diff options
author | Steve Block <steveblock@google.com> | 2011-05-06 11:45:16 +0100 |
---|---|---|
committer | Steve Block <steveblock@google.com> | 2011-05-12 13:44:10 +0100 |
commit | cad810f21b803229eb11403f9209855525a25d57 (patch) | |
tree | 29a6fd0279be608e0fe9ffe9841f722f0f4e4269 /Source/JavaScriptCore/wtf/dtoa.cpp | |
parent | 121b0cf4517156d0ac5111caf9830c51b69bae8f (diff) | |
download | external_webkit-cad810f21b803229eb11403f9209855525a25d57.zip external_webkit-cad810f21b803229eb11403f9209855525a25d57.tar.gz external_webkit-cad810f21b803229eb11403f9209855525a25d57.tar.bz2 |
Merge WebKit at r75315: Initial merge by git.
Change-Id: I570314b346ce101c935ed22a626b48c2af266b84
Diffstat (limited to 'Source/JavaScriptCore/wtf/dtoa.cpp')
-rw-r--r-- | Source/JavaScriptCore/wtf/dtoa.cpp | 1831 |
1 files changed, 1831 insertions, 0 deletions
diff --git a/Source/JavaScriptCore/wtf/dtoa.cpp b/Source/JavaScriptCore/wtf/dtoa.cpp new file mode 100644 index 0000000..c89c036 --- /dev/null +++ b/Source/JavaScriptCore/wtf/dtoa.cpp @@ -0,0 +1,1831 @@ +/**************************************************************** + * + * The author of this software is David M. Gay. + * + * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. + * Copyright (C) 2002, 2005, 2006, 2007, 2008, 2010 Apple Inc. All rights reserved. + * + * Permission to use, copy, modify, and distribute this software for any + * purpose without fee is hereby granted, provided that this entire notice + * is included in all copies of any software which is or includes a copy + * or modification of this software and in all copies of the supporting + * documentation for such software. + * + * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED + * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY + * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY + * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. + * + ***************************************************************/ + +/* Please send bug reports to David M. Gay (dmg at acm dot org, + * with " at " changed at "@" and " dot " changed to "."). */ + +/* On a machine with IEEE extended-precision registers, it is + * necessary to specify double-precision (53-bit) rounding precision + * before invoking strtod or dtoa. If the machine uses (the equivalent + * of) Intel 80x87 arithmetic, the call + * _control87(PC_53, MCW_PC); + * does this with many compilers. Whether this or another call is + * appropriate depends on the compiler; for this to work, it may be + * necessary to #include "float.h" or another system-dependent header + * file. + */ + +/* strtod for IEEE-arithmetic machines. + * + * This strtod returns a nearest machine number to the input decimal + * string (or sets errno to ERANGE). With IEEE arithmetic, ties are + * broken by the IEEE round-even rule. Otherwise ties are broken by + * biased rounding (add half and chop). + * + * Inspired loosely by William D. Clinger's paper "How to Read Floating + * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. + * + * Modifications: + * + * 1. We only require IEEE double-precision arithmetic (not IEEE double-extended). + * 2. We get by with floating-point arithmetic in a case that + * Clinger missed -- when we're computing d * 10^n + * for a small integer d and the integer n is not too + * much larger than 22 (the maximum integer k for which + * we can represent 10^k exactly), we may be able to + * compute (d*10^k) * 10^(e-k) with just one roundoff. + * 3. Rather than a bit-at-a-time adjustment of the binary + * result in the hard case, we use floating-point + * arithmetic to determine the adjustment to within + * one bit; only in really hard cases do we need to + * compute a second residual. + * 4. Because of 3., we don't need a large table of powers of 10 + * for ten-to-e (just some small tables, e.g. of 10^k + * for 0 <= k <= 22). + */ + +#include "config.h" +#include "dtoa.h" + +#if HAVE(ERRNO_H) +#include <errno.h> +#endif +#include <float.h> +#include <math.h> +#include <stdint.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <wtf/AlwaysInline.h> +#include <wtf/Assertions.h> +#include <wtf/DecimalNumber.h> +#include <wtf/FastMalloc.h> +#include <wtf/MathExtras.h> +#include <wtf/Threading.h> +#include <wtf/UnusedParam.h> +#include <wtf/Vector.h> + +#if COMPILER(MSVC) +#pragma warning(disable: 4244) +#pragma warning(disable: 4245) +#pragma warning(disable: 4554) +#endif + +namespace WTF { + +#if ENABLE(JSC_MULTIPLE_THREADS) +Mutex* s_dtoaP5Mutex; +#endif + +typedef union { + double d; + uint32_t L[2]; +} U; + +#if CPU(BIG_ENDIAN) || CPU(MIDDLE_ENDIAN) +#define word0(x) (x)->L[0] +#define word1(x) (x)->L[1] +#else +#define word0(x) (x)->L[1] +#define word1(x) (x)->L[0] +#endif +#define dval(x) (x)->d + +/* The following definition of Storeinc is appropriate for MIPS processors. + * An alternative that might be better on some machines is + * *p++ = high << 16 | low & 0xffff; + */ +static ALWAYS_INLINE uint32_t* storeInc(uint32_t* p, uint16_t high, uint16_t low) +{ + uint16_t* p16 = reinterpret_cast<uint16_t*>(p); +#if CPU(BIG_ENDIAN) + p16[0] = high; + p16[1] = low; +#else + p16[1] = high; + p16[0] = low; +#endif + return p + 1; +} + +#define Exp_shift 20 +#define Exp_shift1 20 +#define Exp_msk1 0x100000 +#define Exp_msk11 0x100000 +#define Exp_mask 0x7ff00000 +#define P 53 +#define Bias 1023 +#define Emin (-1022) +#define Exp_1 0x3ff00000 +#define Exp_11 0x3ff00000 +#define Ebits 11 +#define Frac_mask 0xfffff +#define Frac_mask1 0xfffff +#define Ten_pmax 22 +#define Bletch 0x10 +#define Bndry_mask 0xfffff +#define Bndry_mask1 0xfffff +#define LSB 1 +#define Sign_bit 0x80000000 +#define Log2P 1 +#define Tiny0 0 +#define Tiny1 1 +#define Quick_max 14 +#define Int_max 14 + +#define rounded_product(a, b) a *= b +#define rounded_quotient(a, b) a /= b + +#define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) +#define Big1 0xffffffff + +#if CPU(PPC64) || CPU(X86_64) +// FIXME: should we enable this on all 64-bit CPUs? +// 64-bit emulation provided by the compiler is likely to be slower than dtoa own code on 32-bit hardware. +#define USE_LONG_LONG +#endif + +struct BigInt { + BigInt() : sign(0) { } + int sign; + + void clear() + { + sign = 0; + m_words.clear(); + } + + size_t size() const + { + return m_words.size(); + } + + void resize(size_t s) + { + m_words.resize(s); + } + + uint32_t* words() + { + return m_words.data(); + } + + const uint32_t* words() const + { + return m_words.data(); + } + + void append(uint32_t w) + { + m_words.append(w); + } + + Vector<uint32_t, 16> m_words; +}; + +static void multadd(BigInt& b, int m, int a) /* multiply by m and add a */ +{ +#ifdef USE_LONG_LONG + unsigned long long carry; +#else + uint32_t carry; +#endif + + int wds = b.size(); + uint32_t* x = b.words(); + int i = 0; + carry = a; + do { +#ifdef USE_LONG_LONG + unsigned long long y = *x * (unsigned long long)m + carry; + carry = y >> 32; + *x++ = (uint32_t)y & 0xffffffffUL; +#else + uint32_t xi = *x; + uint32_t y = (xi & 0xffff) * m + carry; + uint32_t z = (xi >> 16) * m + (y >> 16); + carry = z >> 16; + *x++ = (z << 16) + (y & 0xffff); +#endif + } while (++i < wds); + + if (carry) + b.append((uint32_t)carry); +} + +static void s2b(BigInt& b, const char* s, int nd0, int nd, uint32_t y9) +{ + b.sign = 0; + b.resize(1); + b.words()[0] = y9; + + int i = 9; + if (9 < nd0) { + s += 9; + do { + multadd(b, 10, *s++ - '0'); + } while (++i < nd0); + s++; + } else + s += 10; + for (; i < nd; i++) + multadd(b, 10, *s++ - '0'); +} + +static int hi0bits(uint32_t x) +{ + int k = 0; + + if (!(x & 0xffff0000)) { + k = 16; + x <<= 16; + } + if (!(x & 0xff000000)) { + k += 8; + x <<= 8; + } + if (!(x & 0xf0000000)) { + k += 4; + x <<= 4; + } + if (!(x & 0xc0000000)) { + k += 2; + x <<= 2; + } + if (!(x & 0x80000000)) { + k++; + if (!(x & 0x40000000)) + return 32; + } + return k; +} + +static int lo0bits(uint32_t* y) +{ + int k; + uint32_t x = *y; + + if (x & 7) { + if (x & 1) + return 0; + if (x & 2) { + *y = x >> 1; + return 1; + } + *y = x >> 2; + return 2; + } + k = 0; + if (!(x & 0xffff)) { + k = 16; + x >>= 16; + } + if (!(x & 0xff)) { + k += 8; + x >>= 8; + } + if (!(x & 0xf)) { + k += 4; + x >>= 4; + } + if (!(x & 0x3)) { + k += 2; + x >>= 2; + } + if (!(x & 1)) { + k++; + x >>= 1; + if (!x) + return 32; + } + *y = x; + return k; +} + +static void i2b(BigInt& b, int i) +{ + b.sign = 0; + b.resize(1); + b.words()[0] = i; +} + +static void mult(BigInt& aRef, const BigInt& bRef) +{ + const BigInt* a = &aRef; + const BigInt* b = &bRef; + BigInt c; + int wa, wb, wc; + const uint32_t* x = 0; + const uint32_t* xa; + const uint32_t* xb; + const uint32_t* xae; + const uint32_t* xbe; + uint32_t* xc; + uint32_t* xc0; + uint32_t y; +#ifdef USE_LONG_LONG + unsigned long long carry, z; +#else + uint32_t carry, z; +#endif + + if (a->size() < b->size()) { + const BigInt* tmp = a; + a = b; + b = tmp; + } + + wa = a->size(); + wb = b->size(); + wc = wa + wb; + c.resize(wc); + + for (xc = c.words(), xa = xc + wc; xc < xa; xc++) + *xc = 0; + xa = a->words(); + xae = xa + wa; + xb = b->words(); + xbe = xb + wb; + xc0 = c.words(); +#ifdef USE_LONG_LONG + for (; xb < xbe; xc0++) { + if ((y = *xb++)) { + x = xa; + xc = xc0; + carry = 0; + do { + z = *x++ * (unsigned long long)y + *xc + carry; + carry = z >> 32; + *xc++ = (uint32_t)z & 0xffffffffUL; + } while (x < xae); + *xc = (uint32_t)carry; + } + } +#else + for (; xb < xbe; xb++, xc0++) { + if ((y = *xb & 0xffff)) { + x = xa; + xc = xc0; + carry = 0; + do { + z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; + carry = z >> 16; + uint32_t z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; + carry = z2 >> 16; + xc = storeInc(xc, z2, z); + } while (x < xae); + *xc = carry; + } + if ((y = *xb >> 16)) { + x = xa; + xc = xc0; + carry = 0; + uint32_t z2 = *xc; + do { + z = (*x & 0xffff) * y + (*xc >> 16) + carry; + carry = z >> 16; + xc = storeInc(xc, z, z2); + z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; + carry = z2 >> 16; + } while (x < xae); + *xc = z2; + } + } +#endif + for (xc0 = c.words(), xc = xc0 + wc; wc > 0 && !*--xc; --wc) { } + c.resize(wc); + aRef = c; +} + +struct P5Node : Noncopyable { + BigInt val; + P5Node* next; +}; + +static P5Node* p5s; +static int p5sCount; + +static ALWAYS_INLINE void pow5mult(BigInt& b, int k) +{ + static int p05[3] = { 5, 25, 125 }; + + if (int i = k & 3) + multadd(b, p05[i - 1], 0); + + if (!(k >>= 2)) + return; + +#if ENABLE(JSC_MULTIPLE_THREADS) + s_dtoaP5Mutex->lock(); +#endif + P5Node* p5 = p5s; + + if (!p5) { + /* first time */ + p5 = new P5Node; + i2b(p5->val, 625); + p5->next = 0; + p5s = p5; + p5sCount = 1; + } + + int p5sCountLocal = p5sCount; +#if ENABLE(JSC_MULTIPLE_THREADS) + s_dtoaP5Mutex->unlock(); +#endif + int p5sUsed = 0; + + for (;;) { + if (k & 1) + mult(b, p5->val); + + if (!(k >>= 1)) + break; + + if (++p5sUsed == p5sCountLocal) { +#if ENABLE(JSC_MULTIPLE_THREADS) + s_dtoaP5Mutex->lock(); +#endif + if (p5sUsed == p5sCount) { + ASSERT(!p5->next); + p5->next = new P5Node; + p5->next->next = 0; + p5->next->val = p5->val; + mult(p5->next->val, p5->next->val); + ++p5sCount; + } + + p5sCountLocal = p5sCount; +#if ENABLE(JSC_MULTIPLE_THREADS) + s_dtoaP5Mutex->unlock(); +#endif + } + p5 = p5->next; + } +} + +static ALWAYS_INLINE void lshift(BigInt& b, int k) +{ + int n = k >> 5; + + int origSize = b.size(); + int n1 = n + origSize + 1; + + if (k &= 0x1f) + b.resize(b.size() + n + 1); + else + b.resize(b.size() + n); + + const uint32_t* srcStart = b.words(); + uint32_t* dstStart = b.words(); + const uint32_t* src = srcStart + origSize - 1; + uint32_t* dst = dstStart + n1 - 1; + if (k) { + uint32_t hiSubword = 0; + int s = 32 - k; + for (; src >= srcStart; --src) { + *dst-- = hiSubword | *src >> s; + hiSubword = *src << k; + } + *dst = hiSubword; + ASSERT(dst == dstStart + n); + + b.resize(origSize + n + !!b.words()[n1 - 1]); + } + else { + do { + *--dst = *src--; + } while (src >= srcStart); + } + for (dst = dstStart + n; dst != dstStart; ) + *--dst = 0; + + ASSERT(b.size() <= 1 || b.words()[b.size() - 1]); +} + +static int cmp(const BigInt& a, const BigInt& b) +{ + const uint32_t *xa, *xa0, *xb, *xb0; + int i, j; + + i = a.size(); + j = b.size(); + ASSERT(i <= 1 || a.words()[i - 1]); + ASSERT(j <= 1 || b.words()[j - 1]); + if (i -= j) + return i; + xa0 = a.words(); + xa = xa0 + j; + xb0 = b.words(); + xb = xb0 + j; + for (;;) { + if (*--xa != *--xb) + return *xa < *xb ? -1 : 1; + if (xa <= xa0) + break; + } + return 0; +} + +static ALWAYS_INLINE void diff(BigInt& c, const BigInt& aRef, const BigInt& bRef) +{ + const BigInt* a = &aRef; + const BigInt* b = &bRef; + int i, wa, wb; + uint32_t* xc; + + i = cmp(*a, *b); + if (!i) { + c.sign = 0; + c.resize(1); + c.words()[0] = 0; + return; + } + if (i < 0) { + const BigInt* tmp = a; + a = b; + b = tmp; + i = 1; + } else + i = 0; + + wa = a->size(); + const uint32_t* xa = a->words(); + const uint32_t* xae = xa + wa; + wb = b->size(); + const uint32_t* xb = b->words(); + const uint32_t* xbe = xb + wb; + + c.resize(wa); + c.sign = i; + xc = c.words(); +#ifdef USE_LONG_LONG + unsigned long long borrow = 0; + do { + unsigned long long y = (unsigned long long)*xa++ - *xb++ - borrow; + borrow = y >> 32 & (uint32_t)1; + *xc++ = (uint32_t)y & 0xffffffffUL; + } while (xb < xbe); + while (xa < xae) { + unsigned long long y = *xa++ - borrow; + borrow = y >> 32 & (uint32_t)1; + *xc++ = (uint32_t)y & 0xffffffffUL; + } +#else + uint32_t borrow = 0; + do { + uint32_t y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + uint32_t z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; + borrow = (z & 0x10000) >> 16; + xc = storeInc(xc, z, y); + } while (xb < xbe); + while (xa < xae) { + uint32_t y = (*xa & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + uint32_t z = (*xa++ >> 16) - borrow; + borrow = (z & 0x10000) >> 16; + xc = storeInc(xc, z, y); + } +#endif + while (!*--xc) + wa--; + c.resize(wa); +} + +static double ulp(U *x) +{ + register int32_t L; + U u; + + L = (word0(x) & Exp_mask) - (P - 1) * Exp_msk1; + word0(&u) = L; + word1(&u) = 0; + return dval(&u); +} + +static double b2d(const BigInt& a, int* e) +{ + const uint32_t* xa; + const uint32_t* xa0; + uint32_t w; + uint32_t y; + uint32_t z; + int k; + U d; + +#define d0 word0(&d) +#define d1 word1(&d) + + xa0 = a.words(); + xa = xa0 + a.size(); + y = *--xa; + ASSERT(y); + k = hi0bits(y); + *e = 32 - k; + if (k < Ebits) { + d0 = Exp_1 | (y >> (Ebits - k)); + w = xa > xa0 ? *--xa : 0; + d1 = (y << (32 - Ebits + k)) | (w >> (Ebits - k)); + goto returnD; + } + z = xa > xa0 ? *--xa : 0; + if (k -= Ebits) { + d0 = Exp_1 | (y << k) | (z >> (32 - k)); + y = xa > xa0 ? *--xa : 0; + d1 = (z << k) | (y >> (32 - k)); + } else { + d0 = Exp_1 | y; + d1 = z; + } +returnD: +#undef d0 +#undef d1 + return dval(&d); +} + +static ALWAYS_INLINE void d2b(BigInt& b, U* d, int* e, int* bits) +{ + int de, k; + uint32_t* x; + uint32_t y, z; + int i; +#define d0 word0(d) +#define d1 word1(d) + + b.sign = 0; + b.resize(1); + x = b.words(); + + z = d0 & Frac_mask; + d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ + if ((de = (int)(d0 >> Exp_shift))) + z |= Exp_msk1; + if ((y = d1)) { + if ((k = lo0bits(&y))) { + x[0] = y | (z << (32 - k)); + z >>= k; + } else + x[0] = y; + if (z) { + b.resize(2); + x[1] = z; + } + + i = b.size(); + } else { + k = lo0bits(&z); + x[0] = z; + i = 1; + b.resize(1); + k += 32; + } + if (de) { + *e = de - Bias - (P - 1) + k; + *bits = P - k; + } else { + *e = de - Bias - (P - 1) + 1 + k; + *bits = (32 * i) - hi0bits(x[i - 1]); + } +} +#undef d0 +#undef d1 + +static double ratio(const BigInt& a, const BigInt& b) +{ + U da, db; + int k, ka, kb; + + dval(&da) = b2d(a, &ka); + dval(&db) = b2d(b, &kb); + k = ka - kb + 32 * (a.size() - b.size()); + if (k > 0) + word0(&da) += k * Exp_msk1; + else { + k = -k; + word0(&db) += k * Exp_msk1; + } + return dval(&da) / dval(&db); +} + +static const double tens[] = { + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, + 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, + 1e20, 1e21, 1e22 +}; + +static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; +static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, + 9007199254740992. * 9007199254740992.e-256 + /* = 2^106 * 1e-256 */ +}; + +/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ +/* flag unnecessarily. It leads to a song and dance at the end of strtod. */ +#define Scale_Bit 0x10 +#define n_bigtens 5 + +double strtod(const char* s00, char** se) +{ + int scale; + int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, + e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; + const char *s, *s0, *s1; + double aadj, aadj1; + U aadj2, adj, rv, rv0; + int32_t L; + uint32_t y, z; + BigInt bb, bb1, bd, bd0, bs, delta; + + sign = nz0 = nz = 0; + dval(&rv) = 0; + for (s = s00; ; s++) { + switch (*s) { + case '-': + sign = 1; + /* no break */ + case '+': + if (*++s) + goto break2; + /* no break */ + case 0: + goto ret0; + case '\t': + case '\n': + case '\v': + case '\f': + case '\r': + case ' ': + continue; + default: + goto break2; + } + } +break2: + if (*s == '0') { + nz0 = 1; + while (*++s == '0') { } + if (!*s) + goto ret; + } + s0 = s; + y = z = 0; + for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) + if (nd < 9) + y = (10 * y) + c - '0'; + else if (nd < 16) + z = (10 * z) + c - '0'; + nd0 = nd; + if (c == '.') { + c = *++s; + if (!nd) { + for (; c == '0'; c = *++s) + nz++; + if (c > '0' && c <= '9') { + s0 = s; + nf += nz; + nz = 0; + goto haveDig; + } + goto digDone; + } + for (; c >= '0' && c <= '9'; c = *++s) { +haveDig: + nz++; + if (c -= '0') { + nf += nz; + for (i = 1; i < nz; i++) + if (nd++ < 9) + y *= 10; + else if (nd <= DBL_DIG + 1) + z *= 10; + if (nd++ < 9) + y = (10 * y) + c; + else if (nd <= DBL_DIG + 1) + z = (10 * z) + c; + nz = 0; + } + } + } +digDone: + e = 0; + if (c == 'e' || c == 'E') { + if (!nd && !nz && !nz0) + goto ret0; + s00 = s; + esign = 0; + switch (c = *++s) { + case '-': + esign = 1; + case '+': + c = *++s; + } + if (c >= '0' && c <= '9') { + while (c == '0') + c = *++s; + if (c > '0' && c <= '9') { + L = c - '0'; + s1 = s; + while ((c = *++s) >= '0' && c <= '9') + L = (10 * L) + c - '0'; + if (s - s1 > 8 || L > 19999) + /* Avoid confusion from exponents + * so large that e might overflow. + */ + e = 19999; /* safe for 16 bit ints */ + else + e = (int)L; + if (esign) + e = -e; + } else + e = 0; + } else + s = s00; + } + if (!nd) { + if (!nz && !nz0) { +ret0: + s = s00; + sign = 0; + } + goto ret; + } + e1 = e -= nf; + + /* Now we have nd0 digits, starting at s0, followed by a + * decimal point, followed by nd-nd0 digits. The number we're + * after is the integer represented by those digits times + * 10**e */ + + if (!nd0) + nd0 = nd; + k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; + dval(&rv) = y; + if (k > 9) + dval(&rv) = tens[k - 9] * dval(&rv) + z; + if (nd <= DBL_DIG) { + if (!e) + goto ret; + if (e > 0) { + if (e <= Ten_pmax) { + /* rv = */ rounded_product(dval(&rv), tens[e]); + goto ret; + } + i = DBL_DIG - nd; + if (e <= Ten_pmax + i) { + /* A fancier test would sometimes let us do + * this for larger i values. + */ + e -= i; + dval(&rv) *= tens[i]; + /* rv = */ rounded_product(dval(&rv), tens[e]); + goto ret; + } + } else if (e >= -Ten_pmax) { + /* rv = */ rounded_quotient(dval(&rv), tens[-e]); + goto ret; + } + } + e1 += nd - k; + + scale = 0; + + /* Get starting approximation = rv * 10**e1 */ + + if (e1 > 0) { + if ((i = e1 & 15)) + dval(&rv) *= tens[i]; + if (e1 &= ~15) { + if (e1 > DBL_MAX_10_EXP) { +ovfl: +#if HAVE(ERRNO_H) + errno = ERANGE; +#endif + /* Can't trust HUGE_VAL */ + word0(&rv) = Exp_mask; + word1(&rv) = 0; + goto ret; + } + e1 >>= 4; + for (j = 0; e1 > 1; j++, e1 >>= 1) + if (e1 & 1) + dval(&rv) *= bigtens[j]; + /* The last multiplication could overflow. */ + word0(&rv) -= P * Exp_msk1; + dval(&rv) *= bigtens[j]; + if ((z = word0(&rv) & Exp_mask) > Exp_msk1 * (DBL_MAX_EXP + Bias - P)) + goto ovfl; + if (z > Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P)) { + /* set to largest number */ + /* (Can't trust DBL_MAX) */ + word0(&rv) = Big0; + word1(&rv) = Big1; + } else + word0(&rv) += P * Exp_msk1; + } + } else if (e1 < 0) { + e1 = -e1; + if ((i = e1 & 15)) + dval(&rv) /= tens[i]; + if (e1 >>= 4) { + if (e1 >= 1 << n_bigtens) + goto undfl; + if (e1 & Scale_Bit) + scale = 2 * P; + for (j = 0; e1 > 0; j++, e1 >>= 1) + if (e1 & 1) + dval(&rv) *= tinytens[j]; + if (scale && (j = (2 * P) + 1 - ((word0(&rv) & Exp_mask) >> Exp_shift)) > 0) { + /* scaled rv is denormal; clear j low bits */ + if (j >= 32) { + word1(&rv) = 0; + if (j >= 53) + word0(&rv) = (P + 2) * Exp_msk1; + else + word0(&rv) &= 0xffffffff << (j - 32); + } else + word1(&rv) &= 0xffffffff << j; + } + if (!dval(&rv)) { +undfl: + dval(&rv) = 0.; +#if HAVE(ERRNO_H) + errno = ERANGE; +#endif + goto ret; + } + } + } + + /* Now the hard part -- adjusting rv to the correct value.*/ + + /* Put digits into bd: true value = bd * 10^e */ + + s2b(bd0, s0, nd0, nd, y); + + for (;;) { + bd = bd0; + d2b(bb, &rv, &bbe, &bbbits); /* rv = bb * 2^bbe */ + i2b(bs, 1); + + if (e >= 0) { + bb2 = bb5 = 0; + bd2 = bd5 = e; + } else { + bb2 = bb5 = -e; + bd2 = bd5 = 0; + } + if (bbe >= 0) + bb2 += bbe; + else + bd2 -= bbe; + bs2 = bb2; + j = bbe - scale; + i = j + bbbits - 1; /* logb(rv) */ + if (i < Emin) /* denormal */ + j += P - Emin; + else + j = P + 1 - bbbits; + bb2 += j; + bd2 += j; + bd2 += scale; + i = bb2 < bd2 ? bb2 : bd2; + if (i > bs2) + i = bs2; + if (i > 0) { + bb2 -= i; + bd2 -= i; + bs2 -= i; + } + if (bb5 > 0) { + pow5mult(bs, bb5); + mult(bb, bs); + } + if (bb2 > 0) + lshift(bb, bb2); + if (bd5 > 0) + pow5mult(bd, bd5); + if (bd2 > 0) + lshift(bd, bd2); + if (bs2 > 0) + lshift(bs, bs2); + diff(delta, bb, bd); + dsign = delta.sign; + delta.sign = 0; + i = cmp(delta, bs); + + if (i < 0) { + /* Error is less than half an ulp -- check for + * special case of mantissa a power of two. + */ + if (dsign || word1(&rv) || word0(&rv) & Bndry_mask + || (word0(&rv) & Exp_mask) <= (2 * P + 1) * Exp_msk1 + ) { + break; + } + if (!delta.words()[0] && delta.size() <= 1) { + /* exact result */ + break; + } + lshift(delta, Log2P); + if (cmp(delta, bs) > 0) + goto dropDown; + break; + } + if (!i) { + /* exactly half-way between */ + if (dsign) { + if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 + && word1(&rv) == ( + (scale && (y = word0(&rv) & Exp_mask) <= 2 * P * Exp_msk1) + ? (0xffffffff & (0xffffffff << (2 * P + 1 - (y >> Exp_shift)))) : + 0xffffffff)) { + /*boundary case -- increment exponent*/ + word0(&rv) = (word0(&rv) & Exp_mask) + Exp_msk1; + word1(&rv) = 0; + dsign = 0; + break; + } + } else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { +dropDown: + /* boundary case -- decrement exponent */ + if (scale) { + L = word0(&rv) & Exp_mask; + if (L <= (2 * P + 1) * Exp_msk1) { + if (L > (P + 2) * Exp_msk1) + /* round even ==> */ + /* accept rv */ + break; + /* rv = smallest denormal */ + goto undfl; + } + } + L = (word0(&rv) & Exp_mask) - Exp_msk1; + word0(&rv) = L | Bndry_mask1; + word1(&rv) = 0xffffffff; + break; + } + if (!(word1(&rv) & LSB)) + break; + if (dsign) + dval(&rv) += ulp(&rv); + else { + dval(&rv) -= ulp(&rv); + if (!dval(&rv)) + goto undfl; + } + dsign = 1 - dsign; + break; + } + if ((aadj = ratio(delta, bs)) <= 2.) { + if (dsign) + aadj = aadj1 = 1.; + else if (word1(&rv) || word0(&rv) & Bndry_mask) { + if (word1(&rv) == Tiny1 && !word0(&rv)) + goto undfl; + aadj = 1.; + aadj1 = -1.; + } else { + /* special case -- power of FLT_RADIX to be */ + /* rounded down... */ + + if (aadj < 2. / FLT_RADIX) + aadj = 1. / FLT_RADIX; + else + aadj *= 0.5; + aadj1 = -aadj; + } + } else { + aadj *= 0.5; + aadj1 = dsign ? aadj : -aadj; + } + y = word0(&rv) & Exp_mask; + + /* Check for overflow */ + + if (y == Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) { + dval(&rv0) = dval(&rv); + word0(&rv) -= P * Exp_msk1; + adj.d = aadj1 * ulp(&rv); + dval(&rv) += adj.d; + if ((word0(&rv) & Exp_mask) >= Exp_msk1 * (DBL_MAX_EXP + Bias - P)) { + if (word0(&rv0) == Big0 && word1(&rv0) == Big1) + goto ovfl; + word0(&rv) = Big0; + word1(&rv) = Big1; + goto cont; + } + word0(&rv) += P * Exp_msk1; + } else { + if (scale && y <= 2 * P * Exp_msk1) { + if (aadj <= 0x7fffffff) { + if ((z = (uint32_t)aadj) <= 0) + z = 1; + aadj = z; + aadj1 = dsign ? aadj : -aadj; + } + dval(&aadj2) = aadj1; + word0(&aadj2) += (2 * P + 1) * Exp_msk1 - y; + aadj1 = dval(&aadj2); + } + adj.d = aadj1 * ulp(&rv); + dval(&rv) += adj.d; + } + z = word0(&rv) & Exp_mask; + if (!scale && y == z) { + /* Can we stop now? */ + L = (int32_t)aadj; + aadj -= L; + /* The tolerances below are conservative. */ + if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) { + if (aadj < .4999999 || aadj > .5000001) + break; + } else if (aadj < .4999999 / FLT_RADIX) + break; + } +cont: + {} + } + if (scale) { + word0(&rv0) = Exp_1 - 2 * P * Exp_msk1; + word1(&rv0) = 0; + dval(&rv) *= dval(&rv0); +#if HAVE(ERRNO_H) + /* try to avoid the bug of testing an 8087 register value */ + if (!word0(&rv) && !word1(&rv)) + errno = ERANGE; +#endif + } +ret: + if (se) + *se = const_cast<char*>(s); + return sign ? -dval(&rv) : dval(&rv); +} + +static ALWAYS_INLINE int quorem(BigInt& b, BigInt& S) +{ + size_t n; + uint32_t* bx; + uint32_t* bxe; + uint32_t q; + uint32_t* sx; + uint32_t* sxe; +#ifdef USE_LONG_LONG + unsigned long long borrow, carry, y, ys; +#else + uint32_t borrow, carry, y, ys; + uint32_t si, z, zs; +#endif + ASSERT(b.size() <= 1 || b.words()[b.size() - 1]); + ASSERT(S.size() <= 1 || S.words()[S.size() - 1]); + + n = S.size(); + ASSERT_WITH_MESSAGE(b.size() <= n, "oversize b in quorem"); + if (b.size() < n) + return 0; + sx = S.words(); + sxe = sx + --n; + bx = b.words(); + bxe = bx + n; + q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ + ASSERT_WITH_MESSAGE(q <= 9, "oversized quotient in quorem"); + if (q) { + borrow = 0; + carry = 0; + do { +#ifdef USE_LONG_LONG + ys = *sx++ * (unsigned long long)q + carry; + carry = ys >> 32; + y = *bx - (ys & 0xffffffffUL) - borrow; + borrow = y >> 32 & (uint32_t)1; + *bx++ = (uint32_t)y & 0xffffffffUL; +#else + si = *sx++; + ys = (si & 0xffff) * q + carry; + zs = (si >> 16) * q + (ys >> 16); + carry = zs >> 16; + y = (*bx & 0xffff) - (ys & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*bx >> 16) - (zs & 0xffff) - borrow; + borrow = (z & 0x10000) >> 16; + bx = storeInc(bx, z, y); +#endif + } while (sx <= sxe); + if (!*bxe) { + bx = b.words(); + while (--bxe > bx && !*bxe) + --n; + b.resize(n); + } + } + if (cmp(b, S) >= 0) { + q++; + borrow = 0; + carry = 0; + bx = b.words(); + sx = S.words(); + do { +#ifdef USE_LONG_LONG + ys = *sx++ + carry; + carry = ys >> 32; + y = *bx - (ys & 0xffffffffUL) - borrow; + borrow = y >> 32 & (uint32_t)1; + *bx++ = (uint32_t)y & 0xffffffffUL; +#else + si = *sx++; + ys = (si & 0xffff) + carry; + zs = (si >> 16) + (ys >> 16); + carry = zs >> 16; + y = (*bx & 0xffff) - (ys & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*bx >> 16) - (zs & 0xffff) - borrow; + borrow = (z & 0x10000) >> 16; + bx = storeInc(bx, z, y); +#endif + } while (sx <= sxe); + bx = b.words(); + bxe = bx + n; + if (!*bxe) { + while (--bxe > bx && !*bxe) + --n; + b.resize(n); + } + } + return q; +} + +/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. + * + * Inspired by "How to Print Floating-Point Numbers Accurately" by + * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. + * + * Modifications: + * 1. Rather than iterating, we use a simple numeric overestimate + * to determine k = floor(log10(d)). We scale relevant + * quantities using O(log2(k)) rather than O(k) multiplications. + * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't + * try to generate digits strictly left to right. Instead, we + * compute with fewer bits and propagate the carry if necessary + * when rounding the final digit up. This is often faster. + * 3. Under the assumption that input will be rounded nearest, + * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. + * That is, we allow equality in stopping tests when the + * round-nearest rule will give the same floating-point value + * as would satisfaction of the stopping test with strict + * inequality. + * 4. We remove common factors of powers of 2 from relevant + * quantities. + * 5. When converting floating-point integers less than 1e16, + * we use floating-point arithmetic rather than resorting + * to multiple-precision integers. + * 6. When asked to produce fewer than 15 digits, we first try + * to get by with floating-point arithmetic; we resort to + * multiple-precision integer arithmetic only if we cannot + * guarantee that the floating-point calculation has given + * the correctly rounded result. For k requested digits and + * "uniformly" distributed input, the probability is + * something like 10^(k-15) that we must resort to the int32_t + * calculation. + * + * Note: 'leftright' translates to 'generate shortest possible string'. + */ +template<bool roundingNone, bool roundingSignificantFigures, bool roundingDecimalPlaces, bool leftright> +void dtoa(DtoaBuffer result, double dd, int ndigits, bool& signOut, int& exponentOut, unsigned& precisionOut) +{ + // Exactly one rounding mode must be specified. + ASSERT(roundingNone + roundingSignificantFigures + roundingDecimalPlaces == 1); + // roundingNone only allowed (only sensible?) with leftright set. + ASSERT(!roundingNone || leftright); + + ASSERT(!isnan(dd) && !isinf(dd)); + + int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0, + j, j1, k, k0, k_check, m2, m5, s2, s5, + spec_case; + int32_t L; + int denorm; + uint32_t x; + BigInt b, delta, mlo, mhi, S; + U d2, eps, u; + double ds; + char* s; + char* s0; + + u.d = dd; + + /* Infinity or NaN */ + ASSERT((word0(&u) & Exp_mask) != Exp_mask); + + // JavaScript toString conversion treats -0 as 0. + if (!dval(&u)) { + signOut = false; + exponentOut = 0; + precisionOut = 1; + result[0] = '0'; + result[1] = '\0'; + return; + } + + if (word0(&u) & Sign_bit) { + signOut = true; + word0(&u) &= ~Sign_bit; // clear sign bit + } else + signOut = false; + + d2b(b, &u, &be, &bbits); + if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) { + dval(&d2) = dval(&u); + word0(&d2) &= Frac_mask1; + word0(&d2) |= Exp_11; + + /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 + * log10(x) = log(x) / log(10) + * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) + * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) + * + * This suggests computing an approximation k to log10(d) by + * + * k = (i - Bias)*0.301029995663981 + * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); + * + * We want k to be too large rather than too small. + * The error in the first-order Taylor series approximation + * is in our favor, so we just round up the constant enough + * to compensate for any error in the multiplication of + * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, + * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, + * adding 1e-13 to the constant term more than suffices. + * Hence we adjust the constant term to 0.1760912590558. + * (We could get a more accurate k by invoking log10, + * but this is probably not worthwhile.) + */ + + i -= Bias; + denorm = 0; + } else { + /* d is denormalized */ + + i = bbits + be + (Bias + (P - 1) - 1); + x = (i > 32) ? (word0(&u) << (64 - i)) | (word1(&u) >> (i - 32)) + : word1(&u) << (32 - i); + dval(&d2) = x; + word0(&d2) -= 31 * Exp_msk1; /* adjust exponent */ + i -= (Bias + (P - 1) - 1) + 1; + denorm = 1; + } + ds = (dval(&d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + (i * 0.301029995663981); + k = (int)ds; + if (ds < 0. && ds != k) + k--; /* want k = floor(ds) */ + k_check = 1; + if (k >= 0 && k <= Ten_pmax) { + if (dval(&u) < tens[k]) + k--; + k_check = 0; + } + j = bbits - i - 1; + if (j >= 0) { + b2 = 0; + s2 = j; + } else { + b2 = -j; + s2 = 0; + } + if (k >= 0) { + b5 = 0; + s5 = k; + s2 += k; + } else { + b2 -= k; + b5 = -k; + s5 = 0; + } + + if (roundingNone) { + ilim = ilim1 = -1; + i = 18; + ndigits = 0; + } + if (roundingSignificantFigures) { + if (ndigits <= 0) + ndigits = 1; + ilim = ilim1 = i = ndigits; + } + if (roundingDecimalPlaces) { + i = ndigits + k + 1; + ilim = i; + ilim1 = i - 1; + if (i <= 0) + i = 1; + } + + s = s0 = result; + + if (ilim >= 0 && ilim <= Quick_max) { + /* Try to get by with floating-point arithmetic. */ + + i = 0; + dval(&d2) = dval(&u); + k0 = k; + ilim0 = ilim; + ieps = 2; /* conservative */ + if (k > 0) { + ds = tens[k & 0xf]; + j = k >> 4; + if (j & Bletch) { + /* prevent overflows */ + j &= Bletch - 1; + dval(&u) /= bigtens[n_bigtens - 1]; + ieps++; + } + for (; j; j >>= 1, i++) { + if (j & 1) { + ieps++; + ds *= bigtens[i]; + } + } + dval(&u) /= ds; + } else if ((j1 = -k)) { + dval(&u) *= tens[j1 & 0xf]; + for (j = j1 >> 4; j; j >>= 1, i++) { + if (j & 1) { + ieps++; + dval(&u) *= bigtens[i]; + } + } + } + if (k_check && dval(&u) < 1. && ilim > 0) { + if (ilim1 <= 0) + goto fastFailed; + ilim = ilim1; + k--; + dval(&u) *= 10.; + ieps++; + } + dval(&eps) = (ieps * dval(&u)) + 7.; + word0(&eps) -= (P - 1) * Exp_msk1; + if (!ilim) { + S.clear(); + mhi.clear(); + dval(&u) -= 5.; + if (dval(&u) > dval(&eps)) + goto oneDigit; + if (dval(&u) < -dval(&eps)) + goto noDigits; + goto fastFailed; + } + if (leftright) { + /* Use Steele & White method of only + * generating digits needed. + */ + dval(&eps) = (0.5 / tens[ilim - 1]) - dval(&eps); + for (i = 0;;) { + L = (long int)dval(&u); + dval(&u) -= L; + *s++ = '0' + (int)L; + if (dval(&u) < dval(&eps)) + goto ret; + if (1. - dval(&u) < dval(&eps)) + goto bumpUp; + if (++i >= ilim) + break; + dval(&eps) *= 10.; + dval(&u) *= 10.; + } + } else { + /* Generate ilim digits, then fix them up. */ + dval(&eps) *= tens[ilim - 1]; + for (i = 1;; i++, dval(&u) *= 10.) { + L = (int32_t)(dval(&u)); + if (!(dval(&u) -= L)) + ilim = i; + *s++ = '0' + (int)L; + if (i == ilim) { + if (dval(&u) > 0.5 + dval(&eps)) + goto bumpUp; + if (dval(&u) < 0.5 - dval(&eps)) { + while (*--s == '0') { } + s++; + goto ret; + } + break; + } + } + } +fastFailed: + s = s0; + dval(&u) = dval(&d2); + k = k0; + ilim = ilim0; + } + + /* Do we have a "small" integer? */ + + if (be >= 0 && k <= Int_max) { + /* Yes. */ + ds = tens[k]; + if (ndigits < 0 && ilim <= 0) { + S.clear(); + mhi.clear(); + if (ilim < 0 || dval(&u) <= 5 * ds) + goto noDigits; + goto oneDigit; + } + for (i = 1;; i++, dval(&u) *= 10.) { + L = (int32_t)(dval(&u) / ds); + dval(&u) -= L * ds; + *s++ = '0' + (int)L; + if (!dval(&u)) { + break; + } + if (i == ilim) { + dval(&u) += dval(&u); + if (dval(&u) > ds || (dval(&u) == ds && (L & 1))) { +bumpUp: + while (*--s == '9') + if (s == s0) { + k++; + *s = '0'; + break; + } + ++*s++; + } + break; + } + } + goto ret; + } + + m2 = b2; + m5 = b5; + mhi.clear(); + mlo.clear(); + if (leftright) { + i = denorm ? be + (Bias + (P - 1) - 1 + 1) : 1 + P - bbits; + b2 += i; + s2 += i; + i2b(mhi, 1); + } + if (m2 > 0 && s2 > 0) { + i = m2 < s2 ? m2 : s2; + b2 -= i; + m2 -= i; + s2 -= i; + } + if (b5 > 0) { + if (leftright) { + if (m5 > 0) { + pow5mult(mhi, m5); + mult(b, mhi); + } + if ((j = b5 - m5)) + pow5mult(b, j); + } else + pow5mult(b, b5); + } + i2b(S, 1); + if (s5 > 0) + pow5mult(S, s5); + + /* Check for special case that d is a normalized power of 2. */ + + spec_case = 0; + if ((roundingNone || leftright) && (!word1(&u) && !(word0(&u) & Bndry_mask) && word0(&u) & (Exp_mask & ~Exp_msk1))) { + /* The special case */ + b2 += Log2P; + s2 += Log2P; + spec_case = 1; + } + + /* Arrange for convenient computation of quotients: + * shift left if necessary so divisor has 4 leading 0 bits. + * + * Perhaps we should just compute leading 28 bits of S once + * and for all and pass them and a shift to quorem, so it + * can do shifts and ors to compute the numerator for q. + */ + if ((i = ((s5 ? 32 - hi0bits(S.words()[S.size() - 1]) : 1) + s2) & 0x1f)) + i = 32 - i; + if (i > 4) { + i -= 4; + b2 += i; + m2 += i; + s2 += i; + } else if (i < 4) { + i += 28; + b2 += i; + m2 += i; + s2 += i; + } + if (b2 > 0) + lshift(b, b2); + if (s2 > 0) + lshift(S, s2); + if (k_check) { + if (cmp(b, S) < 0) { + k--; + multadd(b, 10, 0); /* we botched the k estimate */ + if (leftright) + multadd(mhi, 10, 0); + ilim = ilim1; + } + } + if (ilim <= 0 && roundingDecimalPlaces) { + if (ilim < 0) + goto noDigits; + multadd(S, 5, 0); + // For IEEE-754 unbiased rounding this check should be <=, such that 0.5 would flush to zero. + if (cmp(b, S) < 0) + goto noDigits; + goto oneDigit; + } + if (leftright) { + if (m2 > 0) + lshift(mhi, m2); + + /* Compute mlo -- check for special case + * that d is a normalized power of 2. + */ + + mlo = mhi; + if (spec_case) + lshift(mhi, Log2P); + + for (i = 1;;i++) { + dig = quorem(b, S) + '0'; + /* Do we yet have the shortest decimal string + * that will round to d? + */ + j = cmp(b, mlo); + diff(delta, S, mhi); + j1 = delta.sign ? 1 : cmp(b, delta); +#ifdef DTOA_ROUND_BIASED + if (j < 0 || !j) { +#else + // FIXME: ECMA-262 specifies that equidistant results round away from + // zero, which probably means we shouldn't be on the unbiased code path + // (the (word1(&u) & 1) clause is looking highly suspicious). I haven't + // yet understood this code well enough to make the call, but we should + // probably be enabling DTOA_ROUND_BIASED. I think the interesting corner + // case to understand is probably "Math.pow(0.5, 24).toString()". + // I believe this value is interesting because I think it is precisely + // representable in binary floating point, and its decimal representation + // has a single digit that Steele & White reduction can remove, with the + // value 5 (thus equidistant from the next numbers above and below). + // We produce the correct answer using either codepath, and I don't as + // yet understand why. :-) + if (!j1 && !(word1(&u) & 1)) { + if (dig == '9') + goto round9up; + if (j > 0) + dig++; + *s++ = dig; + goto ret; + } + if (j < 0 || (!j && !(word1(&u) & 1))) { +#endif + if ((b.words()[0] || b.size() > 1) && (j1 > 0)) { + lshift(b, 1); + j1 = cmp(b, S); + // For IEEE-754 round-to-even, this check should be (j1 > 0 || (!j1 && (dig & 1))), + // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should + // be rounded away from zero. + if (j1 >= 0) { + if (dig == '9') + goto round9up; + dig++; + } + } + *s++ = dig; + goto ret; + } + if (j1 > 0) { + if (dig == '9') { /* possible if i == 1 */ +round9up: + *s++ = '9'; + goto roundoff; + } + *s++ = dig + 1; + goto ret; + } + *s++ = dig; + if (i == ilim) + break; + multadd(b, 10, 0); + multadd(mlo, 10, 0); + multadd(mhi, 10, 0); + } + } else { + for (i = 1;; i++) { + *s++ = dig = quorem(b, S) + '0'; + if (!b.words()[0] && b.size() <= 1) + goto ret; + if (i >= ilim) + break; + multadd(b, 10, 0); + } + } + + /* Round off last digit */ + + lshift(b, 1); + j = cmp(b, S); + // For IEEE-754 round-to-even, this check should be (j > 0 || (!j && (dig & 1))), + // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should + // be rounded away from zero. + if (j >= 0) { +roundoff: + while (*--s == '9') + if (s == s0) { + k++; + *s++ = '1'; + goto ret; + } + ++*s++; + } else { + while (*--s == '0') { } + s++; + } + goto ret; +noDigits: + exponentOut = 0; + precisionOut = 1; + result[0] = '0'; + result[1] = '\0'; + return; +oneDigit: + *s++ = '1'; + k++; + goto ret; +ret: + ASSERT(s > result); + *s = 0; + exponentOut = k; + precisionOut = s - result; +} + +void dtoa(DtoaBuffer result, double dd, bool& sign, int& exponent, unsigned& precision) +{ + // flags are roundingNone, leftright. + dtoa<true, false, false, true>(result, dd, 0, sign, exponent, precision); +} + +void dtoaRoundSF(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision) +{ + // flag is roundingSignificantFigures. + dtoa<false, true, false, false>(result, dd, ndigits, sign, exponent, precision); +} + +void dtoaRoundDP(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision) +{ + // flag is roundingDecimalPlaces. + dtoa<false, false, true, false>(result, dd, ndigits, sign, exponent, precision); +} + +static ALWAYS_INLINE void copyAsciiToUTF16(UChar* next, const char* src, unsigned size) +{ + for (unsigned i = 0; i < size; ++i) + *next++ = *src++; +} + +unsigned numberToString(double d, NumberToStringBuffer buffer) +{ + // Handle NaN and Infinity. + if (isnan(d) || isinf(d)) { + if (isnan(d)) { + copyAsciiToUTF16(buffer, "NaN", 3); + return 3; + } + if (d > 0) { + copyAsciiToUTF16(buffer, "Infinity", 8); + return 8; + } + copyAsciiToUTF16(buffer, "-Infinity", 9); + return 9; + } + + // Convert to decimal with rounding. + DecimalNumber number(d); + return number.exponent() >= -6 && number.exponent() < 21 + ? number.toStringDecimal(buffer, NumberToStringBufferLength) + : number.toStringExponential(buffer, NumberToStringBufferLength); +} + +} // namespace WTF |