aboutsummaryrefslogtreecommitdiffstats
path: root/hw/goldfish_nand.c
blob: 49d575a6a2eb02f1807932baffcdb63e2acc6083 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
/* Copyright (C) 2007-2008 The Android Open Source Project
**
** This software is licensed under the terms of the GNU General Public
** License version 2, as published by the Free Software Foundation, and
** may be copied, distributed, and modified under those terms.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
** GNU General Public License for more details.
*/
#include "qemu_file.h"
#include "goldfish_nand_reg.h"
#include "goldfish_nand.h"
#include "android/utils/tempfile.h"
#include "qemu_debug.h"
#include "android/android.h"

#ifdef TARGET_I386
#include "kvm.h"
#endif

#define  DEBUG  1
#if DEBUG
#  define  D(...)    VERBOSE_PRINT(init,__VA_ARGS__)
#  define  D_ACTIVE  VERBOSE_CHECK(init)
#  define  T(...)    VERBOSE_PRINT(nand_limits,__VA_ARGS__)
#  define  T_ACTIVE  VERBOSE_CHECK(nand_limits)
#else
#  define  D(...)    ((void)0)
#  define  D_ACTIVE  0
#  define  T(...)    ((void)0)
#  define  T_ACTIVE  0
#endif

/* lseek uses 64-bit offsets on Darwin. */
/* prefer lseek64 on Linux              */
#ifdef __APPLE__
#  define  llseek  lseek
#elif defined(__linux__)
#  define  llseek  lseek64
#endif

#define  XLOG  xlog

static void
xlog( const char*  format, ... )
{
    va_list  args;
    va_start(args, format);
    fprintf(stderr, "NAND: ");
    vfprintf(stderr, format, args);
    va_end(args);
}

/* Information on a single device/nand image used by the emulator
 */
typedef struct {
    char*      devname;      /* name for this device (not null-terminated, use len below) */
    size_t     devname_len;
    uint8_t*   data;         /* buffer for read/write actions to underlying image */
    int        fd;
    uint32_t   flags;
    uint32_t   page_size;
    uint32_t   extra_size;
    uint32_t   erase_size;   /* size of the data buffer mentioned above */
    uint64_t   max_size;     /* Capacity limit for the image. The actual underlying
                              * file may be smaller. */
} nand_dev;

nand_threshold    android_nand_write_threshold;
nand_threshold    android_nand_read_threshold;

#ifdef CONFIG_NAND_THRESHOLD

/* update a threshold, return 1 if limit is hit, 0 otherwise */
static void
nand_threshold_update( nand_threshold*  t, uint32_t  len )
{
    if (t->counter < t->limit) {
        uint64_t  avail = t->limit - t->counter;
        if (avail > len)
            avail = len;

        if (t->counter == 0) {
            T("%s: starting threshold counting to %lld",
              __FUNCTION__, t->limit);
        }
        t->counter += avail;
        if (t->counter >= t->limit) {
            /* threshold reach, send a signal to an external process */
            T( "%s: sending signal %d to pid %d !",
               __FUNCTION__, t->signal, t->pid );

            kill( t->pid, t->signal );
        }
    }
    return;
}

#define  NAND_UPDATE_READ_THRESHOLD(len)  \
    nand_threshold_update( &android_nand_read_threshold, (uint32_t)(len) )

#define  NAND_UPDATE_WRITE_THRESHOLD(len)  \
    nand_threshold_update( &android_nand_write_threshold, (uint32_t)(len) )

#else /* !NAND_THRESHOLD */

#define  NAND_UPDATE_READ_THRESHOLD(len)  \
    do {} while (0)

#define  NAND_UPDATE_WRITE_THRESHOLD(len)  \
    do {} while (0)

#endif /* !NAND_THRESHOLD */

static nand_dev *nand_devs = NULL;
static uint32_t nand_dev_count = 0;

/* The controller is the single access point for all NAND images currently
 * attached to the system.
 */
typedef struct {
    uint32_t base;

    // register state
    uint32_t dev;            /* offset in nand_devs for the device that is
                              * currently being accessed */
    uint32_t addr_low;
    uint32_t addr_high;
    uint32_t transfer_size;
    uint32_t data;
    uint32_t batch_addr_low;
    uint32_t batch_addr_high;
    uint32_t result;
} nand_dev_controller_state;

/* update this everytime you change the nand_dev_controller_state structure
 * 1: initial version, saving only nand_dev_controller_state fields
 * 2: saving actual disk contents as well
 * 3: use the correct data length and truncate to avoid padding.
 */
#define  NAND_DEV_STATE_SAVE_VERSION  3

#define  QFIELD_STRUCT  nand_dev_controller_state
QFIELD_BEGIN(nand_dev_controller_state_fields)
    QFIELD_INT32(dev),
    QFIELD_INT32(addr_low),
    QFIELD_INT32(addr_high),
    QFIELD_INT32(transfer_size),
    QFIELD_INT32(data),
    QFIELD_INT32(result),
QFIELD_END


/* EINTR-proof read - due to SIGALRM in use elsewhere */
static int  do_read(int  fd, void*  buf, size_t  size)
{
    int  ret;
    do {
        ret = read(fd, buf, size);
    } while (ret < 0 && errno == EINTR);

    return ret;
}

/* EINTR-proof write - due to SIGALRM in use elsewhere */
static int  do_write(int  fd, const void*  buf, size_t  size)
{
    int  ret;
    do {
        ret = write(fd, buf, size);
    } while (ret < 0 && errno == EINTR);

    return ret;
}

/* EINTR-proof lseek - due to SIGALRM in use elsewhere */
static int  do_lseek(int  fd, off_t offset, int whence)
{
    int  ret;
    do {
        ret = lseek(fd, offset, whence);
    } while (ret < 0 && errno == EINTR);

    return ret;
}

/* EINTR-proof ftruncate - due to SIGALRM in use elsewhere */
static int  do_ftruncate(int  fd, size_t  size)
{
    int  ret;
    do {
        ret = ftruncate(fd, size);
    } while (ret < 0 && errno == EINTR);

    return ret;
}

#define NAND_DEV_SAVE_DISK_BUF_SIZE 2048


/**
 * Copies the current contents of a disk image into the snapshot file.
 *
 * TODO optimize this using some kind of copy-on-write mechanism for
 *      unchanged disk sections.
 */
static void  nand_dev_save_disk_state(QEMUFile *f, nand_dev *dev)
{
    int buf_size = NAND_DEV_SAVE_DISK_BUF_SIZE;
    uint8_t buffer[NAND_DEV_SAVE_DISK_BUF_SIZE] = {0};
    int ret;
    uint64_t total_copied = 0;

    /* Size of file to restore, hence size of data block following.
     * TODO Work out whether to use lseek64 here. */

    ret = do_lseek(dev->fd, 0, SEEK_END);
    if (ret < 0) {
      XLOG("%s EOF seek failed: %s\n", __FUNCTION__, strerror(errno));
      qemu_file_set_error(f);
      return;
    }
    const uint64_t total_size = ret;
    qemu_put_be64(f, total_size);

    /* copy all data from the stream to the stored image */
    ret = do_lseek(dev->fd, 0, SEEK_SET);
    if (ret < 0) {
        XLOG("%s seek failed: %s\n", __FUNCTION__, strerror(errno));
        qemu_file_set_error(f);
        return;
    }
    do {
        ret = do_read(dev->fd, buffer, buf_size);
        if (ret < 0) {
            XLOG("%s read failed: %s\n", __FUNCTION__, strerror(errno));
            qemu_file_set_error(f);
            return;
        }
        qemu_put_buffer(f, buffer, ret);

        total_copied += ret;
    }
    while (ret == buf_size && total_copied < dev->max_size);

    /* TODO Maybe check that we've written total_size bytes */
}


/**
 * Saves the state of all disks managed by this controller to a snapshot file.
 */
static void nand_dev_save_disks(QEMUFile *f)
{
    int i;
    for (i = 0; i < nand_dev_count; i++) {
        nand_dev_save_disk_state(f, nand_devs + i);
    }
}

/**
 * Overwrites the contents of the disk image managed by this device with the
 * contents as they were at the point the snapshot was made.
 */
static int  nand_dev_load_disk_state(QEMUFile *f, nand_dev *dev)
{
    int buf_size = NAND_DEV_SAVE_DISK_BUF_SIZE;
    uint8_t buffer[NAND_DEV_SAVE_DISK_BUF_SIZE] = {0};
    int ret;

    /* File size for restore and truncate */
    uint64_t total_size = qemu_get_be64(f);
    if (total_size > dev->max_size) {
        XLOG("%s, restore failed: size required (%lld) exceeds device limit (%lld)\n",
             __FUNCTION__, total_size, dev->max_size);
        return -EIO;
    }

    /* overwrite disk contents with snapshot contents */
    uint64_t next_offset = 0;
    ret = do_lseek(dev->fd, 0, SEEK_SET);
    if (ret < 0) {
        XLOG("%s seek failed: %s\n", __FUNCTION__, strerror(errno));
        return -EIO;
    }
    while (next_offset < total_size) {
        /* snapshot buffer may not be an exact multiple of buf_size
         * if necessary, adjust buffer size for last copy operation */
        if (total_size - next_offset < buf_size) {
            buf_size = total_size - next_offset;
        }

        ret = qemu_get_buffer(f, buffer, buf_size);
        if (ret != buf_size) {
            XLOG("%s read failed: expected %d bytes but got %d\n",
                 __FUNCTION__, buf_size, ret);
            return -EIO;
        }
        ret = do_write(dev->fd, buffer, buf_size);
        if (ret != buf_size) {
            XLOG("%s, write failed: %s\n", __FUNCTION__, strerror(errno));
            return -EIO;
        }

        next_offset += buf_size;
    }

    ret = do_ftruncate(dev->fd, total_size);
    if (ret < 0) {
        XLOG("%s ftruncate failed: %s\n", __FUNCTION__, strerror(errno));
        return -EIO;
    }

    return 0;
}

/**
 * Restores the state of all disks managed by this driver from a snapshot file.
 */
static int nand_dev_load_disks(QEMUFile *f)
{
    int i, ret;
    for (i = 0; i < nand_dev_count; i++) {
        ret = nand_dev_load_disk_state(f, nand_devs + i);
        if (ret)
            return ret; // abort on error
    }

    return 0;
}

static void  nand_dev_controller_state_save(QEMUFile *f, void  *opaque)
{
    nand_dev_controller_state* s = opaque;

    qemu_put_struct(f, nand_dev_controller_state_fields, s);

    /* The guest will continue writing to the disk image after the state has
     * been saved. To guarantee that the state is identical after resume, save
     * a copy of the current disk state in the snapshot.
     */
    nand_dev_save_disks(f);
}

static int   nand_dev_controller_state_load(QEMUFile *f, void  *opaque, int  version_id)
{
    nand_dev_controller_state*  s = opaque;
    int ret;

    if (version_id != NAND_DEV_STATE_SAVE_VERSION)
        return -1;

    if ((ret = qemu_get_struct(f, nand_dev_controller_state_fields, s)))
        return ret;
    if ((ret = nand_dev_load_disks(f)))
        return ret;

    return 0;
}

static uint32_t nand_dev_read_file(nand_dev *dev, uint32_t data, uint64_t addr, uint32_t total_len)
{
    uint32_t len = total_len;
    size_t read_len = dev->erase_size;
    int eof = 0;

    NAND_UPDATE_READ_THRESHOLD(total_len);

    do_lseek(dev->fd, addr, SEEK_SET);
    while(len > 0) {
        if(read_len < dev->erase_size) {
            memset(dev->data, 0xff, dev->erase_size);
            read_len = dev->erase_size;
            eof = 1;
        }
        if(len < read_len)
            read_len = len;
        if(!eof) {
            read_len = do_read(dev->fd, dev->data, read_len);
        }
#ifdef TARGET_I386
        if (kvm_enabled())
            cpu_synchronize_state(cpu_single_env, 0);
#endif
        cpu_memory_rw_debug(cpu_single_env, data, dev->data, read_len, 1);
        data += read_len;
        len -= read_len;
    }
    return total_len;
}

static uint32_t nand_dev_write_file(nand_dev *dev, uint32_t data, uint64_t addr, uint32_t total_len)
{
    uint32_t len = total_len;
    size_t write_len = dev->erase_size;
    int ret;

    NAND_UPDATE_WRITE_THRESHOLD(total_len);

    do_lseek(dev->fd, addr, SEEK_SET);
    while(len > 0) {
        if(len < write_len)
            write_len = len;
#ifdef TARGET_I386
        if (kvm_enabled())
                cpu_synchronize_state(cpu_single_env, 0);
#endif
        cpu_memory_rw_debug(cpu_single_env, data, dev->data, write_len, 0);
        ret = do_write(dev->fd, dev->data, write_len);
        if(ret < write_len) {
            XLOG("nand_dev_write_file, write failed: %s\n", strerror(errno));
            break;
        }
        data += write_len;
        len -= write_len;
    }
    return total_len - len;
}

static uint32_t nand_dev_erase_file(nand_dev *dev, uint64_t addr, uint32_t total_len)
{
    uint32_t len = total_len;
    size_t write_len = dev->erase_size;
    int ret;

    do_lseek(dev->fd, addr, SEEK_SET);
    memset(dev->data, 0xff, dev->erase_size);
    while(len > 0) {
        if(len < write_len)
            write_len = len;
        ret = do_write(dev->fd, dev->data, write_len);
        if(ret < write_len) {
            XLOG( "nand_dev_write_file, write failed: %s\n", strerror(errno));
            break;
        }
        len -= write_len;
    }
    return total_len - len;
}

/* this is a huge hack required to make the PowerPC emulator binary usable
 * on Mac OS X. If you define this function as 'static', the emulated kernel
 * will panic when attempting to mount the /data partition.
 *
 * worse, if you do *not* define the function as static on Linux-x86, the
 * emulated kernel will also panic !?
 *
 * I still wonder if this is a compiler bug, or due to some nasty thing the
 * emulator does with CPU registers during execution of the translated code.
 */
#if !(defined __APPLE__ && defined __powerpc__)
static
#endif
uint32_t nand_dev_do_cmd(nand_dev_controller_state *s, uint32_t cmd)
{
    uint32_t size;
    uint64_t addr;
    nand_dev *dev;

    if (cmd == NAND_CMD_WRITE_BATCH || cmd == NAND_CMD_READ_BATCH ||
        cmd == NAND_CMD_ERASE_BATCH) {
        struct batch_data bd;
        uint64_t bd_addr = ((uint64_t)s->batch_addr_high << 32) | s->batch_addr_low;

        cpu_physical_memory_read(bd_addr, (void*)&bd, sizeof(struct batch_data));
        s->dev = bd.dev;
        s->addr_low = bd.addr_low;
        s->addr_high = bd.addr_high;
        s->transfer_size = bd.transfer_size;
        s->data = bd.data;
    }
    addr = s->addr_low | ((uint64_t)s->addr_high << 32);
    size = s->transfer_size;
    if(s->dev >= nand_dev_count)
        return 0;
    dev = nand_devs + s->dev;

    switch(cmd) {
    case NAND_CMD_GET_DEV_NAME:
        if(size > dev->devname_len)
            size = dev->devname_len;
#ifdef TARGET_I386
        if (kvm_enabled())
                cpu_synchronize_state(cpu_single_env, 0);
#endif
        cpu_memory_rw_debug(cpu_single_env, s->data, (uint8_t*)dev->devname, size, 1);
        return size;
    case NAND_CMD_READ_BATCH:
    case NAND_CMD_READ:
        if(addr >= dev->max_size)
            return 0;
        if(size > dev->max_size - addr)
            size = dev->max_size - addr;
        if(dev->fd >= 0)
            return nand_dev_read_file(dev, s->data, addr, size);
#ifdef TARGET_I386
        if (kvm_enabled())
                cpu_synchronize_state(cpu_single_env, 0);
#endif
        cpu_memory_rw_debug(cpu_single_env,s->data, &dev->data[addr], size, 1);
        return size;
    case NAND_CMD_WRITE_BATCH:
    case NAND_CMD_WRITE:
        if(dev->flags & NAND_DEV_FLAG_READ_ONLY)
            return 0;
        if(addr >= dev->max_size)
            return 0;
        if(size > dev->max_size - addr)
            size = dev->max_size - addr;
        if(dev->fd >= 0)
            return nand_dev_write_file(dev, s->data, addr, size);
#ifdef TARGET_I386
        if (kvm_enabled())
                cpu_synchronize_state(cpu_single_env, 0);
#endif
        cpu_memory_rw_debug(cpu_single_env,s->data, &dev->data[addr], size, 0);
        return size;
    case NAND_CMD_ERASE_BATCH:
    case NAND_CMD_ERASE:
        if(dev->flags & NAND_DEV_FLAG_READ_ONLY)
            return 0;
        if(addr >= dev->max_size)
            return 0;
        if(size > dev->max_size - addr)
            size = dev->max_size - addr;
        if(dev->fd >= 0)
            return nand_dev_erase_file(dev, addr, size);
        memset(&dev->data[addr], 0xff, size);
        return size;
    case NAND_CMD_BLOCK_BAD_GET: // no bad block support
        return 0;
    case NAND_CMD_BLOCK_BAD_SET:
        if(dev->flags & NAND_DEV_FLAG_READ_ONLY)
            return 0;
        return 0;
    default:
        cpu_abort(cpu_single_env, "nand_dev_do_cmd: Bad command %x\n", cmd);
        return 0;
    }
}

/* I/O write */
static void nand_dev_write(void *opaque, target_phys_addr_t offset, uint32_t value)
{
    nand_dev_controller_state *s = (nand_dev_controller_state *)opaque;

    switch (offset) {
    case NAND_DEV:
        s->dev = value;
        if(s->dev >= nand_dev_count) {
            cpu_abort(cpu_single_env, "nand_dev_write: Bad dev %x\n", value);
        }
        break;
    case NAND_ADDR_HIGH:
        s->addr_high = value;
        break;
    case NAND_ADDR_LOW:
        s->addr_low = value;
        break;
    case NAND_BATCH_ADDR_LOW:
        s->batch_addr_low = value;
        break;
    case NAND_BATCH_ADDR_HIGH:
        s->batch_addr_high = value;
        break;
    case NAND_TRANSFER_SIZE:
        s->transfer_size = value;
        break;
    case NAND_DATA:
        s->data = value;
        break;
    case NAND_COMMAND:
        s->result = nand_dev_do_cmd(s, value);
        if (value == NAND_CMD_WRITE_BATCH || value == NAND_CMD_READ_BATCH ||
            value == NAND_CMD_ERASE_BATCH) {
            struct batch_data bd;
            uint64_t bd_addr = ((uint64_t)s->batch_addr_high << 32) | s->batch_addr_low;
            bd.result = s->result;
            cpu_physical_memory_write(bd_addr, (void*)&bd, sizeof(struct batch_data));
        }
        break;
    default:
        cpu_abort(cpu_single_env, "nand_dev_write: Bad offset %x\n", offset);
        break;
    }
}

/* I/O read */
static uint32_t nand_dev_read(void *opaque, target_phys_addr_t offset)
{
    nand_dev_controller_state *s = (nand_dev_controller_state *)opaque;
    nand_dev *dev;

    switch (offset) {
    case NAND_VERSION:
        return NAND_VERSION_CURRENT;
    case NAND_NUM_DEV:
        return nand_dev_count;
    case NAND_RESULT:
        return s->result;
    }

    if(s->dev >= nand_dev_count)
        return 0;

    dev = nand_devs + s->dev;

    switch (offset) {
    case NAND_DEV_FLAGS:
        return dev->flags;

    case NAND_DEV_NAME_LEN:
        return dev->devname_len;

    case NAND_DEV_PAGE_SIZE:
        return dev->page_size;

    case NAND_DEV_EXTRA_SIZE:
        return dev->extra_size;

    case NAND_DEV_ERASE_SIZE:
        return dev->erase_size;

    case NAND_DEV_SIZE_LOW:
        return (uint32_t)dev->max_size;

    case NAND_DEV_SIZE_HIGH:
        return (uint32_t)(dev->max_size >> 32);

    default:
        cpu_abort(cpu_single_env, "nand_dev_read: Bad offset %x\n", offset);
        return 0;
    }
}

static CPUReadMemoryFunc *nand_dev_readfn[] = {
   nand_dev_read,
   nand_dev_read,
   nand_dev_read
};

static CPUWriteMemoryFunc *nand_dev_writefn[] = {
   nand_dev_write,
   nand_dev_write,
   nand_dev_write
};

/* initialize the QFB device */
void nand_dev_init(uint32_t base)
{
    int iomemtype;
    static int  instance_id = 0;
    nand_dev_controller_state *s;

    s = (nand_dev_controller_state *)qemu_mallocz(sizeof(nand_dev_controller_state));
    iomemtype = cpu_register_io_memory(nand_dev_readfn, nand_dev_writefn, s);
    cpu_register_physical_memory(base, 0x00000fff, iomemtype);
    s->base = base;

    register_savevm( "nand_dev", instance_id++, NAND_DEV_STATE_SAVE_VERSION,
                      nand_dev_controller_state_save, nand_dev_controller_state_load, s);
}

static int arg_match(const char *a, const char *b, size_t b_len)
{
    while(*a && b_len--) {
        if(*a++ != *b++)
            return 0;
    }
    return b_len == 0;
}

void nand_add_dev(const char *arg)
{
    uint64_t dev_size = 0;
    const char *next_arg;
    const char *value;
    size_t arg_len, value_len;
    nand_dev *new_devs, *dev;
    char *devname = NULL;
    size_t devname_len = 0;
    char *initfilename = NULL;
    char *rwfilename = NULL;
    int initfd = -1;
    int rwfd = -1;
    int read_only = 0;
    int pad;
    ssize_t read_size;
    uint32_t page_size = 2048;
    uint32_t extra_size = 64;
    uint32_t erase_pages = 64;

    VERBOSE_PRINT(init, "%s: %s", __FUNCTION__, arg);

    while(arg) {
        next_arg = strchr(arg, ',');
        value = strchr(arg, '=');
        if(next_arg != NULL) {
            arg_len = next_arg - arg;
            next_arg++;
            if(value >= next_arg)
                value = NULL;
        }
        else
            arg_len = strlen(arg);
        if(value != NULL) {
            size_t new_arg_len = value - arg;
            value_len = arg_len - new_arg_len - 1;
            arg_len = new_arg_len;
            value++;
        }
        else
            value_len = 0;

        if(devname == NULL) {
            if(value != NULL)
                goto bad_arg_and_value;
            devname_len = arg_len;
            devname = malloc(arg_len+1);
            if(devname == NULL)
                goto out_of_memory;
            memcpy(devname, arg, arg_len);
            devname[arg_len] = 0;
        }
        else if(value == NULL) {
            if(arg_match("readonly", arg, arg_len)) {
                read_only = 1;
            }
            else {
                XLOG("bad arg: %.*s\n", arg_len, arg);
                exit(1);
            }
        }
        else {
            if(arg_match("size", arg, arg_len)) {
                char *ep;
                dev_size = strtoull(value, &ep, 0);
                if(ep != value + value_len)
                    goto bad_arg_and_value;
            }
            else if(arg_match("pagesize", arg, arg_len)) {
                char *ep;
                page_size = strtoul(value, &ep, 0);
                if(ep != value + value_len)
                    goto bad_arg_and_value;
            }
            else if(arg_match("extrasize", arg, arg_len)) {
                char *ep;
                extra_size = strtoul(value, &ep, 0);
                if(ep != value + value_len)
                    goto bad_arg_and_value;
            }
            else if(arg_match("erasepages", arg, arg_len)) {
                char *ep;
                erase_pages = strtoul(value, &ep, 0);
                if(ep != value + value_len)
                    goto bad_arg_and_value;
            }
            else if(arg_match("initfile", arg, arg_len)) {
                initfilename = malloc(value_len + 1);
                if(initfilename == NULL)
                    goto out_of_memory;
                memcpy(initfilename, value, value_len);
                initfilename[value_len] = '\0';
            }
            else if(arg_match("file", arg, arg_len)) {
                rwfilename = malloc(value_len + 1);
                if(rwfilename == NULL)
                    goto out_of_memory;
                memcpy(rwfilename, value, value_len);
                rwfilename[value_len] = '\0';
            }
            else {
                goto bad_arg_and_value;
            }
        }

        arg = next_arg;
    }

    if (rwfilename == NULL) {
        /* we create a temporary file to store everything */
        TempFile*    tmp = tempfile_create();

        if (tmp == NULL) {
            XLOG("could not create temp file for %.*s NAND disk image: %s\n",
                  devname_len, devname, strerror(errno));
            exit(1);
        }
        rwfilename = (char*) tempfile_path(tmp);
        if (VERBOSE_CHECK(init))
            dprint( "mapping '%.*s' NAND image to %s", devname_len, devname, rwfilename);
    }

    if(rwfilename) {
        rwfd = open(rwfilename, O_BINARY | (read_only ? O_RDONLY : O_RDWR));
        if(rwfd < 0) {
            XLOG("could not open file %s, %s\n", rwfilename, strerror(errno));
            exit(1);
        }
        /* this could be a writable temporary file. use atexit_close_fd to ensure
         * that it is properly cleaned up at exit on Win32
         */
        if (!read_only)
            atexit_close_fd(rwfd);
    }

    if(initfilename) {
        initfd = open(initfilename, O_BINARY | O_RDONLY);
        if(initfd < 0) {
            XLOG("could not open file %s, %s\n", initfilename, strerror(errno));
            exit(1);
        }
        if(dev_size == 0) {
            dev_size = do_lseek(initfd, 0, SEEK_END);
            do_lseek(initfd, 0, SEEK_SET);
        }
    }

    new_devs = realloc(nand_devs, sizeof(nand_devs[0]) * (nand_dev_count + 1));
    if(new_devs == NULL)
        goto out_of_memory;
    nand_devs = new_devs;
    dev = &new_devs[nand_dev_count];

    dev->page_size = page_size;
    dev->extra_size = extra_size;
    dev->erase_size = erase_pages * (page_size + extra_size);
    pad = dev_size % dev->erase_size;
    if (pad != 0) {
        dev_size += (dev->erase_size - pad);
        D("rounding devsize up to a full eraseunit, now %llx\n", dev_size);
    }
    dev->devname = devname;
    dev->devname_len = devname_len;
    dev->max_size = dev_size;
    dev->data = malloc(dev->erase_size);
    if(dev->data == NULL)
        goto out_of_memory;
    dev->flags = read_only ? NAND_DEV_FLAG_READ_ONLY : 0;
#ifdef TARGET_I386
    dev->flags |= NAND_DEV_FLAG_BATCH_CAP;
#endif

    if (initfd >= 0) {
        do {
            read_size = do_read(initfd, dev->data, dev->erase_size);
            if(read_size < 0) {
                XLOG("could not read file %s, %s\n", initfilename, strerror(errno));
                exit(1);
            }
            if(do_write(rwfd, dev->data, read_size) != read_size) {
                XLOG("could not write file %s, %s\n", rwfilename, strerror(errno));
                exit(1);
            }
        } while(read_size == dev->erase_size);
        close(initfd);
    }
    dev->fd = rwfd;

    nand_dev_count++;

    return;

out_of_memory:
    XLOG("out of memory\n");
    exit(1);

bad_arg_and_value:
    XLOG("bad arg: %.*s=%.*s\n", arg_len, arg, value_len, value);
    exit(1);
}

#ifdef CONFIG_NAND_LIMITS

static uint64_t
parse_nand_rw_limit( const char*  value )
{
    char*     end;
    uint64_t  val = strtoul( value, &end, 0 );

    if (end == value) {
        derror( "bad parameter value '%s': expecting unsigned integer", value );
        exit(1);
    }

    switch (end[0]) {
        case 'K':  val <<= 10; break;
        case 'M':  val <<= 20; break;
        case 'G':  val <<= 30; break;
        case 0: break;
        default:
            derror( "bad read/write limit suffix: use K, M or G" );
            exit(1);
    }
    return val;
}

void
parse_nand_limits(char*  limits)
{
    int      pid = -1, signal = -1;
    int64_t  reads = 0, writes = 0;
    char*    item = limits;

    /* parse over comma-separated items */
    while (item && *item) {
        char*  next = strchr(item, ',');
        char*  end;

        if (next == NULL) {
            next = item + strlen(item);
        } else {
            *next++ = 0;
        }

        if ( !memcmp(item, "pid=", 4) ) {
            pid = strtol(item+4, &end, 10);
            if (end == NULL || *end) {
                derror( "bad parameter, expecting pid=<number>, got '%s'",
                        item );
                exit(1);
            }
            if (pid <= 0) {
                derror( "bad parameter: process identifier must be > 0" );
                exit(1);
            }
        }
        else if ( !memcmp(item, "signal=", 7) ) {
            signal = strtol(item+7,&end, 10);
            if (end == NULL || *end) {
                derror( "bad parameter: expecting signal=<number>, got '%s'",
                        item );
                exit(1);
            }
            if (signal <= 0) {
                derror( "bad parameter: signal number must be > 0" );
                exit(1);
            }
        }
        else if ( !memcmp(item, "reads=", 6) ) {
            reads = parse_nand_rw_limit(item+6);
        }
        else if ( !memcmp(item, "writes=", 7) ) {
            writes = parse_nand_rw_limit(item+7);
        }
        else {
            derror( "bad parameter '%s' (see -help-nand-limits)", item );
            exit(1);
        }
        item = next;
    }
    if (pid < 0) {
        derror( "bad paramater: missing pid=<number>" );
        exit(1);
    }
    else if (signal < 0) {
        derror( "bad parameter: missing signal=<number>" );
        exit(1);
    }
    else if (reads == 0 && writes == 0) {
        dwarning( "no read or write limit specified. ignoring -nand-limits" );
    } else {
        nand_threshold*  t;

        t  = &android_nand_read_threshold;
        t->pid     = pid;
        t->signal  = signal;
        t->counter = 0;
        t->limit   = reads;

        t  = &android_nand_write_threshold;
        t->pid     = pid;
        t->signal  = signal;
        t->counter = 0;
        t->limit   = writes;
    }
}
#endif /* CONFIG_NAND_LIMITS */