summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorNicolas Roard <nicolasroard@google.com>2012-07-13 15:44:59 -0700
committerNicolas Roard <nicolasroard@google.com>2012-07-13 18:27:48 -0700
commit1cb75f6f5e7b8dbed4119b3a72fc8668bf24531f (patch)
treedf652c07ccb75923193df199d45e8594b2396fe6
parent630cf06c71a03000a805515d0fc36ea1f0c01e89 (diff)
downloadexternal_webkit-1cb75f6f5e7b8dbed4119b3a72fc8668bf24531f.zip
external_webkit-1cb75f6f5e7b8dbed4119b3a72fc8668bf24531f.tar.gz
external_webkit-1cb75f6f5e7b8dbed4119b3a72fc8668bf24531f.tar.bz2
New R-Tree implementation
Change-Id: If46f35856279ab2a356cb7f99671fcd15f4ddf37 (cherry picked from commit 19d56fe70a9ea33c3ce2ad4f0b547e35453aeafd)
-rw-r--r--Source/WebCore/Android.mk1
-rw-r--r--Source/WebCore/platform/graphics/android/context/PlatformGraphicsContextRecording.cpp46
-rw-r--r--Source/WebCore/platform/graphics/android/context/RTree.cpp479
-rw-r--r--Source/WebCore/platform/graphics/android/context/RTree.h1751
4 files changed, 651 insertions, 1626 deletions
diff --git a/Source/WebCore/Android.mk b/Source/WebCore/Android.mk
index f4f9bca..a1914c5 100644
--- a/Source/WebCore/Android.mk
+++ b/Source/WebCore/Android.mk
@@ -646,6 +646,7 @@ LOCAL_SRC_FILES := $(LOCAL_SRC_FILES) \
platform/graphics/android/context/PlatformGraphicsContext.cpp \
platform/graphics/android/context/PlatformGraphicsContextRecording.cpp \
platform/graphics/android/context/PlatformGraphicsContextSkia.cpp \
+ platform/graphics/android/context/RTree.cpp \
\
platform/graphics/android/fonts/FontAndroid.cpp \
platform/graphics/android/fonts/FontCacheAndroid.cpp \
diff --git a/Source/WebCore/platform/graphics/android/context/PlatformGraphicsContextRecording.cpp b/Source/WebCore/platform/graphics/android/context/PlatformGraphicsContextRecording.cpp
index 532a36d..001e1de 100644
--- a/Source/WebCore/platform/graphics/android/context/PlatformGraphicsContextRecording.cpp
+++ b/Source/WebCore/platform/graphics/android/context/PlatformGraphicsContextRecording.cpp
@@ -36,21 +36,6 @@ public:
static const bool safeToCompareToEmptyOrDeleted = false;
};
-class RecordingData {
-public:
- RecordingData(GraphicsOperation::Operation* ops, int orderBy)
- : m_orderBy(orderBy)
- , m_operation(ops)
- {}
- ~RecordingData() {
- delete m_operation;
- }
-
- unsigned int m_orderBy;
- GraphicsOperation::Operation* m_operation;
-};
-
-typedef RTree<RecordingData*, float, 2> RecordingTree;
typedef HashSet<PlatformGraphicsContext::State*, StateHash> StateHashSet;
class RecordingImpl {
@@ -61,7 +46,6 @@ public:
}
~RecordingImpl() {
- clearTree();
clearStates();
clearMatrixes();
}
@@ -81,19 +65,10 @@ public:
return m_matrixes.last();
}
- RecordingTree m_tree;
+ RTree::RTree m_tree;
int m_nodeCount;
private:
- void clearTree() {
- RecordingTree::Iterator it;
- for (m_tree.GetFirst(it); !m_tree.IsNull(it); m_tree.GetNext(it)) {
- RecordingData* removeElem = m_tree.GetAt(it);
- if (removeElem)
- delete removeElem;
- }
- m_tree.RemoveAll();
- }
void clearStates() {
StateHashSet::iterator end = m_states.end();
@@ -118,12 +93,6 @@ Recording::~Recording()
delete m_recording;
}
-static bool GatherSearchResults(RecordingData* data, void* context)
-{
- ((Vector<RecordingData*>*)context)->append(data);
- return true;
-}
-
static bool CompareRecordingDataOrder(const RecordingData* a, const RecordingData* b)
{
return a->m_orderBy < b->m_orderBy;
@@ -141,9 +110,10 @@ void Recording::draw(SkCanvas* canvas)
return;
}
Vector<RecordingData*> nodes;
- float searchMin[] = {clip.fLeft, clip.fTop};
- float searchMax[] = {clip.fRight, clip.fBottom};
- m_recording->m_tree.Search(searchMin, searchMax, GatherSearchResults, &nodes);
+
+ WebCore::IntRect iclip = enclosingIntRect(clip);
+ m_recording->m_tree.search(iclip, nodes);
+
size_t count = nodes.size();
ALOGV("Drawing %d nodes out of %d (state storage=%d)", count,
m_recording->m_nodeCount, sizeof(PlatformGraphicsContext::State) * m_recording->m_states.size());
@@ -624,9 +594,9 @@ void PlatformGraphicsContextRecording::appendDrawingOperation(
operation->m_state = mOperationState;
operation->m_matrix = mOperationMatrix;
RecordingData* data = new RecordingData(operation, mRecording->recording()->m_nodeCount++);
- float min[] = {bounds.fLeft, bounds.fTop};
- float max[] = {bounds.fRight, bounds.fBottom};
- mRecording->recording()->m_tree.Insert(min, max, data);
+
+ WebCore::IntRect ibounds = enclosingIntRect(bounds);
+ mRecording->recording()->m_tree.insert(ibounds, data);
}
void PlatformGraphicsContextRecording::appendStateOperation(GraphicsOperation::Operation* operation)
diff --git a/Source/WebCore/platform/graphics/android/context/RTree.cpp b/Source/WebCore/platform/graphics/android/context/RTree.cpp
new file mode 100644
index 0000000..d2bc839
--- /dev/null
+++ b/Source/WebCore/platform/graphics/android/context/RTree.cpp
@@ -0,0 +1,479 @@
+/*
+ * Copyright 2012, The Android Open Source Project
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#define LOG_TAG "RTree"
+#define LOG_NDEBUG 1
+
+#include "config.h"
+
+#include "RTree.h"
+#include "AndroidLog.h"
+
+namespace RTree {
+
+static unsigned gID = 0;
+
+class Element;
+
+//////////////////////////////////////////////////////////////////////
+// utility functions used by ElementList and Node
+
+static void recomputeBounds(int& minx, int& miny,
+ int& maxx, int& maxy,
+ unsigned& nbChildren,
+ Node**& children, int* area)
+{
+ // compute the bounds
+
+ if (nbChildren) {
+ minx = children[0]->minx;
+ miny = children[0]->miny;
+ maxx = children[0]->maxx;
+ maxy = children[0]->maxy;
+ }
+
+ for (unsigned int i = 1; i < nbChildren; i++)
+ {
+ minx = std::min(minx, children[i]->minx);
+ miny = std::min(miny, children[i]->miny);
+ maxx = std::max(maxx, children[i]->maxx);
+ maxy = std::max(maxy, children[i]->maxy);
+ }
+
+ if (area) {
+ int w = maxx - minx;
+ int h = maxy - miny;
+ *area = w * h;
+ }
+}
+
+int computeDeltaArea(Node* n, int& minx, int& miny,
+ int& maxx, int& maxy)
+{
+ int newMinX = std::min(minx, n->minx);
+ int newMinY = std::min(miny, n->miny);
+ int newMaxX = std::max(maxx, n->maxx);
+ int newMaxY = std::max(maxy, n->maxy);
+ int w = newMaxX - newMinX;
+ int h = newMaxY - newMinY;
+ return w * h;
+}
+
+//////////////////////////////////////////////////////////////////////
+// RTree
+
+RTree::RTree(int M)
+{
+ maxChildren = M;
+ listA = new ElementList(M);
+ listB = new ElementList(M);
+ root = new Node(this);
+}
+
+RTree::~RTree()
+{
+ delete listA;
+ delete listB;
+ delete root;
+}
+
+void RTree::insert(WebCore::IntRect& bounds, WebCore::RecordingData* payload)
+{
+ Element* e = new Element(this, bounds.x(), bounds.y(),
+ bounds.maxX(), bounds.maxY(), payload);
+ root->insert(e);
+}
+
+void RTree::search(WebCore::IntRect& clip, Vector<WebCore::RecordingData*>&list)
+{
+ root->search(clip.x(), clip.y(), clip.maxX(), clip.maxY(), list);
+}
+
+void RTree::display()
+{
+ root->drawTree();
+}
+
+//////////////////////////////////////////////////////////////////////
+// ElementList
+
+ElementList::ElementList(int size)
+ : nbChildren(0)
+ , minx(0)
+ , maxx(0)
+ , miny(0)
+ , maxy(0)
+ , area(0)
+{
+ children = new Node*[size];
+}
+
+ElementList::~ElementList()
+{
+ delete[] children;
+}
+
+void ElementList::add(Node* n, bool doTighten)
+{
+ children[nbChildren] = n;
+ nbChildren++;
+ if (doTighten)
+ tighten();
+}
+
+void ElementList::tighten()
+{
+ recomputeBounds(minx, miny, maxx, maxy,
+ nbChildren, children, &area);
+}
+
+int ElementList::delta(Node* n)
+{
+ return computeDeltaArea(n, minx, miny, maxx, maxy);
+}
+
+void ElementList::removeAll()
+{
+ nbChildren = 0;
+ minx = 0;
+ maxx = 0;
+ miny = 0;
+ maxy = 0;
+ area = 0;
+}
+
+void ElementList::display() {
+ for (unsigned int i = 0; i < nbChildren; i++)
+ children[i]->display(0);
+}
+
+//////////////////////////////////////////////////////////////////////
+// Node
+
+Node::Node(RTree* t)
+ : tree(t)
+ , parent(0)
+ , children(0)
+ , nbChildren(0)
+ , minx(0)
+ , miny(0)
+ , maxx(0)
+ , maxy(0)
+#ifdef DEBUG
+ , tid(gID++)
+#endif
+{
+#ifdef DEBUG
+ ALOGV("-> New Node %d", tid);
+#endif
+}
+
+Node::~Node()
+{
+ delete[] children;
+}
+
+void Node::setParent(Node* node)
+{
+ parent = node;
+}
+
+void Node::insert(Node* node)
+{
+ Node* N = findNode(node);
+ ALOGV("-> Insert Node %d (%d, %d) in node %d",
+ node->tid, node->minx, node->miny, N->tid);
+ N->add(node);
+}
+
+Node* Node::findNode(Node* node)
+{
+ if (nbChildren == 0)
+ return parent ? parent : this;
+
+ // pick the child whose bounds will be extended least
+
+ Node* pick = children[0];
+ int minIncrease = pick->delta(node);
+ for (unsigned int i = 1; i < nbChildren; i++) {
+ int increase = children[i]->delta(node);
+ if (increase < minIncrease) {
+ minIncrease = increase;
+ pick = children[i];
+ }
+ }
+
+ return pick->findNode(node);
+}
+
+void Node::tighten()
+{
+ recomputeBounds(minx, miny, maxx, maxy,
+ nbChildren, children, 0);
+}
+
+int Node::delta(Node* node)
+{
+ return computeDeltaArea(node, minx, miny, maxx, maxy);
+}
+
+void Node::add(Node* node)
+{
+ node->setParent(this);
+ if (!children)
+ children = new Node*[tree->maxChildren + 1];
+ children[nbChildren] = node;
+ nbChildren++;
+ Node* NN = 0;
+ if (nbChildren > tree->maxChildren)
+ NN = split();
+ adjustTree(this, NN);
+ tighten();
+}
+
+void Node::remove(Node* node)
+{
+ int nodeIndex = -1;
+ for (unsigned int i = 0; i < nbChildren; i++) {
+ if (children[i] == node) {
+ nodeIndex = i;
+ break;
+ }
+ }
+ if (nodeIndex == -1)
+ return;
+
+ // compact
+ for (unsigned int i = nodeIndex; i < nbChildren-1; i++)
+ children[i] = children[i+1];
+ nbChildren--;
+}
+
+void Node::removeAll()
+{
+ nbChildren = 0;
+}
+
+Node* Node::split()
+{
+ // First, let's get the seeds
+ // The idea is to get elements as distant as possible
+ // as we can, so that the resulting splitted lists
+ // will be more likely to not overlap.
+ Node* minElementX = children[0];
+ Node* maxElementX = children[0];
+ Node* minElementY = children[0];
+ Node* maxElementY = children[0];
+ for (unsigned int i = 1; i < nbChildren; i++) {
+ if (children[i]->minx < minElementX->minx)
+ minElementX = children[i];
+ if (children[i]->miny < minElementY->miny)
+ minElementY = children[i];
+ if (children[i]->maxx >= maxElementX->maxx)
+ maxElementX = children[i];
+ if (children[i]->maxy >= maxElementY->maxy)
+ maxElementY = children[i];
+ }
+
+ int dx = maxElementX->maxx - minElementX->minx;
+ int dy = maxElementY->maxy - minElementY->miny;
+
+ // assign the two seeds...
+ Node* elementA = minElementX;
+ Node* elementB = maxElementX;
+
+ if (dx < dy) {
+ elementA = minElementY;
+ elementB = maxElementY;
+ }
+
+ // If we get the same element, just get the first and
+ // last element inserted...
+ if (elementA == elementB) {
+ elementA = children[0];
+ elementB = children[nbChildren-1];
+ }
+ ALOGV("split Node %d, dx: %d dy: %d elem A is %d, elem B is %d",
+ tid, dx, dy, elementA->tid, elementB->tid);
+
+ // Let's use some temporary lists to do the split
+ ElementList* listA = tree->listA;
+ ElementList* listB = tree->listB;
+ listA->removeAll();
+ listB->removeAll();
+
+ listA->add(elementA);
+ listB->add(elementB);
+
+ remove(elementA);
+ remove(elementB);
+
+ // For any remaining elements, insert it into the list
+ // resulting in the smallest growth
+ for (unsigned int i = 0; i < nbChildren; i++) {
+ Node* node = children[i];
+ int dA = listA->delta(node);
+ int dB = listB->delta(node);
+
+ if (dA < dB && listA->nbChildren < tree->maxChildren)
+ listA->add(node);
+ else if (dB < dA && listB->nbChildren < tree->maxChildren)
+ listB->add(node);
+ else {
+ ElementList* smallestList =
+ listA->nbChildren > listB->nbChildren ? listB : listA;
+ smallestList->add(node);
+ }
+ }
+
+ // Use the list to rebuild the nodes
+ removeAll();
+ for (unsigned int i = 0; i < listA->nbChildren; i++)
+ add(listA->children[i]);
+
+ Node* NN = new Node(tree);
+ for (unsigned int i = 0; i < listB->nbChildren; i++)
+ NN->add(listB->children[i]);
+
+ return NN;
+}
+
+bool Node::isRoot()
+{
+ return tree->root == this;
+}
+
+void Node::adjustTree(Node* N, Node* NN)
+{
+ if (N->isRoot() && NN) {
+ // build new root
+ Node* root = new Node(tree);
+ ALOGV("-> node %d created as new root", root->tid);
+ root->add(N);
+ root->add(NN);
+ tree->root = root;
+ return;
+ }
+ if (N->isRoot())
+ return;
+
+ if (NN && N->parent)
+ N->parent->add(NN);
+}
+
+#ifdef DEBUG
+static int gMaxLevel = 0;
+static int gNbNodes = 0;
+static int gNbElements = 0;
+#endif
+
+void Node::drawTree(int level)
+{
+ if (level == 0) {
+ ALOGV("\n*** show tree ***\n");
+#ifdef DEBUG
+ gMaxLevel = 0;
+ gNbNodes = 0;
+ gNbElements = 0;
+#endif
+ }
+
+ display(level);
+ for (unsigned int i = 0; i < nbChildren; i++)
+ {
+ children[i]->drawTree(level+1);
+ }
+
+#ifdef DEBUG
+ if (gMaxLevel < level)
+ gMaxLevel = level;
+
+ if (!nbChildren)
+ gNbElements++;
+ else
+ gNbNodes++;
+
+ if (level == 0) {
+ ALOGV("********************\n");
+ ALOGV("Depth level %d, total bytes: %d, %d nodes, %d bytes (%d bytes/node), %d elements, %d bytes (%d bytes/node)",
+ gMaxLevel, gNbNodes * sizeof(Node) + gNbElements * sizeof(Element),
+ gNbNodes, gNbNodes * sizeof(Node), sizeof(Node),
+ gNbElements, gNbElements * sizeof(Element), sizeof(Element));
+ }
+#endif
+}
+
+void Node::display(int level)
+{
+ ALOGV("%*sNode %d - %d, %d, %d, %d (%d x %d)",
+ 2*level, "", tid, minx, miny, maxx, maxy, maxx - minx, maxy - miny);
+}
+
+bool Node::overlap(int pminx, int pminy, int pmaxx, int pmaxy)
+{
+ return ! (pminx > maxx
+ || pmaxx < minx
+ || pmaxy < miny
+ || pminy > maxy);
+}
+
+void Node::search(int minx, int miny, int maxx, int maxy, Vector<WebCore::RecordingData*>& list)
+{
+ if (isElement() && overlap(minx, miny, maxx, maxy))
+ list.append(((Element*)this)->payload);
+
+ for (unsigned int i = 0; i < nbChildren; i++) {
+ if (children[i]->overlap(minx, miny, maxx, maxy))
+ children[i]->search(minx, miny, maxx, maxy, list);
+ }
+}
+
+//////////////////////////////////////////////////////////////////////
+// Element
+
+Element::Element(RTree* tree, int pminx, int pminy, int pmaxx, int pmaxy, WebCore::RecordingData* p)
+ : Node(tree)
+ , payload(p)
+{
+ minx = pminx;
+ miny = pminy;
+ maxx = pmaxx;
+ maxy = pmaxy;
+ ALOGV("-> New element %d (%d, %d) - (%d x %d)",
+ tid, minx, miny, maxx-minx, maxy-miny);
+}
+
+Element::~Element()
+{
+ delete payload;
+}
+
+void Element::display(int level)
+{
+ ALOGV("%*selement %d (%d, %d, %d, %d) - (%d x %d)", 2*level, "",
+ tid, minx, miny, maxx, maxy, maxx-minx, maxy-miny);
+}
+
+}
diff --git a/Source/WebCore/platform/graphics/android/context/RTree.h b/Source/WebCore/platform/graphics/android/context/RTree.h
index cc4c856..75704cb 100644
--- a/Source/WebCore/platform/graphics/android/context/RTree.h
+++ b/Source/WebCore/platform/graphics/android/context/RTree.h
@@ -1,1588 +1,163 @@
-#ifndef RTREE_H
-#define RTREE_H
-
-// NOTE This file compiles under MSVC 6 SP5 and MSVC .Net 2003 it may not work on other compilers without modification.
-
-// NOTE These next few lines may be win32 specific, you may need to modify them to compile on other platform
-#include <stdio.h>
-#include <math.h>
-#include <assert.h>
-#include <stdlib.h>
-
-#ifndef Min
- #define Min(a,b) (((a)<(b))?(a):(b))
-#endif //Min
-#ifndef Max
- #define Max(a,b) (((a)>(b))?(a):(b))
-#endif //Max
-
-//
-// RTree.h
-//
-
-#define RTREE_TEMPLATE template<class DATATYPE, class ELEMTYPE, int NUMDIMS, class ELEMTYPEREAL, int TMAXNODES, int TMINNODES>
-#define RTREE_QUAL RTree<DATATYPE, ELEMTYPE, NUMDIMS, ELEMTYPEREAL, TMAXNODES, TMINNODES>
-
-#define RTREE_DONT_USE_MEMPOOLS // This version does not contain a fixed memory allocator, fill in lines with EXAMPLE to implement one.
-#define RTREE_USE_SPHERICAL_VOLUME // Better split classification, may be slower on some systems
-
-// Fwd decl
-class RTFileStream; // File I/O helper class, look below for implementation and notes.
-
-/// \class RTree
-/// Implementation of RTree, a multidimensional bounding rectangle tree.
-/// Example usage: For a 3-dimensional tree use RTree<Object*, float, 3> myTree;
-///
-/// This modified, templated C++ version by Greg Douglas at Auran (http://www.auran.com)
-///
-/// DATATYPE Referenced data, should be int, void*, obj* etc. no larger than sizeof<void*> and simple type
-/// ELEMTYPE Type of element such as int or float
-/// NUMDIMS Number of dimensions such as 2 or 3
-/// ELEMTYPEREAL Type of element that allows fractional and large values such as float or double, for use in volume calcs
-///
-/// NOTES: Inserting and removing data requires the knowledge of its constant Minimal Bounding Rectangle.
-/// This version uses new/delete for nodes, I recommend using a fixed size allocator for efficiency.
-/// Instead of using a callback function for returned results, I recommend and efficient pre-sized, grow-only memory
-/// array similar to MFC CArray or STL Vector for returning search query result.
-///
-template<class DATATYPE, class ELEMTYPE, int NUMDIMS,
- class ELEMTYPEREAL = ELEMTYPE, int TMAXNODES = 8, int TMINNODES = TMAXNODES / 2>
-class RTree
-{
-protected:
-
- struct Node; // Fwd decl. Used by other internal structs and iterator
-
-public:
-
- // These constant must be declared after Branch and before Node struct
- // Stuck up here for MSVC 6 compiler. NSVC .NET 2003 is much happier.
- enum
- {
- MAXNODES = TMAXNODES, ///< Max elements in node
- MINNODES = TMINNODES, ///< Min elements in node
- };
-
-
-public:
-
- RTree();
- virtual ~RTree();
-
- /// Insert entry
- /// \param a_min Min of bounding rect
- /// \param a_max Max of bounding rect
- /// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
- void Insert(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId);
-
- /// Remove entry
- /// \param a_min Min of bounding rect
- /// \param a_max Max of bounding rect
- /// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
- void Remove(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId);
-
- /// Find all within search rectangle
- /// \param a_min Min of search bounding rect
- /// \param a_max Max of search bounding rect
- /// \param a_searchResult Search result array. Caller should set grow size. Function will reset, not append to array.
- /// \param a_resultCallback Callback function to return result. Callback should return 'true' to continue searching
- /// \param a_context User context to pass as parameter to a_resultCallback
- /// \return Returns the number of entries found
- int Search(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], bool a_resultCallback(DATATYPE a_data, void* a_context), void* a_context);
-
- /// Remove all entries from tree
- void RemoveAll();
-
- /// Count the data elements in this container. This is slow as no internal counter is maintained.
- int Count();
-
- /// Load tree contents from file
- bool Load(const char* a_fileName);
- /// Load tree contents from stream
- bool Load(RTFileStream& a_stream);
-
-
- /// Save tree contents to file
- bool Save(const char* a_fileName);
- /// Save tree contents to stream
- bool Save(RTFileStream& a_stream);
-
- /// Iterator is not remove safe.
- class Iterator
- {
- private:
-
- enum { MAX_STACK = 32 }; // Max stack size. Allows almost n^32 where n is number of branches in node
-
- struct StackElement
- {
- Node* m_node;
- int m_branchIndex;
- };
-
- public:
-
- Iterator() { Init(); }
-
- ~Iterator() { }
-
- /// Is iterator invalid
- bool IsNull() { return (m_tos <= 0); }
-
- /// Is iterator pointing to valid data
- bool IsNotNull() { return (m_tos > 0); }
-
- /// Access the current data element. Caller must be sure iterator is not NULL first.
- DATATYPE& operator*()
- {
- ASSERT(IsNotNull());
- StackElement& curTos = m_stack[m_tos - 1];
- return curTos.m_node->m_branch[curTos.m_branchIndex].m_data;
- }
-
- /// Access the current data element. Caller must be sure iterator is not NULL first.
- const DATATYPE& operator*() const
- {
- ASSERT(IsNotNull());
- StackElement& curTos = m_stack[m_tos - 1];
- return curTos.m_node->m_branch[curTos.m_branchIndex].m_data;
- }
-
- /// Find the next data element
- bool operator++() { return FindNextData(); }
-
- /// Get the bounds for this node
- void GetBounds(ELEMTYPE a_min[NUMDIMS], ELEMTYPE a_max[NUMDIMS])
- {
- ASSERT(IsNotNull());
- StackElement& curTos = m_stack[m_tos - 1];
- Branch& curBranch = curTos.m_node->m_branch[curTos.m_branchIndex];
-
- for(int index = 0; index < NUMDIMS; ++index)
- {
- a_min[index] = curBranch.m_rect.m_min[index];
- a_max[index] = curBranch.m_rect.m_max[index];
- }
- }
-
- /// Reset iterator
- void Init() { m_tos = 0; }
-
- /// Find the next data element in the tree (For internal use only)
- bool FindNextData()
- {
- for(;;)
- {
- if(m_tos <= 0)
- {
- return false;
- }
- StackElement curTos = Pop(); // Copy stack top cause it may change as we use it
-
- if(curTos.m_node->IsLeaf())
- {
- // Keep walking through data while we can
- if(curTos.m_branchIndex+1 < curTos.m_node->m_count)
- {
- // There is more data, just point to the next one
- Push(curTos.m_node, curTos.m_branchIndex + 1);
- return true;
- }
- // No more data, so it will fall back to previous level
- }
- else
- {
- if(curTos.m_branchIndex+1 < curTos.m_node->m_count)
- {
- // Push sibling on for future tree walk
- // This is the 'fall back' node when we finish with the current level
- Push(curTos.m_node, curTos.m_branchIndex + 1);
- }
- // Since cur node is not a leaf, push first of next level to get deeper into the tree
- Node* nextLevelnode = curTos.m_node->m_branch[curTos.m_branchIndex].m_child;
- Push(nextLevelnode, 0);
-
- // If we pushed on a new leaf, exit as the data is ready at TOS
- if(nextLevelnode->IsLeaf())
- {
- return true;
- }
- }
- }
- }
-
- /// Push node and branch onto iteration stack (For internal use only)
- void Push(Node* a_node, int a_branchIndex)
- {
- m_stack[m_tos].m_node = a_node;
- m_stack[m_tos].m_branchIndex = a_branchIndex;
- ++m_tos;
- ASSERT(m_tos <= MAX_STACK);
- }
-
- /// Pop element off iteration stack (For internal use only)
- StackElement& Pop()
- {
- ASSERT(m_tos > 0);
- --m_tos;
- return m_stack[m_tos];
- }
-
- StackElement m_stack[MAX_STACK]; ///< Stack as we are doing iteration instead of recursion
- int m_tos; ///< Top Of Stack index
-
- };
-
- /// Get 'first' for iteration
- void GetFirst(Iterator& a_it)
- {
- a_it.Init();
- Node* first = m_root;
- while(first)
- {
- if(first->IsInternalNode() && first->m_count > 1)
- {
- a_it.Push(first, 1); // Descend sibling branch later
- }
- else if(first->IsLeaf())
- {
- if(first->m_count)
- {
- a_it.Push(first, 0);
- }
- break;
- }
- first = first->m_branch[0].m_child;
- }
- }
-
- /// Get Next for iteration
- void GetNext(Iterator& a_it) { ++a_it; }
-
- /// Is iterator NULL, or at end?
- bool IsNull(Iterator& a_it) { return a_it.IsNull(); }
-
- /// Get object at iterator position
- DATATYPE& GetAt(Iterator& a_it) { return *a_it; }
-
-protected:
-
- /// Minimal bounding rectangle (n-dimensional)
- struct Rect
- {
- ELEMTYPE m_min[NUMDIMS]; ///< Min dimensions of bounding box
- ELEMTYPE m_max[NUMDIMS]; ///< Max dimensions of bounding box
- };
-
- /// May be data or may be another subtree
- /// The parents level determines this.
- /// If the parents level is 0, then this is data
- struct Branch
- {
- Rect m_rect; ///< Bounds
- union
- {
- Node* m_child; ///< Child node
- DATATYPE m_data; ///< Data Id or Ptr
- };
- };
-
- /// Node for each branch level
- struct Node
- {
- bool IsInternalNode() { return (m_level > 0); } // Not a leaf, but a internal node
- bool IsLeaf() { return (m_level == 0); } // A leaf, contains data
-
- int m_count; ///< Count
- int m_level; ///< Leaf is zero, others positive
- Branch m_branch[MAXNODES]; ///< Branch
- };
-
- /// A link list of nodes for reinsertion after a delete operation
- struct ListNode
- {
- ListNode* m_next; ///< Next in list
- Node* m_node; ///< Node
- };
-
- /// Variables for finding a split partition
- struct PartitionVars
- {
- int m_partition[MAXNODES+1];
- int m_total;
- int m_minFill;
- int m_taken[MAXNODES+1];
- int m_count[2];
- Rect m_cover[2];
- ELEMTYPEREAL m_area[2];
-
- Branch m_branchBuf[MAXNODES+1];
- int m_branchCount;
- Rect m_coverSplit;
- ELEMTYPEREAL m_coverSplitArea;
- };
-
- Node* AllocNode();
- void FreeNode(Node* a_node);
- void InitNode(Node* a_node);
- void InitRect(Rect* a_rect);
- bool InsertRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node, Node** a_newNode, int a_level);
- bool InsertRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root, int a_level);
- Rect NodeCover(Node* a_node);
- bool AddBranch(Branch* a_branch, Node* a_node, Node** a_newNode);
- void DisconnectBranch(Node* a_node, int a_index);
- int PickBranch(Rect* a_rect, Node* a_node);
- Rect CombineRect(Rect* a_rectA, Rect* a_rectB);
- void SplitNode(Node* a_node, Branch* a_branch, Node** a_newNode);
- ELEMTYPEREAL RectSphericalVolume(Rect* a_rect);
- ELEMTYPEREAL RectVolume(Rect* a_rect);
- ELEMTYPEREAL CalcRectVolume(Rect* a_rect);
- void GetBranches(Node* a_node, Branch* a_branch, PartitionVars* a_parVars);
- void ChoosePartition(PartitionVars* a_parVars, int a_minFill);
- void LoadNodes(Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars);
- void InitParVars(PartitionVars* a_parVars, int a_maxRects, int a_minFill);
- void PickSeeds(PartitionVars* a_parVars);
- void Classify(int a_index, int a_group, PartitionVars* a_parVars);
- bool RemoveRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root);
- bool RemoveRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node, ListNode** a_listNode);
- ListNode* AllocListNode();
- void FreeListNode(ListNode* a_listNode);
- bool Overlap(Rect* a_rectA, Rect* a_rectB);
- void ReInsert(Node* a_node, ListNode** a_listNode);
- bool Search(Node* a_node, Rect* a_rect, int& a_foundCount, bool a_resultCallback(DATATYPE a_data, void* a_context), void* a_context);
- void RemoveAllRec(Node* a_node);
- void Reset();
- void CountRec(Node* a_node, int& a_count);
-
- bool SaveRec(Node* a_node, RTFileStream& a_stream);
- bool LoadRec(Node* a_node, RTFileStream& a_stream);
-
- Node* m_root; ///< Root of tree
- ELEMTYPEREAL m_unitSphereVolume; ///< Unit sphere constant for required number of dimensions
-};
-
-
-// Because there is not stream support, this is a quick and dirty file I/O helper.
-// Users will likely replace its usage with a Stream implementation from their favorite API.
-class RTFileStream
-{
- FILE* m_file;
-
-public:
-
-
- RTFileStream()
- {
- m_file = NULL;
- }
-
- ~RTFileStream()
- {
- Close();
- }
-
- bool OpenRead(const char* a_fileName)
- {
- m_file = fopen(a_fileName, "rb");
- if(!m_file)
- {
- return false;
- }
- return true;
- }
-
- bool OpenWrite(const char* a_fileName)
- {
- m_file = fopen(a_fileName, "wb");
- if(!m_file)
- {
- return false;
- }
- return true;
- }
-
- void Close()
- {
- if(m_file)
- {
- fclose(m_file);
- m_file = NULL;
- }
- }
-
- template< typename TYPE >
- size_t Write(const TYPE& a_value)
- {
- ASSERT(m_file);
- return fwrite((void*)&a_value, sizeof(a_value), 1, m_file);
- }
-
- template< typename TYPE >
- size_t WriteArray(const TYPE* a_array, int a_count)
- {
- ASSERT(m_file);
- return fwrite((void*)a_array, sizeof(TYPE) * a_count, 1, m_file);
- }
-
- template< typename TYPE >
- size_t Read(TYPE& a_value)
- {
- ASSERT(m_file);
- return fread((void*)&a_value, sizeof(a_value), 1, m_file);
- }
-
- template< typename TYPE >
- size_t ReadArray(TYPE* a_array, int a_count)
- {
- ASSERT(m_file);
- return fread((void*)a_array, sizeof(TYPE) * a_count, 1, m_file);
- }
-};
-
-
-RTREE_TEMPLATE
-RTREE_QUAL::RTree()
-{
- ASSERT(MAXNODES > MINNODES);
- ASSERT(MINNODES > 0);
-
-
- // We only support machine word size simple data type eg. integer index or object pointer.
- // Since we are storing as union with non data branch
- ASSERT(sizeof(DATATYPE) == sizeof(void*) || sizeof(DATATYPE) == sizeof(int));
-
- // Precomputed volumes of the unit spheres for the first few dimensions
- const float UNIT_SPHERE_VOLUMES[] = {
- 0.000000f, 2.000000f, 3.141593f, // Dimension 0,1,2
- 4.188790f, 4.934802f, 5.263789f, // Dimension 3,4,5
- 5.167713f, 4.724766f, 4.058712f, // Dimension 6,7,8
- 3.298509f, 2.550164f, 1.884104f, // Dimension 9,10,11
- 1.335263f, 0.910629f, 0.599265f, // Dimension 12,13,14
- 0.381443f, 0.235331f, 0.140981f, // Dimension 15,16,17
- 0.082146f, 0.046622f, 0.025807f, // Dimension 18,19,20
- };
-
- m_root = AllocNode();
- m_root->m_level = 0;
- m_unitSphereVolume = (ELEMTYPEREAL)UNIT_SPHERE_VOLUMES[NUMDIMS];
-}
-
-
-RTREE_TEMPLATE
-RTREE_QUAL::~RTree()
-{
- Reset(); // Free, or reset node memory
-}
-
-
-RTREE_TEMPLATE
-void RTREE_QUAL::Insert(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId)
-{
-#ifdef _DEBUG
- for(int index=0; index<NUMDIMS; ++index)
- {
- ASSERT(a_min[index] <= a_max[index]);
- }
-#endif //_DEBUG
-
- Rect rect;
-
- for(int axis=0; axis<NUMDIMS; ++axis)
- {
- rect.m_min[axis] = a_min[axis];
- rect.m_max[axis] = a_max[axis];
- }
-
- InsertRect(&rect, a_dataId, &m_root, 0);
-}
-
-
-RTREE_TEMPLATE
-void RTREE_QUAL::Remove(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId)
-{
-#ifdef _DEBUG
- for(int index=0; index<NUMDIMS; ++index)
- {
- ASSERT(a_min[index] <= a_max[index]);
- }
-#endif //_DEBUG
-
- Rect rect;
-
- for(int axis=0; axis<NUMDIMS; ++axis)
- {
- rect.m_min[axis] = a_min[axis];
- rect.m_max[axis] = a_max[axis];
- }
-
- RemoveRect(&rect, a_dataId, &m_root);
-}
-
-
-RTREE_TEMPLATE
-int RTREE_QUAL::Search(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], bool a_resultCallback(DATATYPE a_data, void* a_context), void* a_context)
-{
-#ifdef _DEBUG
- for(int index=0; index<NUMDIMS; ++index)
- {
- ASSERT(a_min[index] <= a_max[index]);
- }
-#endif //_DEBUG
-
- Rect rect;
-
- for(int axis=0; axis<NUMDIMS; ++axis)
- {
- rect.m_min[axis] = a_min[axis];
- rect.m_max[axis] = a_max[axis];
- }
-
- // NOTE: May want to return search result another way, perhaps returning the number of found elements here.
-
- int foundCount = 0;
- Search(m_root, &rect, foundCount, a_resultCallback, a_context);
-
- return foundCount;
-}
-
-
-RTREE_TEMPLATE
-int RTREE_QUAL::Count()
-{
- int count = 0;
- CountRec(m_root, count);
-
- return count;
-}
-
-
-
-RTREE_TEMPLATE
-void RTREE_QUAL::CountRec(Node* a_node, int& a_count)
-{
- if(a_node->IsInternalNode()) // not a leaf node
- {
- for(int index = 0; index < a_node->m_count; ++index)
- {
- CountRec(a_node->m_branch[index].m_child, a_count);
- }
- }
- else // A leaf node
- {
- a_count += a_node->m_count;
- }
-}
-
-
-RTREE_TEMPLATE
-bool RTREE_QUAL::Load(const char* a_fileName)
-{
- RemoveAll(); // Clear existing tree
-
- RTFileStream stream;
- if(!stream.OpenRead(a_fileName))
- {
- return false;
- }
-
- bool result = Load(stream);
-
- stream.Close();
-
- return result;
-};
-
-
-
-RTREE_TEMPLATE
-bool RTREE_QUAL::Load(RTFileStream& a_stream)
-{
- // Write some kind of header
- int _dataFileId = ('R'<<0)|('T'<<8)|('R'<<16)|('E'<<24);
- int _dataSize = sizeof(DATATYPE);
- int _dataNumDims = NUMDIMS;
- int _dataElemSize = sizeof(ELEMTYPE);
- int _dataElemRealSize = sizeof(ELEMTYPEREAL);
- int _dataMaxNodes = TMAXNODES;
- int _dataMinNodes = TMINNODES;
-
- int dataFileId = 0;
- int dataSize = 0;
- int dataNumDims = 0;
- int dataElemSize = 0;
- int dataElemRealSize = 0;
- int dataMaxNodes = 0;
- int dataMinNodes = 0;
-
- a_stream.Read(dataFileId);
- a_stream.Read(dataSize);
- a_stream.Read(dataNumDims);
- a_stream.Read(dataElemSize);
- a_stream.Read(dataElemRealSize);
- a_stream.Read(dataMaxNodes);
- a_stream.Read(dataMinNodes);
-
- bool result = false;
-
- // Test if header was valid and compatible
- if( (dataFileId == _dataFileId)
- && (dataSize == _dataSize)
- && (dataNumDims == _dataNumDims)
- && (dataElemSize == _dataElemSize)
- && (dataElemRealSize == _dataElemRealSize)
- && (dataMaxNodes == _dataMaxNodes)
- && (dataMinNodes == _dataMinNodes)
- )
- {
- // Recursively load tree
- result = LoadRec(m_root, a_stream);
- }
-
- return result;
-}
-
-
-RTREE_TEMPLATE
-bool RTREE_QUAL::LoadRec(Node* a_node, RTFileStream& a_stream)
-{
- a_stream.Read(a_node->m_level);
- a_stream.Read(a_node->m_count);
-
- if(a_node->IsInternalNode()) // not a leaf node
- {
- for(int index = 0; index < a_node->m_count; ++index)
- {
- Branch* curBranch = &a_node->m_branch[index];
-
- a_stream.ReadArray(curBranch->m_rect.m_min, NUMDIMS);
- a_stream.ReadArray(curBranch->m_rect.m_max, NUMDIMS);
-
- curBranch->m_child = AllocNode();
- LoadRec(curBranch->m_child, a_stream);
- }
- }
- else // A leaf node
- {
- for(int index = 0; index < a_node->m_count; ++index)
- {
- Branch* curBranch = &a_node->m_branch[index];
-
- a_stream.ReadArray(curBranch->m_rect.m_min, NUMDIMS);
- a_stream.ReadArray(curBranch->m_rect.m_max, NUMDIMS);
-
- a_stream.Read(curBranch->m_data);
- }
- }
-
- return true; // Should do more error checking on I/O operations
-}
-
-
-RTREE_TEMPLATE
-bool RTREE_QUAL::Save(const char* a_fileName)
-{
- RTFileStream stream;
- if(!stream.OpenWrite(a_fileName))
- {
- return false;
- }
-
- bool result = Save(stream);
-
- stream.Close();
-
- return result;
-}
-
-
-RTREE_TEMPLATE
-bool RTREE_QUAL::Save(RTFileStream& a_stream)
-{
- // Write some kind of header
- int dataFileId = ('R'<<0)|('T'<<8)|('R'<<16)|('E'<<24);
- int dataSize = sizeof(DATATYPE);
- int dataNumDims = NUMDIMS;
- int dataElemSize = sizeof(ELEMTYPE);
- int dataElemRealSize = sizeof(ELEMTYPEREAL);
- int dataMaxNodes = TMAXNODES;
- int dataMinNodes = TMINNODES;
-
- a_stream.Write(dataFileId);
- a_stream.Write(dataSize);
- a_stream.Write(dataNumDims);
- a_stream.Write(dataElemSize);
- a_stream.Write(dataElemRealSize);
- a_stream.Write(dataMaxNodes);
- a_stream.Write(dataMinNodes);
-
- // Recursively save tree
- bool result = SaveRec(m_root, a_stream);
-
- return result;
-}
-
-
-RTREE_TEMPLATE
-bool RTREE_QUAL::SaveRec(Node* a_node, RTFileStream& a_stream)
-{
- a_stream.Write(a_node->m_level);
- a_stream.Write(a_node->m_count);
-
- if(a_node->IsInternalNode()) // not a leaf node
- {
- for(int index = 0; index < a_node->m_count; ++index)
- {
- Branch* curBranch = &a_node->m_branch[index];
-
- a_stream.WriteArray(curBranch->m_rect.m_min, NUMDIMS);
- a_stream.WriteArray(curBranch->m_rect.m_max, NUMDIMS);
-
- SaveRec(curBranch->m_child, a_stream);
- }
- }
- else // A leaf node
- {
- for(int index = 0; index < a_node->m_count; ++index)
- {
- Branch* curBranch = &a_node->m_branch[index];
-
- a_stream.WriteArray(curBranch->m_rect.m_min, NUMDIMS);
- a_stream.WriteArray(curBranch->m_rect.m_max, NUMDIMS);
-
- a_stream.Write(curBranch->m_data);
- }
- }
-
- return true; // Should do more error checking on I/O operations
-}
-
-
-RTREE_TEMPLATE
-void RTREE_QUAL::RemoveAll()
-{
- // Delete all existing nodes
- Reset();
-
- m_root = AllocNode();
- m_root->m_level = 0;
-}
-
-
-RTREE_TEMPLATE
-void RTREE_QUAL::Reset()
-{
-#ifdef RTREE_DONT_USE_MEMPOOLS
- // Delete all existing nodes
- RemoveAllRec(m_root);
-#else // RTREE_DONT_USE_MEMPOOLS
- // Just reset memory pools. We are not using complex types
- // EXAMPLE
-#endif // RTREE_DONT_USE_MEMPOOLS
-}
-
-
-RTREE_TEMPLATE
-void RTREE_QUAL::RemoveAllRec(Node* a_node)
-{
- ASSERT(a_node);
- ASSERT(a_node->m_level >= 0);
-
- if(a_node->IsInternalNode()) // This is an internal node in the tree
- {
- for(int index=0; index < a_node->m_count; ++index)
- {
- RemoveAllRec(a_node->m_branch[index].m_child);
- }
- }
- FreeNode(a_node);
-}
-
-
-RTREE_TEMPLATE
-typename RTREE_QUAL::Node* RTREE_QUAL::AllocNode()
-{
- Node* newNode;
-#ifdef RTREE_DONT_USE_MEMPOOLS
- newNode = new Node;
-#else // RTREE_DONT_USE_MEMPOOLS
- // EXAMPLE
-#endif // RTREE_DONT_USE_MEMPOOLS
- InitNode(newNode);
- return newNode;
-}
-
-
-RTREE_TEMPLATE
-void RTREE_QUAL::FreeNode(Node* a_node)
-{
- ASSERT(a_node);
-
-#ifdef RTREE_DONT_USE_MEMPOOLS
- delete a_node;
-#else // RTREE_DONT_USE_MEMPOOLS
- // EXAMPLE
-#endif // RTREE_DONT_USE_MEMPOOLS
-}
-
-
-// Allocate space for a node in the list used in DeletRect to
-// store Nodes that are too empty.
-RTREE_TEMPLATE
-typename RTREE_QUAL::ListNode* RTREE_QUAL::AllocListNode()
-{
-#ifdef RTREE_DONT_USE_MEMPOOLS
- return new ListNode;
-#else // RTREE_DONT_USE_MEMPOOLS
- // EXAMPLE
-#endif // RTREE_DONT_USE_MEMPOOLS
-}
-
-
-RTREE_TEMPLATE
-void RTREE_QUAL::FreeListNode(ListNode* a_listNode)
-{
-#ifdef RTREE_DONT_USE_MEMPOOLS
- delete a_listNode;
-#else // RTREE_DONT_USE_MEMPOOLS
- // EXAMPLE
-#endif // RTREE_DONT_USE_MEMPOOLS
-}
-
-
-RTREE_TEMPLATE
-void RTREE_QUAL::InitNode(Node* a_node)
-{
- a_node->m_count = 0;
- a_node->m_level = -1;
-}
-
-
-RTREE_TEMPLATE
-void RTREE_QUAL::InitRect(Rect* a_rect)
-{
- for(int index = 0; index < NUMDIMS; ++index)
- {
- a_rect->m_min[index] = (ELEMTYPE)0;
- a_rect->m_max[index] = (ELEMTYPE)0;
- }
-}
-
-
-// Inserts a new data rectangle into the index structure.
-// Recursively descends tree, propagates splits back up.
-// Returns 0 if node was not split. Old node updated.
-// If node was split, returns 1 and sets the pointer pointed to by
-// new_node to point to the new node. Old node updated to become one of two.
-// The level argument specifies the number of steps up from the leaf
-// level to insert; e.g. a data rectangle goes in at level = 0.
-RTREE_TEMPLATE
-bool RTREE_QUAL::InsertRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node, Node** a_newNode, int a_level)
-{
- ASSERT(a_rect && a_node && a_newNode);
- ASSERT(a_level >= 0 && a_level <= a_node->m_level);
-
- int index;
- Branch branch;
- Node* otherNode;
-
- // Still above level for insertion, go down tree recursively
- if(a_node->m_level > a_level)
- {
- index = PickBranch(a_rect, a_node);
- if (!InsertRectRec(a_rect, a_id, a_node->m_branch[index].m_child, &otherNode, a_level))
- {
- // Child was not split
- a_node->m_branch[index].m_rect = CombineRect(a_rect, &(a_node->m_branch[index].m_rect));
- return false;
- }
- else // Child was split
- {
- a_node->m_branch[index].m_rect = NodeCover(a_node->m_branch[index].m_child);
- branch.m_child = otherNode;
- branch.m_rect = NodeCover(otherNode);
- return AddBranch(&branch, a_node, a_newNode);
- }
- }
- else if(a_node->m_level == a_level) // Have reached level for insertion. Add rect, split if necessary
- {
- branch.m_rect = *a_rect;
- branch.m_child = (Node*) a_id;
- // Child field of leaves contains id of data record
- return AddBranch(&branch, a_node, a_newNode);
- }
- else
- {
- // Should never occur
- ASSERT(0);
- return false;
- }
-}
-
-
-// Insert a data rectangle into an index structure.
-// InsertRect provides for splitting the root;
-// returns 1 if root was split, 0 if it was not.
-// The level argument specifies the number of steps up from the leaf
-// level to insert; e.g. a data rectangle goes in at level = 0.
-// InsertRect2 does the recursion.
-//
-RTREE_TEMPLATE
-bool RTREE_QUAL::InsertRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root, int a_level)
-{
- ASSERT(a_rect && a_root);
- ASSERT(a_level >= 0 && a_level <= (*a_root)->m_level);
-#ifdef _DEBUG
- for(int index=0; index < NUMDIMS; ++index)
- {
- ASSERT(a_rect->m_min[index] <= a_rect->m_max[index]);
- }
-#endif //_DEBUG
-
- Node* newRoot;
- Node* newNode;
- Branch branch;
-
- if(InsertRectRec(a_rect, a_id, *a_root, &newNode, a_level)) // Root split
- {
- newRoot = AllocNode(); // Grow tree taller and new root
- newRoot->m_level = (*a_root)->m_level + 1;
- branch.m_rect = NodeCover(*a_root);
- branch.m_child = *a_root;
- AddBranch(&branch, newRoot, NULL);
- branch.m_rect = NodeCover(newNode);
- branch.m_child = newNode;
- AddBranch(&branch, newRoot, NULL);
- *a_root = newRoot;
- return true;
- }
-
- return false;
-}
-
-
-// Find the smallest rectangle that includes all rectangles in branches of a node.
-RTREE_TEMPLATE
-typename RTREE_QUAL::Rect RTREE_QUAL::NodeCover(Node* a_node)
-{
- ASSERT(a_node);
-
- int firstTime = true;
- Rect rect;
- InitRect(&rect);
-
- for(int index = 0; index < a_node->m_count; ++index)
- {
- if(firstTime)
- {
- rect = a_node->m_branch[index].m_rect;
- firstTime = false;
- }
- else
- {
- rect = CombineRect(&rect, &(a_node->m_branch[index].m_rect));
- }
- }
-
- return rect;
-}
-
-
-// Add a branch to a node. Split the node if necessary.
-// Returns 0 if node not split. Old node updated.
-// Returns 1 if node split, sets *new_node to address of new node.
-// Old node updated, becomes one of two.
-RTREE_TEMPLATE
-bool RTREE_QUAL::AddBranch(Branch* a_branch, Node* a_node, Node** a_newNode)
-{
- ASSERT(a_branch);
- ASSERT(a_node);
-
- if(a_node->m_count < MAXNODES) // Split won't be necessary
- {
- a_node->m_branch[a_node->m_count] = *a_branch;
- ++a_node->m_count;
-
- return false;
- }
- else
- {
- ASSERT(a_newNode);
-
- SplitNode(a_node, a_branch, a_newNode);
- return true;
- }
-}
-
-
-// Disconnect a dependent node.
-// Caller must return (or stop using iteration index) after this as count has changed
-RTREE_TEMPLATE
-void RTREE_QUAL::DisconnectBranch(Node* a_node, int a_index)
-{
- ASSERT(a_node && (a_index >= 0) && (a_index < MAXNODES));
- ASSERT(a_node->m_count > 0);
-
- // Remove element by swapping with the last element to prevent gaps in array
- a_node->m_branch[a_index] = a_node->m_branch[a_node->m_count - 1];
-
- --a_node->m_count;
-}
-
-
-// Pick a branch. Pick the one that will need the smallest increase
-// in area to accomodate the new rectangle. This will result in the
-// least total area for the covering rectangles in the current node.
-// In case of a tie, pick the one which was smaller before, to get
-// the best resolution when searching.
-RTREE_TEMPLATE
-int RTREE_QUAL::PickBranch(Rect* a_rect, Node* a_node)
-{
- ASSERT(a_rect && a_node);
-
- bool firstTime = true;
- ELEMTYPEREAL increase;
- ELEMTYPEREAL bestIncr = (ELEMTYPEREAL)-1;
- ELEMTYPEREAL area;
- ELEMTYPEREAL bestArea;
- int best;
- Rect tempRect;
-
- for(int index=0; index < a_node->m_count; ++index)
- {
- Rect* curRect = &a_node->m_branch[index].m_rect;
- area = CalcRectVolume(curRect);
- tempRect = CombineRect(a_rect, curRect);
- increase = CalcRectVolume(&tempRect) - area;
- if((increase < bestIncr) || firstTime)
- {
- best = index;
- bestArea = area;
- bestIncr = increase;
- firstTime = false;
- }
- else if((increase == bestIncr) && (area < bestArea))
- {
- best = index;
- bestArea = area;
- bestIncr = increase;
- }
- }
- return best;
-}
-
-
-// Combine two rectangles into larger one containing both
-RTREE_TEMPLATE
-typename RTREE_QUAL::Rect RTREE_QUAL::CombineRect(Rect* a_rectA, Rect* a_rectB)
-{
- ASSERT(a_rectA && a_rectB);
-
- Rect newRect;
-
- for(int index = 0; index < NUMDIMS; ++index)
- {
- newRect.m_min[index] = Min(a_rectA->m_min[index], a_rectB->m_min[index]);
- newRect.m_max[index] = Max(a_rectA->m_max[index], a_rectB->m_max[index]);
- }
-
- return newRect;
-}
-
-
-
-// Split a node.
-// Divides the nodes branches and the extra one between two nodes.
-// Old node is one of the new ones, and one really new one is created.
-// Tries more than one method for choosing a partition, uses best result.
-RTREE_TEMPLATE
-void RTREE_QUAL::SplitNode(Node* a_node, Branch* a_branch, Node** a_newNode)
-{
- ASSERT(a_node);
- ASSERT(a_branch);
-
- // Could just use local here, but member or external is faster since it is reused
- PartitionVars localVars;
- PartitionVars* parVars = &localVars;
- int level;
-
- // Load all the branches into a buffer, initialize old node
- level = a_node->m_level;
- GetBranches(a_node, a_branch, parVars);
-
- // Find partition
- ChoosePartition(parVars, MINNODES);
-
- // Put branches from buffer into 2 nodes according to chosen partition
- *a_newNode = AllocNode();
- (*a_newNode)->m_level = a_node->m_level = level;
- LoadNodes(a_node, *a_newNode, parVars);
-
- ASSERT((a_node->m_count + (*a_newNode)->m_count) == parVars->m_total);
-}
-
-
-// Calculate the n-dimensional volume of a rectangle
-RTREE_TEMPLATE
-ELEMTYPEREAL RTREE_QUAL::RectVolume(Rect* a_rect)
-{
- ASSERT(a_rect);
-
- ELEMTYPEREAL volume = (ELEMTYPEREAL)1;
-
- for(int index=0; index<NUMDIMS; ++index)
- {
- volume *= a_rect->m_max[index] - a_rect->m_min[index];
- }
-
- ASSERT(volume >= (ELEMTYPEREAL)0);
-
- return volume;
-}
-
-
-// The exact volume of the bounding sphere for the given Rect
-RTREE_TEMPLATE
-ELEMTYPEREAL RTREE_QUAL::RectSphericalVolume(Rect* a_rect)
-{
- ASSERT(a_rect);
-
- ELEMTYPEREAL sumOfSquares = (ELEMTYPEREAL)0;
- ELEMTYPEREAL radius;
-
- for(int index=0; index < NUMDIMS; ++index)
- {
- ELEMTYPEREAL halfExtent = ((ELEMTYPEREAL)a_rect->m_max[index] - (ELEMTYPEREAL)a_rect->m_min[index]) * 0.5f;
- sumOfSquares += halfExtent * halfExtent;
- }
-
- radius = (ELEMTYPEREAL)sqrt(sumOfSquares);
-
- // Pow maybe slow, so test for common dims like 2,3 and just use x*x, x*x*x.
- if(NUMDIMS == 3)
- {
- return (radius * radius * radius * m_unitSphereVolume);
- }
- else if(NUMDIMS == 2)
- {
- return (radius * radius * m_unitSphereVolume);
- }
- else
- {
- return (ELEMTYPEREAL)(pow(radius, NUMDIMS) * m_unitSphereVolume);
- }
-}
-
-
-// Use one of the methods to calculate retangle volume
-RTREE_TEMPLATE
-ELEMTYPEREAL RTREE_QUAL::CalcRectVolume(Rect* a_rect)
-{
-#ifdef RTREE_USE_SPHERICAL_VOLUME
- return RectSphericalVolume(a_rect); // Slower but helps certain merge cases
-#else // RTREE_USE_SPHERICAL_VOLUME
- return RectVolume(a_rect); // Faster but can cause poor merges
-#endif // RTREE_USE_SPHERICAL_VOLUME
-}
-
-
-// Load branch buffer with branches from full node plus the extra branch.
-RTREE_TEMPLATE
-void RTREE_QUAL::GetBranches(Node* a_node, Branch* a_branch, PartitionVars* a_parVars)
-{
- ASSERT(a_node);
- ASSERT(a_branch);
-
- ASSERT(a_node->m_count == MAXNODES);
-
- // Load the branch buffer
- for(int index=0; index < MAXNODES; ++index)
- {
- a_parVars->m_branchBuf[index] = a_node->m_branch[index];
- }
- a_parVars->m_branchBuf[MAXNODES] = *a_branch;
- a_parVars->m_branchCount = MAXNODES + 1;
-
- // Calculate rect containing all in the set
- a_parVars->m_coverSplit = a_parVars->m_branchBuf[0].m_rect;
- for(int index=1; index < MAXNODES+1; ++index)
- {
- a_parVars->m_coverSplit = CombineRect(&a_parVars->m_coverSplit, &a_parVars->m_branchBuf[index].m_rect);
- }
- a_parVars->m_coverSplitArea = CalcRectVolume(&a_parVars->m_coverSplit);
-
- InitNode(a_node);
-}
-
-
-// Method #0 for choosing a partition:
-// As the seeds for the two groups, pick the two rects that would waste the
-// most area if covered by a single rectangle, i.e. evidently the worst pair
-// to have in the same group.
-// Of the remaining, one at a time is chosen to be put in one of the two groups.
-// The one chosen is the one with the greatest difference in area expansion
-// depending on which group - the rect most strongly attracted to one group
-// and repelled from the other.
-// If one group gets too full (more would force other group to violate min
-// fill requirement) then other group gets the rest.
-// These last are the ones that can go in either group most easily.
-RTREE_TEMPLATE
-void RTREE_QUAL::ChoosePartition(PartitionVars* a_parVars, int a_minFill)
-{
- ASSERT(a_parVars);
-
- ELEMTYPEREAL biggestDiff;
- int group, chosen, betterGroup;
-
- InitParVars(a_parVars, a_parVars->m_branchCount, a_minFill);
- PickSeeds(a_parVars);
-
- while (((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total)
- && (a_parVars->m_count[0] < (a_parVars->m_total - a_parVars->m_minFill))
- && (a_parVars->m_count[1] < (a_parVars->m_total - a_parVars->m_minFill)))
- {
- biggestDiff = (ELEMTYPEREAL) -1;
- for(int index=0; index<a_parVars->m_total; ++index)
- {
- if(!a_parVars->m_taken[index])
- {
- Rect* curRect = &a_parVars->m_branchBuf[index].m_rect;
- Rect rect0 = CombineRect(curRect, &a_parVars->m_cover[0]);
- Rect rect1 = CombineRect(curRect, &a_parVars->m_cover[1]);
- ELEMTYPEREAL growth0 = CalcRectVolume(&rect0) - a_parVars->m_area[0];
- ELEMTYPEREAL growth1 = CalcRectVolume(&rect1) - a_parVars->m_area[1];
- ELEMTYPEREAL diff = growth1 - growth0;
- if(diff >= 0)
- {
- group = 0;
- }
- else
- {
- group = 1;
- diff = -diff;
- }
-
- if(diff > biggestDiff)
- {
- biggestDiff = diff;
- chosen = index;
- betterGroup = group;
- }
- else if((diff == biggestDiff) && (a_parVars->m_count[group] < a_parVars->m_count[betterGroup]))
- {
- chosen = index;
- betterGroup = group;
- }
- }
- }
- Classify(chosen, betterGroup, a_parVars);
- }
-
- // If one group too full, put remaining rects in the other
- if((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total)
- {
- if(a_parVars->m_count[0] >= a_parVars->m_total - a_parVars->m_minFill)
- {
- group = 1;
- }
- else
- {
- group = 0;
- }
- for(int index=0; index<a_parVars->m_total; ++index)
- {
- if(!a_parVars->m_taken[index])
- {
- Classify(index, group, a_parVars);
- }
- }
- }
-
- ASSERT((a_parVars->m_count[0] + a_parVars->m_count[1]) == a_parVars->m_total);
- ASSERT((a_parVars->m_count[0] >= a_parVars->m_minFill) &&
- (a_parVars->m_count[1] >= a_parVars->m_minFill));
-}
-
-
-// Copy branches from the buffer into two nodes according to the partition.
-RTREE_TEMPLATE
-void RTREE_QUAL::LoadNodes(Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars)
-{
- ASSERT(a_nodeA);
- ASSERT(a_nodeB);
- ASSERT(a_parVars);
-
- for(int index=0; index < a_parVars->m_total; ++index)
- {
- ASSERT(a_parVars->m_partition[index] == 0 || a_parVars->m_partition[index] == 1);
-
- if(a_parVars->m_partition[index] == 0)
- {
- AddBranch(&a_parVars->m_branchBuf[index], a_nodeA, NULL);
- }
- else if(a_parVars->m_partition[index] == 1)
- {
- AddBranch(&a_parVars->m_branchBuf[index], a_nodeB, NULL);
- }
- }
-}
-
-
-// Initialize a PartitionVars structure.
-RTREE_TEMPLATE
-void RTREE_QUAL::InitParVars(PartitionVars* a_parVars, int a_maxRects, int a_minFill)
-{
- ASSERT(a_parVars);
-
- a_parVars->m_count[0] = a_parVars->m_count[1] = 0;
- a_parVars->m_area[0] = a_parVars->m_area[1] = (ELEMTYPEREAL)0;
- a_parVars->m_total = a_maxRects;
- a_parVars->m_minFill = a_minFill;
- for(int index=0; index < a_maxRects; ++index)
- {
- a_parVars->m_taken[index] = false;
- a_parVars->m_partition[index] = -1;
- }
-}
-
-
-RTREE_TEMPLATE
-void RTREE_QUAL::PickSeeds(PartitionVars* a_parVars)
-{
- int seed0, seed1;
- ELEMTYPEREAL worst, waste;
- ELEMTYPEREAL area[MAXNODES+1];
-
- for(int index=0; index<a_parVars->m_total; ++index)
- {
- area[index] = CalcRectVolume(&a_parVars->m_branchBuf[index].m_rect);
- }
-
- worst = -a_parVars->m_coverSplitArea - 1;
- for(int indexA=0; indexA < a_parVars->m_total-1; ++indexA)
- {
- for(int indexB = indexA+1; indexB < a_parVars->m_total; ++indexB)
- {
- Rect oneRect = CombineRect(&a_parVars->m_branchBuf[indexA].m_rect, &a_parVars->m_branchBuf[indexB].m_rect);
- waste = CalcRectVolume(&oneRect) - area[indexA] - area[indexB];
- if(waste > worst)
- {
- worst = waste;
- seed0 = indexA;
- seed1 = indexB;
- }
- }
- }
- Classify(seed0, 0, a_parVars);
- Classify(seed1, 1, a_parVars);
-}
-
-
-// Put a branch in one of the groups.
-RTREE_TEMPLATE
-void RTREE_QUAL::Classify(int a_index, int a_group, PartitionVars* a_parVars)
-{
- ASSERT(a_parVars);
- ASSERT(!a_parVars->m_taken[a_index]);
-
- a_parVars->m_partition[a_index] = a_group;
- a_parVars->m_taken[a_index] = true;
-
- if (a_parVars->m_count[a_group] == 0)
- {
- a_parVars->m_cover[a_group] = a_parVars->m_branchBuf[a_index].m_rect;
- }
- else
- {
- a_parVars->m_cover[a_group] = CombineRect(&a_parVars->m_branchBuf[a_index].m_rect, &a_parVars->m_cover[a_group]);
- }
- a_parVars->m_area[a_group] = CalcRectVolume(&a_parVars->m_cover[a_group]);
- ++a_parVars->m_count[a_group];
-}
-
-
-// Delete a data rectangle from an index structure.
-// Pass in a pointer to a Rect, the tid of the record, ptr to ptr to root node.
-// Returns 1 if record not found, 0 if success.
-// RemoveRect provides for eliminating the root.
-RTREE_TEMPLATE
-bool RTREE_QUAL::RemoveRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root)
-{
- ASSERT(a_rect && a_root);
- ASSERT(*a_root);
-
- Node* tempNode;
- ListNode* reInsertList = NULL;
-
- if(!RemoveRectRec(a_rect, a_id, *a_root, &reInsertList))
- {
- // Found and deleted a data item
- // Reinsert any branches from eliminated nodes
- while(reInsertList)
- {
- tempNode = reInsertList->m_node;
-
- for(int index = 0; index < tempNode->m_count; ++index)
- {
- InsertRect(&(tempNode->m_branch[index].m_rect),
- tempNode->m_branch[index].m_data,
- a_root,
- tempNode->m_level);
- }
-
- ListNode* remLNode = reInsertList;
- reInsertList = reInsertList->m_next;
-
- FreeNode(remLNode->m_node);
- FreeListNode(remLNode);
- }
-
- // Check for redundant root (not leaf, 1 child) and eliminate
- if((*a_root)->m_count == 1 && (*a_root)->IsInternalNode())
- {
- tempNode = (*a_root)->m_branch[0].m_child;
-
- ASSERT(tempNode);
- FreeNode(*a_root);
- *a_root = tempNode;
- }
- return false;
- }
- else
- {
- return true;
- }
-}
-
-
-// Delete a rectangle from non-root part of an index structure.
-// Called by RemoveRect. Descends tree recursively,
-// merges branches on the way back up.
-// Returns 1 if record not found, 0 if success.
-RTREE_TEMPLATE
-bool RTREE_QUAL::RemoveRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node, ListNode** a_listNode)
-{
- ASSERT(a_rect && a_node && a_listNode);
- ASSERT(a_node->m_level >= 0);
-
- if(a_node->IsInternalNode()) // not a leaf node
- {
- for(int index = 0; index < a_node->m_count; ++index)
- {
- if(Overlap(a_rect, &(a_node->m_branch[index].m_rect)))
- {
- if(!RemoveRectRec(a_rect, a_id, a_node->m_branch[index].m_child, a_listNode))
- {
- if(a_node->m_branch[index].m_child->m_count >= MINNODES)
- {
- // child removed, just resize parent rect
- a_node->m_branch[index].m_rect = NodeCover(a_node->m_branch[index].m_child);
- }
- else
- {
- // child removed, not enough entries in node, eliminate node
- ReInsert(a_node->m_branch[index].m_child, a_listNode);
- DisconnectBranch(a_node, index); // Must return after this call as count has changed
- }
- return false;
- }
- }
- }
- return true;
- }
- else // A leaf node
- {
- for(int index = 0; index < a_node->m_count; ++index)
- {
- if(a_node->m_branch[index].m_child == (Node*)a_id)
- {
- DisconnectBranch(a_node, index); // Must return after this call as count has changed
- return false;
- }
- }
- return true;
- }
-}
-
-
-// Decide whether two rectangles overlap.
-RTREE_TEMPLATE
-bool RTREE_QUAL::Overlap(Rect* a_rectA, Rect* a_rectB)
-{
- ASSERT(a_rectA && a_rectB);
-
- for(int index=0; index < NUMDIMS; ++index)
- {
- if (a_rectA->m_min[index] > a_rectB->m_max[index] ||
- a_rectB->m_min[index] > a_rectA->m_max[index])
- {
- return false;
- }
- }
- return true;
-}
-
-
-// Add a node to the reinsertion list. All its branches will later
-// be reinserted into the index structure.
-RTREE_TEMPLATE
-void RTREE_QUAL::ReInsert(Node* a_node, ListNode** a_listNode)
-{
- ListNode* newListNode;
-
- newListNode = AllocListNode();
- newListNode->m_node = a_node;
- newListNode->m_next = *a_listNode;
- *a_listNode = newListNode;
-}
-
-
-// Search in an index tree or subtree for all data retangles that overlap the argument rectangle.
-RTREE_TEMPLATE
-bool RTREE_QUAL::Search(Node* a_node, Rect* a_rect, int& a_foundCount, bool a_resultCallback(DATATYPE a_data, void* a_context), void* a_context)
-{
- ASSERT(a_node);
- ASSERT(a_node->m_level >= 0);
- ASSERT(a_rect);
-
- if(a_node->IsInternalNode()) // This is an internal node in the tree
- {
- for(int index=0; index < a_node->m_count; ++index)
- {
- if(Overlap(a_rect, &a_node->m_branch[index].m_rect))
- {
- if(!Search(a_node->m_branch[index].m_child, a_rect, a_foundCount, a_resultCallback, a_context))
- {
- return false; // Don't continue searching
- }
- }
- }
- }
- else // This is a leaf node
- {
- for(int index=0; index < a_node->m_count; ++index)
- {
- if(Overlap(a_rect, &a_node->m_branch[index].m_rect))
- {
- DATATYPE& id = a_node->m_branch[index].m_data;
-
- // NOTE: There are different ways to return results. Here's where to modify
- if(a_resultCallback)
- {
- ++a_foundCount;
- if(!a_resultCallback(id, a_context))
- {
- return false; // Don't continue searching
- }
- }
- }
- }
- }
-
- return true; // Continue searching
-}
-
-
-#undef RTREE_TEMPLATE
-#undef RTREE_QUAL
-
-#endif //RTREE_H
+/*
+ * Copyright 2012, The Android Open Source Project
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef RTree_h
+#define RTree_h
+
+#include <Vector.h>
+#include "IntRect.h"
+#include "GraphicsOperation.h"
+
+namespace WebCore {
+
+class RecordingData {
+public:
+ RecordingData(GraphicsOperation::Operation* ops, int orderBy)
+ : m_orderBy(orderBy)
+ , m_operation(ops)
+ {}
+ ~RecordingData() {
+ delete m_operation;
+ }
+
+ unsigned int m_orderBy;
+ GraphicsOperation::Operation* m_operation;
+};
+
+}
+
+namespace RTree {
+
+class ElementList;
+class Node;
+
+class RTree {
+public:
+ // M -- max number of children per node
+ RTree(int M = 10);
+ ~RTree();
+
+ void insert(WebCore::IntRect& bounds, WebCore::RecordingData* payload);
+ // Does an overlap search
+ void search(WebCore::IntRect& clip, Vector<WebCore::RecordingData*>& list);
+ void display();
+
+private:
+
+ Node* root;
+ unsigned maxChildren;
+ ElementList* listA;
+ ElementList* listB;
+
+ friend class Node;
+};
+
+class ElementList {
+public:
+
+ ElementList(int size);
+ ~ElementList();
+ void add(Node* n, bool doTighten = true);
+ void tighten();
+ int delta(Node* n);
+ void removeAll();
+ void display();
+
+ Node** children;
+ unsigned nbChildren;
+
+private:
+
+ int minx;
+ int maxx;
+ int miny;
+ int maxy;
+ int area;
+};
+
+class Node {
+public:
+ static Node* gRoot;
+
+ Node(RTree* t);
+ virtual ~Node();
+
+ void insert(Node* n);
+ void search(int minx, int miny, int maxx, int maxy, Vector<WebCore::RecordingData*>& list);
+ void drawTree(int level = 0);
+ virtual void display(int level = 0);
+
+private:
+
+ void setParent(Node* n);
+ Node* findNode(Node* n);
+ void add(Node* n);
+ void remove(Node* n);
+ void removeAll();
+ Node* split();
+ void adjustTree(Node* N, Node* NN);
+ void tighten();
+ int delta(Node* n);
+
+ bool overlap(int minx, int miny, int maxx, int maxy);
+
+ virtual bool isElement() { return false; }
+ bool isRoot();
+
+private:
+
+ RTree* tree;
+ Node* parent;
+
+ Node** children;
+ unsigned nbChildren;
+
+public:
+
+ int minx;
+ int miny;
+ int maxx;
+ int maxy;
+
+#ifdef DEBUG
+ unsigned tid;
+#endif
+};
+
+class Element : public Node {
+public:
+
+ Element(RTree* tree, int minx, int miny, int maxx, int maxy, WebCore::RecordingData* payload);
+ virtual ~Element();
+ virtual bool isElement() { return true; }
+
+ virtual void display(int level = 0);
+
+ WebCore::RecordingData* payload;
+};
+
+}
+
+#endif // RTree_h