diff options
author | Steve Block <steveblock@google.com> | 2011-05-06 11:45:16 +0100 |
---|---|---|
committer | Steve Block <steveblock@google.com> | 2011-05-12 13:44:10 +0100 |
commit | cad810f21b803229eb11403f9209855525a25d57 (patch) | |
tree | 29a6fd0279be608e0fe9ffe9841f722f0f4e4269 /Source/JavaScriptCore/assembler/X86Assembler.h | |
parent | 121b0cf4517156d0ac5111caf9830c51b69bae8f (diff) | |
download | external_webkit-cad810f21b803229eb11403f9209855525a25d57.zip external_webkit-cad810f21b803229eb11403f9209855525a25d57.tar.gz external_webkit-cad810f21b803229eb11403f9209855525a25d57.tar.bz2 |
Merge WebKit at r75315: Initial merge by git.
Change-Id: I570314b346ce101c935ed22a626b48c2af266b84
Diffstat (limited to 'Source/JavaScriptCore/assembler/X86Assembler.h')
-rw-r--r-- | Source/JavaScriptCore/assembler/X86Assembler.h | 2100 |
1 files changed, 2100 insertions, 0 deletions
diff --git a/Source/JavaScriptCore/assembler/X86Assembler.h b/Source/JavaScriptCore/assembler/X86Assembler.h new file mode 100644 index 0000000..b352ad4 --- /dev/null +++ b/Source/JavaScriptCore/assembler/X86Assembler.h @@ -0,0 +1,2100 @@ +/* + * Copyright (C) 2008 Apple Inc. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY + * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef X86Assembler_h +#define X86Assembler_h + +#if ENABLE(ASSEMBLER) && (CPU(X86) || CPU(X86_64)) + +#include "AssemblerBuffer.h" +#include <stdint.h> +#include <wtf/Assertions.h> +#include <wtf/Vector.h> + +namespace JSC { + +inline bool CAN_SIGN_EXTEND_8_32(int32_t value) { return value == (int32_t)(signed char)value; } + +namespace X86Registers { + typedef enum { + eax, + ecx, + edx, + ebx, + esp, + ebp, + esi, + edi, + +#if CPU(X86_64) + r8, + r9, + r10, + r11, + r12, + r13, + r14, + r15, +#endif + } RegisterID; + + typedef enum { + xmm0, + xmm1, + xmm2, + xmm3, + xmm4, + xmm5, + xmm6, + xmm7, + } XMMRegisterID; +} + +class X86Assembler { +public: + typedef X86Registers::RegisterID RegisterID; + typedef X86Registers::XMMRegisterID XMMRegisterID; + typedef XMMRegisterID FPRegisterID; + + typedef enum { + ConditionO, + ConditionNO, + ConditionB, + ConditionAE, + ConditionE, + ConditionNE, + ConditionBE, + ConditionA, + ConditionS, + ConditionNS, + ConditionP, + ConditionNP, + ConditionL, + ConditionGE, + ConditionLE, + ConditionG, + + ConditionC = ConditionB, + ConditionNC = ConditionAE, + } Condition; + +private: + typedef enum { + OP_ADD_EvGv = 0x01, + OP_ADD_GvEv = 0x03, + OP_OR_EvGv = 0x09, + OP_OR_GvEv = 0x0B, + OP_2BYTE_ESCAPE = 0x0F, + OP_AND_EvGv = 0x21, + OP_AND_GvEv = 0x23, + OP_SUB_EvGv = 0x29, + OP_SUB_GvEv = 0x2B, + PRE_PREDICT_BRANCH_NOT_TAKEN = 0x2E, + OP_XOR_EvGv = 0x31, + OP_XOR_GvEv = 0x33, + OP_CMP_EvGv = 0x39, + OP_CMP_GvEv = 0x3B, +#if CPU(X86_64) + PRE_REX = 0x40, +#endif + OP_PUSH_EAX = 0x50, + OP_POP_EAX = 0x58, +#if CPU(X86_64) + OP_MOVSXD_GvEv = 0x63, +#endif + PRE_OPERAND_SIZE = 0x66, + PRE_SSE_66 = 0x66, + OP_PUSH_Iz = 0x68, + OP_IMUL_GvEvIz = 0x69, + OP_GROUP1_EbIb = 0x80, + OP_GROUP1_EvIz = 0x81, + OP_GROUP1_EvIb = 0x83, + OP_TEST_EvGv = 0x85, + OP_XCHG_EvGv = 0x87, + OP_MOV_EvGv = 0x89, + OP_MOV_GvEv = 0x8B, + OP_LEA = 0x8D, + OP_GROUP1A_Ev = 0x8F, + OP_CDQ = 0x99, + OP_MOV_EAXOv = 0xA1, + OP_MOV_OvEAX = 0xA3, + OP_MOV_EAXIv = 0xB8, + OP_GROUP2_EvIb = 0xC1, + OP_RET = 0xC3, + OP_GROUP11_EvIz = 0xC7, + OP_INT3 = 0xCC, + OP_GROUP2_Ev1 = 0xD1, + OP_GROUP2_EvCL = 0xD3, + OP_CALL_rel32 = 0xE8, + OP_JMP_rel32 = 0xE9, + PRE_SSE_F2 = 0xF2, + OP_HLT = 0xF4, + OP_GROUP3_EbIb = 0xF6, + OP_GROUP3_Ev = 0xF7, + OP_GROUP3_EvIz = 0xF7, // OP_GROUP3_Ev has an immediate, when instruction is a test. + OP_GROUP5_Ev = 0xFF, + } OneByteOpcodeID; + + typedef enum { + OP2_MOVSD_VsdWsd = 0x10, + OP2_MOVSD_WsdVsd = 0x11, + OP2_CVTSI2SD_VsdEd = 0x2A, + OP2_CVTTSD2SI_GdWsd = 0x2C, + OP2_UCOMISD_VsdWsd = 0x2E, + OP2_ADDSD_VsdWsd = 0x58, + OP2_MULSD_VsdWsd = 0x59, + OP2_SUBSD_VsdWsd = 0x5C, + OP2_DIVSD_VsdWsd = 0x5E, + OP2_SQRTSD_VsdWsd = 0x51, + OP2_XORPD_VpdWpd = 0x57, + OP2_MOVD_VdEd = 0x6E, + OP2_MOVD_EdVd = 0x7E, + OP2_JCC_rel32 = 0x80, + OP_SETCC = 0x90, + OP2_IMUL_GvEv = 0xAF, + OP2_MOVZX_GvEb = 0xB6, + OP2_MOVZX_GvEw = 0xB7, + OP2_PEXTRW_GdUdIb = 0xC5, + } TwoByteOpcodeID; + + TwoByteOpcodeID jccRel32(Condition cond) + { + return (TwoByteOpcodeID)(OP2_JCC_rel32 + cond); + } + + TwoByteOpcodeID setccOpcode(Condition cond) + { + return (TwoByteOpcodeID)(OP_SETCC + cond); + } + + typedef enum { + GROUP1_OP_ADD = 0, + GROUP1_OP_OR = 1, + GROUP1_OP_ADC = 2, + GROUP1_OP_AND = 4, + GROUP1_OP_SUB = 5, + GROUP1_OP_XOR = 6, + GROUP1_OP_CMP = 7, + + GROUP1A_OP_POP = 0, + + GROUP2_OP_SHL = 4, + GROUP2_OP_SHR = 5, + GROUP2_OP_SAR = 7, + + GROUP3_OP_TEST = 0, + GROUP3_OP_NOT = 2, + GROUP3_OP_NEG = 3, + GROUP3_OP_IDIV = 7, + + GROUP5_OP_CALLN = 2, + GROUP5_OP_JMPN = 4, + GROUP5_OP_PUSH = 6, + + GROUP11_MOV = 0, + } GroupOpcodeID; + + class X86InstructionFormatter; +public: + + class JmpSrc { + friend class X86Assembler; + friend class X86InstructionFormatter; + public: + JmpSrc() + : m_offset(-1) + { + } + + private: + JmpSrc(int offset) + : m_offset(offset) + { + } + + int m_offset; + }; + + class JmpDst { + friend class X86Assembler; + friend class X86InstructionFormatter; + public: + JmpDst() + : m_offset(-1) + , m_used(false) + { + } + + bool isUsed() const { return m_used; } + bool isSet() const { return (m_offset != -1); } + void used() { m_used = true; } + private: + JmpDst(int offset) + : m_offset(offset) + , m_used(false) + { + ASSERT(m_offset == offset); + } + + int m_offset : 31; + bool m_used : 1; + }; + + X86Assembler() + { + } + + size_t size() const { return m_formatter.size(); } + + // Stack operations: + + void push_r(RegisterID reg) + { + m_formatter.oneByteOp(OP_PUSH_EAX, reg); + } + + void pop_r(RegisterID reg) + { + m_formatter.oneByteOp(OP_POP_EAX, reg); + } + + void push_i32(int imm) + { + m_formatter.oneByteOp(OP_PUSH_Iz); + m_formatter.immediate32(imm); + } + + void push_m(int offset, RegisterID base) + { + m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_PUSH, base, offset); + } + + void pop_m(int offset, RegisterID base) + { + m_formatter.oneByteOp(OP_GROUP1A_Ev, GROUP1A_OP_POP, base, offset); + } + + // Arithmetic operations: + +#if !CPU(X86_64) + void adcl_im(int imm, void* addr) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADC, addr); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADC, addr); + m_formatter.immediate32(imm); + } + } +#endif + + void addl_rr(RegisterID src, RegisterID dst) + { + m_formatter.oneByteOp(OP_ADD_EvGv, src, dst); + } + + void addl_mr(int offset, RegisterID base, RegisterID dst) + { + m_formatter.oneByteOp(OP_ADD_GvEv, dst, base, offset); + } + + void addl_rm(RegisterID src, int offset, RegisterID base) + { + m_formatter.oneByteOp(OP_ADD_EvGv, src, base, offset); + } + + void addl_ir(int imm, RegisterID dst) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, dst); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, dst); + m_formatter.immediate32(imm); + } + } + + void addl_im(int imm, int offset, RegisterID base) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, offset); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, offset); + m_formatter.immediate32(imm); + } + } + +#if CPU(X86_64) + void addq_rr(RegisterID src, RegisterID dst) + { + m_formatter.oneByteOp64(OP_ADD_EvGv, src, dst); + } + + void addq_ir(int imm, RegisterID dst) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_ADD, dst); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_ADD, dst); + m_formatter.immediate32(imm); + } + } + + void addq_im(int imm, int offset, RegisterID base) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, offset); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, offset); + m_formatter.immediate32(imm); + } + } +#else + void addl_im(int imm, void* addr) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, addr); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, addr); + m_formatter.immediate32(imm); + } + } +#endif + + void andl_rr(RegisterID src, RegisterID dst) + { + m_formatter.oneByteOp(OP_AND_EvGv, src, dst); + } + + void andl_mr(int offset, RegisterID base, RegisterID dst) + { + m_formatter.oneByteOp(OP_AND_GvEv, dst, base, offset); + } + + void andl_rm(RegisterID src, int offset, RegisterID base) + { + m_formatter.oneByteOp(OP_AND_EvGv, src, base, offset); + } + + void andl_ir(int imm, RegisterID dst) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, dst); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, dst); + m_formatter.immediate32(imm); + } + } + + void andl_im(int imm, int offset, RegisterID base) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, offset); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, offset); + m_formatter.immediate32(imm); + } + } + +#if CPU(X86_64) + void andq_rr(RegisterID src, RegisterID dst) + { + m_formatter.oneByteOp64(OP_AND_EvGv, src, dst); + } + + void andq_ir(int imm, RegisterID dst) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_AND, dst); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_AND, dst); + m_formatter.immediate32(imm); + } + } +#else + void andl_im(int imm, void* addr) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, addr); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, addr); + m_formatter.immediate32(imm); + } + } +#endif + + void negl_r(RegisterID dst) + { + m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NEG, dst); + } + + void negl_m(int offset, RegisterID base) + { + m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NEG, base, offset); + } + + void notl_r(RegisterID dst) + { + m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NOT, dst); + } + + void notl_m(int offset, RegisterID base) + { + m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NOT, base, offset); + } + + void orl_rr(RegisterID src, RegisterID dst) + { + m_formatter.oneByteOp(OP_OR_EvGv, src, dst); + } + + void orl_mr(int offset, RegisterID base, RegisterID dst) + { + m_formatter.oneByteOp(OP_OR_GvEv, dst, base, offset); + } + + void orl_rm(RegisterID src, int offset, RegisterID base) + { + m_formatter.oneByteOp(OP_OR_EvGv, src, base, offset); + } + + void orl_ir(int imm, RegisterID dst) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, dst); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, dst); + m_formatter.immediate32(imm); + } + } + + void orl_im(int imm, int offset, RegisterID base) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, offset); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, offset); + m_formatter.immediate32(imm); + } + } + +#if CPU(X86_64) + void orq_rr(RegisterID src, RegisterID dst) + { + m_formatter.oneByteOp64(OP_OR_EvGv, src, dst); + } + + void orq_ir(int imm, RegisterID dst) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_OR, dst); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_OR, dst); + m_formatter.immediate32(imm); + } + } +#else + void orl_im(int imm, void* addr) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, addr); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, addr); + m_formatter.immediate32(imm); + } + } +#endif + + void subl_rr(RegisterID src, RegisterID dst) + { + m_formatter.oneByteOp(OP_SUB_EvGv, src, dst); + } + + void subl_mr(int offset, RegisterID base, RegisterID dst) + { + m_formatter.oneByteOp(OP_SUB_GvEv, dst, base, offset); + } + + void subl_rm(RegisterID src, int offset, RegisterID base) + { + m_formatter.oneByteOp(OP_SUB_EvGv, src, base, offset); + } + + void subl_ir(int imm, RegisterID dst) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, dst); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, dst); + m_formatter.immediate32(imm); + } + } + + void subl_im(int imm, int offset, RegisterID base) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, offset); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, offset); + m_formatter.immediate32(imm); + } + } + +#if CPU(X86_64) + void subq_rr(RegisterID src, RegisterID dst) + { + m_formatter.oneByteOp64(OP_SUB_EvGv, src, dst); + } + + void subq_ir(int imm, RegisterID dst) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_SUB, dst); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_SUB, dst); + m_formatter.immediate32(imm); + } + } +#else + void subl_im(int imm, void* addr) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, addr); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, addr); + m_formatter.immediate32(imm); + } + } +#endif + + void xorl_rr(RegisterID src, RegisterID dst) + { + m_formatter.oneByteOp(OP_XOR_EvGv, src, dst); + } + + void xorl_mr(int offset, RegisterID base, RegisterID dst) + { + m_formatter.oneByteOp(OP_XOR_GvEv, dst, base, offset); + } + + void xorl_rm(RegisterID src, int offset, RegisterID base) + { + m_formatter.oneByteOp(OP_XOR_EvGv, src, base, offset); + } + + void xorl_im(int imm, int offset, RegisterID base) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, offset); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, offset); + m_formatter.immediate32(imm); + } + } + + void xorl_ir(int imm, RegisterID dst) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, dst); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, dst); + m_formatter.immediate32(imm); + } + } + +#if CPU(X86_64) + void xorq_rr(RegisterID src, RegisterID dst) + { + m_formatter.oneByteOp64(OP_XOR_EvGv, src, dst); + } + + void xorq_ir(int imm, RegisterID dst) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_XOR, dst); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_XOR, dst); + m_formatter.immediate32(imm); + } + } +#endif + + void sarl_i8r(int imm, RegisterID dst) + { + if (imm == 1) + m_formatter.oneByteOp(OP_GROUP2_Ev1, GROUP2_OP_SAR, dst); + else { + m_formatter.oneByteOp(OP_GROUP2_EvIb, GROUP2_OP_SAR, dst); + m_formatter.immediate8(imm); + } + } + + void sarl_CLr(RegisterID dst) + { + m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SAR, dst); + } + + void shrl_i8r(int imm, RegisterID dst) + { + if (imm == 1) + m_formatter.oneByteOp(OP_GROUP2_Ev1, GROUP2_OP_SHR, dst); + else { + m_formatter.oneByteOp(OP_GROUP2_EvIb, GROUP2_OP_SHR, dst); + m_formatter.immediate8(imm); + } + } + + void shrl_CLr(RegisterID dst) + { + m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SHR, dst); + } + + void shll_i8r(int imm, RegisterID dst) + { + if (imm == 1) + m_formatter.oneByteOp(OP_GROUP2_Ev1, GROUP2_OP_SHL, dst); + else { + m_formatter.oneByteOp(OP_GROUP2_EvIb, GROUP2_OP_SHL, dst); + m_formatter.immediate8(imm); + } + } + + void shll_CLr(RegisterID dst) + { + m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SHL, dst); + } + +#if CPU(X86_64) + void sarq_CLr(RegisterID dst) + { + m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_SAR, dst); + } + + void sarq_i8r(int imm, RegisterID dst) + { + if (imm == 1) + m_formatter.oneByteOp64(OP_GROUP2_Ev1, GROUP2_OP_SAR, dst); + else { + m_formatter.oneByteOp64(OP_GROUP2_EvIb, GROUP2_OP_SAR, dst); + m_formatter.immediate8(imm); + } + } +#endif + + void imull_rr(RegisterID src, RegisterID dst) + { + m_formatter.twoByteOp(OP2_IMUL_GvEv, dst, src); + } + + void imull_mr(int offset, RegisterID base, RegisterID dst) + { + m_formatter.twoByteOp(OP2_IMUL_GvEv, dst, base, offset); + } + + void imull_i32r(RegisterID src, int32_t value, RegisterID dst) + { + m_formatter.oneByteOp(OP_IMUL_GvEvIz, dst, src); + m_formatter.immediate32(value); + } + + void idivl_r(RegisterID dst) + { + m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_IDIV, dst); + } + + // Comparisons: + + void cmpl_rr(RegisterID src, RegisterID dst) + { + m_formatter.oneByteOp(OP_CMP_EvGv, src, dst); + } + + void cmpl_rm(RegisterID src, int offset, RegisterID base) + { + m_formatter.oneByteOp(OP_CMP_EvGv, src, base, offset); + } + + void cmpl_mr(int offset, RegisterID base, RegisterID src) + { + m_formatter.oneByteOp(OP_CMP_GvEv, src, base, offset); + } + + void cmpl_ir(int imm, RegisterID dst) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst); + m_formatter.immediate32(imm); + } + } + + void cmpl_ir_force32(int imm, RegisterID dst) + { + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst); + m_formatter.immediate32(imm); + } + + void cmpl_im(int imm, int offset, RegisterID base) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, offset); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset); + m_formatter.immediate32(imm); + } + } + + void cmpb_im(int imm, int offset, RegisterID base) + { + m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_CMP, base, offset); + m_formatter.immediate8(imm); + } + + void cmpb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) + { + m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_CMP, base, index, scale, offset); + m_formatter.immediate8(imm); + } + + void cmpl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset); + m_formatter.immediate32(imm); + } + } + + void cmpl_im_force32(int imm, int offset, RegisterID base) + { + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset); + m_formatter.immediate32(imm); + } + +#if CPU(X86_64) + void cmpq_rr(RegisterID src, RegisterID dst) + { + m_formatter.oneByteOp64(OP_CMP_EvGv, src, dst); + } + + void cmpq_rm(RegisterID src, int offset, RegisterID base) + { + m_formatter.oneByteOp64(OP_CMP_EvGv, src, base, offset); + } + + void cmpq_mr(int offset, RegisterID base, RegisterID src) + { + m_formatter.oneByteOp64(OP_CMP_GvEv, src, base, offset); + } + + void cmpq_ir(int imm, RegisterID dst) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst); + m_formatter.immediate32(imm); + } + } + + void cmpq_im(int imm, int offset, RegisterID base) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, offset); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset); + m_formatter.immediate32(imm); + } + } + + void cmpq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset); + m_formatter.immediate32(imm); + } + } +#else + void cmpl_rm(RegisterID reg, void* addr) + { + m_formatter.oneByteOp(OP_CMP_EvGv, reg, addr); + } + + void cmpl_im(int imm, void* addr) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, addr); + m_formatter.immediate8(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, addr); + m_formatter.immediate32(imm); + } + } +#endif + + void cmpw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) + { + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_CMP_EvGv, src, base, index, scale, offset); + } + + void cmpw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) + { + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset); + m_formatter.immediate8(imm); + } else { + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset); + m_formatter.immediate16(imm); + } + } + + void testl_rr(RegisterID src, RegisterID dst) + { + m_formatter.oneByteOp(OP_TEST_EvGv, src, dst); + } + + void testl_i32r(int imm, RegisterID dst) + { + m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, dst); + m_formatter.immediate32(imm); + } + + void testl_i32m(int imm, int offset, RegisterID base) + { + m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, offset); + m_formatter.immediate32(imm); + } + + void testb_im(int imm, int offset, RegisterID base) + { + m_formatter.oneByteOp(OP_GROUP3_EbIb, GROUP3_OP_TEST, base, offset); + m_formatter.immediate8(imm); + } + + void testb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) + { + m_formatter.oneByteOp(OP_GROUP3_EbIb, GROUP3_OP_TEST, base, index, scale, offset); + m_formatter.immediate8(imm); + } + + void testl_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale) + { + m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, index, scale, offset); + m_formatter.immediate32(imm); + } + +#if CPU(X86_64) + void testq_rr(RegisterID src, RegisterID dst) + { + m_formatter.oneByteOp64(OP_TEST_EvGv, src, dst); + } + + void testq_i32r(int imm, RegisterID dst) + { + m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, dst); + m_formatter.immediate32(imm); + } + + void testq_i32m(int imm, int offset, RegisterID base) + { + m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, offset); + m_formatter.immediate32(imm); + } + + void testq_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale) + { + m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, index, scale, offset); + m_formatter.immediate32(imm); + } +#endif + + void testw_rr(RegisterID src, RegisterID dst) + { + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_TEST_EvGv, src, dst); + } + + void testb_i8r(int imm, RegisterID dst) + { + m_formatter.oneByteOp8(OP_GROUP3_EbIb, GROUP3_OP_TEST, dst); + m_formatter.immediate8(imm); + } + + void setCC_r(Condition cond, RegisterID dst) + { + m_formatter.twoByteOp8(setccOpcode(cond), (GroupOpcodeID)0, dst); + } + + void sete_r(RegisterID dst) + { + m_formatter.twoByteOp8(setccOpcode(ConditionE), (GroupOpcodeID)0, dst); + } + + void setz_r(RegisterID dst) + { + sete_r(dst); + } + + void setne_r(RegisterID dst) + { + m_formatter.twoByteOp8(setccOpcode(ConditionNE), (GroupOpcodeID)0, dst); + } + + void setnz_r(RegisterID dst) + { + setne_r(dst); + } + + // Various move ops: + + void cdq() + { + m_formatter.oneByteOp(OP_CDQ); + } + + void xchgl_rr(RegisterID src, RegisterID dst) + { + m_formatter.oneByteOp(OP_XCHG_EvGv, src, dst); + } + +#if CPU(X86_64) + void xchgq_rr(RegisterID src, RegisterID dst) + { + m_formatter.oneByteOp64(OP_XCHG_EvGv, src, dst); + } +#endif + + void movl_rr(RegisterID src, RegisterID dst) + { + m_formatter.oneByteOp(OP_MOV_EvGv, src, dst); + } + + void movl_rm(RegisterID src, int offset, RegisterID base) + { + m_formatter.oneByteOp(OP_MOV_EvGv, src, base, offset); + } + + void movl_rm_disp32(RegisterID src, int offset, RegisterID base) + { + m_formatter.oneByteOp_disp32(OP_MOV_EvGv, src, base, offset); + } + + void movl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) + { + m_formatter.oneByteOp(OP_MOV_EvGv, src, base, index, scale, offset); + } + + void movl_mEAX(void* addr) + { + m_formatter.oneByteOp(OP_MOV_EAXOv); +#if CPU(X86_64) + m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); +#else + m_formatter.immediate32(reinterpret_cast<int>(addr)); +#endif + } + + void movl_mr(int offset, RegisterID base, RegisterID dst) + { + m_formatter.oneByteOp(OP_MOV_GvEv, dst, base, offset); + } + + void movl_mr_disp32(int offset, RegisterID base, RegisterID dst) + { + m_formatter.oneByteOp_disp32(OP_MOV_GvEv, dst, base, offset); + } + + void movl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) + { + m_formatter.oneByteOp(OP_MOV_GvEv, dst, base, index, scale, offset); + } + + void movl_i32r(int imm, RegisterID dst) + { + m_formatter.oneByteOp(OP_MOV_EAXIv, dst); + m_formatter.immediate32(imm); + } + + void movl_i32m(int imm, int offset, RegisterID base) + { + m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, offset); + m_formatter.immediate32(imm); + } + + void movl_EAXm(void* addr) + { + m_formatter.oneByteOp(OP_MOV_OvEAX); +#if CPU(X86_64) + m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); +#else + m_formatter.immediate32(reinterpret_cast<int>(addr)); +#endif + } + +#if CPU(X86_64) + void movq_rr(RegisterID src, RegisterID dst) + { + m_formatter.oneByteOp64(OP_MOV_EvGv, src, dst); + } + + void movq_rm(RegisterID src, int offset, RegisterID base) + { + m_formatter.oneByteOp64(OP_MOV_EvGv, src, base, offset); + } + + void movq_rm_disp32(RegisterID src, int offset, RegisterID base) + { + m_formatter.oneByteOp64_disp32(OP_MOV_EvGv, src, base, offset); + } + + void movq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) + { + m_formatter.oneByteOp64(OP_MOV_EvGv, src, base, index, scale, offset); + } + + void movq_mEAX(void* addr) + { + m_formatter.oneByteOp64(OP_MOV_EAXOv); + m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); + } + + void movq_EAXm(void* addr) + { + m_formatter.oneByteOp64(OP_MOV_OvEAX); + m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); + } + + void movq_mr(int offset, RegisterID base, RegisterID dst) + { + m_formatter.oneByteOp64(OP_MOV_GvEv, dst, base, offset); + } + + void movq_mr_disp32(int offset, RegisterID base, RegisterID dst) + { + m_formatter.oneByteOp64_disp32(OP_MOV_GvEv, dst, base, offset); + } + + void movq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) + { + m_formatter.oneByteOp64(OP_MOV_GvEv, dst, base, index, scale, offset); + } + + void movq_i32m(int imm, int offset, RegisterID base) + { + m_formatter.oneByteOp64(OP_GROUP11_EvIz, GROUP11_MOV, base, offset); + m_formatter.immediate32(imm); + } + + void movq_i64r(int64_t imm, RegisterID dst) + { + m_formatter.oneByteOp64(OP_MOV_EAXIv, dst); + m_formatter.immediate64(imm); + } + + void movsxd_rr(RegisterID src, RegisterID dst) + { + m_formatter.oneByteOp64(OP_MOVSXD_GvEv, dst, src); + } + + +#else + void movl_rm(RegisterID src, void* addr) + { + if (src == X86Registers::eax) + movl_EAXm(addr); + else + m_formatter.oneByteOp(OP_MOV_EvGv, src, addr); + } + + void movl_mr(void* addr, RegisterID dst) + { + if (dst == X86Registers::eax) + movl_mEAX(addr); + else + m_formatter.oneByteOp(OP_MOV_GvEv, dst, addr); + } + + void movl_i32m(int imm, void* addr) + { + m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, addr); + m_formatter.immediate32(imm); + } +#endif + + void movzwl_mr(int offset, RegisterID base, RegisterID dst) + { + m_formatter.twoByteOp(OP2_MOVZX_GvEw, dst, base, offset); + } + + void movzwl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) + { + m_formatter.twoByteOp(OP2_MOVZX_GvEw, dst, base, index, scale, offset); + } + + void movzbl_rr(RegisterID src, RegisterID dst) + { + // In 64-bit, this may cause an unnecessary REX to be planted (if the dst register + // is in the range ESP-EDI, and the src would not have required a REX). Unneeded + // REX prefixes are defined to be silently ignored by the processor. + m_formatter.twoByteOp8(OP2_MOVZX_GvEb, dst, src); + } + + void leal_mr(int offset, RegisterID base, RegisterID dst) + { + m_formatter.oneByteOp(OP_LEA, dst, base, offset); + } +#if CPU(X86_64) + void leaq_mr(int offset, RegisterID base, RegisterID dst) + { + m_formatter.oneByteOp64(OP_LEA, dst, base, offset); + } +#endif + + // Flow control: + + JmpSrc call() + { + m_formatter.oneByteOp(OP_CALL_rel32); + return m_formatter.immediateRel32(); + } + + JmpSrc call(RegisterID dst) + { + m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_CALLN, dst); + return JmpSrc(m_formatter.size()); + } + + void call_m(int offset, RegisterID base) + { + m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_CALLN, base, offset); + } + + JmpSrc jmp() + { + m_formatter.oneByteOp(OP_JMP_rel32); + return m_formatter.immediateRel32(); + } + + // Return a JmpSrc so we have a label to the jump, so we can use this + // To make a tail recursive call on x86-64. The MacroAssembler + // really shouldn't wrap this as a Jump, since it can't be linked. :-/ + JmpSrc jmp_r(RegisterID dst) + { + m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, dst); + return JmpSrc(m_formatter.size()); + } + + void jmp_m(int offset, RegisterID base) + { + m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, base, offset); + } + + JmpSrc jne() + { + m_formatter.twoByteOp(jccRel32(ConditionNE)); + return m_formatter.immediateRel32(); + } + + JmpSrc jnz() + { + return jne(); + } + + JmpSrc je() + { + m_formatter.twoByteOp(jccRel32(ConditionE)); + return m_formatter.immediateRel32(); + } + + JmpSrc jz() + { + return je(); + } + + JmpSrc jl() + { + m_formatter.twoByteOp(jccRel32(ConditionL)); + return m_formatter.immediateRel32(); + } + + JmpSrc jb() + { + m_formatter.twoByteOp(jccRel32(ConditionB)); + return m_formatter.immediateRel32(); + } + + JmpSrc jle() + { + m_formatter.twoByteOp(jccRel32(ConditionLE)); + return m_formatter.immediateRel32(); + } + + JmpSrc jbe() + { + m_formatter.twoByteOp(jccRel32(ConditionBE)); + return m_formatter.immediateRel32(); + } + + JmpSrc jge() + { + m_formatter.twoByteOp(jccRel32(ConditionGE)); + return m_formatter.immediateRel32(); + } + + JmpSrc jg() + { + m_formatter.twoByteOp(jccRel32(ConditionG)); + return m_formatter.immediateRel32(); + } + + JmpSrc ja() + { + m_formatter.twoByteOp(jccRel32(ConditionA)); + return m_formatter.immediateRel32(); + } + + JmpSrc jae() + { + m_formatter.twoByteOp(jccRel32(ConditionAE)); + return m_formatter.immediateRel32(); + } + + JmpSrc jo() + { + m_formatter.twoByteOp(jccRel32(ConditionO)); + return m_formatter.immediateRel32(); + } + + JmpSrc jp() + { + m_formatter.twoByteOp(jccRel32(ConditionP)); + return m_formatter.immediateRel32(); + } + + JmpSrc js() + { + m_formatter.twoByteOp(jccRel32(ConditionS)); + return m_formatter.immediateRel32(); + } + + JmpSrc jCC(Condition cond) + { + m_formatter.twoByteOp(jccRel32(cond)); + return m_formatter.immediateRel32(); + } + + // SSE operations: + + void addsd_rr(XMMRegisterID src, XMMRegisterID dst) + { + m_formatter.prefix(PRE_SSE_F2); + m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)src); + } + + void addsd_mr(int offset, RegisterID base, XMMRegisterID dst) + { + m_formatter.prefix(PRE_SSE_F2); + m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, base, offset); + } + + void cvtsi2sd_rr(RegisterID src, XMMRegisterID dst) + { + m_formatter.prefix(PRE_SSE_F2); + m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src); + } + + void cvtsi2sd_mr(int offset, RegisterID base, XMMRegisterID dst) + { + m_formatter.prefix(PRE_SSE_F2); + m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset); + } + +#if !CPU(X86_64) + void cvtsi2sd_mr(void* address, XMMRegisterID dst) + { + m_formatter.prefix(PRE_SSE_F2); + m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, address); + } +#endif + + void cvttsd2si_rr(XMMRegisterID src, RegisterID dst) + { + m_formatter.prefix(PRE_SSE_F2); + m_formatter.twoByteOp(OP2_CVTTSD2SI_GdWsd, dst, (RegisterID)src); + } + + void movd_rr(XMMRegisterID src, RegisterID dst) + { + m_formatter.prefix(PRE_SSE_66); + m_formatter.twoByteOp(OP2_MOVD_EdVd, (RegisterID)src, dst); + } + +#if CPU(X86_64) + void movq_rr(XMMRegisterID src, RegisterID dst) + { + m_formatter.prefix(PRE_SSE_66); + m_formatter.twoByteOp64(OP2_MOVD_EdVd, (RegisterID)src, dst); + } + + void movq_rr(RegisterID src, XMMRegisterID dst) + { + m_formatter.prefix(PRE_SSE_66); + m_formatter.twoByteOp64(OP2_MOVD_VdEd, (RegisterID)dst, src); + } +#endif + + void movsd_rm(XMMRegisterID src, int offset, RegisterID base) + { + m_formatter.prefix(PRE_SSE_F2); + m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, offset); + } + + void movsd_mr(int offset, RegisterID base, XMMRegisterID dst) + { + m_formatter.prefix(PRE_SSE_F2); + m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, base, offset); + } + +#if !CPU(X86_64) + void movsd_mr(const void* address, XMMRegisterID dst) + { + m_formatter.prefix(PRE_SSE_F2); + m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, address); + } +#endif + + void mulsd_rr(XMMRegisterID src, XMMRegisterID dst) + { + m_formatter.prefix(PRE_SSE_F2); + m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)src); + } + + void mulsd_mr(int offset, RegisterID base, XMMRegisterID dst) + { + m_formatter.prefix(PRE_SSE_F2); + m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, base, offset); + } + + void pextrw_irr(int whichWord, XMMRegisterID src, RegisterID dst) + { + m_formatter.prefix(PRE_SSE_66); + m_formatter.twoByteOp(OP2_PEXTRW_GdUdIb, (RegisterID)dst, (RegisterID)src); + m_formatter.immediate8(whichWord); + } + + void subsd_rr(XMMRegisterID src, XMMRegisterID dst) + { + m_formatter.prefix(PRE_SSE_F2); + m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)src); + } + + void subsd_mr(int offset, RegisterID base, XMMRegisterID dst) + { + m_formatter.prefix(PRE_SSE_F2); + m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, base, offset); + } + + void ucomisd_rr(XMMRegisterID src, XMMRegisterID dst) + { + m_formatter.prefix(PRE_SSE_66); + m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, (RegisterID)src); + } + + void ucomisd_mr(int offset, RegisterID base, XMMRegisterID dst) + { + m_formatter.prefix(PRE_SSE_66); + m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, base, offset); + } + + void divsd_rr(XMMRegisterID src, XMMRegisterID dst) + { + m_formatter.prefix(PRE_SSE_F2); + m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, (RegisterID)src); + } + + void divsd_mr(int offset, RegisterID base, XMMRegisterID dst) + { + m_formatter.prefix(PRE_SSE_F2); + m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, base, offset); + } + + void xorpd_rr(XMMRegisterID src, XMMRegisterID dst) + { + m_formatter.prefix(PRE_SSE_66); + m_formatter.twoByteOp(OP2_XORPD_VpdWpd, (RegisterID)dst, (RegisterID)src); + } + + void sqrtsd_rr(XMMRegisterID src, XMMRegisterID dst) + { + m_formatter.prefix(PRE_SSE_F2); + m_formatter.twoByteOp(OP2_SQRTSD_VsdWsd, (RegisterID)dst, (RegisterID)src); + } + + // Misc instructions: + + void int3() + { + m_formatter.oneByteOp(OP_INT3); + } + + void ret() + { + m_formatter.oneByteOp(OP_RET); + } + + void predictNotTaken() + { + m_formatter.prefix(PRE_PREDICT_BRANCH_NOT_TAKEN); + } + + // Assembler admin methods: + + JmpDst label() + { + return JmpDst(m_formatter.size()); + } + + static JmpDst labelFor(JmpSrc jump, intptr_t offset = 0) + { + return JmpDst(jump.m_offset + offset); + } + + JmpDst align(int alignment) + { + while (!m_formatter.isAligned(alignment)) + m_formatter.oneByteOp(OP_HLT); + + return label(); + } + + // Linking & patching: + // + // 'link' and 'patch' methods are for use on unprotected code - such as the code + // within the AssemblerBuffer, and code being patched by the patch buffer. Once + // code has been finalized it is (platform support permitting) within a non- + // writable region of memory; to modify the code in an execute-only execuable + // pool the 'repatch' and 'relink' methods should be used. + + void linkJump(JmpSrc from, JmpDst to) + { + ASSERT(from.m_offset != -1); + ASSERT(to.m_offset != -1); + + char* code = reinterpret_cast<char*>(m_formatter.data()); + setRel32(code + from.m_offset, code + to.m_offset); + } + + static void linkJump(void* code, JmpSrc from, void* to) + { + ASSERT(from.m_offset != -1); + + setRel32(reinterpret_cast<char*>(code) + from.m_offset, to); + } + + static void linkCall(void* code, JmpSrc from, void* to) + { + ASSERT(from.m_offset != -1); + + setRel32(reinterpret_cast<char*>(code) + from.m_offset, to); + } + + static void linkPointer(void* code, JmpDst where, void* value) + { + ASSERT(where.m_offset != -1); + + setPointer(reinterpret_cast<char*>(code) + where.m_offset, value); + } + + static void relinkJump(void* from, void* to) + { + setRel32(from, to); + } + + static void relinkCall(void* from, void* to) + { + setRel32(from, to); + } + + static void repatchInt32(void* where, int32_t value) + { + setInt32(where, value); + } + + static void repatchPointer(void* where, void* value) + { + setPointer(where, value); + } + + static void repatchLoadPtrToLEA(void* where) + { +#if CPU(X86_64) + // On x86-64 pointer memory accesses require a 64-bit operand, and as such a REX prefix. + // Skip over the prefix byte. + where = reinterpret_cast<char*>(where) + 1; +#endif + *reinterpret_cast<unsigned char*>(where) = static_cast<unsigned char>(OP_LEA); + } + + static unsigned getCallReturnOffset(JmpSrc call) + { + ASSERT(call.m_offset >= 0); + return call.m_offset; + } + + static void* getRelocatedAddress(void* code, JmpSrc jump) + { + ASSERT(jump.m_offset != -1); + + return reinterpret_cast<void*>(reinterpret_cast<ptrdiff_t>(code) + jump.m_offset); + } + + static void* getRelocatedAddress(void* code, JmpDst destination) + { + ASSERT(destination.m_offset != -1); + + return reinterpret_cast<void*>(reinterpret_cast<ptrdiff_t>(code) + destination.m_offset); + } + + static int getDifferenceBetweenLabels(JmpDst src, JmpDst dst) + { + return dst.m_offset - src.m_offset; + } + + static int getDifferenceBetweenLabels(JmpDst src, JmpSrc dst) + { + return dst.m_offset - src.m_offset; + } + + static int getDifferenceBetweenLabels(JmpSrc src, JmpDst dst) + { + return dst.m_offset - src.m_offset; + } + + void* executableCopy(ExecutablePool* allocator) + { + void* copy = m_formatter.executableCopy(allocator); + ASSERT(copy); + return copy; + } + +private: + + static void setPointer(void* where, void* value) + { + reinterpret_cast<void**>(where)[-1] = value; + } + + static void setInt32(void* where, int32_t value) + { + reinterpret_cast<int32_t*>(where)[-1] = value; + } + + static void setRel32(void* from, void* to) + { + intptr_t offset = reinterpret_cast<intptr_t>(to) - reinterpret_cast<intptr_t>(from); + ASSERT(offset == static_cast<int32_t>(offset)); + + setInt32(from, offset); + } + + class X86InstructionFormatter { + + static const int maxInstructionSize = 16; + + public: + + // Legacy prefix bytes: + // + // These are emmitted prior to the instruction. + + void prefix(OneByteOpcodeID pre) + { + m_buffer.putByte(pre); + } + + // Word-sized operands / no operand instruction formatters. + // + // In addition to the opcode, the following operand permutations are supported: + // * None - instruction takes no operands. + // * One register - the low three bits of the RegisterID are added into the opcode. + // * Two registers - encode a register form ModRm (for all ModRm formats, the reg field is passed first, and a GroupOpcodeID may be passed in its place). + // * Three argument ModRM - a register, and a register and an offset describing a memory operand. + // * Five argument ModRM - a register, and a base register, an index, scale, and offset describing a memory operand. + // + // For 32-bit x86 targets, the address operand may also be provided as a void*. + // On 64-bit targets REX prefixes will be planted as necessary, where high numbered registers are used. + // + // The twoByteOp methods plant two-byte Intel instructions sequences (first opcode byte 0x0F). + + void oneByteOp(OneByteOpcodeID opcode) + { + m_buffer.ensureSpace(maxInstructionSize); + m_buffer.putByteUnchecked(opcode); + } + + void oneByteOp(OneByteOpcodeID opcode, RegisterID reg) + { + m_buffer.ensureSpace(maxInstructionSize); + emitRexIfNeeded(0, 0, reg); + m_buffer.putByteUnchecked(opcode + (reg & 7)); + } + + void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID rm) + { + m_buffer.ensureSpace(maxInstructionSize); + emitRexIfNeeded(reg, 0, rm); + m_buffer.putByteUnchecked(opcode); + registerModRM(reg, rm); + } + + void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) + { + m_buffer.ensureSpace(maxInstructionSize); + emitRexIfNeeded(reg, 0, base); + m_buffer.putByteUnchecked(opcode); + memoryModRM(reg, base, offset); + } + + void oneByteOp_disp32(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) + { + m_buffer.ensureSpace(maxInstructionSize); + emitRexIfNeeded(reg, 0, base); + m_buffer.putByteUnchecked(opcode); + memoryModRM_disp32(reg, base, offset); + } + + void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) + { + m_buffer.ensureSpace(maxInstructionSize); + emitRexIfNeeded(reg, index, base); + m_buffer.putByteUnchecked(opcode); + memoryModRM(reg, base, index, scale, offset); + } + +#if !CPU(X86_64) + void oneByteOp(OneByteOpcodeID opcode, int reg, void* address) + { + m_buffer.ensureSpace(maxInstructionSize); + m_buffer.putByteUnchecked(opcode); + memoryModRM(reg, address); + } +#endif + + void twoByteOp(TwoByteOpcodeID opcode) + { + m_buffer.ensureSpace(maxInstructionSize); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + } + + void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID rm) + { + m_buffer.ensureSpace(maxInstructionSize); + emitRexIfNeeded(reg, 0, rm); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + registerModRM(reg, rm); + } + + void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID base, int offset) + { + m_buffer.ensureSpace(maxInstructionSize); + emitRexIfNeeded(reg, 0, base); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + memoryModRM(reg, base, offset); + } + + void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) + { + m_buffer.ensureSpace(maxInstructionSize); + emitRexIfNeeded(reg, index, base); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + memoryModRM(reg, base, index, scale, offset); + } + +#if !CPU(X86_64) + void twoByteOp(TwoByteOpcodeID opcode, int reg, const void* address) + { + m_buffer.ensureSpace(maxInstructionSize); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + memoryModRM(reg, address); + } +#endif + +#if CPU(X86_64) + // Quad-word-sized operands: + // + // Used to format 64-bit operantions, planting a REX.w prefix. + // When planting d64 or f64 instructions, not requiring a REX.w prefix, + // the normal (non-'64'-postfixed) formatters should be used. + + void oneByteOp64(OneByteOpcodeID opcode) + { + m_buffer.ensureSpace(maxInstructionSize); + emitRexW(0, 0, 0); + m_buffer.putByteUnchecked(opcode); + } + + void oneByteOp64(OneByteOpcodeID opcode, RegisterID reg) + { + m_buffer.ensureSpace(maxInstructionSize); + emitRexW(0, 0, reg); + m_buffer.putByteUnchecked(opcode + (reg & 7)); + } + + void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID rm) + { + m_buffer.ensureSpace(maxInstructionSize); + emitRexW(reg, 0, rm); + m_buffer.putByteUnchecked(opcode); + registerModRM(reg, rm); + } + + void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) + { + m_buffer.ensureSpace(maxInstructionSize); + emitRexW(reg, 0, base); + m_buffer.putByteUnchecked(opcode); + memoryModRM(reg, base, offset); + } + + void oneByteOp64_disp32(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) + { + m_buffer.ensureSpace(maxInstructionSize); + emitRexW(reg, 0, base); + m_buffer.putByteUnchecked(opcode); + memoryModRM_disp32(reg, base, offset); + } + + void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) + { + m_buffer.ensureSpace(maxInstructionSize); + emitRexW(reg, index, base); + m_buffer.putByteUnchecked(opcode); + memoryModRM(reg, base, index, scale, offset); + } + + void twoByteOp64(TwoByteOpcodeID opcode, int reg, RegisterID rm) + { + m_buffer.ensureSpace(maxInstructionSize); + emitRexW(reg, 0, rm); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + registerModRM(reg, rm); + } +#endif + + // Byte-operands: + // + // These methods format byte operations. Byte operations differ from the normal + // formatters in the circumstances under which they will decide to emit REX prefixes. + // These should be used where any register operand signifies a byte register. + // + // The disctinction is due to the handling of register numbers in the range 4..7 on + // x86-64. These register numbers may either represent the second byte of the first + // four registers (ah..bh) or the first byte of the second four registers (spl..dil). + // + // Since ah..bh cannot be used in all permutations of operands (specifically cannot + // be accessed where a REX prefix is present), these are likely best treated as + // deprecated. In order to ensure the correct registers spl..dil are selected a + // REX prefix will be emitted for any byte register operand in the range 4..15. + // + // These formatters may be used in instructions where a mix of operand sizes, in which + // case an unnecessary REX will be emitted, for example: + // movzbl %al, %edi + // In this case a REX will be planted since edi is 7 (and were this a byte operand + // a REX would be required to specify dil instead of bh). Unneeded REX prefixes will + // be silently ignored by the processor. + // + // Address operands should still be checked using regRequiresRex(), while byteRegRequiresRex() + // is provided to check byte register operands. + + void oneByteOp8(OneByteOpcodeID opcode, GroupOpcodeID groupOp, RegisterID rm) + { + m_buffer.ensureSpace(maxInstructionSize); + emitRexIf(byteRegRequiresRex(rm), 0, 0, rm); + m_buffer.putByteUnchecked(opcode); + registerModRM(groupOp, rm); + } + + void twoByteOp8(TwoByteOpcodeID opcode, RegisterID reg, RegisterID rm) + { + m_buffer.ensureSpace(maxInstructionSize); + emitRexIf(byteRegRequiresRex(reg)|byteRegRequiresRex(rm), reg, 0, rm); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + registerModRM(reg, rm); + } + + void twoByteOp8(TwoByteOpcodeID opcode, GroupOpcodeID groupOp, RegisterID rm) + { + m_buffer.ensureSpace(maxInstructionSize); + emitRexIf(byteRegRequiresRex(rm), 0, 0, rm); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + registerModRM(groupOp, rm); + } + + // Immediates: + // + // An immedaite should be appended where appropriate after an op has been emitted. + // The writes are unchecked since the opcode formatters above will have ensured space. + + void immediate8(int imm) + { + m_buffer.putByteUnchecked(imm); + } + + void immediate16(int imm) + { + m_buffer.putShortUnchecked(imm); + } + + void immediate32(int imm) + { + m_buffer.putIntUnchecked(imm); + } + + void immediate64(int64_t imm) + { + m_buffer.putInt64Unchecked(imm); + } + + JmpSrc immediateRel32() + { + m_buffer.putIntUnchecked(0); + return JmpSrc(m_buffer.size()); + } + + // Administrative methods: + + size_t size() const { return m_buffer.size(); } + bool isAligned(int alignment) const { return m_buffer.isAligned(alignment); } + void* data() const { return m_buffer.data(); } + void* executableCopy(ExecutablePool* allocator) { return m_buffer.executableCopy(allocator); } + + private: + + // Internals; ModRm and REX formatters. + + static const RegisterID noBase = X86Registers::ebp; + static const RegisterID hasSib = X86Registers::esp; + static const RegisterID noIndex = X86Registers::esp; +#if CPU(X86_64) + static const RegisterID noBase2 = X86Registers::r13; + static const RegisterID hasSib2 = X86Registers::r12; + + // Registers r8 & above require a REX prefixe. + inline bool regRequiresRex(int reg) + { + return (reg >= X86Registers::r8); + } + + // Byte operand register spl & above require a REX prefix (to prevent the 'H' registers be accessed). + inline bool byteRegRequiresRex(int reg) + { + return (reg >= X86Registers::esp); + } + + // Format a REX prefix byte. + inline void emitRex(bool w, int r, int x, int b) + { + m_buffer.putByteUnchecked(PRE_REX | ((int)w << 3) | ((r>>3)<<2) | ((x>>3)<<1) | (b>>3)); + } + + // Used to plant a REX byte with REX.w set (for 64-bit operations). + inline void emitRexW(int r, int x, int b) + { + emitRex(true, r, x, b); + } + + // Used for operations with byte operands - use byteRegRequiresRex() to check register operands, + // regRequiresRex() to check other registers (i.e. address base & index). + inline void emitRexIf(bool condition, int r, int x, int b) + { + if (condition) emitRex(false, r, x, b); + } + + // Used for word sized operations, will plant a REX prefix if necessary (if any register is r8 or above). + inline void emitRexIfNeeded(int r, int x, int b) + { + emitRexIf(regRequiresRex(r) || regRequiresRex(x) || regRequiresRex(b), r, x, b); + } +#else + // No REX prefix bytes on 32-bit x86. + inline bool regRequiresRex(int) { return false; } + inline bool byteRegRequiresRex(int) { return false; } + inline void emitRexIf(bool, int, int, int) {} + inline void emitRexIfNeeded(int, int, int) {} +#endif + + enum ModRmMode { + ModRmMemoryNoDisp, + ModRmMemoryDisp8, + ModRmMemoryDisp32, + ModRmRegister, + }; + + void putModRm(ModRmMode mode, int reg, RegisterID rm) + { + m_buffer.putByteUnchecked((mode << 6) | ((reg & 7) << 3) | (rm & 7)); + } + + void putModRmSib(ModRmMode mode, int reg, RegisterID base, RegisterID index, int scale) + { + ASSERT(mode != ModRmRegister); + + putModRm(mode, reg, hasSib); + m_buffer.putByteUnchecked((scale << 6) | ((index & 7) << 3) | (base & 7)); + } + + void registerModRM(int reg, RegisterID rm) + { + putModRm(ModRmRegister, reg, rm); + } + + void memoryModRM(int reg, RegisterID base, int offset) + { + // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there. +#if CPU(X86_64) + if ((base == hasSib) || (base == hasSib2)) { +#else + if (base == hasSib) { +#endif + if (!offset) // No need to check if the base is noBase, since we know it is hasSib! + putModRmSib(ModRmMemoryNoDisp, reg, base, noIndex, 0); + else if (CAN_SIGN_EXTEND_8_32(offset)) { + putModRmSib(ModRmMemoryDisp8, reg, base, noIndex, 0); + m_buffer.putByteUnchecked(offset); + } else { + putModRmSib(ModRmMemoryDisp32, reg, base, noIndex, 0); + m_buffer.putIntUnchecked(offset); + } + } else { +#if CPU(X86_64) + if (!offset && (base != noBase) && (base != noBase2)) +#else + if (!offset && (base != noBase)) +#endif + putModRm(ModRmMemoryNoDisp, reg, base); + else if (CAN_SIGN_EXTEND_8_32(offset)) { + putModRm(ModRmMemoryDisp8, reg, base); + m_buffer.putByteUnchecked(offset); + } else { + putModRm(ModRmMemoryDisp32, reg, base); + m_buffer.putIntUnchecked(offset); + } + } + } + + void memoryModRM_disp32(int reg, RegisterID base, int offset) + { + // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there. +#if CPU(X86_64) + if ((base == hasSib) || (base == hasSib2)) { +#else + if (base == hasSib) { +#endif + putModRmSib(ModRmMemoryDisp32, reg, base, noIndex, 0); + m_buffer.putIntUnchecked(offset); + } else { + putModRm(ModRmMemoryDisp32, reg, base); + m_buffer.putIntUnchecked(offset); + } + } + + void memoryModRM(int reg, RegisterID base, RegisterID index, int scale, int offset) + { + ASSERT(index != noIndex); + +#if CPU(X86_64) + if (!offset && (base != noBase) && (base != noBase2)) +#else + if (!offset && (base != noBase)) +#endif + putModRmSib(ModRmMemoryNoDisp, reg, base, index, scale); + else if (CAN_SIGN_EXTEND_8_32(offset)) { + putModRmSib(ModRmMemoryDisp8, reg, base, index, scale); + m_buffer.putByteUnchecked(offset); + } else { + putModRmSib(ModRmMemoryDisp32, reg, base, index, scale); + m_buffer.putIntUnchecked(offset); + } + } + +#if !CPU(X86_64) + void memoryModRM(int reg, const void* address) + { + // noBase + ModRmMemoryNoDisp means noBase + ModRmMemoryDisp32! + putModRm(ModRmMemoryNoDisp, reg, noBase); + m_buffer.putIntUnchecked(reinterpret_cast<int32_t>(address)); + } +#endif + + AssemblerBuffer m_buffer; + } m_formatter; +}; + +} // namespace JSC + +#endif // ENABLE(ASSEMBLER) && CPU(X86) + +#endif // X86Assembler_h |