1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
|
/* Copyright (C) 2007-2008 The Android Open Source Project
**
** This software is licensed under the terms of the GNU General Public
** License version 2, as published by the Free Software Foundation, and
** may be copied, distributed, and modified under those terms.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "dcache.h"
#include "cpu.h"
#include "exec-all.h"
#include "trace.h"
#include "varint.h"
extern FILE *ftrace_debug;
int dcache_size = 16 * 1024;
int dcache_ways = 4;
int dcache_line_size = 32;
int dcache_replace_policy = kPolicyRandom;
int dcache_load_miss_penalty = 30;
int dcache_store_miss_penalty = 5;
typedef struct Dcache {
int size;
int ways;
int line_size;
int log_line_size;
int rows;
uint32_t addr_mask;
int replace_policy;
int next_way;
int extra_increment_counter;
int *replace;
uint32_t **table;
int load_miss_penalty;
int store_miss_penalty;
uint64_t load_hits;
uint64_t load_misses;
uint64_t store_hits;
uint64_t store_misses;
} Dcache;
Dcache dcache;
void dcache_cleanup();
// Returns the log2 of "num" rounded up to the nearest integer.
int log2_roundup(int num)
{
int power2;
int exp;
for (exp = 0, power2 = 1; power2 < num; power2 <<= 1) {
exp += 1;
}
return exp;
}
void dcache_init(int size, int ways, int line_size, int replace_policy,
int load_miss_penalty, int store_miss_penalty)
{
int ii;
// Compute the logs of the params, rounded up
int log_size = log2_roundup(size);
int log_ways = log2_roundup(ways);
int log_line_size = log2_roundup(line_size);
// The number of rows in the table = size / (line_size * ways)
int log_rows = log_size - log_line_size - log_ways;
dcache.size = 1 << log_size;
dcache.ways = 1 << log_ways;
dcache.line_size = 1 << log_line_size;
dcache.log_line_size = log_line_size;
dcache.rows = 1 << log_rows;
dcache.addr_mask = (1 << log_rows) - 1;
// Allocate an array of pointers, one for each row
uint32_t **table = malloc(sizeof(uint32_t *) << log_rows);
// Allocate the data for the whole cache in one call to malloc()
int data_size = sizeof(uint32_t) << (log_rows + log_ways);
uint32_t *data = malloc(data_size);
// Fill the cache with invalid addresses
memset(data, ~0, data_size);
// Assign the pointers into the data array
int rows = dcache.rows;
for (ii = 0; ii < rows; ++ii) {
table[ii] = &data[ii << log_ways];
}
dcache.table = table;
dcache.replace_policy = replace_policy;
dcache.next_way = 0;
dcache.extra_increment_counter = 0;
dcache.replace = NULL;
if (replace_policy == kPolicyRoundRobin) {
dcache.replace = malloc(sizeof(int) << log_rows);
memset(dcache.replace, 0, sizeof(int) << log_rows);
}
dcache.load_miss_penalty = load_miss_penalty;
dcache.store_miss_penalty = store_miss_penalty;
dcache.load_hits = 0;
dcache.load_misses = 0;
dcache.store_hits = 0;
dcache.store_misses = 0;
atexit(dcache_cleanup);
}
void dcache_stats()
{
uint64_t hits = dcache.load_hits + dcache.store_hits;
uint64_t misses = dcache.load_misses + dcache.store_misses;
uint64_t total = hits + misses;
double hit_per = 0;
double miss_per = 0;
if (total) {
hit_per = 100.0 * hits / total;
miss_per = 100.0 * misses / total;
}
printf("\n");
printf("Dcache hits %10llu %6.2f%%\n", hits, hit_per);
printf("Dcache misses %10llu %6.2f%%\n", misses, miss_per);
printf("Dcache total %10llu\n", hits + misses);
}
void dcache_free()
{
free(dcache.table[0]);
free(dcache.table);
free(dcache.replace);
dcache.table = NULL;
}
void dcache_cleanup()
{
dcache_stats();
dcache_free();
}
void compress_trace_addresses(TraceAddr *trace_addr)
{
AddrRec *ptr;
char *comp_ptr = trace_addr->compressed_ptr;
uint32_t prev_addr = trace_addr->prev_addr;
uint64_t prev_time = trace_addr->prev_time;
AddrRec *last = &trace_addr->buffer[kMaxNumAddrs];
for (ptr = trace_addr->buffer; ptr != last; ++ptr) {
if (comp_ptr >= trace_addr->high_water_ptr) {
uint32_t size = comp_ptr - trace_addr->compressed;
fwrite(trace_addr->compressed, sizeof(char), size, trace_addr->fstream);
comp_ptr = trace_addr->compressed;
}
int addr_diff = ptr->addr - prev_addr;
uint64_t time_diff = ptr->time - prev_time;
prev_addr = ptr->addr;
prev_time = ptr->time;
comp_ptr = varint_encode_signed(addr_diff, comp_ptr);
comp_ptr = varint_encode(time_diff, comp_ptr);
}
trace_addr->compressed_ptr = comp_ptr;
trace_addr->prev_addr = prev_addr;
trace_addr->prev_time = prev_time;
}
// This function is called by the generated code to simulate
// a dcache load access.
void dcache_load(uint32_t addr)
{
int ii;
int ways = dcache.ways;
uint32_t cache_addr = addr >> dcache.log_line_size;
int row = cache_addr & dcache.addr_mask;
//printf("ld %lld 0x%x\n", sim_time, addr);
for (ii = 0; ii < ways; ++ii) {
if (cache_addr == dcache.table[row][ii]) {
dcache.load_hits += 1;
#if 0
printf("dcache load hit addr: 0x%x cache_addr: 0x%x row %d way %d\n",
addr, cache_addr, row, ii);
#endif
// If we are tracing all addresses, then include this in the trace.
if (trace_all_addr) {
AddrRec *next = trace_load.next;
next->addr = addr;
next->time = sim_time;
next += 1;
if (next == &trace_load.buffer[kMaxNumAddrs]) {
// Compress the trace
compress_trace_addresses(&trace_load);
next = &trace_load.buffer[0];
}
trace_load.next = next;
}
return;
}
}
// This is a cache miss
#if 0
if (ftrace_debug)
fprintf(ftrace_debug, "t%lld %08x\n", sim_time, addr);
#endif
if (trace_load.fstream) {
AddrRec *next = trace_load.next;
next->addr = addr;
next->time = sim_time;
next += 1;
if (next == &trace_load.buffer[kMaxNumAddrs]) {
// Compress the trace
compress_trace_addresses(&trace_load);
next = &trace_load.buffer[0];
}
trace_load.next = next;
}
dcache.load_misses += 1;
sim_time += dcache.load_miss_penalty;
// Pick a way to replace
int way;
if (dcache.replace_policy == kPolicyRoundRobin) {
// Round robin replacement policy
way = dcache.replace[row];
int next_way = way + 1;
if (next_way == dcache.ways)
next_way = 0;
dcache.replace[row] = next_way;
} else {
// Random replacement policy
way = dcache.next_way;
dcache.next_way += 1;
if (dcache.next_way >= dcache.ways)
dcache.next_way = 0;
// Every 13 replacements, add an extra increment to the next way
dcache.extra_increment_counter += 1;
if (dcache.extra_increment_counter == 13) {
dcache.extra_increment_counter = 0;
dcache.next_way += 1;
if (dcache.next_way >= dcache.ways)
dcache.next_way = 0;
}
}
#if 0
printf("dcache load miss addr: 0x%x cache_addr: 0x%x row %d replacing way %d\n",
addr, cache_addr, row, way);
#endif
dcache.table[row][way] = cache_addr;
}
// This function is called by the generated code to simulate
// a dcache store access.
void dcache_store(uint32_t addr, uint32_t val)
{
// Check for a write to a magic address (this is a virtual address)
//printf("st %lld 0x%08x val 0x%x\n", sim_time, addr, val);
if ((addr & kMagicBaseMask) == kMagicBaseAddr) {
uint32_t offset = addr & kMagicOffsetMask;
switch (offset) {
case kMethodTraceEnterOffset:
trace_interpreted_method(val, kMethodEnter);
break;
case kMethodTraceExitOffset:
trace_interpreted_method(val, kMethodExit);
break;
case kMethodTraceExceptionOffset:
trace_interpreted_method(val, kMethodException);
break;
}
}
int ii;
int ways = dcache.ways;
uint32_t cache_addr = addr >> dcache.log_line_size;
int row = cache_addr & dcache.addr_mask;
for (ii = 0; ii < ways; ++ii) {
if (cache_addr == dcache.table[row][ii]) {
dcache.store_hits += 1;
#if 0
printf("dcache store hit addr: 0x%x cache_addr: 0x%x row %d way %d\n",
addr, cache_addr, row, ii);
#endif
// If we are tracing all addresses, then include this in the trace.
if (trace_all_addr) {
AddrRec *next = trace_store.next;
next->addr = addr;
next->time = sim_time;
next += 1;
if (next == &trace_store.buffer[kMaxNumAddrs]) {
// Compress the trace
compress_trace_addresses(&trace_store);
next = &trace_store.buffer[0];
}
trace_store.next = next;
}
return;
}
}
// This is a cache miss
#if 0
printf("dcache store miss addr: 0x%x cache_addr: 0x%x row %d\n",
addr, cache_addr, row);
#endif
#if 0
if (ftrace_debug)
fprintf(ftrace_debug, "t%lld %08x\n", sim_time, addr);
#endif
if (trace_store.fstream) {
AddrRec *next = trace_store.next;
next->addr = addr;
next->time = sim_time;
next += 1;
if (next == &trace_store.buffer[kMaxNumAddrs]) {
// Compress the trace
compress_trace_addresses(&trace_store);
next = &trace_store.buffer[0];
}
trace_store.next = next;
}
dcache.store_misses += 1;
sim_time += dcache.store_miss_penalty;
// Assume no write-allocate for now
}
// This function is called by the generated code to simulate
// a dcache load and store (swp) access.
void dcache_swp(uint32_t addr)
{
dcache_load(addr);
dcache_store(addr, 0);
}
|