface->pixels = SDL_malloc(surface->h * surface->pitch);
+ if ( !surface->pixels ) {
+ /* Oh crap... */
+ surface->flags |= SDL_RLEACCEL;
+ return;
+ }
+
+ /* fill it with the background colour */
+ SDL_FillRect(surface, NULL, surface->format->colorkey);
+
+ /* now render the encoded surface */
+ full.x = full.y = 0;
+ full.w = surface->w;
+ full.h = surface->h;
+ alpha_flag = surface->flags & SDL_SRCALPHA;
+ surface->flags &= ~SDL_SRCALPHA; /* opaque blit */
+ SDL_RLEBlit(surface, &full, surface, &full);
+ surface->flags |= alpha_flag;
+ } else {
+ if ( !UnRLEAlpha(surface) ) {
+ /* Oh crap... */
+ surface->flags |= SDL_RLEACCEL;
+ return;
+ }
+ }
+ }
+
+ if ( surface->map && surface->map->sw_data->aux_data ) {
+ SDL_free(surface->map->sw_data->aux_data);
+ surface->map->sw_data->aux_data = NULL;
+ }
+ }
+}
+
+