aboutsummaryrefslogtreecommitdiffstats
path: root/tcg/README
diff options
context:
space:
mode:
Diffstat (limited to 'tcg/README')
-rw-r--r--tcg/README425
1 files changed, 0 insertions, 425 deletions
diff --git a/tcg/README b/tcg/README
deleted file mode 100644
index b03432e..0000000
--- a/tcg/README
+++ /dev/null
@@ -1,425 +0,0 @@
-Tiny Code Generator - Fabrice Bellard.
-
-1) Introduction
-
-TCG (Tiny Code Generator) began as a generic backend for a C
-compiler. It was simplified to be used in QEMU. It also has its roots
-in the QOP code generator written by Paul Brook.
-
-2) Definitions
-
-The TCG "target" is the architecture for which we generate the
-code. It is of course not the same as the "target" of QEMU which is
-the emulated architecture. As TCG started as a generic C backend used
-for cross compiling, it is assumed that the TCG target is different
-from the host, although it is never the case for QEMU.
-
-A TCG "function" corresponds to a QEMU Translated Block (TB).
-
-A TCG "temporary" is a variable only live in a basic
-block. Temporaries are allocated explicitly in each function.
-
-A TCG "local temporary" is a variable only live in a function. Local
-temporaries are allocated explicitly in each function.
-
-A TCG "global" is a variable which is live in all the functions
-(equivalent of a C global variable). They are defined before the
-functions defined. A TCG global can be a memory location (e.g. a QEMU
-CPU register), a fixed host register (e.g. the QEMU CPU state pointer)
-or a memory location which is stored in a register outside QEMU TBs
-(not implemented yet).
-
-A TCG "basic block" corresponds to a list of instructions terminated
-by a branch instruction.
-
-3) Intermediate representation
-
-3.1) Introduction
-
-TCG instructions operate on variables which are temporaries, local
-temporaries or globals. TCG instructions and variables are strongly
-typed. Two types are supported: 32 bit integers and 64 bit
-integers. Pointers are defined as an alias to 32 bit or 64 bit
-integers depending on the TCG target word size.
-
-Each instruction has a fixed number of output variable operands, input
-variable operands and always constant operands.
-
-The notable exception is the call instruction which has a variable
-number of outputs and inputs.
-
-In the textual form, output operands usually come first, followed by
-input operands, followed by constant operands. The output type is
-included in the instruction name. Constants are prefixed with a '$'.
-
-add_i32 t0, t1, t2 (t0 <- t1 + t2)
-
-3.2) Assumptions
-
-* Basic blocks
-
-- Basic blocks end after branches (e.g. brcond_i32 instruction),
- goto_tb and exit_tb instructions.
-- Basic blocks end before legacy dyngen operations.
-- Basic blocks start after the end of a previous basic block, at a
- set_label instruction or after a legacy dyngen operation.
-
-After the end of a basic block, the content of temporaries is
-destroyed, but local temporaries and globals are preserved.
-
-* Floating point types are not supported yet
-
-* Pointers: depending on the TCG target, pointer size is 32 bit or 64
- bit. The type TCG_TYPE_PTR is an alias to TCG_TYPE_I32 or
- TCG_TYPE_I64.
-
-* Helpers:
-
-Using the tcg_gen_helper_x_y it is possible to call any function
-taking i32, i64 or pointer types. Before calling an helper, all
-globals are stored at their canonical location and it is assumed that
-the function can modify them. In the future, function modifiers will
-be allowed to tell that the helper does not read or write some globals.
-
-On some TCG targets (e.g. x86), several calling conventions are
-supported.
-
-* Branches:
-
-Use the instruction 'br' to jump to a label. Use 'jmp' to jump to an
-explicit address. Conditional branches can only jump to labels.
-
-3.3) Code Optimizations
-
-When generating instructions, you can count on at least the following
-optimizations:
-
-- Single instructions are simplified, e.g.
-
- and_i32 t0, t0, $0xffffffff
-
- is suppressed.
-
-- A liveness analysis is done at the basic block level. The
- information is used to suppress moves from a dead variable to
- another one. It is also used to remove instructions which compute
- dead results. The later is especially useful for condition code
- optimization in QEMU.
-
- In the following example:
-
- add_i32 t0, t1, t2
- add_i32 t0, t0, $1
- mov_i32 t0, $1
-
- only the last instruction is kept.
-
-3.4) Instruction Reference
-
-********* Function call
-
-* call <ret> <params> ptr
-
-call function 'ptr' (pointer type)
-
-<ret> optional 32 bit or 64 bit return value
-<params> optional 32 bit or 64 bit parameters
-
-********* Jumps/Labels
-
-* jmp t0
-
-Absolute jump to address t0 (pointer type).
-
-* set_label $label
-
-Define label 'label' at the current program point.
-
-* br $label
-
-Jump to label.
-
-* brcond_i32/i64 cond, t0, t1, label
-
-Conditional jump if t0 cond t1 is true. cond can be:
- TCG_COND_EQ
- TCG_COND_NE
- TCG_COND_LT /* signed */
- TCG_COND_GE /* signed */
- TCG_COND_LE /* signed */
- TCG_COND_GT /* signed */
- TCG_COND_LTU /* unsigned */
- TCG_COND_GEU /* unsigned */
- TCG_COND_LEU /* unsigned */
- TCG_COND_GTU /* unsigned */
-
-********* Arithmetic
-
-* add_i32/i64 t0, t1, t2
-
-t0=t1+t2
-
-* sub_i32/i64 t0, t1, t2
-
-t0=t1-t2
-
-* neg_i32/i64 t0, t1
-
-t0=-t1 (two's complement)
-
-* mul_i32/i64 t0, t1, t2
-
-t0=t1*t2
-
-* div_i32/i64 t0, t1, t2
-
-t0=t1/t2 (signed). Undefined behavior if division by zero or overflow.
-
-* divu_i32/i64 t0, t1, t2
-
-t0=t1/t2 (unsigned). Undefined behavior if division by zero.
-
-* rem_i32/i64 t0, t1, t2
-
-t0=t1%t2 (signed). Undefined behavior if division by zero or overflow.
-
-* remu_i32/i64 t0, t1, t2
-
-t0=t1%t2 (unsigned). Undefined behavior if division by zero.
-
-********* Logical
-
-* and_i32/i64 t0, t1, t2
-
-t0=t1&t2
-
-* or_i32/i64 t0, t1, t2
-
-t0=t1|t2
-
-* xor_i32/i64 t0, t1, t2
-
-t0=t1^t2
-
-* not_i32/i64 t0, t1
-
-t0=~t1
-
-********* Shifts
-
-* shl_i32/i64 t0, t1, t2
-
-t0=t1 << t2. Undefined behavior if t2 < 0 or t2 >= 32 (resp 64)
-
-* shr_i32/i64 t0, t1, t2
-
-t0=t1 >> t2 (unsigned). Undefined behavior if t2 < 0 or t2 >= 32 (resp 64)
-
-* sar_i32/i64 t0, t1, t2
-
-t0=t1 >> t2 (signed). Undefined behavior if t2 < 0 or t2 >= 32 (resp 64)
-
-********* Misc
-
-* mov_i32/i64 t0, t1
-
-t0 = t1
-
-Move t1 to t0 (both operands must have the same type).
-
-* ext8s_i32/i64 t0, t1
-ext8u_i32/i64 t0, t1
-ext16s_i32/i64 t0, t1
-ext16u_i32/i64 t0, t1
-ext32s_i64 t0, t1
-ext32u_i64 t0, t1
-
-8, 16 or 32 bit sign/zero extension (both operands must have the same type)
-
-* bswap16_i32 t0, t1
-
-16 bit byte swap on a 32 bit value. The two high order bytes must be set
-to zero.
-
-* bswap_i32 t0, t1
-
-32 bit byte swap
-
-* bswap_i64 t0, t1
-
-64 bit byte swap
-
-* discard_i32/i64 t0
-
-Indicate that the value of t0 won't be used later. It is useful to
-force dead code elimination.
-
-********* Type conversions
-
-* ext_i32_i64 t0, t1
-Convert t1 (32 bit) to t0 (64 bit) and does sign extension
-
-* extu_i32_i64 t0, t1
-Convert t1 (32 bit) to t0 (64 bit) and does zero extension
-
-* trunc_i64_i32 t0, t1
-Truncate t1 (64 bit) to t0 (32 bit)
-
-********* Load/Store
-
-* ld_i32/i64 t0, t1, offset
-ld8s_i32/i64 t0, t1, offset
-ld8u_i32/i64 t0, t1, offset
-ld16s_i32/i64 t0, t1, offset
-ld16u_i32/i64 t0, t1, offset
-ld32s_i64 t0, t1, offset
-ld32u_i64 t0, t1, offset
-
-t0 = read(t1 + offset)
-Load 8, 16, 32 or 64 bits with or without sign extension from host memory.
-offset must be a constant.
-
-* st_i32/i64 t0, t1, offset
-st8_i32/i64 t0, t1, offset
-st16_i32/i64 t0, t1, offset
-st32_i64 t0, t1, offset
-
-write(t0, t1 + offset)
-Write 8, 16, 32 or 64 bits to host memory.
-
-********* QEMU specific operations
-
-* tb_exit t0
-
-Exit the current TB and return the value t0 (word type).
-
-* goto_tb index
-
-Exit the current TB and jump to the TB index 'index' (constant) if the
-current TB was linked to this TB. Otherwise execute the next
-instructions.
-
-* qemu_ld_i32/i64 t0, t1, flags
-qemu_ld8u_i32/i64 t0, t1, flags
-qemu_ld8s_i32/i64 t0, t1, flags
-qemu_ld16u_i32/i64 t0, t1, flags
-qemu_ld16s_i32/i64 t0, t1, flags
-qemu_ld32u_i64 t0, t1, flags
-qemu_ld32s_i64 t0, t1, flags
-
-Load data at the QEMU CPU address t1 into t0. t1 has the QEMU CPU
-address type. 'flags' contains the QEMU memory index (selects user or
-kernel access) for example.
-
-* qemu_st_i32/i64 t0, t1, flags
-qemu_st8_i32/i64 t0, t1, flags
-qemu_st16_i32/i64 t0, t1, flags
-qemu_st32_i64 t0, t1, flags
-
-Store the data t0 at the QEMU CPU Address t1. t1 has the QEMU CPU
-address type. 'flags' contains the QEMU memory index (selects user or
-kernel access) for example.
-
-Note 1: Some shortcuts are defined when the last operand is known to be
-a constant (e.g. addi for add, movi for mov).
-
-Note 2: When using TCG, the opcodes must never be generated directly
-as some of them may not be available as "real" opcodes. Always use the
-function tcg_gen_xxx(args).
-
-4) Backend
-
-tcg-target.h contains the target specific definitions. tcg-target.c
-contains the target specific code.
-
-4.1) Assumptions
-
-The target word size (TCG_TARGET_REG_BITS) is expected to be 32 bit or
-64 bit. It is expected that the pointer has the same size as the word.
-
-On a 32 bit target, all 64 bit operations are converted to 32 bits. A
-few specific operations must be implemented to allow it (see add2_i32,
-sub2_i32, brcond2_i32).
-
-Floating point operations are not supported in this version. A
-previous incarnation of the code generator had full support of them,
-but it is better to concentrate on integer operations first.
-
-On a 64 bit target, no assumption is made in TCG about the storage of
-the 32 bit values in 64 bit registers.
-
-4.2) Constraints
-
-GCC like constraints are used to define the constraints of every
-instruction. Memory constraints are not supported in this
-version. Aliases are specified in the input operands as for GCC.
-
-A target can define specific register or constant constraints. If an
-operation uses a constant input constraint which does not allow all
-constants, it must also accept registers in order to have a fallback.
-
-The movi_i32 and movi_i64 operations must accept any constants.
-
-The mov_i32 and mov_i64 operations must accept any registers of the
-same type.
-
-The ld/st instructions must accept signed 32 bit constant offsets. It
-can be implemented by reserving a specific register to compute the
-address if the offset is too big.
-
-The ld/st instructions must accept any destination (ld) or source (st)
-register.
-
-4.3) Function call assumptions
-
-- The only supported types for parameters and return value are: 32 and
- 64 bit integers and pointer.
-- The stack grows downwards.
-- The first N parameters are passed in registers.
-- The next parameters are passed on the stack by storing them as words.
-- Some registers are clobbered during the call.
-- The function can return 0 or 1 value in registers. On a 32 bit
- target, functions must be able to return 2 values in registers for
- 64 bit return type.
-
-5) Migration from dyngen to TCG
-
-TCG is backward compatible with QEMU "dyngen" operations. It means
-that TCG instructions can be freely mixed with dyngen operations. It
-is expected that QEMU targets will be progressively fully converted to
-TCG. Once a target is fully converted to TCG, it will be possible
-to apply more optimizations because more registers will be free for
-the generated code.
-
-The exception model is the same as the dyngen one.
-
-6) Recommended coding rules for best performance
-
-- Use globals to represent the parts of the QEMU CPU state which are
- often modified, e.g. the integer registers and the condition
- codes. TCG will be able to use host registers to store them.
-
-- Avoid globals stored in fixed registers. They must be used only to
- store the pointer to the CPU state and possibly to store a pointer
- to a register window. The other uses are to ensure backward
- compatibility with dyngen during the porting a new target to TCG.
-
-- Use temporaries. Use local temporaries only when really needed,
- e.g. when you need to use a value after a jump. Local temporaries
- introduce a performance hit in the current TCG implementation: their
- content is saved to memory at end of each basic block.
-
-- Free temporaries and local temporaries when they are no longer used
- (tcg_temp_free). Since tcg_const_x() also creates a temporary, you
- should free it after it is used. Freeing temporaries does not yield
- a better generated code, but it reduces the memory usage of TCG and
- the speed of the translation.
-
-- Don't hesitate to use helpers for complicated or seldom used target
- intructions. There is little performance advantage in using TCG to
- implement target instructions taking more than about twenty TCG
- instructions.
-
-- Use the 'discard' instruction if you know that TCG won't be able to
- prove that a given global is "dead" at a given program point. The
- x86 target uses it to improve the condition codes optimisation.