summaryrefslogtreecommitdiffstats
path: root/V8Binding/v8/src/jsregexp.cc
diff options
context:
space:
mode:
authorFeng Qian <fqian@google.com>2009-06-19 10:54:19 -0700
committerFeng Qian <fqian@google.com>2009-06-19 10:54:19 -0700
commit5c6ed9782f6ba890faf887aa2a434c6ec0d8db69 (patch)
treeb0ee81af078307f558400c69e89169f6555e0fc9 /V8Binding/v8/src/jsregexp.cc
parent7f65b2f4c873a32f4d8e3c3ad8d339c57173a7b5 (diff)
downloadexternal_webkit-5c6ed9782f6ba890faf887aa2a434c6ec0d8db69.zip
external_webkit-5c6ed9782f6ba890faf887aa2a434c6ec0d8db69.tar.gz
external_webkit-5c6ed9782f6ba890faf887aa2a434c6ec0d8db69.tar.bz2
Drop in v8 r2121
From: "http://v8.googlecode.com/svn/trunk@2121", It matches "svn://chrome-svn/chrome/branches/187/src@18043"
Diffstat (limited to 'V8Binding/v8/src/jsregexp.cc')
-rw-r--r--V8Binding/v8/src/jsregexp.cc4489
1 files changed, 4489 insertions, 0 deletions
diff --git a/V8Binding/v8/src/jsregexp.cc b/V8Binding/v8/src/jsregexp.cc
new file mode 100644
index 0000000..6fce1f5
--- /dev/null
+++ b/V8Binding/v8/src/jsregexp.cc
@@ -0,0 +1,4489 @@
+// Copyright 2006-2009 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "v8.h"
+
+#include "ast.h"
+#include "compiler.h"
+#include "execution.h"
+#include "factory.h"
+#include "jsregexp-inl.h"
+#include "platform.h"
+#include "runtime.h"
+#include "top.h"
+#include "compilation-cache.h"
+#include "string-stream.h"
+#include "parser.h"
+#include "regexp-macro-assembler.h"
+#include "regexp-macro-assembler-tracer.h"
+#include "regexp-macro-assembler-irregexp.h"
+#include "regexp-stack.h"
+
+#if V8_TARGET_ARCH_IA32
+#include "ia32/macro-assembler-ia32.h"
+#include "ia32/regexp-macro-assembler-ia32.h"
+#elif V8_TARGET_ARCH_X64
+#include "x64/macro-assembler-x64.h"
+#include "x64/regexp-macro-assembler-x64.h"
+#elif V8_TARGET_ARCH_ARM
+#include "arm/regexp-macro-assembler-arm.h"
+#endif
+
+#include "interpreter-irregexp.h"
+
+
+namespace v8 {
+namespace internal {
+
+
+Handle<Object> RegExpImpl::CreateRegExpLiteral(Handle<JSFunction> constructor,
+ Handle<String> pattern,
+ Handle<String> flags,
+ bool* has_pending_exception) {
+ // Ensure that the constructor function has been loaded.
+ if (!constructor->IsLoaded()) {
+ LoadLazy(constructor, has_pending_exception);
+ if (*has_pending_exception) return Handle<Object>();
+ }
+ // Call the construct code with 2 arguments.
+ Object** argv[2] = { Handle<Object>::cast(pattern).location(),
+ Handle<Object>::cast(flags).location() };
+ return Execution::New(constructor, 2, argv, has_pending_exception);
+}
+
+
+static JSRegExp::Flags RegExpFlagsFromString(Handle<String> str) {
+ int flags = JSRegExp::NONE;
+ for (int i = 0; i < str->length(); i++) {
+ switch (str->Get(i)) {
+ case 'i':
+ flags |= JSRegExp::IGNORE_CASE;
+ break;
+ case 'g':
+ flags |= JSRegExp::GLOBAL;
+ break;
+ case 'm':
+ flags |= JSRegExp::MULTILINE;
+ break;
+ }
+ }
+ return JSRegExp::Flags(flags);
+}
+
+
+static inline void ThrowRegExpException(Handle<JSRegExp> re,
+ Handle<String> pattern,
+ Handle<String> error_text,
+ const char* message) {
+ Handle<JSArray> array = Factory::NewJSArray(2);
+ SetElement(array, 0, pattern);
+ SetElement(array, 1, error_text);
+ Handle<Object> regexp_err = Factory::NewSyntaxError(message, array);
+ Top::Throw(*regexp_err);
+}
+
+
+// Generic RegExp methods. Dispatches to implementation specific methods.
+
+
+class OffsetsVector {
+ public:
+ inline OffsetsVector(int num_registers)
+ : offsets_vector_length_(num_registers) {
+ if (offsets_vector_length_ > kStaticOffsetsVectorSize) {
+ vector_ = NewArray<int>(offsets_vector_length_);
+ } else {
+ vector_ = static_offsets_vector_;
+ }
+ }
+ inline ~OffsetsVector() {
+ if (offsets_vector_length_ > kStaticOffsetsVectorSize) {
+ DeleteArray(vector_);
+ vector_ = NULL;
+ }
+ }
+ inline int* vector() { return vector_; }
+ inline int length() { return offsets_vector_length_; }
+
+ private:
+ int* vector_;
+ int offsets_vector_length_;
+ static const int kStaticOffsetsVectorSize = 50;
+ static int static_offsets_vector_[kStaticOffsetsVectorSize];
+};
+
+
+int OffsetsVector::static_offsets_vector_[
+ OffsetsVector::kStaticOffsetsVectorSize];
+
+
+Handle<Object> RegExpImpl::Compile(Handle<JSRegExp> re,
+ Handle<String> pattern,
+ Handle<String> flag_str) {
+ JSRegExp::Flags flags = RegExpFlagsFromString(flag_str);
+ Handle<FixedArray> cached = CompilationCache::LookupRegExp(pattern, flags);
+ bool in_cache = !cached.is_null();
+ LOG(RegExpCompileEvent(re, in_cache));
+
+ Handle<Object> result;
+ if (in_cache) {
+ re->set_data(*cached);
+ return re;
+ }
+ FlattenString(pattern);
+ CompilationZoneScope zone_scope(DELETE_ON_EXIT);
+ RegExpCompileData parse_result;
+ FlatStringReader reader(pattern);
+ if (!ParseRegExp(&reader, flags.is_multiline(), &parse_result)) {
+ // Throw an exception if we fail to parse the pattern.
+ ThrowRegExpException(re,
+ pattern,
+ parse_result.error,
+ "malformed_regexp");
+ return Handle<Object>::null();
+ }
+
+ if (parse_result.simple && !flags.is_ignore_case()) {
+ // Parse-tree is a single atom that is equal to the pattern.
+ AtomCompile(re, pattern, flags, pattern);
+ } else if (parse_result.tree->IsAtom() &&
+ !flags.is_ignore_case() &&
+ parse_result.capture_count == 0) {
+ RegExpAtom* atom = parse_result.tree->AsAtom();
+ Vector<const uc16> atom_pattern = atom->data();
+ Handle<String> atom_string = Factory::NewStringFromTwoByte(atom_pattern);
+ AtomCompile(re, pattern, flags, atom_string);
+ } else {
+ IrregexpPrepare(re, pattern, flags, parse_result.capture_count);
+ }
+ ASSERT(re->data()->IsFixedArray());
+ // Compilation succeeded so the data is set on the regexp
+ // and we can store it in the cache.
+ Handle<FixedArray> data(FixedArray::cast(re->data()));
+ CompilationCache::PutRegExp(pattern, flags, data);
+
+ return re;
+}
+
+
+Handle<Object> RegExpImpl::Exec(Handle<JSRegExp> regexp,
+ Handle<String> subject,
+ int index,
+ Handle<JSArray> last_match_info) {
+ switch (regexp->TypeTag()) {
+ case JSRegExp::ATOM:
+ return AtomExec(regexp, subject, index, last_match_info);
+ case JSRegExp::IRREGEXP: {
+ Handle<Object> result =
+ IrregexpExec(regexp, subject, index, last_match_info);
+ ASSERT(!result.is_null() || Top::has_pending_exception());
+ return result;
+ }
+ default:
+ UNREACHABLE();
+ return Handle<Object>::null();
+ }
+}
+
+
+// RegExp Atom implementation: Simple string search using indexOf.
+
+
+void RegExpImpl::AtomCompile(Handle<JSRegExp> re,
+ Handle<String> pattern,
+ JSRegExp::Flags flags,
+ Handle<String> match_pattern) {
+ Factory::SetRegExpAtomData(re,
+ JSRegExp::ATOM,
+ pattern,
+ flags,
+ match_pattern);
+}
+
+
+static void SetAtomLastCapture(FixedArray* array,
+ String* subject,
+ int from,
+ int to) {
+ NoHandleAllocation no_handles;
+ RegExpImpl::SetLastCaptureCount(array, 2);
+ RegExpImpl::SetLastSubject(array, subject);
+ RegExpImpl::SetLastInput(array, subject);
+ RegExpImpl::SetCapture(array, 0, from);
+ RegExpImpl::SetCapture(array, 1, to);
+}
+
+
+Handle<Object> RegExpImpl::AtomExec(Handle<JSRegExp> re,
+ Handle<String> subject,
+ int index,
+ Handle<JSArray> last_match_info) {
+ Handle<String> needle(String::cast(re->DataAt(JSRegExp::kAtomPatternIndex)));
+
+ uint32_t start_index = index;
+
+ int value = Runtime::StringMatch(subject, needle, start_index);
+ if (value == -1) return Factory::null_value();
+ ASSERT(last_match_info->HasFastElements());
+
+ {
+ NoHandleAllocation no_handles;
+ FixedArray* array = last_match_info->elements();
+ SetAtomLastCapture(array, *subject, value, value + needle->length());
+ }
+ return last_match_info;
+}
+
+
+// Irregexp implementation.
+
+
+// Ensures that the regexp object contains a compiled version of the
+// source for either ASCII or non-ASCII strings.
+// If the compiled version doesn't already exist, it is compiled
+// from the source pattern.
+// If compilation fails, an exception is thrown and this function
+// returns false.
+bool RegExpImpl::EnsureCompiledIrregexp(Handle<JSRegExp> re, bool is_ascii) {
+ int index;
+ if (is_ascii) {
+ index = JSRegExp::kIrregexpASCIICodeIndex;
+ } else {
+ index = JSRegExp::kIrregexpUC16CodeIndex;
+ }
+ Object* entry = re->DataAt(index);
+ if (!entry->IsTheHole()) {
+ // A value has already been compiled.
+ if (entry->IsJSObject()) {
+ // If it's a JS value, it's an error.
+ Top::Throw(entry);
+ return false;
+ }
+ return true;
+ }
+
+ // Compile the RegExp.
+ CompilationZoneScope zone_scope(DELETE_ON_EXIT);
+
+ JSRegExp::Flags flags = re->GetFlags();
+
+ Handle<String> pattern(re->Pattern());
+ if (!pattern->IsFlat()) {
+ FlattenString(pattern);
+ }
+
+ RegExpCompileData compile_data;
+ FlatStringReader reader(pattern);
+ if (!ParseRegExp(&reader, flags.is_multiline(), &compile_data)) {
+ // Throw an exception if we fail to parse the pattern.
+ // THIS SHOULD NOT HAPPEN. We already parsed it successfully once.
+ ThrowRegExpException(re,
+ pattern,
+ compile_data.error,
+ "malformed_regexp");
+ return false;
+ }
+ RegExpEngine::CompilationResult result =
+ RegExpEngine::Compile(&compile_data,
+ flags.is_ignore_case(),
+ flags.is_multiline(),
+ pattern,
+ is_ascii);
+ if (result.error_message != NULL) {
+ // Unable to compile regexp.
+ Handle<JSArray> array = Factory::NewJSArray(2);
+ SetElement(array, 0, pattern);
+ SetElement(array,
+ 1,
+ Factory::NewStringFromUtf8(CStrVector(result.error_message)));
+ Handle<Object> regexp_err =
+ Factory::NewSyntaxError("malformed_regexp", array);
+ Top::Throw(*regexp_err);
+ re->SetDataAt(index, *regexp_err);
+ return false;
+ }
+
+ NoHandleAllocation no_handles;
+
+ FixedArray* data = FixedArray::cast(re->data());
+ data->set(index, result.code);
+ int register_max = IrregexpMaxRegisterCount(data);
+ if (result.num_registers > register_max) {
+ SetIrregexpMaxRegisterCount(data, result.num_registers);
+ }
+
+ return true;
+}
+
+
+int RegExpImpl::IrregexpMaxRegisterCount(FixedArray* re) {
+ return Smi::cast(
+ re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
+}
+
+
+void RegExpImpl::SetIrregexpMaxRegisterCount(FixedArray* re, int value) {
+ re->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(value));
+}
+
+
+int RegExpImpl::IrregexpNumberOfCaptures(FixedArray* re) {
+ return Smi::cast(re->get(JSRegExp::kIrregexpCaptureCountIndex))->value();
+}
+
+
+int RegExpImpl::IrregexpNumberOfRegisters(FixedArray* re) {
+ return Smi::cast(re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
+}
+
+
+ByteArray* RegExpImpl::IrregexpByteCode(FixedArray* re, bool is_ascii) {
+ int index;
+ if (is_ascii) {
+ index = JSRegExp::kIrregexpASCIICodeIndex;
+ } else {
+ index = JSRegExp::kIrregexpUC16CodeIndex;
+ }
+ return ByteArray::cast(re->get(index));
+}
+
+
+Code* RegExpImpl::IrregexpNativeCode(FixedArray* re, bool is_ascii) {
+ int index;
+ if (is_ascii) {
+ index = JSRegExp::kIrregexpASCIICodeIndex;
+ } else {
+ index = JSRegExp::kIrregexpUC16CodeIndex;
+ }
+ return Code::cast(re->get(index));
+}
+
+
+void RegExpImpl::IrregexpPrepare(Handle<JSRegExp> re,
+ Handle<String> pattern,
+ JSRegExp::Flags flags,
+ int capture_count) {
+ // Initialize compiled code entries to null.
+ Factory::SetRegExpIrregexpData(re,
+ JSRegExp::IRREGEXP,
+ pattern,
+ flags,
+ capture_count);
+}
+
+
+Handle<Object> RegExpImpl::IrregexpExec(Handle<JSRegExp> jsregexp,
+ Handle<String> subject,
+ int previous_index,
+ Handle<JSArray> last_match_info) {
+ ASSERT_EQ(jsregexp->TypeTag(), JSRegExp::IRREGEXP);
+
+ // Prepare space for the return values.
+ int number_of_capture_registers =
+ (IrregexpNumberOfCaptures(FixedArray::cast(jsregexp->data())) + 1) * 2;
+ OffsetsVector offsets(number_of_capture_registers);
+
+#ifdef DEBUG
+ if (FLAG_trace_regexp_bytecodes) {
+ String* pattern = jsregexp->Pattern();
+ PrintF("\n\nRegexp match: /%s/\n\n", *(pattern->ToCString()));
+ PrintF("\n\nSubject string: '%s'\n\n", *(subject->ToCString()));
+ }
+#endif
+
+ if (!subject->IsFlat()) {
+ FlattenString(subject);
+ }
+
+ last_match_info->EnsureSize(number_of_capture_registers + kLastMatchOverhead);
+
+ int* offsets_vector = offsets.vector();
+ bool rc;
+
+ // Dispatch to the correct RegExp implementation.
+
+ Handle<String> original_subject = subject;
+ Handle<FixedArray> regexp(FixedArray::cast(jsregexp->data()));
+ if (UseNativeRegexp()) {
+#if V8_TARGET_ARCH_IA32
+ RegExpMacroAssemblerIA32::Result res;
+ do {
+ bool is_ascii = subject->IsAsciiRepresentation();
+ if (!EnsureCompiledIrregexp(jsregexp, is_ascii)) {
+ return Handle<Object>::null();
+ }
+ Handle<Code> code(RegExpImpl::IrregexpNativeCode(*regexp, is_ascii));
+ res = RegExpMacroAssemblerIA32::Match(code,
+ subject,
+ offsets_vector,
+ offsets.length(),
+ previous_index);
+ // If result is RETRY, the string have changed representation, and we
+ // must restart from scratch.
+ } while (res == RegExpMacroAssemblerIA32::RETRY);
+ if (res == RegExpMacroAssemblerIA32::EXCEPTION) {
+ ASSERT(Top::has_pending_exception());
+ return Handle<Object>::null();
+ }
+ ASSERT(res == RegExpMacroAssemblerIA32::SUCCESS
+ || res == RegExpMacroAssemblerIA32::FAILURE);
+
+ rc = (res == RegExpMacroAssemblerIA32::SUCCESS);
+#else
+ UNREACHABLE();
+#endif
+ } else {
+ bool is_ascii = subject->IsAsciiRepresentation();
+ if (!EnsureCompiledIrregexp(jsregexp, is_ascii)) {
+ return Handle<Object>::null();
+ }
+ for (int i = number_of_capture_registers - 1; i >= 0; i--) {
+ offsets_vector[i] = -1;
+ }
+ Handle<ByteArray> byte_codes(IrregexpByteCode(*regexp, is_ascii));
+
+ rc = IrregexpInterpreter::Match(byte_codes,
+ subject,
+ offsets_vector,
+ previous_index);
+ }
+
+ // Handle results from RegExp implementation.
+
+ if (!rc) {
+ return Factory::null_value();
+ }
+
+ FixedArray* array = last_match_info->elements();
+ ASSERT(array->length() >= number_of_capture_registers + kLastMatchOverhead);
+ // The captures come in (start, end+1) pairs.
+ SetLastCaptureCount(array, number_of_capture_registers);
+ SetLastSubject(array, *original_subject);
+ SetLastInput(array, *original_subject);
+ for (int i = 0; i < number_of_capture_registers; i+=2) {
+ SetCapture(array, i, offsets_vector[i]);
+ SetCapture(array, i + 1, offsets_vector[i + 1]);
+ }
+ return last_match_info;
+}
+
+
+// -------------------------------------------------------------------
+// Implementation of the Irregexp regular expression engine.
+//
+// The Irregexp regular expression engine is intended to be a complete
+// implementation of ECMAScript regular expressions. It generates either
+// bytecodes or native code.
+
+// The Irregexp regexp engine is structured in three steps.
+// 1) The parser generates an abstract syntax tree. See ast.cc.
+// 2) From the AST a node network is created. The nodes are all
+// subclasses of RegExpNode. The nodes represent states when
+// executing a regular expression. Several optimizations are
+// performed on the node network.
+// 3) From the nodes we generate either byte codes or native code
+// that can actually execute the regular expression (perform
+// the search). The code generation step is described in more
+// detail below.
+
+// Code generation.
+//
+// The nodes are divided into four main categories.
+// * Choice nodes
+// These represent places where the regular expression can
+// match in more than one way. For example on entry to an
+// alternation (foo|bar) or a repetition (*, +, ? or {}).
+// * Action nodes
+// These represent places where some action should be
+// performed. Examples include recording the current position
+// in the input string to a register (in order to implement
+// captures) or other actions on register for example in order
+// to implement the counters needed for {} repetitions.
+// * Matching nodes
+// These attempt to match some element part of the input string.
+// Examples of elements include character classes, plain strings
+// or back references.
+// * End nodes
+// These are used to implement the actions required on finding
+// a successful match or failing to find a match.
+//
+// The code generated (whether as byte codes or native code) maintains
+// some state as it runs. This consists of the following elements:
+//
+// * The capture registers. Used for string captures.
+// * Other registers. Used for counters etc.
+// * The current position.
+// * The stack of backtracking information. Used when a matching node
+// fails to find a match and needs to try an alternative.
+//
+// Conceptual regular expression execution model:
+//
+// There is a simple conceptual model of regular expression execution
+// which will be presented first. The actual code generated is a more
+// efficient simulation of the simple conceptual model:
+//
+// * Choice nodes are implemented as follows:
+// For each choice except the last {
+// push current position
+// push backtrack code location
+// <generate code to test for choice>
+// backtrack code location:
+// pop current position
+// }
+// <generate code to test for last choice>
+//
+// * Actions nodes are generated as follows
+// <push affected registers on backtrack stack>
+// <generate code to perform action>
+// push backtrack code location
+// <generate code to test for following nodes>
+// backtrack code location:
+// <pop affected registers to restore their state>
+// <pop backtrack location from stack and go to it>
+//
+// * Matching nodes are generated as follows:
+// if input string matches at current position
+// update current position
+// <generate code to test for following nodes>
+// else
+// <pop backtrack location from stack and go to it>
+//
+// Thus it can be seen that the current position is saved and restored
+// by the choice nodes, whereas the registers are saved and restored by
+// by the action nodes that manipulate them.
+//
+// The other interesting aspect of this model is that nodes are generated
+// at the point where they are needed by a recursive call to Emit(). If
+// the node has already been code generated then the Emit() call will
+// generate a jump to the previously generated code instead. In order to
+// limit recursion it is possible for the Emit() function to put the node
+// on a work list for later generation and instead generate a jump. The
+// destination of the jump is resolved later when the code is generated.
+//
+// Actual regular expression code generation.
+//
+// Code generation is actually more complicated than the above. In order
+// to improve the efficiency of the generated code some optimizations are
+// performed
+//
+// * Choice nodes have 1-character lookahead.
+// A choice node looks at the following character and eliminates some of
+// the choices immediately based on that character. This is not yet
+// implemented.
+// * Simple greedy loops store reduced backtracking information.
+// A quantifier like /.*foo/m will greedily match the whole input. It will
+// then need to backtrack to a point where it can match "foo". The naive
+// implementation of this would push each character position onto the
+// backtracking stack, then pop them off one by one. This would use space
+// proportional to the length of the input string. However since the "."
+// can only match in one way and always has a constant length (in this case
+// of 1) it suffices to store the current position on the top of the stack
+// once. Matching now becomes merely incrementing the current position and
+// backtracking becomes decrementing the current position and checking the
+// result against the stored current position. This is faster and saves
+// space.
+// * The current state is virtualized.
+// This is used to defer expensive operations until it is clear that they
+// are needed and to generate code for a node more than once, allowing
+// specialized an efficient versions of the code to be created. This is
+// explained in the section below.
+//
+// Execution state virtualization.
+//
+// Instead of emitting code, nodes that manipulate the state can record their
+// manipulation in an object called the Trace. The Trace object can record a
+// current position offset, an optional backtrack code location on the top of
+// the virtualized backtrack stack and some register changes. When a node is
+// to be emitted it can flush the Trace or update it. Flushing the Trace
+// will emit code to bring the actual state into line with the virtual state.
+// Avoiding flushing the state can postpone some work (eg updates of capture
+// registers). Postponing work can save time when executing the regular
+// expression since it may be found that the work never has to be done as a
+// failure to match can occur. In addition it is much faster to jump to a
+// known backtrack code location than it is to pop an unknown backtrack
+// location from the stack and jump there.
+//
+// The virtual state found in the Trace affects code generation. For example
+// the virtual state contains the difference between the actual current
+// position and the virtual current position, and matching code needs to use
+// this offset to attempt a match in the correct location of the input
+// string. Therefore code generated for a non-trivial trace is specialized
+// to that trace. The code generator therefore has the ability to generate
+// code for each node several times. In order to limit the size of the
+// generated code there is an arbitrary limit on how many specialized sets of
+// code may be generated for a given node. If the limit is reached, the
+// trace is flushed and a generic version of the code for a node is emitted.
+// This is subsequently used for that node. The code emitted for non-generic
+// trace is not recorded in the node and so it cannot currently be reused in
+// the event that code generation is requested for an identical trace.
+
+
+void RegExpTree::AppendToText(RegExpText* text) {
+ UNREACHABLE();
+}
+
+
+void RegExpAtom::AppendToText(RegExpText* text) {
+ text->AddElement(TextElement::Atom(this));
+}
+
+
+void RegExpCharacterClass::AppendToText(RegExpText* text) {
+ text->AddElement(TextElement::CharClass(this));
+}
+
+
+void RegExpText::AppendToText(RegExpText* text) {
+ for (int i = 0; i < elements()->length(); i++)
+ text->AddElement(elements()->at(i));
+}
+
+
+TextElement TextElement::Atom(RegExpAtom* atom) {
+ TextElement result = TextElement(ATOM);
+ result.data.u_atom = atom;
+ return result;
+}
+
+
+TextElement TextElement::CharClass(
+ RegExpCharacterClass* char_class) {
+ TextElement result = TextElement(CHAR_CLASS);
+ result.data.u_char_class = char_class;
+ return result;
+}
+
+
+int TextElement::length() {
+ if (type == ATOM) {
+ return data.u_atom->length();
+ } else {
+ ASSERT(type == CHAR_CLASS);
+ return 1;
+ }
+}
+
+
+DispatchTable* ChoiceNode::GetTable(bool ignore_case) {
+ if (table_ == NULL) {
+ table_ = new DispatchTable();
+ DispatchTableConstructor cons(table_, ignore_case);
+ cons.BuildTable(this);
+ }
+ return table_;
+}
+
+
+class RegExpCompiler {
+ public:
+ RegExpCompiler(int capture_count, bool ignore_case, bool is_ascii);
+
+ int AllocateRegister() {
+ if (next_register_ >= RegExpMacroAssembler::kMaxRegister) {
+ reg_exp_too_big_ = true;
+ return next_register_;
+ }
+ return next_register_++;
+ }
+
+ RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler,
+ RegExpNode* start,
+ int capture_count,
+ Handle<String> pattern);
+
+ inline void AddWork(RegExpNode* node) { work_list_->Add(node); }
+
+ static const int kImplementationOffset = 0;
+ static const int kNumberOfRegistersOffset = 0;
+ static const int kCodeOffset = 1;
+
+ RegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
+ EndNode* accept() { return accept_; }
+
+ static const int kMaxRecursion = 100;
+ inline int recursion_depth() { return recursion_depth_; }
+ inline void IncrementRecursionDepth() { recursion_depth_++; }
+ inline void DecrementRecursionDepth() { recursion_depth_--; }
+
+ void SetRegExpTooBig() { reg_exp_too_big_ = true; }
+
+ inline bool ignore_case() { return ignore_case_; }
+ inline bool ascii() { return ascii_; }
+
+ static const int kNoRegister = -1;
+ private:
+ EndNode* accept_;
+ int next_register_;
+ List<RegExpNode*>* work_list_;
+ int recursion_depth_;
+ RegExpMacroAssembler* macro_assembler_;
+ bool ignore_case_;
+ bool ascii_;
+ bool reg_exp_too_big_;
+};
+
+
+class RecursionCheck {
+ public:
+ explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) {
+ compiler->IncrementRecursionDepth();
+ }
+ ~RecursionCheck() { compiler_->DecrementRecursionDepth(); }
+ private:
+ RegExpCompiler* compiler_;
+};
+
+
+static RegExpEngine::CompilationResult IrregexpRegExpTooBig() {
+ return RegExpEngine::CompilationResult("RegExp too big");
+}
+
+
+// Attempts to compile the regexp using an Irregexp code generator. Returns
+// a fixed array or a null handle depending on whether it succeeded.
+RegExpCompiler::RegExpCompiler(int capture_count, bool ignore_case, bool ascii)
+ : next_register_(2 * (capture_count + 1)),
+ work_list_(NULL),
+ recursion_depth_(0),
+ ignore_case_(ignore_case),
+ ascii_(ascii),
+ reg_exp_too_big_(false) {
+ accept_ = new EndNode(EndNode::ACCEPT);
+ ASSERT(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister);
+}
+
+
+RegExpEngine::CompilationResult RegExpCompiler::Assemble(
+ RegExpMacroAssembler* macro_assembler,
+ RegExpNode* start,
+ int capture_count,
+ Handle<String> pattern) {
+#ifdef DEBUG
+ if (FLAG_trace_regexp_assembler)
+ macro_assembler_ = new RegExpMacroAssemblerTracer(macro_assembler);
+ else
+#endif
+ macro_assembler_ = macro_assembler;
+ List <RegExpNode*> work_list(0);
+ work_list_ = &work_list;
+ Label fail;
+ macro_assembler_->PushBacktrack(&fail);
+ Trace new_trace;
+ start->Emit(this, &new_trace);
+ macro_assembler_->Bind(&fail);
+ macro_assembler_->Fail();
+ while (!work_list.is_empty()) {
+ work_list.RemoveLast()->Emit(this, &new_trace);
+ }
+ if (reg_exp_too_big_) return IrregexpRegExpTooBig();
+
+ Handle<Object> code = macro_assembler_->GetCode(pattern);
+
+ work_list_ = NULL;
+#ifdef DEBUG
+ if (FLAG_trace_regexp_assembler) {
+ delete macro_assembler_;
+ }
+#endif
+ return RegExpEngine::CompilationResult(*code, next_register_);
+}
+
+
+bool Trace::DeferredAction::Mentions(int that) {
+ if (type() == ActionNode::CLEAR_CAPTURES) {
+ Interval range = static_cast<DeferredClearCaptures*>(this)->range();
+ return range.Contains(that);
+ } else {
+ return reg() == that;
+ }
+}
+
+
+bool Trace::mentions_reg(int reg) {
+ for (DeferredAction* action = actions_;
+ action != NULL;
+ action = action->next()) {
+ if (action->Mentions(reg))
+ return true;
+ }
+ return false;
+}
+
+
+bool Trace::GetStoredPosition(int reg, int* cp_offset) {
+ ASSERT_EQ(0, *cp_offset);
+ for (DeferredAction* action = actions_;
+ action != NULL;
+ action = action->next()) {
+ if (action->Mentions(reg)) {
+ if (action->type() == ActionNode::STORE_POSITION) {
+ *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset();
+ return true;
+ } else {
+ return false;
+ }
+ }
+ }
+ return false;
+}
+
+
+int Trace::FindAffectedRegisters(OutSet* affected_registers) {
+ int max_register = RegExpCompiler::kNoRegister;
+ for (DeferredAction* action = actions_;
+ action != NULL;
+ action = action->next()) {
+ if (action->type() == ActionNode::CLEAR_CAPTURES) {
+ Interval range = static_cast<DeferredClearCaptures*>(action)->range();
+ for (int i = range.from(); i <= range.to(); i++)
+ affected_registers->Set(i);
+ if (range.to() > max_register) max_register = range.to();
+ } else {
+ affected_registers->Set(action->reg());
+ if (action->reg() > max_register) max_register = action->reg();
+ }
+ }
+ return max_register;
+}
+
+
+void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
+ int max_register,
+ OutSet& registers_to_pop,
+ OutSet& registers_to_clear) {
+ for (int reg = max_register; reg >= 0; reg--) {
+ if (registers_to_pop.Get(reg)) assembler->PopRegister(reg);
+ else if (registers_to_clear.Get(reg)) {
+ int clear_to = reg;
+ while (reg > 0 && registers_to_clear.Get(reg - 1)) {
+ reg--;
+ }
+ assembler->ClearRegisters(reg, clear_to);
+ }
+ }
+}
+
+
+void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
+ int max_register,
+ OutSet& affected_registers,
+ OutSet* registers_to_pop,
+ OutSet* registers_to_clear) {
+ // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1.
+ const int push_limit = (assembler->stack_limit_slack() + 1) / 2;
+
+ for (int reg = 0; reg <= max_register; reg++) {
+ if (!affected_registers.Get(reg)) {
+ continue;
+ }
+ // Count pushes performed to force a stack limit check occasionally.
+ int pushes = 0;
+
+ // The chronologically first deferred action in the trace
+ // is used to infer the action needed to restore a register
+ // to its previous state (or not, if it's safe to ignore it).
+ enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR };
+ DeferredActionUndoType undo_action = IGNORE;
+
+ int value = 0;
+ bool absolute = false;
+ bool clear = false;
+ int store_position = -1;
+ // This is a little tricky because we are scanning the actions in reverse
+ // historical order (newest first).
+ for (DeferredAction* action = actions_;
+ action != NULL;
+ action = action->next()) {
+ if (action->Mentions(reg)) {
+ switch (action->type()) {
+ case ActionNode::SET_REGISTER: {
+ Trace::DeferredSetRegister* psr =
+ static_cast<Trace::DeferredSetRegister*>(action);
+ if (!absolute) {
+ value += psr->value();
+ absolute = true;
+ }
+ // SET_REGISTER is currently only used for newly introduced loop
+ // counters. They can have a significant previous value if they
+ // occour in a loop. TODO(lrn): Propagate this information, so
+ // we can set undo_action to IGNORE if we know there is no value to
+ // restore.
+ undo_action = RESTORE;
+ ASSERT_EQ(store_position, -1);
+ ASSERT(!clear);
+ break;
+ }
+ case ActionNode::INCREMENT_REGISTER:
+ if (!absolute) {
+ value++;
+ }
+ ASSERT_EQ(store_position, -1);
+ ASSERT(!clear);
+ undo_action = RESTORE;
+ break;
+ case ActionNode::STORE_POSITION: {
+ Trace::DeferredCapture* pc =
+ static_cast<Trace::DeferredCapture*>(action);
+ if (!clear && store_position == -1) {
+ store_position = pc->cp_offset();
+ }
+
+ // For captures we know that stores and clears alternate.
+ // Other register, are never cleared, and if the occur
+ // inside a loop, they might be assigned more than once.
+ if (reg <= 1) {
+ // Registers zero and one, aka "capture zero", is
+ // always set correctly if we succeed. There is no
+ // need to undo a setting on backtrack, because we
+ // will set it again or fail.
+ undo_action = IGNORE;
+ } else {
+ undo_action = pc->is_capture() ? CLEAR : RESTORE;
+ }
+ ASSERT(!absolute);
+ ASSERT_EQ(value, 0);
+ break;
+ }
+ case ActionNode::CLEAR_CAPTURES: {
+ // Since we're scanning in reverse order, if we've already
+ // set the position we have to ignore historically earlier
+ // clearing operations.
+ if (store_position == -1) {
+ clear = true;
+ }
+ undo_action = RESTORE;
+ ASSERT(!absolute);
+ ASSERT_EQ(value, 0);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+ }
+ // Prepare for the undo-action (e.g., push if it's going to be popped).
+ if (undo_action == RESTORE) {
+ pushes++;
+ RegExpMacroAssembler::StackCheckFlag stack_check =
+ RegExpMacroAssembler::kNoStackLimitCheck;
+ if (pushes == push_limit) {
+ stack_check = RegExpMacroAssembler::kCheckStackLimit;
+ pushes = 0;
+ }
+
+ assembler->PushRegister(reg, stack_check);
+ registers_to_pop->Set(reg);
+ } else if (undo_action == CLEAR) {
+ registers_to_clear->Set(reg);
+ }
+ // Perform the chronologically last action (or accumulated increment)
+ // for the register.
+ if (store_position != -1) {
+ assembler->WriteCurrentPositionToRegister(reg, store_position);
+ } else if (clear) {
+ assembler->ClearRegisters(reg, reg);
+ } else if (absolute) {
+ assembler->SetRegister(reg, value);
+ } else if (value != 0) {
+ assembler->AdvanceRegister(reg, value);
+ }
+ }
+}
+
+
+// This is called as we come into a loop choice node and some other tricky
+// nodes. It normalizes the state of the code generator to ensure we can
+// generate generic code.
+void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+
+ ASSERT(!is_trivial());
+
+ if (actions_ == NULL && backtrack() == NULL) {
+ // Here we just have some deferred cp advances to fix and we are back to
+ // a normal situation. We may also have to forget some information gained
+ // through a quick check that was already performed.
+ if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_);
+ // Create a new trivial state and generate the node with that.
+ Trace new_state;
+ successor->Emit(compiler, &new_state);
+ return;
+ }
+
+ // Generate deferred actions here along with code to undo them again.
+ OutSet affected_registers;
+
+ if (backtrack() != NULL) {
+ // Here we have a concrete backtrack location. These are set up by choice
+ // nodes and so they indicate that we have a deferred save of the current
+ // position which we may need to emit here.
+ assembler->PushCurrentPosition();
+ }
+
+ int max_register = FindAffectedRegisters(&affected_registers);
+ OutSet registers_to_pop;
+ OutSet registers_to_clear;
+ PerformDeferredActions(assembler,
+ max_register,
+ affected_registers,
+ &registers_to_pop,
+ &registers_to_clear);
+ if (cp_offset_ != 0) {
+ assembler->AdvanceCurrentPosition(cp_offset_);
+ }
+
+ // Create a new trivial state and generate the node with that.
+ Label undo;
+ assembler->PushBacktrack(&undo);
+ Trace new_state;
+ successor->Emit(compiler, &new_state);
+
+ // On backtrack we need to restore state.
+ assembler->Bind(&undo);
+ RestoreAffectedRegisters(assembler,
+ max_register,
+ registers_to_pop,
+ registers_to_clear);
+ if (backtrack() == NULL) {
+ assembler->Backtrack();
+ } else {
+ assembler->PopCurrentPosition();
+ assembler->GoTo(backtrack());
+ }
+}
+
+
+void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+
+ // Omit flushing the trace. We discard the entire stack frame anyway.
+
+ if (!label()->is_bound()) {
+ // We are completely independent of the trace, since we ignore it,
+ // so this code can be used as the generic version.
+ assembler->Bind(label());
+ }
+
+ // Throw away everything on the backtrack stack since the start
+ // of the negative submatch and restore the character position.
+ assembler->ReadCurrentPositionFromRegister(current_position_register_);
+ assembler->ReadStackPointerFromRegister(stack_pointer_register_);
+ if (clear_capture_count_ > 0) {
+ // Clear any captures that might have been performed during the success
+ // of the body of the negative look-ahead.
+ int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1;
+ assembler->ClearRegisters(clear_capture_start_, clear_capture_end);
+ }
+ // Now that we have unwound the stack we find at the top of the stack the
+ // backtrack that the BeginSubmatch node got.
+ assembler->Backtrack();
+}
+
+
+void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ return;
+ }
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ if (!label()->is_bound()) {
+ assembler->Bind(label());
+ }
+ switch (action_) {
+ case ACCEPT:
+ assembler->Succeed();
+ return;
+ case BACKTRACK:
+ assembler->GoTo(trace->backtrack());
+ return;
+ case NEGATIVE_SUBMATCH_SUCCESS:
+ // This case is handled in a different virtual method.
+ UNREACHABLE();
+ }
+ UNIMPLEMENTED();
+}
+
+
+void GuardedAlternative::AddGuard(Guard* guard) {
+ if (guards_ == NULL)
+ guards_ = new ZoneList<Guard*>(1);
+ guards_->Add(guard);
+}
+
+
+ActionNode* ActionNode::SetRegister(int reg,
+ int val,
+ RegExpNode* on_success) {
+ ActionNode* result = new ActionNode(SET_REGISTER, on_success);
+ result->data_.u_store_register.reg = reg;
+ result->data_.u_store_register.value = val;
+ return result;
+}
+
+
+ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) {
+ ActionNode* result = new ActionNode(INCREMENT_REGISTER, on_success);
+ result->data_.u_increment_register.reg = reg;
+ return result;
+}
+
+
+ActionNode* ActionNode::StorePosition(int reg,
+ bool is_capture,
+ RegExpNode* on_success) {
+ ActionNode* result = new ActionNode(STORE_POSITION, on_success);
+ result->data_.u_position_register.reg = reg;
+ result->data_.u_position_register.is_capture = is_capture;
+ return result;
+}
+
+
+ActionNode* ActionNode::ClearCaptures(Interval range,
+ RegExpNode* on_success) {
+ ActionNode* result = new ActionNode(CLEAR_CAPTURES, on_success);
+ result->data_.u_clear_captures.range_from = range.from();
+ result->data_.u_clear_captures.range_to = range.to();
+ return result;
+}
+
+
+ActionNode* ActionNode::BeginSubmatch(int stack_reg,
+ int position_reg,
+ RegExpNode* on_success) {
+ ActionNode* result = new ActionNode(BEGIN_SUBMATCH, on_success);
+ result->data_.u_submatch.stack_pointer_register = stack_reg;
+ result->data_.u_submatch.current_position_register = position_reg;
+ return result;
+}
+
+
+ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg,
+ int position_reg,
+ int clear_register_count,
+ int clear_register_from,
+ RegExpNode* on_success) {
+ ActionNode* result = new ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success);
+ result->data_.u_submatch.stack_pointer_register = stack_reg;
+ result->data_.u_submatch.current_position_register = position_reg;
+ result->data_.u_submatch.clear_register_count = clear_register_count;
+ result->data_.u_submatch.clear_register_from = clear_register_from;
+ return result;
+}
+
+
+ActionNode* ActionNode::EmptyMatchCheck(int start_register,
+ int repetition_register,
+ int repetition_limit,
+ RegExpNode* on_success) {
+ ActionNode* result = new ActionNode(EMPTY_MATCH_CHECK, on_success);
+ result->data_.u_empty_match_check.start_register = start_register;
+ result->data_.u_empty_match_check.repetition_register = repetition_register;
+ result->data_.u_empty_match_check.repetition_limit = repetition_limit;
+ return result;
+}
+
+
+#define DEFINE_ACCEPT(Type) \
+ void Type##Node::Accept(NodeVisitor* visitor) { \
+ visitor->Visit##Type(this); \
+ }
+FOR_EACH_NODE_TYPE(DEFINE_ACCEPT)
+#undef DEFINE_ACCEPT
+
+
+void LoopChoiceNode::Accept(NodeVisitor* visitor) {
+ visitor->VisitLoopChoice(this);
+}
+
+
+// -------------------------------------------------------------------
+// Emit code.
+
+
+void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
+ Guard* guard,
+ Trace* trace) {
+ switch (guard->op()) {
+ case Guard::LT:
+ ASSERT(!trace->mentions_reg(guard->reg()));
+ macro_assembler->IfRegisterGE(guard->reg(),
+ guard->value(),
+ trace->backtrack());
+ break;
+ case Guard::GEQ:
+ ASSERT(!trace->mentions_reg(guard->reg()));
+ macro_assembler->IfRegisterLT(guard->reg(),
+ guard->value(),
+ trace->backtrack());
+ break;
+ }
+}
+
+
+static unibrow::Mapping<unibrow::Ecma262UnCanonicalize> uncanonicalize;
+static unibrow::Mapping<unibrow::CanonicalizationRange> canonrange;
+
+
+// Returns the number of characters in the equivalence class, omitting those
+// that cannot occur in the source string because it is ASCII.
+static int GetCaseIndependentLetters(uc16 character,
+ bool ascii_subject,
+ unibrow::uchar* letters) {
+ int length = uncanonicalize.get(character, '\0', letters);
+ // Unibrow returns 0 or 1 for characters where case independependence is
+ // trivial.
+ if (length == 0) {
+ letters[0] = character;
+ length = 1;
+ }
+ if (!ascii_subject || character <= String::kMaxAsciiCharCode) {
+ return length;
+ }
+ // The standard requires that non-ASCII characters cannot have ASCII
+ // character codes in their equivalence class.
+ return 0;
+}
+
+
+static inline bool EmitSimpleCharacter(RegExpCompiler* compiler,
+ uc16 c,
+ Label* on_failure,
+ int cp_offset,
+ bool check,
+ bool preloaded) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ bool bound_checked = false;
+ if (!preloaded) {
+ assembler->LoadCurrentCharacter(
+ cp_offset,
+ on_failure,
+ check);
+ bound_checked = true;
+ }
+ assembler->CheckNotCharacter(c, on_failure);
+ return bound_checked;
+}
+
+
+// Only emits non-letters (things that don't have case). Only used for case
+// independent matches.
+static inline bool EmitAtomNonLetter(RegExpCompiler* compiler,
+ uc16 c,
+ Label* on_failure,
+ int cp_offset,
+ bool check,
+ bool preloaded) {
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ bool ascii = compiler->ascii();
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ int length = GetCaseIndependentLetters(c, ascii, chars);
+ if (length < 1) {
+ // This can't match. Must be an ASCII subject and a non-ASCII character.
+ // We do not need to do anything since the ASCII pass already handled this.
+ return false; // Bounds not checked.
+ }
+ bool checked = false;
+ // We handle the length > 1 case in a later pass.
+ if (length == 1) {
+ if (ascii && c > String::kMaxAsciiCharCodeU) {
+ // Can't match - see above.
+ return false; // Bounds not checked.
+ }
+ if (!preloaded) {
+ macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
+ checked = check;
+ }
+ macro_assembler->CheckNotCharacter(c, on_failure);
+ }
+ return checked;
+}
+
+
+static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
+ bool ascii,
+ uc16 c1,
+ uc16 c2,
+ Label* on_failure) {
+ uc16 char_mask;
+ if (ascii) {
+ char_mask = String::kMaxAsciiCharCode;
+ } else {
+ char_mask = String::kMaxUC16CharCode;
+ }
+ uc16 exor = c1 ^ c2;
+ // Check whether exor has only one bit set.
+ if (((exor - 1) & exor) == 0) {
+ // If c1 and c2 differ only by one bit.
+ // Ecma262UnCanonicalize always gives the highest number last.
+ ASSERT(c2 > c1);
+ uc16 mask = char_mask ^ exor;
+ macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure);
+ return true;
+ }
+ ASSERT(c2 > c1);
+ uc16 diff = c2 - c1;
+ if (((diff - 1) & diff) == 0 && c1 >= diff) {
+ // If the characters differ by 2^n but don't differ by one bit then
+ // subtract the difference from the found character, then do the or
+ // trick. We avoid the theoretical case where negative numbers are
+ // involved in order to simplify code generation.
+ uc16 mask = char_mask ^ diff;
+ macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff,
+ diff,
+ mask,
+ on_failure);
+ return true;
+ }
+ return false;
+}
+
+
+typedef bool EmitCharacterFunction(RegExpCompiler* compiler,
+ uc16 c,
+ Label* on_failure,
+ int cp_offset,
+ bool check,
+ bool preloaded);
+
+// Only emits letters (things that have case). Only used for case independent
+// matches.
+static inline bool EmitAtomLetter(RegExpCompiler* compiler,
+ uc16 c,
+ Label* on_failure,
+ int cp_offset,
+ bool check,
+ bool preloaded) {
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ bool ascii = compiler->ascii();
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ int length = GetCaseIndependentLetters(c, ascii, chars);
+ if (length <= 1) return false;
+ // We may not need to check against the end of the input string
+ // if this character lies before a character that matched.
+ if (!preloaded) {
+ macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
+ }
+ Label ok;
+ ASSERT(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4);
+ switch (length) {
+ case 2: {
+ if (ShortCutEmitCharacterPair(macro_assembler,
+ ascii,
+ chars[0],
+ chars[1],
+ on_failure)) {
+ } else {
+ macro_assembler->CheckCharacter(chars[0], &ok);
+ macro_assembler->CheckNotCharacter(chars[1], on_failure);
+ macro_assembler->Bind(&ok);
+ }
+ break;
+ }
+ case 4:
+ macro_assembler->CheckCharacter(chars[3], &ok);
+ // Fall through!
+ case 3:
+ macro_assembler->CheckCharacter(chars[0], &ok);
+ macro_assembler->CheckCharacter(chars[1], &ok);
+ macro_assembler->CheckNotCharacter(chars[2], on_failure);
+ macro_assembler->Bind(&ok);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ return true;
+}
+
+
+static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
+ RegExpCharacterClass* cc,
+ bool ascii,
+ Label* on_failure,
+ int cp_offset,
+ bool check_offset,
+ bool preloaded) {
+ if (cc->is_standard() &&
+ macro_assembler->CheckSpecialCharacterClass(cc->standard_type(),
+ cp_offset,
+ check_offset,
+ on_failure)) {
+ return;
+ }
+
+ ZoneList<CharacterRange>* ranges = cc->ranges();
+ int max_char;
+ if (ascii) {
+ max_char = String::kMaxAsciiCharCode;
+ } else {
+ max_char = String::kMaxUC16CharCode;
+ }
+
+ Label success;
+
+ Label* char_is_in_class =
+ cc->is_negated() ? on_failure : &success;
+
+ int range_count = ranges->length();
+
+ int last_valid_range = range_count - 1;
+ while (last_valid_range >= 0) {
+ CharacterRange& range = ranges->at(last_valid_range);
+ if (range.from() <= max_char) {
+ break;
+ }
+ last_valid_range--;
+ }
+
+ if (last_valid_range < 0) {
+ if (!cc->is_negated()) {
+ // TODO(plesner): We can remove this when the node level does our
+ // ASCII optimizations for us.
+ macro_assembler->GoTo(on_failure);
+ }
+ if (check_offset) {
+ macro_assembler->CheckPosition(cp_offset, on_failure);
+ }
+ return;
+ }
+
+ if (last_valid_range == 0 &&
+ !cc->is_negated() &&
+ ranges->at(0).IsEverything(max_char)) {
+ // This is a common case hit by non-anchored expressions.
+ if (check_offset) {
+ macro_assembler->CheckPosition(cp_offset, on_failure);
+ }
+ return;
+ }
+
+ if (!preloaded) {
+ macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset);
+ }
+
+ for (int i = 0; i < last_valid_range; i++) {
+ CharacterRange& range = ranges->at(i);
+ Label next_range;
+ uc16 from = range.from();
+ uc16 to = range.to();
+ if (from > max_char) {
+ continue;
+ }
+ if (to > max_char) to = max_char;
+ if (to == from) {
+ macro_assembler->CheckCharacter(to, char_is_in_class);
+ } else {
+ if (from != 0) {
+ macro_assembler->CheckCharacterLT(from, &next_range);
+ }
+ if (to != max_char) {
+ macro_assembler->CheckCharacterLT(to + 1, char_is_in_class);
+ } else {
+ macro_assembler->GoTo(char_is_in_class);
+ }
+ }
+ macro_assembler->Bind(&next_range);
+ }
+
+ CharacterRange& range = ranges->at(last_valid_range);
+ uc16 from = range.from();
+ uc16 to = range.to();
+
+ if (to > max_char) to = max_char;
+ ASSERT(to >= from);
+
+ if (to == from) {
+ if (cc->is_negated()) {
+ macro_assembler->CheckCharacter(to, on_failure);
+ } else {
+ macro_assembler->CheckNotCharacter(to, on_failure);
+ }
+ } else {
+ if (from != 0) {
+ if (cc->is_negated()) {
+ macro_assembler->CheckCharacterLT(from, &success);
+ } else {
+ macro_assembler->CheckCharacterLT(from, on_failure);
+ }
+ }
+ if (to != String::kMaxUC16CharCode) {
+ if (cc->is_negated()) {
+ macro_assembler->CheckCharacterLT(to + 1, on_failure);
+ } else {
+ macro_assembler->CheckCharacterGT(to, on_failure);
+ }
+ } else {
+ if (cc->is_negated()) {
+ macro_assembler->GoTo(on_failure);
+ }
+ }
+ }
+ macro_assembler->Bind(&success);
+}
+
+
+RegExpNode::~RegExpNode() {
+}
+
+
+RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
+ Trace* trace) {
+ // If we are generating a greedy loop then don't stop and don't reuse code.
+ if (trace->stop_node() != NULL) {
+ return CONTINUE;
+ }
+
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ if (trace->is_trivial()) {
+ if (label_.is_bound()) {
+ // We are being asked to generate a generic version, but that's already
+ // been done so just go to it.
+ macro_assembler->GoTo(&label_);
+ return DONE;
+ }
+ if (compiler->recursion_depth() >= RegExpCompiler::kMaxRecursion) {
+ // To avoid too deep recursion we push the node to the work queue and just
+ // generate a goto here.
+ compiler->AddWork(this);
+ macro_assembler->GoTo(&label_);
+ return DONE;
+ }
+ // Generate generic version of the node and bind the label for later use.
+ macro_assembler->Bind(&label_);
+ return CONTINUE;
+ }
+
+ // We are being asked to make a non-generic version. Keep track of how many
+ // non-generic versions we generate so as not to overdo it.
+ trace_count_++;
+ if (FLAG_regexp_optimization &&
+ trace_count_ < kMaxCopiesCodeGenerated &&
+ compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion) {
+ return CONTINUE;
+ }
+
+ // If we get here code has been generated for this node too many times or
+ // recursion is too deep. Time to switch to a generic version. The code for
+ // generic versions above can handle deep recursion properly.
+ trace->Flush(compiler, this);
+ return DONE;
+}
+
+
+int ActionNode::EatsAtLeast(int still_to_find, int recursion_depth) {
+ if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0;
+ if (type_ == POSITIVE_SUBMATCH_SUCCESS) return 0; // Rewinds input!
+ return on_success()->EatsAtLeast(still_to_find, recursion_depth + 1);
+}
+
+
+int AssertionNode::EatsAtLeast(int still_to_find, int recursion_depth) {
+ if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0;
+ return on_success()->EatsAtLeast(still_to_find, recursion_depth + 1);
+}
+
+
+int BackReferenceNode::EatsAtLeast(int still_to_find, int recursion_depth) {
+ if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0;
+ return on_success()->EatsAtLeast(still_to_find, recursion_depth + 1);
+}
+
+
+int TextNode::EatsAtLeast(int still_to_find, int recursion_depth) {
+ int answer = Length();
+ if (answer >= still_to_find) return answer;
+ if (recursion_depth > RegExpCompiler::kMaxRecursion) return answer;
+ return answer + on_success()->EatsAtLeast(still_to_find - answer,
+ recursion_depth + 1);
+}
+
+
+int NegativeLookaheadChoiceNode:: EatsAtLeast(int still_to_find,
+ int recursion_depth) {
+ if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0;
+ // Alternative 0 is the negative lookahead, alternative 1 is what comes
+ // afterwards.
+ RegExpNode* node = alternatives_->at(1).node();
+ return node->EatsAtLeast(still_to_find, recursion_depth + 1);
+}
+
+
+void NegativeLookaheadChoiceNode::GetQuickCheckDetails(
+ QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int filled_in,
+ bool not_at_start) {
+ // Alternative 0 is the negative lookahead, alternative 1 is what comes
+ // afterwards.
+ RegExpNode* node = alternatives_->at(1).node();
+ return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start);
+}
+
+
+int ChoiceNode::EatsAtLeastHelper(int still_to_find,
+ int recursion_depth,
+ RegExpNode* ignore_this_node) {
+ if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0;
+ int min = 100;
+ int choice_count = alternatives_->length();
+ for (int i = 0; i < choice_count; i++) {
+ RegExpNode* node = alternatives_->at(i).node();
+ if (node == ignore_this_node) continue;
+ int node_eats_at_least = node->EatsAtLeast(still_to_find,
+ recursion_depth + 1);
+ if (node_eats_at_least < min) min = node_eats_at_least;
+ }
+ return min;
+}
+
+
+int LoopChoiceNode::EatsAtLeast(int still_to_find, int recursion_depth) {
+ return EatsAtLeastHelper(still_to_find, recursion_depth, loop_node_);
+}
+
+
+int ChoiceNode::EatsAtLeast(int still_to_find, int recursion_depth) {
+ return EatsAtLeastHelper(still_to_find, recursion_depth, NULL);
+}
+
+
+// Takes the left-most 1-bit and smears it out, setting all bits to its right.
+static inline uint32_t SmearBitsRight(uint32_t v) {
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ return v;
+}
+
+
+bool QuickCheckDetails::Rationalize(bool asc) {
+ bool found_useful_op = false;
+ uint32_t char_mask;
+ if (asc) {
+ char_mask = String::kMaxAsciiCharCode;
+ } else {
+ char_mask = String::kMaxUC16CharCode;
+ }
+ mask_ = 0;
+ value_ = 0;
+ int char_shift = 0;
+ for (int i = 0; i < characters_; i++) {
+ Position* pos = &positions_[i];
+ if ((pos->mask & String::kMaxAsciiCharCode) != 0) {
+ found_useful_op = true;
+ }
+ mask_ |= (pos->mask & char_mask) << char_shift;
+ value_ |= (pos->value & char_mask) << char_shift;
+ char_shift += asc ? 8 : 16;
+ }
+ return found_useful_op;
+}
+
+
+bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
+ Trace* trace,
+ bool preload_has_checked_bounds,
+ Label* on_possible_success,
+ QuickCheckDetails* details,
+ bool fall_through_on_failure) {
+ if (details->characters() == 0) return false;
+ GetQuickCheckDetails(details, compiler, 0, trace->at_start() == Trace::FALSE);
+ if (details->cannot_match()) return false;
+ if (!details->Rationalize(compiler->ascii())) return false;
+ uint32_t mask = details->mask();
+ uint32_t value = details->value();
+
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+
+ if (trace->characters_preloaded() != details->characters()) {
+ assembler->LoadCurrentCharacter(trace->cp_offset(),
+ trace->backtrack(),
+ !preload_has_checked_bounds,
+ details->characters());
+ }
+
+
+ bool need_mask = true;
+
+ if (details->characters() == 1) {
+ // If number of characters preloaded is 1 then we used a byte or 16 bit
+ // load so the value is already masked down.
+ uint32_t char_mask;
+ if (compiler->ascii()) {
+ char_mask = String::kMaxAsciiCharCode;
+ } else {
+ char_mask = String::kMaxUC16CharCode;
+ }
+ if ((mask & char_mask) == char_mask) need_mask = false;
+ mask &= char_mask;
+ } else {
+ // For 2-character preloads in ASCII mode we also use a 16 bit load with
+ // zero extend.
+ if (details->characters() == 2 && compiler->ascii()) {
+ if ((mask & 0xffff) == 0xffff) need_mask = false;
+ } else {
+ if (mask == 0xffffffff) need_mask = false;
+ }
+ }
+
+ if (fall_through_on_failure) {
+ if (need_mask) {
+ assembler->CheckCharacterAfterAnd(value, mask, on_possible_success);
+ } else {
+ assembler->CheckCharacter(value, on_possible_success);
+ }
+ } else {
+ if (need_mask) {
+ assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack());
+ } else {
+ assembler->CheckNotCharacter(value, trace->backtrack());
+ }
+ }
+ return true;
+}
+
+
+// Here is the meat of GetQuickCheckDetails (see also the comment on the
+// super-class in the .h file).
+//
+// We iterate along the text object, building up for each character a
+// mask and value that can be used to test for a quick failure to match.
+// The masks and values for the positions will be combined into a single
+// machine word for the current character width in order to be used in
+// generating a quick check.
+void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start) {
+ ASSERT(characters_filled_in < details->characters());
+ int characters = details->characters();
+ int char_mask;
+ int char_shift;
+ if (compiler->ascii()) {
+ char_mask = String::kMaxAsciiCharCode;
+ char_shift = 8;
+ } else {
+ char_mask = String::kMaxUC16CharCode;
+ char_shift = 16;
+ }
+ for (int k = 0; k < elms_->length(); k++) {
+ TextElement elm = elms_->at(k);
+ if (elm.type == TextElement::ATOM) {
+ Vector<const uc16> quarks = elm.data.u_atom->data();
+ for (int i = 0; i < characters && i < quarks.length(); i++) {
+ QuickCheckDetails::Position* pos =
+ details->positions(characters_filled_in);
+ uc16 c = quarks[i];
+ if (c > char_mask) {
+ // If we expect a non-ASCII character from an ASCII string,
+ // there is no way we can match. Not even case independent
+ // matching can turn an ASCII character into non-ASCII or
+ // vice versa.
+ details->set_cannot_match();
+ pos->determines_perfectly = false;
+ return;
+ }
+ if (compiler->ignore_case()) {
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ int length = GetCaseIndependentLetters(c, compiler->ascii(), chars);
+ ASSERT(length != 0); // Can only happen if c > char_mask (see above).
+ if (length == 1) {
+ // This letter has no case equivalents, so it's nice and simple
+ // and the mask-compare will determine definitely whether we have
+ // a match at this character position.
+ pos->mask = char_mask;
+ pos->value = c;
+ pos->determines_perfectly = true;
+ } else {
+ uint32_t common_bits = char_mask;
+ uint32_t bits = chars[0];
+ for (int j = 1; j < length; j++) {
+ uint32_t differing_bits = ((chars[j] & common_bits) ^ bits);
+ common_bits ^= differing_bits;
+ bits &= common_bits;
+ }
+ // If length is 2 and common bits has only one zero in it then
+ // our mask and compare instruction will determine definitely
+ // whether we have a match at this character position. Otherwise
+ // it can only be an approximate check.
+ uint32_t one_zero = (common_bits | ~char_mask);
+ if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) {
+ pos->determines_perfectly = true;
+ }
+ pos->mask = common_bits;
+ pos->value = bits;
+ }
+ } else {
+ // Don't ignore case. Nice simple case where the mask-compare will
+ // determine definitely whether we have a match at this character
+ // position.
+ pos->mask = char_mask;
+ pos->value = c;
+ pos->determines_perfectly = true;
+ }
+ characters_filled_in++;
+ ASSERT(characters_filled_in <= details->characters());
+ if (characters_filled_in == details->characters()) {
+ return;
+ }
+ }
+ } else {
+ QuickCheckDetails::Position* pos =
+ details->positions(characters_filled_in);
+ RegExpCharacterClass* tree = elm.data.u_char_class;
+ ZoneList<CharacterRange>* ranges = tree->ranges();
+ if (tree->is_negated()) {
+ // A quick check uses multi-character mask and compare. There is no
+ // useful way to incorporate a negative char class into this scheme
+ // so we just conservatively create a mask and value that will always
+ // succeed.
+ pos->mask = 0;
+ pos->value = 0;
+ } else {
+ int first_range = 0;
+ while (ranges->at(first_range).from() > char_mask) {
+ first_range++;
+ if (first_range == ranges->length()) {
+ details->set_cannot_match();
+ pos->determines_perfectly = false;
+ return;
+ }
+ }
+ CharacterRange range = ranges->at(first_range);
+ uc16 from = range.from();
+ uc16 to = range.to();
+ if (to > char_mask) {
+ to = char_mask;
+ }
+ uint32_t differing_bits = (from ^ to);
+ // A mask and compare is only perfect if the differing bits form a
+ // number like 00011111 with one single block of trailing 1s.
+ if ((differing_bits & (differing_bits + 1)) == 0) {
+ pos->determines_perfectly = true;
+ }
+ uint32_t common_bits = ~SmearBitsRight(differing_bits);
+ uint32_t bits = (from & common_bits);
+ for (int i = first_range + 1; i < ranges->length(); i++) {
+ CharacterRange range = ranges->at(i);
+ uc16 from = range.from();
+ uc16 to = range.to();
+ if (from > char_mask) continue;
+ if (to > char_mask) to = char_mask;
+ // Here we are combining more ranges into the mask and compare
+ // value. With each new range the mask becomes more sparse and
+ // so the chances of a false positive rise. A character class
+ // with multiple ranges is assumed never to be equivalent to a
+ // mask and compare operation.
+ pos->determines_perfectly = false;
+ uint32_t new_common_bits = (from ^ to);
+ new_common_bits = ~SmearBitsRight(new_common_bits);
+ common_bits &= new_common_bits;
+ bits &= new_common_bits;
+ uint32_t differing_bits = (from & common_bits) ^ bits;
+ common_bits ^= differing_bits;
+ bits &= common_bits;
+ }
+ pos->mask = common_bits;
+ pos->value = bits;
+ }
+ characters_filled_in++;
+ ASSERT(characters_filled_in <= details->characters());
+ if (characters_filled_in == details->characters()) {
+ return;
+ }
+ }
+ }
+ ASSERT(characters_filled_in != details->characters());
+ on_success()-> GetQuickCheckDetails(details,
+ compiler,
+ characters_filled_in,
+ true);
+}
+
+
+void QuickCheckDetails::Clear() {
+ for (int i = 0; i < characters_; i++) {
+ positions_[i].mask = 0;
+ positions_[i].value = 0;
+ positions_[i].determines_perfectly = false;
+ }
+ characters_ = 0;
+}
+
+
+void QuickCheckDetails::Advance(int by, bool ascii) {
+ ASSERT(by >= 0);
+ if (by >= characters_) {
+ Clear();
+ return;
+ }
+ for (int i = 0; i < characters_ - by; i++) {
+ positions_[i] = positions_[by + i];
+ }
+ for (int i = characters_ - by; i < characters_; i++) {
+ positions_[i].mask = 0;
+ positions_[i].value = 0;
+ positions_[i].determines_perfectly = false;
+ }
+ characters_ -= by;
+ // We could change mask_ and value_ here but we would never advance unless
+ // they had already been used in a check and they won't be used again because
+ // it would gain us nothing. So there's no point.
+}
+
+
+void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) {
+ ASSERT(characters_ == other->characters_);
+ if (other->cannot_match_) {
+ return;
+ }
+ if (cannot_match_) {
+ *this = *other;
+ return;
+ }
+ for (int i = from_index; i < characters_; i++) {
+ QuickCheckDetails::Position* pos = positions(i);
+ QuickCheckDetails::Position* other_pos = other->positions(i);
+ if (pos->mask != other_pos->mask ||
+ pos->value != other_pos->value ||
+ !other_pos->determines_perfectly) {
+ // Our mask-compare operation will be approximate unless we have the
+ // exact same operation on both sides of the alternation.
+ pos->determines_perfectly = false;
+ }
+ pos->mask &= other_pos->mask;
+ pos->value &= pos->mask;
+ other_pos->value &= pos->mask;
+ uc16 differing_bits = (pos->value ^ other_pos->value);
+ pos->mask &= ~differing_bits;
+ pos->value &= pos->mask;
+ }
+}
+
+
+class VisitMarker {
+ public:
+ explicit VisitMarker(NodeInfo* info) : info_(info) {
+ ASSERT(!info->visited);
+ info->visited = true;
+ }
+ ~VisitMarker() {
+ info_->visited = false;
+ }
+ private:
+ NodeInfo* info_;
+};
+
+
+void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start) {
+ if (body_can_be_zero_length_ || info()->visited) return;
+ VisitMarker marker(info());
+ return ChoiceNode::GetQuickCheckDetails(details,
+ compiler,
+ characters_filled_in,
+ not_at_start);
+}
+
+
+void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start) {
+ not_at_start = (not_at_start || not_at_start_);
+ int choice_count = alternatives_->length();
+ ASSERT(choice_count > 0);
+ alternatives_->at(0).node()->GetQuickCheckDetails(details,
+ compiler,
+ characters_filled_in,
+ not_at_start);
+ for (int i = 1; i < choice_count; i++) {
+ QuickCheckDetails new_details(details->characters());
+ RegExpNode* node = alternatives_->at(i).node();
+ node->GetQuickCheckDetails(&new_details, compiler,
+ characters_filled_in,
+ not_at_start);
+ // Here we merge the quick match details of the two branches.
+ details->Merge(&new_details, characters_filled_in);
+ }
+}
+
+
+// Check for [0-9A-Z_a-z].
+static void EmitWordCheck(RegExpMacroAssembler* assembler,
+ Label* word,
+ Label* non_word,
+ bool fall_through_on_word) {
+ assembler->CheckCharacterGT('z', non_word);
+ assembler->CheckCharacterLT('0', non_word);
+ assembler->CheckCharacterGT('a' - 1, word);
+ assembler->CheckCharacterLT('9' + 1, word);
+ assembler->CheckCharacterLT('A', non_word);
+ assembler->CheckCharacterLT('Z' + 1, word);
+ if (fall_through_on_word) {
+ assembler->CheckNotCharacter('_', non_word);
+ } else {
+ assembler->CheckCharacter('_', word);
+ }
+}
+
+
+// Emit the code to check for a ^ in multiline mode (1-character lookbehind
+// that matches newline or the start of input).
+static void EmitHat(RegExpCompiler* compiler,
+ RegExpNode* on_success,
+ Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ // We will be loading the previous character into the current character
+ // register.
+ Trace new_trace(*trace);
+ new_trace.InvalidateCurrentCharacter();
+
+ Label ok;
+ if (new_trace.cp_offset() == 0) {
+ // The start of input counts as a newline in this context, so skip to
+ // ok if we are at the start.
+ assembler->CheckAtStart(&ok);
+ }
+ // We already checked that we are not at the start of input so it must be
+ // OK to load the previous character.
+ assembler->LoadCurrentCharacter(new_trace.cp_offset() -1,
+ new_trace.backtrack(),
+ false);
+ // Newline means \n, \r, 0x2028 or 0x2029.
+ if (!compiler->ascii()) {
+ assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok);
+ }
+ assembler->CheckCharacter('\n', &ok);
+ assembler->CheckNotCharacter('\r', new_trace.backtrack());
+ assembler->Bind(&ok);
+ on_success->Emit(compiler, &new_trace);
+}
+
+
+// Emit the code to handle \b and \B (word-boundary or non-word-boundary).
+static void EmitBoundaryCheck(AssertionNode::AssertionNodeType type,
+ RegExpCompiler* compiler,
+ RegExpNode* on_success,
+ Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ Label before_non_word;
+ Label before_word;
+ if (trace->characters_preloaded() != 1) {
+ assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word);
+ }
+ // Fall through on non-word.
+ EmitWordCheck(assembler, &before_word, &before_non_word, false);
+
+ // We will be loading the previous character into the current character
+ // register.
+ Trace new_trace(*trace);
+ new_trace.InvalidateCurrentCharacter();
+
+ Label ok;
+ Label* boundary;
+ Label* not_boundary;
+ if (type == AssertionNode::AT_BOUNDARY) {
+ boundary = &ok;
+ not_boundary = new_trace.backtrack();
+ } else {
+ not_boundary = &ok;
+ boundary = new_trace.backtrack();
+ }
+
+ // Next character is not a word character.
+ assembler->Bind(&before_non_word);
+ if (new_trace.cp_offset() == 0) {
+ // The start of input counts as a non-word character, so the question is
+ // decided if we are at the start.
+ assembler->CheckAtStart(not_boundary);
+ }
+ // We already checked that we are not at the start of input so it must be
+ // OK to load the previous character.
+ assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1,
+ &ok, // Unused dummy label in this call.
+ false);
+ // Fall through on non-word.
+ EmitWordCheck(assembler, boundary, not_boundary, false);
+ assembler->GoTo(not_boundary);
+
+ // Next character is a word character.
+ assembler->Bind(&before_word);
+ if (new_trace.cp_offset() == 0) {
+ // The start of input counts as a non-word character, so the question is
+ // decided if we are at the start.
+ assembler->CheckAtStart(boundary);
+ }
+ // We already checked that we are not at the start of input so it must be
+ // OK to load the previous character.
+ assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1,
+ &ok, // Unused dummy label in this call.
+ false);
+ bool fall_through_on_word = (type == AssertionNode::AT_NON_BOUNDARY);
+ EmitWordCheck(assembler, not_boundary, boundary, fall_through_on_word);
+
+ assembler->Bind(&ok);
+
+ on_success->Emit(compiler, &new_trace);
+}
+
+
+void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int filled_in,
+ bool not_at_start) {
+ if (type_ == AT_START && not_at_start) {
+ details->set_cannot_match();
+ return;
+ }
+ return on_success()->GetQuickCheckDetails(details,
+ compiler,
+ filled_in,
+ not_at_start);
+}
+
+
+void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ switch (type_) {
+ case AT_END: {
+ Label ok;
+ assembler->CheckPosition(trace->cp_offset(), &ok);
+ assembler->GoTo(trace->backtrack());
+ assembler->Bind(&ok);
+ break;
+ }
+ case AT_START: {
+ if (trace->at_start() == Trace::FALSE) {
+ assembler->GoTo(trace->backtrack());
+ return;
+ }
+ if (trace->at_start() == Trace::UNKNOWN) {
+ assembler->CheckNotAtStart(trace->backtrack());
+ Trace at_start_trace = *trace;
+ at_start_trace.set_at_start(true);
+ on_success()->Emit(compiler, &at_start_trace);
+ return;
+ }
+ }
+ break;
+ case AFTER_NEWLINE:
+ EmitHat(compiler, on_success(), trace);
+ return;
+ case AT_NON_BOUNDARY:
+ case AT_BOUNDARY:
+ EmitBoundaryCheck(type_, compiler, on_success(), trace);
+ return;
+ }
+ on_success()->Emit(compiler, trace);
+}
+
+
+static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) {
+ if (quick_check == NULL) return false;
+ if (offset >= quick_check->characters()) return false;
+ return quick_check->positions(offset)->determines_perfectly;
+}
+
+
+static void UpdateBoundsCheck(int index, int* checked_up_to) {
+ if (index > *checked_up_to) {
+ *checked_up_to = index;
+ }
+}
+
+
+// We call this repeatedly to generate code for each pass over the text node.
+// The passes are in increasing order of difficulty because we hope one
+// of the first passes will fail in which case we are saved the work of the
+// later passes. for example for the case independent regexp /%[asdfghjkl]a/
+// we will check the '%' in the first pass, the case independent 'a' in the
+// second pass and the character class in the last pass.
+//
+// The passes are done from right to left, so for example to test for /bar/
+// we will first test for an 'r' with offset 2, then an 'a' with offset 1
+// and then a 'b' with offset 0. This means we can avoid the end-of-input
+// bounds check most of the time. In the example we only need to check for
+// end-of-input when loading the putative 'r'.
+//
+// A slight complication involves the fact that the first character may already
+// be fetched into a register by the previous node. In this case we want to
+// do the test for that character first. We do this in separate passes. The
+// 'preloaded' argument indicates that we are doing such a 'pass'. If such a
+// pass has been performed then subsequent passes will have true in
+// first_element_checked to indicate that that character does not need to be
+// checked again.
+//
+// In addition to all this we are passed a Trace, which can
+// contain an AlternativeGeneration object. In this AlternativeGeneration
+// object we can see details of any quick check that was already passed in
+// order to get to the code we are now generating. The quick check can involve
+// loading characters, which means we do not need to recheck the bounds
+// up to the limit the quick check already checked. In addition the quick
+// check can have involved a mask and compare operation which may simplify
+// or obviate the need for further checks at some character positions.
+void TextNode::TextEmitPass(RegExpCompiler* compiler,
+ TextEmitPassType pass,
+ bool preloaded,
+ Trace* trace,
+ bool first_element_checked,
+ int* checked_up_to) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ bool ascii = compiler->ascii();
+ Label* backtrack = trace->backtrack();
+ QuickCheckDetails* quick_check = trace->quick_check_performed();
+ int element_count = elms_->length();
+ for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
+ TextElement elm = elms_->at(i);
+ int cp_offset = trace->cp_offset() + elm.cp_offset;
+ if (elm.type == TextElement::ATOM) {
+ Vector<const uc16> quarks = elm.data.u_atom->data();
+ for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) {
+ if (first_element_checked && i == 0 && j == 0) continue;
+ if (DeterminedAlready(quick_check, elm.cp_offset + j)) continue;
+ EmitCharacterFunction* emit_function = NULL;
+ switch (pass) {
+ case NON_ASCII_MATCH:
+ ASSERT(ascii);
+ if (quarks[j] > String::kMaxAsciiCharCode) {
+ assembler->GoTo(backtrack);
+ return;
+ }
+ break;
+ case NON_LETTER_CHARACTER_MATCH:
+ emit_function = &EmitAtomNonLetter;
+ break;
+ case SIMPLE_CHARACTER_MATCH:
+ emit_function = &EmitSimpleCharacter;
+ break;
+ case CASE_CHARACTER_MATCH:
+ emit_function = &EmitAtomLetter;
+ break;
+ default:
+ break;
+ }
+ if (emit_function != NULL) {
+ bool bound_checked = emit_function(compiler,
+ quarks[j],
+ backtrack,
+ cp_offset + j,
+ *checked_up_to < cp_offset + j,
+ preloaded);
+ if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to);
+ }
+ }
+ } else {
+ ASSERT_EQ(elm.type, TextElement::CHAR_CLASS);
+ if (pass == CHARACTER_CLASS_MATCH) {
+ if (first_element_checked && i == 0) continue;
+ if (DeterminedAlready(quick_check, elm.cp_offset)) continue;
+ RegExpCharacterClass* cc = elm.data.u_char_class;
+ EmitCharClass(assembler,
+ cc,
+ ascii,
+ backtrack,
+ cp_offset,
+ *checked_up_to < cp_offset,
+ preloaded);
+ UpdateBoundsCheck(cp_offset, checked_up_to);
+ }
+ }
+ }
+}
+
+
+int TextNode::Length() {
+ TextElement elm = elms_->last();
+ ASSERT(elm.cp_offset >= 0);
+ if (elm.type == TextElement::ATOM) {
+ return elm.cp_offset + elm.data.u_atom->data().length();
+ } else {
+ return elm.cp_offset + 1;
+ }
+}
+
+
+bool TextNode::SkipPass(int int_pass, bool ignore_case) {
+ TextEmitPassType pass = static_cast<TextEmitPassType>(int_pass);
+ if (ignore_case) {
+ return pass == SIMPLE_CHARACTER_MATCH;
+ } else {
+ return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH;
+ }
+}
+
+
+// This generates the code to match a text node. A text node can contain
+// straight character sequences (possibly to be matched in a case-independent
+// way) and character classes. For efficiency we do not do this in a single
+// pass from left to right. Instead we pass over the text node several times,
+// emitting code for some character positions every time. See the comment on
+// TextEmitPass for details.
+void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ LimitResult limit_result = LimitVersions(compiler, trace);
+ if (limit_result == DONE) return;
+ ASSERT(limit_result == CONTINUE);
+
+ if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) {
+ compiler->SetRegExpTooBig();
+ return;
+ }
+
+ if (compiler->ascii()) {
+ int dummy = 0;
+ TextEmitPass(compiler, NON_ASCII_MATCH, false, trace, false, &dummy);
+ }
+
+ bool first_elt_done = false;
+ int bound_checked_to = trace->cp_offset() - 1;
+ bound_checked_to += trace->bound_checked_up_to();
+
+ // If a character is preloaded into the current character register then
+ // check that now.
+ if (trace->characters_preloaded() == 1) {
+ for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
+ if (!SkipPass(pass, compiler->ignore_case())) {
+ TextEmitPass(compiler,
+ static_cast<TextEmitPassType>(pass),
+ true,
+ trace,
+ false,
+ &bound_checked_to);
+ }
+ }
+ first_elt_done = true;
+ }
+
+ for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
+ if (!SkipPass(pass, compiler->ignore_case())) {
+ TextEmitPass(compiler,
+ static_cast<TextEmitPassType>(pass),
+ false,
+ trace,
+ first_elt_done,
+ &bound_checked_to);
+ }
+ }
+
+ Trace successor_trace(*trace);
+ successor_trace.set_at_start(false);
+ successor_trace.AdvanceCurrentPositionInTrace(Length(), compiler);
+ RecursionCheck rc(compiler);
+ on_success()->Emit(compiler, &successor_trace);
+}
+
+
+void Trace::InvalidateCurrentCharacter() {
+ characters_preloaded_ = 0;
+}
+
+
+void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) {
+ ASSERT(by > 0);
+ // We don't have an instruction for shifting the current character register
+ // down or for using a shifted value for anything so lets just forget that
+ // we preloaded any characters into it.
+ characters_preloaded_ = 0;
+ // Adjust the offsets of the quick check performed information. This
+ // information is used to find out what we already determined about the
+ // characters by means of mask and compare.
+ quick_check_performed_.Advance(by, compiler->ascii());
+ cp_offset_ += by;
+ if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) {
+ compiler->SetRegExpTooBig();
+ cp_offset_ = 0;
+ }
+ bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by);
+}
+
+
+void TextNode::MakeCaseIndependent() {
+ int element_count = elms_->length();
+ for (int i = 0; i < element_count; i++) {
+ TextElement elm = elms_->at(i);
+ if (elm.type == TextElement::CHAR_CLASS) {
+ RegExpCharacterClass* cc = elm.data.u_char_class;
+ ZoneList<CharacterRange>* ranges = cc->ranges();
+ int range_count = ranges->length();
+ for (int i = 0; i < range_count; i++) {
+ ranges->at(i).AddCaseEquivalents(ranges);
+ }
+ }
+ }
+}
+
+
+int TextNode::GreedyLoopTextLength() {
+ TextElement elm = elms_->at(elms_->length() - 1);
+ if (elm.type == TextElement::CHAR_CLASS) {
+ return elm.cp_offset + 1;
+ } else {
+ return elm.cp_offset + elm.data.u_atom->data().length();
+ }
+}
+
+
+// Finds the fixed match length of a sequence of nodes that goes from
+// this alternative and back to this choice node. If there are variable
+// length nodes or other complications in the way then return a sentinel
+// value indicating that a greedy loop cannot be constructed.
+int ChoiceNode::GreedyLoopTextLength(GuardedAlternative* alternative) {
+ int length = 0;
+ RegExpNode* node = alternative->node();
+ // Later we will generate code for all these text nodes using recursion
+ // so we have to limit the max number.
+ int recursion_depth = 0;
+ while (node != this) {
+ if (recursion_depth++ > RegExpCompiler::kMaxRecursion) {
+ return kNodeIsTooComplexForGreedyLoops;
+ }
+ int node_length = node->GreedyLoopTextLength();
+ if (node_length == kNodeIsTooComplexForGreedyLoops) {
+ return kNodeIsTooComplexForGreedyLoops;
+ }
+ length += node_length;
+ SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node);
+ node = seq_node->on_success();
+ }
+ return length;
+}
+
+
+void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) {
+ ASSERT_EQ(loop_node_, NULL);
+ AddAlternative(alt);
+ loop_node_ = alt.node();
+}
+
+
+void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) {
+ ASSERT_EQ(continue_node_, NULL);
+ AddAlternative(alt);
+ continue_node_ = alt.node();
+}
+
+
+void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ if (trace->stop_node() == this) {
+ int text_length = GreedyLoopTextLength(&(alternatives_->at(0)));
+ ASSERT(text_length != kNodeIsTooComplexForGreedyLoops);
+ // Update the counter-based backtracking info on the stack. This is an
+ // optimization for greedy loops (see below).
+ ASSERT(trace->cp_offset() == text_length);
+ macro_assembler->AdvanceCurrentPosition(text_length);
+ macro_assembler->GoTo(trace->loop_label());
+ return;
+ }
+ ASSERT(trace->stop_node() == NULL);
+ if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ return;
+ }
+ ChoiceNode::Emit(compiler, trace);
+}
+
+
+int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler) {
+ int preload_characters = EatsAtLeast(4, 0);
+#ifdef V8_HOST_CAN_READ_UNALIGNED
+ bool ascii = compiler->ascii();
+ if (ascii) {
+ if (preload_characters > 4) preload_characters = 4;
+ // We can't preload 3 characters because there is no machine instruction
+ // to do that. We can't just load 4 because we could be reading
+ // beyond the end of the string, which could cause a memory fault.
+ if (preload_characters == 3) preload_characters = 2;
+ } else {
+ if (preload_characters > 2) preload_characters = 2;
+ }
+#else
+ if (preload_characters > 1) preload_characters = 1;
+#endif
+ return preload_characters;
+}
+
+
+// This class is used when generating the alternatives in a choice node. It
+// records the way the alternative is being code generated.
+class AlternativeGeneration: public Malloced {
+ public:
+ AlternativeGeneration()
+ : possible_success(),
+ expects_preload(false),
+ after(),
+ quick_check_details() { }
+ Label possible_success;
+ bool expects_preload;
+ Label after;
+ QuickCheckDetails quick_check_details;
+};
+
+
+// Creates a list of AlternativeGenerations. If the list has a reasonable
+// size then it is on the stack, otherwise the excess is on the heap.
+class AlternativeGenerationList {
+ public:
+ explicit AlternativeGenerationList(int count)
+ : alt_gens_(count) {
+ for (int i = 0; i < count && i < kAFew; i++) {
+ alt_gens_.Add(a_few_alt_gens_ + i);
+ }
+ for (int i = kAFew; i < count; i++) {
+ alt_gens_.Add(new AlternativeGeneration());
+ }
+ }
+ ~AlternativeGenerationList() {
+ for (int i = kAFew; i < alt_gens_.length(); i++) {
+ delete alt_gens_[i];
+ alt_gens_[i] = NULL;
+ }
+ }
+
+ AlternativeGeneration* at(int i) {
+ return alt_gens_[i];
+ }
+ private:
+ static const int kAFew = 10;
+ ZoneList<AlternativeGeneration*> alt_gens_;
+ AlternativeGeneration a_few_alt_gens_[kAFew];
+};
+
+
+/* Code generation for choice nodes.
+ *
+ * We generate quick checks that do a mask and compare to eliminate a
+ * choice. If the quick check succeeds then it jumps to the continuation to
+ * do slow checks and check subsequent nodes. If it fails (the common case)
+ * it falls through to the next choice.
+ *
+ * Here is the desired flow graph. Nodes directly below each other imply
+ * fallthrough. Alternatives 1 and 2 have quick checks. Alternative
+ * 3 doesn't have a quick check so we have to call the slow check.
+ * Nodes are marked Qn for quick checks and Sn for slow checks. The entire
+ * regexp continuation is generated directly after the Sn node, up to the
+ * next GoTo if we decide to reuse some already generated code. Some
+ * nodes expect preload_characters to be preloaded into the current
+ * character register. R nodes do this preloading. Vertices are marked
+ * F for failures and S for success (possible success in the case of quick
+ * nodes). L, V, < and > are used as arrow heads.
+ *
+ * ----------> R
+ * |
+ * V
+ * Q1 -----> S1
+ * | S /
+ * F| /
+ * | F/
+ * | /
+ * | R
+ * | /
+ * V L
+ * Q2 -----> S2
+ * | S /
+ * F| /
+ * | F/
+ * | /
+ * | R
+ * | /
+ * V L
+ * S3
+ * |
+ * F|
+ * |
+ * R
+ * |
+ * backtrack V
+ * <----------Q4
+ * \ F |
+ * \ |S
+ * \ F V
+ * \-----S4
+ *
+ * For greedy loops we reverse our expectation and expect to match rather
+ * than fail. Therefore we want the loop code to look like this (U is the
+ * unwind code that steps back in the greedy loop). The following alternatives
+ * look the same as above.
+ * _____
+ * / \
+ * V |
+ * ----------> S1 |
+ * /| |
+ * / |S |
+ * F/ \_____/
+ * /
+ * |<-----------
+ * | \
+ * V \
+ * Q2 ---> S2 \
+ * | S / |
+ * F| / |
+ * | F/ |
+ * | / |
+ * | R |
+ * | / |
+ * F VL |
+ * <------U |
+ * back |S |
+ * \______________/
+ */
+
+
+void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ int choice_count = alternatives_->length();
+#ifdef DEBUG
+ for (int i = 0; i < choice_count - 1; i++) {
+ GuardedAlternative alternative = alternatives_->at(i);
+ ZoneList<Guard*>* guards = alternative.guards();
+ int guard_count = (guards == NULL) ? 0 : guards->length();
+ for (int j = 0; j < guard_count; j++) {
+ ASSERT(!trace->mentions_reg(guards->at(j)->reg()));
+ }
+ }
+#endif
+
+ LimitResult limit_result = LimitVersions(compiler, trace);
+ if (limit_result == DONE) return;
+ ASSERT(limit_result == CONTINUE);
+
+ int new_flush_budget = trace->flush_budget() / choice_count;
+ if (trace->flush_budget() == 0 && trace->actions() != NULL) {
+ trace->Flush(compiler, this);
+ return;
+ }
+
+ RecursionCheck rc(compiler);
+
+ Trace* current_trace = trace;
+
+ int text_length = GreedyLoopTextLength(&(alternatives_->at(0)));
+ bool greedy_loop = false;
+ Label greedy_loop_label;
+ Trace counter_backtrack_trace;
+ counter_backtrack_trace.set_backtrack(&greedy_loop_label);
+ if (not_at_start()) counter_backtrack_trace.set_at_start(false);
+
+ if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) {
+ // Here we have special handling for greedy loops containing only text nodes
+ // and other simple nodes. These are handled by pushing the current
+ // position on the stack and then incrementing the current position each
+ // time around the switch. On backtrack we decrement the current position
+ // and check it against the pushed value. This avoids pushing backtrack
+ // information for each iteration of the loop, which could take up a lot of
+ // space.
+ greedy_loop = true;
+ ASSERT(trace->stop_node() == NULL);
+ macro_assembler->PushCurrentPosition();
+ current_trace = &counter_backtrack_trace;
+ Label greedy_match_failed;
+ Trace greedy_match_trace;
+ if (not_at_start()) greedy_match_trace.set_at_start(false);
+ greedy_match_trace.set_backtrack(&greedy_match_failed);
+ Label loop_label;
+ macro_assembler->Bind(&loop_label);
+ greedy_match_trace.set_stop_node(this);
+ greedy_match_trace.set_loop_label(&loop_label);
+ alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace);
+ macro_assembler->Bind(&greedy_match_failed);
+ }
+
+ Label second_choice; // For use in greedy matches.
+ macro_assembler->Bind(&second_choice);
+
+ int first_normal_choice = greedy_loop ? 1 : 0;
+
+ int preload_characters = CalculatePreloadCharacters(compiler);
+ bool preload_is_current =
+ (current_trace->characters_preloaded() == preload_characters);
+ bool preload_has_checked_bounds = preload_is_current;
+
+ AlternativeGenerationList alt_gens(choice_count);
+
+ // For now we just call all choices one after the other. The idea ultimately
+ // is to use the Dispatch table to try only the relevant ones.
+ for (int i = first_normal_choice; i < choice_count; i++) {
+ GuardedAlternative alternative = alternatives_->at(i);
+ AlternativeGeneration* alt_gen = alt_gens.at(i);
+ alt_gen->quick_check_details.set_characters(preload_characters);
+ ZoneList<Guard*>* guards = alternative.guards();
+ int guard_count = (guards == NULL) ? 0 : guards->length();
+ Trace new_trace(*current_trace);
+ new_trace.set_characters_preloaded(preload_is_current ?
+ preload_characters :
+ 0);
+ if (preload_has_checked_bounds) {
+ new_trace.set_bound_checked_up_to(preload_characters);
+ }
+ new_trace.quick_check_performed()->Clear();
+ if (not_at_start_) new_trace.set_at_start(Trace::FALSE);
+ alt_gen->expects_preload = preload_is_current;
+ bool generate_full_check_inline = false;
+ if (FLAG_regexp_optimization &&
+ try_to_emit_quick_check_for_alternative(i) &&
+ alternative.node()->EmitQuickCheck(compiler,
+ &new_trace,
+ preload_has_checked_bounds,
+ &alt_gen->possible_success,
+ &alt_gen->quick_check_details,
+ i < choice_count - 1)) {
+ // Quick check was generated for this choice.
+ preload_is_current = true;
+ preload_has_checked_bounds = true;
+ // On the last choice in the ChoiceNode we generated the quick
+ // check to fall through on possible success. So now we need to
+ // generate the full check inline.
+ if (i == choice_count - 1) {
+ macro_assembler->Bind(&alt_gen->possible_success);
+ new_trace.set_quick_check_performed(&alt_gen->quick_check_details);
+ new_trace.set_characters_preloaded(preload_characters);
+ new_trace.set_bound_checked_up_to(preload_characters);
+ generate_full_check_inline = true;
+ }
+ } else if (alt_gen->quick_check_details.cannot_match()) {
+ if (i == choice_count - 1 && !greedy_loop) {
+ macro_assembler->GoTo(trace->backtrack());
+ }
+ continue;
+ } else {
+ // No quick check was generated. Put the full code here.
+ // If this is not the first choice then there could be slow checks from
+ // previous cases that go here when they fail. There's no reason to
+ // insist that they preload characters since the slow check we are about
+ // to generate probably can't use it.
+ if (i != first_normal_choice) {
+ alt_gen->expects_preload = false;
+ new_trace.set_characters_preloaded(0);
+ }
+ if (i < choice_count - 1) {
+ new_trace.set_backtrack(&alt_gen->after);
+ }
+ generate_full_check_inline = true;
+ }
+ if (generate_full_check_inline) {
+ if (new_trace.actions() != NULL) {
+ new_trace.set_flush_budget(new_flush_budget);
+ }
+ for (int j = 0; j < guard_count; j++) {
+ GenerateGuard(macro_assembler, guards->at(j), &new_trace);
+ }
+ alternative.node()->Emit(compiler, &new_trace);
+ preload_is_current = false;
+ }
+ macro_assembler->Bind(&alt_gen->after);
+ }
+ if (greedy_loop) {
+ macro_assembler->Bind(&greedy_loop_label);
+ // If we have unwound to the bottom then backtrack.
+ macro_assembler->CheckGreedyLoop(trace->backtrack());
+ // Otherwise try the second priority at an earlier position.
+ macro_assembler->AdvanceCurrentPosition(-text_length);
+ macro_assembler->GoTo(&second_choice);
+ }
+
+ // At this point we need to generate slow checks for the alternatives where
+ // the quick check was inlined. We can recognize these because the associated
+ // label was bound.
+ for (int i = first_normal_choice; i < choice_count - 1; i++) {
+ AlternativeGeneration* alt_gen = alt_gens.at(i);
+ Trace new_trace(*current_trace);
+ // If there are actions to be flushed we have to limit how many times
+ // they are flushed. Take the budget of the parent trace and distribute
+ // it fairly amongst the children.
+ if (new_trace.actions() != NULL) {
+ new_trace.set_flush_budget(new_flush_budget);
+ }
+ EmitOutOfLineContinuation(compiler,
+ &new_trace,
+ alternatives_->at(i),
+ alt_gen,
+ preload_characters,
+ alt_gens.at(i + 1)->expects_preload);
+ }
+}
+
+
+void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
+ Trace* trace,
+ GuardedAlternative alternative,
+ AlternativeGeneration* alt_gen,
+ int preload_characters,
+ bool next_expects_preload) {
+ if (!alt_gen->possible_success.is_linked()) return;
+
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ macro_assembler->Bind(&alt_gen->possible_success);
+ Trace out_of_line_trace(*trace);
+ out_of_line_trace.set_characters_preloaded(preload_characters);
+ out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details);
+ if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE);
+ ZoneList<Guard*>* guards = alternative.guards();
+ int guard_count = (guards == NULL) ? 0 : guards->length();
+ if (next_expects_preload) {
+ Label reload_current_char;
+ out_of_line_trace.set_backtrack(&reload_current_char);
+ for (int j = 0; j < guard_count; j++) {
+ GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
+ }
+ alternative.node()->Emit(compiler, &out_of_line_trace);
+ macro_assembler->Bind(&reload_current_char);
+ // Reload the current character, since the next quick check expects that.
+ // We don't need to check bounds here because we only get into this
+ // code through a quick check which already did the checked load.
+ macro_assembler->LoadCurrentCharacter(trace->cp_offset(),
+ NULL,
+ false,
+ preload_characters);
+ macro_assembler->GoTo(&(alt_gen->after));
+ } else {
+ out_of_line_trace.set_backtrack(&(alt_gen->after));
+ for (int j = 0; j < guard_count; j++) {
+ GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
+ }
+ alternative.node()->Emit(compiler, &out_of_line_trace);
+ }
+}
+
+
+void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ LimitResult limit_result = LimitVersions(compiler, trace);
+ if (limit_result == DONE) return;
+ ASSERT(limit_result == CONTINUE);
+
+ RecursionCheck rc(compiler);
+
+ switch (type_) {
+ case STORE_POSITION: {
+ Trace::DeferredCapture
+ new_capture(data_.u_position_register.reg,
+ data_.u_position_register.is_capture,
+ trace);
+ Trace new_trace = *trace;
+ new_trace.add_action(&new_capture);
+ on_success()->Emit(compiler, &new_trace);
+ break;
+ }
+ case INCREMENT_REGISTER: {
+ Trace::DeferredIncrementRegister
+ new_increment(data_.u_increment_register.reg);
+ Trace new_trace = *trace;
+ new_trace.add_action(&new_increment);
+ on_success()->Emit(compiler, &new_trace);
+ break;
+ }
+ case SET_REGISTER: {
+ Trace::DeferredSetRegister
+ new_set(data_.u_store_register.reg, data_.u_store_register.value);
+ Trace new_trace = *trace;
+ new_trace.add_action(&new_set);
+ on_success()->Emit(compiler, &new_trace);
+ break;
+ }
+ case CLEAR_CAPTURES: {
+ Trace::DeferredClearCaptures
+ new_capture(Interval(data_.u_clear_captures.range_from,
+ data_.u_clear_captures.range_to));
+ Trace new_trace = *trace;
+ new_trace.add_action(&new_capture);
+ on_success()->Emit(compiler, &new_trace);
+ break;
+ }
+ case BEGIN_SUBMATCH:
+ if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ } else {
+ assembler->WriteCurrentPositionToRegister(
+ data_.u_submatch.current_position_register, 0);
+ assembler->WriteStackPointerToRegister(
+ data_.u_submatch.stack_pointer_register);
+ on_success()->Emit(compiler, trace);
+ }
+ break;
+ case EMPTY_MATCH_CHECK: {
+ int start_pos_reg = data_.u_empty_match_check.start_register;
+ int stored_pos = 0;
+ int rep_reg = data_.u_empty_match_check.repetition_register;
+ bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister);
+ bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos);
+ if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) {
+ // If we know we haven't advanced and there is no minimum we
+ // can just backtrack immediately.
+ assembler->GoTo(trace->backtrack());
+ } else if (know_dist && stored_pos < trace->cp_offset()) {
+ // If we know we've advanced we can generate the continuation
+ // immediately.
+ on_success()->Emit(compiler, trace);
+ } else if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ } else {
+ Label skip_empty_check;
+ // If we have a minimum number of repetitions we check the current
+ // number first and skip the empty check if it's not enough.
+ if (has_minimum) {
+ int limit = data_.u_empty_match_check.repetition_limit;
+ assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check);
+ }
+ // If the match is empty we bail out, otherwise we fall through
+ // to the on-success continuation.
+ assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register,
+ trace->backtrack());
+ assembler->Bind(&skip_empty_check);
+ on_success()->Emit(compiler, trace);
+ }
+ break;
+ }
+ case POSITIVE_SUBMATCH_SUCCESS: {
+ if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ return;
+ }
+ assembler->ReadCurrentPositionFromRegister(
+ data_.u_submatch.current_position_register);
+ assembler->ReadStackPointerFromRegister(
+ data_.u_submatch.stack_pointer_register);
+ int clear_register_count = data_.u_submatch.clear_register_count;
+ if (clear_register_count == 0) {
+ on_success()->Emit(compiler, trace);
+ return;
+ }
+ int clear_registers_from = data_.u_submatch.clear_register_from;
+ Label clear_registers_backtrack;
+ Trace new_trace = *trace;
+ new_trace.set_backtrack(&clear_registers_backtrack);
+ on_success()->Emit(compiler, &new_trace);
+
+ assembler->Bind(&clear_registers_backtrack);
+ int clear_registers_to = clear_registers_from + clear_register_count - 1;
+ assembler->ClearRegisters(clear_registers_from, clear_registers_to);
+
+ ASSERT(trace->backtrack() == NULL);
+ assembler->Backtrack();
+ return;
+ }
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ return;
+ }
+
+ LimitResult limit_result = LimitVersions(compiler, trace);
+ if (limit_result == DONE) return;
+ ASSERT(limit_result == CONTINUE);
+
+ RecursionCheck rc(compiler);
+
+ ASSERT_EQ(start_reg_ + 1, end_reg_);
+ if (compiler->ignore_case()) {
+ assembler->CheckNotBackReferenceIgnoreCase(start_reg_,
+ trace->backtrack());
+ } else {
+ assembler->CheckNotBackReference(start_reg_, trace->backtrack());
+ }
+ on_success()->Emit(compiler, trace);
+}
+
+
+// -------------------------------------------------------------------
+// Dot/dotty output
+
+
+#ifdef DEBUG
+
+
+class DotPrinter: public NodeVisitor {
+ public:
+ explicit DotPrinter(bool ignore_case)
+ : ignore_case_(ignore_case),
+ stream_(&alloc_) { }
+ void PrintNode(const char* label, RegExpNode* node);
+ void Visit(RegExpNode* node);
+ void PrintAttributes(RegExpNode* from);
+ StringStream* stream() { return &stream_; }
+ void PrintOnFailure(RegExpNode* from, RegExpNode* to);
+#define DECLARE_VISIT(Type) \
+ virtual void Visit##Type(Type##Node* that);
+FOR_EACH_NODE_TYPE(DECLARE_VISIT)
+#undef DECLARE_VISIT
+ private:
+ bool ignore_case_;
+ HeapStringAllocator alloc_;
+ StringStream stream_;
+};
+
+
+void DotPrinter::PrintNode(const char* label, RegExpNode* node) {
+ stream()->Add("digraph G {\n graph [label=\"");
+ for (int i = 0; label[i]; i++) {
+ switch (label[i]) {
+ case '\\':
+ stream()->Add("\\\\");
+ break;
+ case '"':
+ stream()->Add("\"");
+ break;
+ default:
+ stream()->Put(label[i]);
+ break;
+ }
+ }
+ stream()->Add("\"];\n");
+ Visit(node);
+ stream()->Add("}\n");
+ printf("%s", *(stream()->ToCString()));
+}
+
+
+void DotPrinter::Visit(RegExpNode* node) {
+ if (node->info()->visited) return;
+ node->info()->visited = true;
+ node->Accept(this);
+}
+
+
+void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) {
+ stream()->Add(" n%p -> n%p [style=dotted];\n", from, on_failure);
+ Visit(on_failure);
+}
+
+
+class TableEntryBodyPrinter {
+ public:
+ TableEntryBodyPrinter(StringStream* stream, ChoiceNode* choice)
+ : stream_(stream), choice_(choice) { }
+ void Call(uc16 from, DispatchTable::Entry entry) {
+ OutSet* out_set = entry.out_set();
+ for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
+ if (out_set->Get(i)) {
+ stream()->Add(" n%p:s%io%i -> n%p;\n",
+ choice(),
+ from,
+ i,
+ choice()->alternatives()->at(i).node());
+ }
+ }
+ }
+ private:
+ StringStream* stream() { return stream_; }
+ ChoiceNode* choice() { return choice_; }
+ StringStream* stream_;
+ ChoiceNode* choice_;
+};
+
+
+class TableEntryHeaderPrinter {
+ public:
+ explicit TableEntryHeaderPrinter(StringStream* stream)
+ : first_(true), stream_(stream) { }
+ void Call(uc16 from, DispatchTable::Entry entry) {
+ if (first_) {
+ first_ = false;
+ } else {
+ stream()->Add("|");
+ }
+ stream()->Add("{\\%k-\\%k|{", from, entry.to());
+ OutSet* out_set = entry.out_set();
+ int priority = 0;
+ for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
+ if (out_set->Get(i)) {
+ if (priority > 0) stream()->Add("|");
+ stream()->Add("<s%io%i> %i", from, i, priority);
+ priority++;
+ }
+ }
+ stream()->Add("}}");
+ }
+ private:
+ bool first_;
+ StringStream* stream() { return stream_; }
+ StringStream* stream_;
+};
+
+
+class AttributePrinter {
+ public:
+ explicit AttributePrinter(DotPrinter* out)
+ : out_(out), first_(true) { }
+ void PrintSeparator() {
+ if (first_) {
+ first_ = false;
+ } else {
+ out_->stream()->Add("|");
+ }
+ }
+ void PrintBit(const char* name, bool value) {
+ if (!value) return;
+ PrintSeparator();
+ out_->stream()->Add("{%s}", name);
+ }
+ void PrintPositive(const char* name, int value) {
+ if (value < 0) return;
+ PrintSeparator();
+ out_->stream()->Add("{%s|%x}", name, value);
+ }
+ private:
+ DotPrinter* out_;
+ bool first_;
+};
+
+
+void DotPrinter::PrintAttributes(RegExpNode* that) {
+ stream()->Add(" a%p [shape=Mrecord, color=grey, fontcolor=grey, "
+ "margin=0.1, fontsize=10, label=\"{",
+ that);
+ AttributePrinter printer(this);
+ NodeInfo* info = that->info();
+ printer.PrintBit("NI", info->follows_newline_interest);
+ printer.PrintBit("WI", info->follows_word_interest);
+ printer.PrintBit("SI", info->follows_start_interest);
+ Label* label = that->label();
+ if (label->is_bound())
+ printer.PrintPositive("@", label->pos());
+ stream()->Add("}\"];\n");
+ stream()->Add(" a%p -> n%p [style=dashed, color=grey, "
+ "arrowhead=none];\n", that, that);
+}
+
+
+static const bool kPrintDispatchTable = false;
+void DotPrinter::VisitChoice(ChoiceNode* that) {
+ if (kPrintDispatchTable) {
+ stream()->Add(" n%p [shape=Mrecord, label=\"", that);
+ TableEntryHeaderPrinter header_printer(stream());
+ that->GetTable(ignore_case_)->ForEach(&header_printer);
+ stream()->Add("\"]\n", that);
+ PrintAttributes(that);
+ TableEntryBodyPrinter body_printer(stream(), that);
+ that->GetTable(ignore_case_)->ForEach(&body_printer);
+ } else {
+ stream()->Add(" n%p [shape=Mrecord, label=\"?\"];\n", that);
+ for (int i = 0; i < that->alternatives()->length(); i++) {
+ GuardedAlternative alt = that->alternatives()->at(i);
+ stream()->Add(" n%p -> n%p;\n", that, alt.node());
+ }
+ }
+ for (int i = 0; i < that->alternatives()->length(); i++) {
+ GuardedAlternative alt = that->alternatives()->at(i);
+ alt.node()->Accept(this);
+ }
+}
+
+
+void DotPrinter::VisitText(TextNode* that) {
+ stream()->Add(" n%p [label=\"", that);
+ for (int i = 0; i < that->elements()->length(); i++) {
+ if (i > 0) stream()->Add(" ");
+ TextElement elm = that->elements()->at(i);
+ switch (elm.type) {
+ case TextElement::ATOM: {
+ stream()->Add("'%w'", elm.data.u_atom->data());
+ break;
+ }
+ case TextElement::CHAR_CLASS: {
+ RegExpCharacterClass* node = elm.data.u_char_class;
+ stream()->Add("[");
+ if (node->is_negated())
+ stream()->Add("^");
+ for (int j = 0; j < node->ranges()->length(); j++) {
+ CharacterRange range = node->ranges()->at(j);
+ stream()->Add("%k-%k", range.from(), range.to());
+ }
+ stream()->Add("]");
+ break;
+ }
+ default:
+ UNREACHABLE();
+ }
+ }
+ stream()->Add("\", shape=box, peripheries=2];\n");
+ PrintAttributes(that);
+ stream()->Add(" n%p -> n%p;\n", that, that->on_success());
+ Visit(that->on_success());
+}
+
+
+void DotPrinter::VisitBackReference(BackReferenceNode* that) {
+ stream()->Add(" n%p [label=\"$%i..$%i\", shape=doubleoctagon];\n",
+ that,
+ that->start_register(),
+ that->end_register());
+ PrintAttributes(that);
+ stream()->Add(" n%p -> n%p;\n", that, that->on_success());
+ Visit(that->on_success());
+}
+
+
+void DotPrinter::VisitEnd(EndNode* that) {
+ stream()->Add(" n%p [style=bold, shape=point];\n", that);
+ PrintAttributes(that);
+}
+
+
+void DotPrinter::VisitAssertion(AssertionNode* that) {
+ stream()->Add(" n%p [", that);
+ switch (that->type()) {
+ case AssertionNode::AT_END:
+ stream()->Add("label=\"$\", shape=septagon");
+ break;
+ case AssertionNode::AT_START:
+ stream()->Add("label=\"^\", shape=septagon");
+ break;
+ case AssertionNode::AT_BOUNDARY:
+ stream()->Add("label=\"\\b\", shape=septagon");
+ break;
+ case AssertionNode::AT_NON_BOUNDARY:
+ stream()->Add("label=\"\\B\", shape=septagon");
+ break;
+ case AssertionNode::AFTER_NEWLINE:
+ stream()->Add("label=\"(?<=\\n)\", shape=septagon");
+ break;
+ }
+ stream()->Add("];\n");
+ PrintAttributes(that);
+ RegExpNode* successor = that->on_success();
+ stream()->Add(" n%p -> n%p;\n", that, successor);
+ Visit(successor);
+}
+
+
+void DotPrinter::VisitAction(ActionNode* that) {
+ stream()->Add(" n%p [", that);
+ switch (that->type_) {
+ case ActionNode::SET_REGISTER:
+ stream()->Add("label=\"$%i:=%i\", shape=octagon",
+ that->data_.u_store_register.reg,
+ that->data_.u_store_register.value);
+ break;
+ case ActionNode::INCREMENT_REGISTER:
+ stream()->Add("label=\"$%i++\", shape=octagon",
+ that->data_.u_increment_register.reg);
+ break;
+ case ActionNode::STORE_POSITION:
+ stream()->Add("label=\"$%i:=$pos\", shape=octagon",
+ that->data_.u_position_register.reg);
+ break;
+ case ActionNode::BEGIN_SUBMATCH:
+ stream()->Add("label=\"$%i:=$pos,begin\", shape=septagon",
+ that->data_.u_submatch.current_position_register);
+ break;
+ case ActionNode::POSITIVE_SUBMATCH_SUCCESS:
+ stream()->Add("label=\"escape\", shape=septagon");
+ break;
+ case ActionNode::EMPTY_MATCH_CHECK:
+ stream()->Add("label=\"$%i=$pos?,$%i<%i?\", shape=septagon",
+ that->data_.u_empty_match_check.start_register,
+ that->data_.u_empty_match_check.repetition_register,
+ that->data_.u_empty_match_check.repetition_limit);
+ break;
+ case ActionNode::CLEAR_CAPTURES: {
+ stream()->Add("label=\"clear $%i to $%i\", shape=septagon",
+ that->data_.u_clear_captures.range_from,
+ that->data_.u_clear_captures.range_to);
+ break;
+ }
+ }
+ stream()->Add("];\n");
+ PrintAttributes(that);
+ RegExpNode* successor = that->on_success();
+ stream()->Add(" n%p -> n%p;\n", that, successor);
+ Visit(successor);
+}
+
+
+class DispatchTableDumper {
+ public:
+ explicit DispatchTableDumper(StringStream* stream) : stream_(stream) { }
+ void Call(uc16 key, DispatchTable::Entry entry);
+ StringStream* stream() { return stream_; }
+ private:
+ StringStream* stream_;
+};
+
+
+void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) {
+ stream()->Add("[%k-%k]: {", key, entry.to());
+ OutSet* set = entry.out_set();
+ bool first = true;
+ for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
+ if (set->Get(i)) {
+ if (first) {
+ first = false;
+ } else {
+ stream()->Add(", ");
+ }
+ stream()->Add("%i", i);
+ }
+ }
+ stream()->Add("}\n");
+}
+
+
+void DispatchTable::Dump() {
+ HeapStringAllocator alloc;
+ StringStream stream(&alloc);
+ DispatchTableDumper dumper(&stream);
+ tree()->ForEach(&dumper);
+ OS::PrintError("%s", *stream.ToCString());
+}
+
+
+void RegExpEngine::DotPrint(const char* label,
+ RegExpNode* node,
+ bool ignore_case) {
+ DotPrinter printer(ignore_case);
+ printer.PrintNode(label, node);
+}
+
+
+#endif // DEBUG
+
+
+// -------------------------------------------------------------------
+// Tree to graph conversion
+
+static const int kSpaceRangeCount = 20;
+static const int kSpaceRangeAsciiCount = 4;
+static const uc16 kSpaceRanges[kSpaceRangeCount] = { 0x0009, 0x000D, 0x0020,
+ 0x0020, 0x00A0, 0x00A0, 0x1680, 0x1680, 0x180E, 0x180E, 0x2000, 0x200A,
+ 0x2028, 0x2029, 0x202F, 0x202F, 0x205F, 0x205F, 0x3000, 0x3000 };
+
+static const int kWordRangeCount = 8;
+static const uc16 kWordRanges[kWordRangeCount] = { '0', '9', 'A', 'Z', '_',
+ '_', 'a', 'z' };
+
+static const int kDigitRangeCount = 2;
+static const uc16 kDigitRanges[kDigitRangeCount] = { '0', '9' };
+
+static const int kLineTerminatorRangeCount = 6;
+static const uc16 kLineTerminatorRanges[kLineTerminatorRangeCount] = { 0x000A,
+ 0x000A, 0x000D, 0x000D, 0x2028, 0x2029 };
+
+RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ ZoneList<TextElement>* elms = new ZoneList<TextElement>(1);
+ elms->Add(TextElement::Atom(this));
+ return new TextNode(elms, on_success);
+}
+
+
+RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ return new TextNode(elements(), on_success);
+}
+
+static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
+ const uc16* special_class,
+ int length) {
+ ASSERT(ranges->length() != 0);
+ ASSERT(length != 0);
+ ASSERT(special_class[0] != 0);
+ if (ranges->length() != (length >> 1) + 1) {
+ return false;
+ }
+ CharacterRange range = ranges->at(0);
+ if (range.from() != 0) {
+ return false;
+ }
+ for (int i = 0; i < length; i += 2) {
+ if (special_class[i] != (range.to() + 1)) {
+ return false;
+ }
+ range = ranges->at((i >> 1) + 1);
+ if (special_class[i+1] != range.from() - 1) {
+ return false;
+ }
+ }
+ if (range.to() != 0xffff) {
+ return false;
+ }
+ return true;
+}
+
+
+static bool CompareRanges(ZoneList<CharacterRange>* ranges,
+ const uc16* special_class,
+ int length) {
+ if (ranges->length() * 2 != length) {
+ return false;
+ }
+ for (int i = 0; i < length; i += 2) {
+ CharacterRange range = ranges->at(i >> 1);
+ if (range.from() != special_class[i] || range.to() != special_class[i+1]) {
+ return false;
+ }
+ }
+ return true;
+}
+
+
+bool RegExpCharacterClass::is_standard() {
+ // TODO(lrn): Remove need for this function, by not throwing away information
+ // along the way.
+ if (is_negated_) {
+ return false;
+ }
+ if (set_.is_standard()) {
+ return true;
+ }
+ if (CompareRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) {
+ set_.set_standard_set_type('s');
+ return true;
+ }
+ if (CompareInverseRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) {
+ set_.set_standard_set_type('S');
+ return true;
+ }
+ if (CompareInverseRanges(set_.ranges(),
+ kLineTerminatorRanges,
+ kLineTerminatorRangeCount)) {
+ set_.set_standard_set_type('.');
+ return true;
+ }
+ return false;
+}
+
+
+RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ return new TextNode(this, on_success);
+}
+
+
+RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ ZoneList<RegExpTree*>* alternatives = this->alternatives();
+ int length = alternatives->length();
+ ChoiceNode* result = new ChoiceNode(length);
+ for (int i = 0; i < length; i++) {
+ GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler,
+ on_success));
+ result->AddAlternative(alternative);
+ }
+ return result;
+}
+
+
+RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ return ToNode(min(),
+ max(),
+ is_greedy(),
+ body(),
+ compiler,
+ on_success);
+}
+
+
+RegExpNode* RegExpQuantifier::ToNode(int min,
+ int max,
+ bool is_greedy,
+ RegExpTree* body,
+ RegExpCompiler* compiler,
+ RegExpNode* on_success,
+ bool not_at_start) {
+ // x{f, t} becomes this:
+ //
+ // (r++)<-.
+ // | `
+ // | (x)
+ // v ^
+ // (r=0)-->(?)---/ [if r < t]
+ // |
+ // [if r >= f] \----> ...
+ //
+
+ // 15.10.2.5 RepeatMatcher algorithm.
+ // The parser has already eliminated the case where max is 0. In the case
+ // where max_match is zero the parser has removed the quantifier if min was
+ // > 0 and removed the atom if min was 0. See AddQuantifierToAtom.
+
+ // If we know that we cannot match zero length then things are a little
+ // simpler since we don't need to make the special zero length match check
+ // from step 2.1. If the min and max are small we can unroll a little in
+ // this case.
+ static const int kMaxUnrolledMinMatches = 3; // Unroll (foo)+ and (foo){3,}
+ static const int kMaxUnrolledMaxMatches = 3; // Unroll (foo)? and (foo){x,3}
+ if (max == 0) return on_success; // This can happen due to recursion.
+ bool body_can_be_empty = (body->min_match() == 0);
+ int body_start_reg = RegExpCompiler::kNoRegister;
+ Interval capture_registers = body->CaptureRegisters();
+ bool needs_capture_clearing = !capture_registers.is_empty();
+ if (body_can_be_empty) {
+ body_start_reg = compiler->AllocateRegister();
+ } else if (FLAG_regexp_optimization && !needs_capture_clearing) {
+ // Only unroll if there are no captures and the body can't be
+ // empty.
+ if (min > 0 && min <= kMaxUnrolledMinMatches) {
+ int new_max = (max == kInfinity) ? max : max - min;
+ // Recurse once to get the loop or optional matches after the fixed ones.
+ RegExpNode* answer = ToNode(
+ 0, new_max, is_greedy, body, compiler, on_success, true);
+ // Unroll the forced matches from 0 to min. This can cause chains of
+ // TextNodes (which the parser does not generate). These should be
+ // combined if it turns out they hinder good code generation.
+ for (int i = 0; i < min; i++) {
+ answer = body->ToNode(compiler, answer);
+ }
+ return answer;
+ }
+ if (max <= kMaxUnrolledMaxMatches) {
+ ASSERT(min == 0);
+ // Unroll the optional matches up to max.
+ RegExpNode* answer = on_success;
+ for (int i = 0; i < max; i++) {
+ ChoiceNode* alternation = new ChoiceNode(2);
+ if (is_greedy) {
+ alternation->AddAlternative(GuardedAlternative(body->ToNode(compiler,
+ answer)));
+ alternation->AddAlternative(GuardedAlternative(on_success));
+ } else {
+ alternation->AddAlternative(GuardedAlternative(on_success));
+ alternation->AddAlternative(GuardedAlternative(body->ToNode(compiler,
+ answer)));
+ }
+ answer = alternation;
+ if (not_at_start) alternation->set_not_at_start();
+ }
+ return answer;
+ }
+ }
+ bool has_min = min > 0;
+ bool has_max = max < RegExpTree::kInfinity;
+ bool needs_counter = has_min || has_max;
+ int reg_ctr = needs_counter
+ ? compiler->AllocateRegister()
+ : RegExpCompiler::kNoRegister;
+ LoopChoiceNode* center = new LoopChoiceNode(body->min_match() == 0);
+ if (not_at_start) center->set_not_at_start();
+ RegExpNode* loop_return = needs_counter
+ ? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center))
+ : static_cast<RegExpNode*>(center);
+ if (body_can_be_empty) {
+ // If the body can be empty we need to check if it was and then
+ // backtrack.
+ loop_return = ActionNode::EmptyMatchCheck(body_start_reg,
+ reg_ctr,
+ min,
+ loop_return);
+ }
+ RegExpNode* body_node = body->ToNode(compiler, loop_return);
+ if (body_can_be_empty) {
+ // If the body can be empty we need to store the start position
+ // so we can bail out if it was empty.
+ body_node = ActionNode::StorePosition(body_start_reg, false, body_node);
+ }
+ if (needs_capture_clearing) {
+ // Before entering the body of this loop we need to clear captures.
+ body_node = ActionNode::ClearCaptures(capture_registers, body_node);
+ }
+ GuardedAlternative body_alt(body_node);
+ if (has_max) {
+ Guard* body_guard = new Guard(reg_ctr, Guard::LT, max);
+ body_alt.AddGuard(body_guard);
+ }
+ GuardedAlternative rest_alt(on_success);
+ if (has_min) {
+ Guard* rest_guard = new Guard(reg_ctr, Guard::GEQ, min);
+ rest_alt.AddGuard(rest_guard);
+ }
+ if (is_greedy) {
+ center->AddLoopAlternative(body_alt);
+ center->AddContinueAlternative(rest_alt);
+ } else {
+ center->AddContinueAlternative(rest_alt);
+ center->AddLoopAlternative(body_alt);
+ }
+ if (needs_counter) {
+ return ActionNode::SetRegister(reg_ctr, 0, center);
+ } else {
+ return center;
+ }
+}
+
+
+RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ NodeInfo info;
+ switch (type()) {
+ case START_OF_LINE:
+ return AssertionNode::AfterNewline(on_success);
+ case START_OF_INPUT:
+ return AssertionNode::AtStart(on_success);
+ case BOUNDARY:
+ return AssertionNode::AtBoundary(on_success);
+ case NON_BOUNDARY:
+ return AssertionNode::AtNonBoundary(on_success);
+ case END_OF_INPUT:
+ return AssertionNode::AtEnd(on_success);
+ case END_OF_LINE: {
+ // Compile $ in multiline regexps as an alternation with a positive
+ // lookahead in one side and an end-of-input on the other side.
+ // We need two registers for the lookahead.
+ int stack_pointer_register = compiler->AllocateRegister();
+ int position_register = compiler->AllocateRegister();
+ // The ChoiceNode to distinguish between a newline and end-of-input.
+ ChoiceNode* result = new ChoiceNode(2);
+ // Create a newline atom.
+ ZoneList<CharacterRange>* newline_ranges =
+ new ZoneList<CharacterRange>(3);
+ CharacterRange::AddClassEscape('n', newline_ranges);
+ RegExpCharacterClass* newline_atom = new RegExpCharacterClass('n');
+ TextNode* newline_matcher = new TextNode(
+ newline_atom,
+ ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
+ position_register,
+ 0, // No captures inside.
+ -1, // Ignored if no captures.
+ on_success));
+ // Create an end-of-input matcher.
+ RegExpNode* end_of_line = ActionNode::BeginSubmatch(
+ stack_pointer_register,
+ position_register,
+ newline_matcher);
+ // Add the two alternatives to the ChoiceNode.
+ GuardedAlternative eol_alternative(end_of_line);
+ result->AddAlternative(eol_alternative);
+ GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success));
+ result->AddAlternative(end_alternative);
+ return result;
+ }
+ default:
+ UNREACHABLE();
+ }
+ return on_success;
+}
+
+
+RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ return new BackReferenceNode(RegExpCapture::StartRegister(index()),
+ RegExpCapture::EndRegister(index()),
+ on_success);
+}
+
+
+RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ return on_success;
+}
+
+
+RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ int stack_pointer_register = compiler->AllocateRegister();
+ int position_register = compiler->AllocateRegister();
+
+ const int registers_per_capture = 2;
+ const int register_of_first_capture = 2;
+ int register_count = capture_count_ * registers_per_capture;
+ int register_start =
+ register_of_first_capture + capture_from_ * registers_per_capture;
+
+ RegExpNode* success;
+ if (is_positive()) {
+ RegExpNode* node = ActionNode::BeginSubmatch(
+ stack_pointer_register,
+ position_register,
+ body()->ToNode(
+ compiler,
+ ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
+ position_register,
+ register_count,
+ register_start,
+ on_success)));
+ return node;
+ } else {
+ // We use a ChoiceNode for a negative lookahead because it has most of
+ // the characteristics we need. It has the body of the lookahead as its
+ // first alternative and the expression after the lookahead of the second
+ // alternative. If the first alternative succeeds then the
+ // NegativeSubmatchSuccess will unwind the stack including everything the
+ // choice node set up and backtrack. If the first alternative fails then
+ // the second alternative is tried, which is exactly the desired result
+ // for a negative lookahead. The NegativeLookaheadChoiceNode is a special
+ // ChoiceNode that knows to ignore the first exit when calculating quick
+ // checks.
+ GuardedAlternative body_alt(
+ body()->ToNode(
+ compiler,
+ success = new NegativeSubmatchSuccess(stack_pointer_register,
+ position_register,
+ register_count,
+ register_start)));
+ ChoiceNode* choice_node =
+ new NegativeLookaheadChoiceNode(body_alt,
+ GuardedAlternative(on_success));
+ return ActionNode::BeginSubmatch(stack_pointer_register,
+ position_register,
+ choice_node);
+ }
+}
+
+
+RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ return ToNode(body(), index(), compiler, on_success);
+}
+
+
+RegExpNode* RegExpCapture::ToNode(RegExpTree* body,
+ int index,
+ RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ int start_reg = RegExpCapture::StartRegister(index);
+ int end_reg = RegExpCapture::EndRegister(index);
+ RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success);
+ RegExpNode* body_node = body->ToNode(compiler, store_end);
+ return ActionNode::StorePosition(start_reg, true, body_node);
+}
+
+
+RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ ZoneList<RegExpTree*>* children = nodes();
+ RegExpNode* current = on_success;
+ for (int i = children->length() - 1; i >= 0; i--) {
+ current = children->at(i)->ToNode(compiler, current);
+ }
+ return current;
+}
+
+
+static void AddClass(const uc16* elmv,
+ int elmc,
+ ZoneList<CharacterRange>* ranges) {
+ for (int i = 0; i < elmc; i += 2) {
+ ASSERT(elmv[i] <= elmv[i + 1]);
+ ranges->Add(CharacterRange(elmv[i], elmv[i + 1]));
+ }
+}
+
+
+static void AddClassNegated(const uc16 *elmv,
+ int elmc,
+ ZoneList<CharacterRange>* ranges) {
+ ASSERT(elmv[0] != 0x0000);
+ ASSERT(elmv[elmc-1] != String::kMaxUC16CharCode);
+ uc16 last = 0x0000;
+ for (int i = 0; i < elmc; i += 2) {
+ ASSERT(last <= elmv[i] - 1);
+ ASSERT(elmv[i] <= elmv[i + 1]);
+ ranges->Add(CharacterRange(last, elmv[i] - 1));
+ last = elmv[i + 1] + 1;
+ }
+ ranges->Add(CharacterRange(last, String::kMaxUC16CharCode));
+}
+
+
+void CharacterRange::AddClassEscape(uc16 type,
+ ZoneList<CharacterRange>* ranges) {
+ switch (type) {
+ case 's':
+ AddClass(kSpaceRanges, kSpaceRangeCount, ranges);
+ break;
+ case 'S':
+ AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges);
+ break;
+ case 'w':
+ AddClass(kWordRanges, kWordRangeCount, ranges);
+ break;
+ case 'W':
+ AddClassNegated(kWordRanges, kWordRangeCount, ranges);
+ break;
+ case 'd':
+ AddClass(kDigitRanges, kDigitRangeCount, ranges);
+ break;
+ case 'D':
+ AddClassNegated(kDigitRanges, kDigitRangeCount, ranges);
+ break;
+ case '.':
+ AddClassNegated(kLineTerminatorRanges,
+ kLineTerminatorRangeCount,
+ ranges);
+ break;
+ // This is not a character range as defined by the spec but a
+ // convenient shorthand for a character class that matches any
+ // character.
+ case '*':
+ ranges->Add(CharacterRange::Everything());
+ break;
+ // This is the set of characters matched by the $ and ^ symbols
+ // in multiline mode.
+ case 'n':
+ AddClass(kLineTerminatorRanges,
+ kLineTerminatorRangeCount,
+ ranges);
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+Vector<const uc16> CharacterRange::GetWordBounds() {
+ return Vector<const uc16>(kWordRanges, kWordRangeCount);
+}
+
+
+class CharacterRangeSplitter {
+ public:
+ CharacterRangeSplitter(ZoneList<CharacterRange>** included,
+ ZoneList<CharacterRange>** excluded)
+ : included_(included),
+ excluded_(excluded) { }
+ void Call(uc16 from, DispatchTable::Entry entry);
+
+ static const int kInBase = 0;
+ static const int kInOverlay = 1;
+
+ private:
+ ZoneList<CharacterRange>** included_;
+ ZoneList<CharacterRange>** excluded_;
+};
+
+
+void CharacterRangeSplitter::Call(uc16 from, DispatchTable::Entry entry) {
+ if (!entry.out_set()->Get(kInBase)) return;
+ ZoneList<CharacterRange>** target = entry.out_set()->Get(kInOverlay)
+ ? included_
+ : excluded_;
+ if (*target == NULL) *target = new ZoneList<CharacterRange>(2);
+ (*target)->Add(CharacterRange(entry.from(), entry.to()));
+}
+
+
+void CharacterRange::Split(ZoneList<CharacterRange>* base,
+ Vector<const uc16> overlay,
+ ZoneList<CharacterRange>** included,
+ ZoneList<CharacterRange>** excluded) {
+ ASSERT_EQ(NULL, *included);
+ ASSERT_EQ(NULL, *excluded);
+ DispatchTable table;
+ for (int i = 0; i < base->length(); i++)
+ table.AddRange(base->at(i), CharacterRangeSplitter::kInBase);
+ for (int i = 0; i < overlay.length(); i += 2) {
+ table.AddRange(CharacterRange(overlay[i], overlay[i+1]),
+ CharacterRangeSplitter::kInOverlay);
+ }
+ CharacterRangeSplitter callback(included, excluded);
+ table.ForEach(&callback);
+}
+
+
+void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges) {
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ if (IsSingleton()) {
+ // If this is a singleton we just expand the one character.
+ int length = uncanonicalize.get(from(), '\0', chars);
+ for (int i = 0; i < length; i++) {
+ uc32 chr = chars[i];
+ if (chr != from()) {
+ ranges->Add(CharacterRange::Singleton(chars[i]));
+ }
+ }
+ } else if (from() <= kRangeCanonicalizeMax &&
+ to() <= kRangeCanonicalizeMax) {
+ // If this is a range we expand the characters block by block,
+ // expanding contiguous subranges (blocks) one at a time.
+ // The approach is as follows. For a given start character we
+ // look up the block that contains it, for instance 'a' if the
+ // start character is 'c'. A block is characterized by the property
+ // that all characters uncanonicalize in the same way as the first
+ // element, except that each entry in the result is incremented
+ // by the distance from the first element. So a-z is a block
+ // because 'a' uncanonicalizes to ['a', 'A'] and the k'th letter
+ // uncanonicalizes to ['a' + k, 'A' + k].
+ // Once we've found the start point we look up its uncanonicalization
+ // and produce a range for each element. For instance for [c-f]
+ // we look up ['a', 'A'] and produce [c-f] and [C-F]. We then only
+ // add a range if it is not already contained in the input, so [c-f]
+ // will be skipped but [C-F] will be added. If this range is not
+ // completely contained in a block we do this for all the blocks
+ // covered by the range.
+ unibrow::uchar range[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ // First, look up the block that contains the 'from' character.
+ int length = canonrange.get(from(), '\0', range);
+ if (length == 0) {
+ range[0] = from();
+ } else {
+ ASSERT_EQ(1, length);
+ }
+ int pos = from();
+ // The start of the current block. Note that except for the first
+ // iteration 'start' is always equal to 'pos'.
+ int start;
+ // If it is not the start point of a block the entry contains the
+ // offset of the character from the start point.
+ if ((range[0] & kStartMarker) == 0) {
+ start = pos - range[0];
+ } else {
+ start = pos;
+ }
+ // Then we add the ranges on at a time, incrementing the current
+ // position to be after the last block each time. The position
+ // always points to the start of a block.
+ while (pos < to()) {
+ length = canonrange.get(start, '\0', range);
+ if (length == 0) {
+ range[0] = start;
+ } else {
+ ASSERT_EQ(1, length);
+ }
+ ASSERT((range[0] & kStartMarker) != 0);
+ // The start point of a block contains the distance to the end
+ // of the range.
+ int block_end = start + (range[0] & kPayloadMask) - 1;
+ int end = (block_end > to()) ? to() : block_end;
+ length = uncanonicalize.get(start, '\0', range);
+ for (int i = 0; i < length; i++) {
+ uc32 c = range[i];
+ uc16 range_from = c + (pos - start);
+ uc16 range_to = c + (end - start);
+ if (!(from() <= range_from && range_to <= to())) {
+ ranges->Add(CharacterRange(range_from, range_to));
+ }
+ }
+ start = pos = block_end + 1;
+ }
+ } else {
+ // TODO(plesner) when we've fixed the 2^11 bug in unibrow.
+ }
+}
+
+
+ZoneList<CharacterRange>* CharacterSet::ranges() {
+ if (ranges_ == NULL) {
+ ranges_ = new ZoneList<CharacterRange>(2);
+ CharacterRange::AddClassEscape(standard_set_type_, ranges_);
+ }
+ return ranges_;
+}
+
+
+
+// -------------------------------------------------------------------
+// Interest propagation
+
+
+RegExpNode* RegExpNode::TryGetSibling(NodeInfo* info) {
+ for (int i = 0; i < siblings_.length(); i++) {
+ RegExpNode* sibling = siblings_.Get(i);
+ if (sibling->info()->Matches(info))
+ return sibling;
+ }
+ return NULL;
+}
+
+
+RegExpNode* RegExpNode::EnsureSibling(NodeInfo* info, bool* cloned) {
+ ASSERT_EQ(false, *cloned);
+ siblings_.Ensure(this);
+ RegExpNode* result = TryGetSibling(info);
+ if (result != NULL) return result;
+ result = this->Clone();
+ NodeInfo* new_info = result->info();
+ new_info->ResetCompilationState();
+ new_info->AddFromPreceding(info);
+ AddSibling(result);
+ *cloned = true;
+ return result;
+}
+
+
+template <class C>
+static RegExpNode* PropagateToEndpoint(C* node, NodeInfo* info) {
+ NodeInfo full_info(*node->info());
+ full_info.AddFromPreceding(info);
+ bool cloned = false;
+ return RegExpNode::EnsureSibling(node, &full_info, &cloned);
+}
+
+
+// -------------------------------------------------------------------
+// Splay tree
+
+
+OutSet* OutSet::Extend(unsigned value) {
+ if (Get(value))
+ return this;
+ if (successors() != NULL) {
+ for (int i = 0; i < successors()->length(); i++) {
+ OutSet* successor = successors()->at(i);
+ if (successor->Get(value))
+ return successor;
+ }
+ } else {
+ successors_ = new ZoneList<OutSet*>(2);
+ }
+ OutSet* result = new OutSet(first_, remaining_);
+ result->Set(value);
+ successors()->Add(result);
+ return result;
+}
+
+
+void OutSet::Set(unsigned value) {
+ if (value < kFirstLimit) {
+ first_ |= (1 << value);
+ } else {
+ if (remaining_ == NULL)
+ remaining_ = new ZoneList<unsigned>(1);
+ if (remaining_->is_empty() || !remaining_->Contains(value))
+ remaining_->Add(value);
+ }
+}
+
+
+bool OutSet::Get(unsigned value) {
+ if (value < kFirstLimit) {
+ return (first_ & (1 << value)) != 0;
+ } else if (remaining_ == NULL) {
+ return false;
+ } else {
+ return remaining_->Contains(value);
+ }
+}
+
+
+const uc16 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar;
+const DispatchTable::Entry DispatchTable::Config::kNoValue;
+
+
+void DispatchTable::AddRange(CharacterRange full_range, int value) {
+ CharacterRange current = full_range;
+ if (tree()->is_empty()) {
+ // If this is the first range we just insert into the table.
+ ZoneSplayTree<Config>::Locator loc;
+ ASSERT_RESULT(tree()->Insert(current.from(), &loc));
+ loc.set_value(Entry(current.from(), current.to(), empty()->Extend(value)));
+ return;
+ }
+ // First see if there is a range to the left of this one that
+ // overlaps.
+ ZoneSplayTree<Config>::Locator loc;
+ if (tree()->FindGreatestLessThan(current.from(), &loc)) {
+ Entry* entry = &loc.value();
+ // If we've found a range that overlaps with this one, and it
+ // starts strictly to the left of this one, we have to fix it
+ // because the following code only handles ranges that start on
+ // or after the start point of the range we're adding.
+ if (entry->from() < current.from() && entry->to() >= current.from()) {
+ // Snap the overlapping range in half around the start point of
+ // the range we're adding.
+ CharacterRange left(entry->from(), current.from() - 1);
+ CharacterRange right(current.from(), entry->to());
+ // The left part of the overlapping range doesn't overlap.
+ // Truncate the whole entry to be just the left part.
+ entry->set_to(left.to());
+ // The right part is the one that overlaps. We add this part
+ // to the map and let the next step deal with merging it with
+ // the range we're adding.
+ ZoneSplayTree<Config>::Locator loc;
+ ASSERT_RESULT(tree()->Insert(right.from(), &loc));
+ loc.set_value(Entry(right.from(),
+ right.to(),
+ entry->out_set()));
+ }
+ }
+ while (current.is_valid()) {
+ if (tree()->FindLeastGreaterThan(current.from(), &loc) &&
+ (loc.value().from() <= current.to()) &&
+ (loc.value().to() >= current.from())) {
+ Entry* entry = &loc.value();
+ // We have overlap. If there is space between the start point of
+ // the range we're adding and where the overlapping range starts
+ // then we have to add a range covering just that space.
+ if (current.from() < entry->from()) {
+ ZoneSplayTree<Config>::Locator ins;
+ ASSERT_RESULT(tree()->Insert(current.from(), &ins));
+ ins.set_value(Entry(current.from(),
+ entry->from() - 1,
+ empty()->Extend(value)));
+ current.set_from(entry->from());
+ }
+ ASSERT_EQ(current.from(), entry->from());
+ // If the overlapping range extends beyond the one we want to add
+ // we have to snap the right part off and add it separately.
+ if (entry->to() > current.to()) {
+ ZoneSplayTree<Config>::Locator ins;
+ ASSERT_RESULT(tree()->Insert(current.to() + 1, &ins));
+ ins.set_value(Entry(current.to() + 1,
+ entry->to(),
+ entry->out_set()));
+ entry->set_to(current.to());
+ }
+ ASSERT(entry->to() <= current.to());
+ // The overlapping range is now completely contained by the range
+ // we're adding so we can just update it and move the start point
+ // of the range we're adding just past it.
+ entry->AddValue(value);
+ // Bail out if the last interval ended at 0xFFFF since otherwise
+ // adding 1 will wrap around to 0.
+ if (entry->to() == String::kMaxUC16CharCode)
+ break;
+ ASSERT(entry->to() + 1 > current.from());
+ current.set_from(entry->to() + 1);
+ } else {
+ // There is no overlap so we can just add the range
+ ZoneSplayTree<Config>::Locator ins;
+ ASSERT_RESULT(tree()->Insert(current.from(), &ins));
+ ins.set_value(Entry(current.from(),
+ current.to(),
+ empty()->Extend(value)));
+ break;
+ }
+ }
+}
+
+
+OutSet* DispatchTable::Get(uc16 value) {
+ ZoneSplayTree<Config>::Locator loc;
+ if (!tree()->FindGreatestLessThan(value, &loc))
+ return empty();
+ Entry* entry = &loc.value();
+ if (value <= entry->to())
+ return entry->out_set();
+ else
+ return empty();
+}
+
+
+// -------------------------------------------------------------------
+// Analysis
+
+
+void Analysis::EnsureAnalyzed(RegExpNode* that) {
+ StackLimitCheck check;
+ if (check.HasOverflowed()) {
+ fail("Stack overflow");
+ return;
+ }
+ if (that->info()->been_analyzed || that->info()->being_analyzed)
+ return;
+ that->info()->being_analyzed = true;
+ that->Accept(this);
+ that->info()->being_analyzed = false;
+ that->info()->been_analyzed = true;
+}
+
+
+void Analysis::VisitEnd(EndNode* that) {
+ // nothing to do
+}
+
+
+void TextNode::CalculateOffsets() {
+ int element_count = elements()->length();
+ // Set up the offsets of the elements relative to the start. This is a fixed
+ // quantity since a TextNode can only contain fixed-width things.
+ int cp_offset = 0;
+ for (int i = 0; i < element_count; i++) {
+ TextElement& elm = elements()->at(i);
+ elm.cp_offset = cp_offset;
+ if (elm.type == TextElement::ATOM) {
+ cp_offset += elm.data.u_atom->data().length();
+ } else {
+ cp_offset++;
+ Vector<const uc16> quarks = elm.data.u_atom->data();
+ }
+ }
+}
+
+
+void Analysis::VisitText(TextNode* that) {
+ if (ignore_case_) {
+ that->MakeCaseIndependent();
+ }
+ EnsureAnalyzed(that->on_success());
+ if (!has_failed()) {
+ that->CalculateOffsets();
+ }
+}
+
+
+void Analysis::VisitAction(ActionNode* that) {
+ RegExpNode* target = that->on_success();
+ EnsureAnalyzed(target);
+ if (!has_failed()) {
+ // If the next node is interested in what it follows then this node
+ // has to be interested too so it can pass the information on.
+ that->info()->AddFromFollowing(target->info());
+ }
+}
+
+
+void Analysis::VisitChoice(ChoiceNode* that) {
+ NodeInfo* info = that->info();
+ for (int i = 0; i < that->alternatives()->length(); i++) {
+ RegExpNode* node = that->alternatives()->at(i).node();
+ EnsureAnalyzed(node);
+ if (has_failed()) return;
+ // Anything the following nodes need to know has to be known by
+ // this node also, so it can pass it on.
+ info->AddFromFollowing(node->info());
+ }
+}
+
+
+void Analysis::VisitLoopChoice(LoopChoiceNode* that) {
+ NodeInfo* info = that->info();
+ for (int i = 0; i < that->alternatives()->length(); i++) {
+ RegExpNode* node = that->alternatives()->at(i).node();
+ if (node != that->loop_node()) {
+ EnsureAnalyzed(node);
+ if (has_failed()) return;
+ info->AddFromFollowing(node->info());
+ }
+ }
+ // Check the loop last since it may need the value of this node
+ // to get a correct result.
+ EnsureAnalyzed(that->loop_node());
+ if (!has_failed()) {
+ info->AddFromFollowing(that->loop_node()->info());
+ }
+}
+
+
+void Analysis::VisitBackReference(BackReferenceNode* that) {
+ EnsureAnalyzed(that->on_success());
+}
+
+
+void Analysis::VisitAssertion(AssertionNode* that) {
+ EnsureAnalyzed(that->on_success());
+}
+
+
+// -------------------------------------------------------------------
+// Dispatch table construction
+
+
+void DispatchTableConstructor::VisitEnd(EndNode* that) {
+ AddRange(CharacterRange::Everything());
+}
+
+
+void DispatchTableConstructor::BuildTable(ChoiceNode* node) {
+ node->set_being_calculated(true);
+ ZoneList<GuardedAlternative>* alternatives = node->alternatives();
+ for (int i = 0; i < alternatives->length(); i++) {
+ set_choice_index(i);
+ alternatives->at(i).node()->Accept(this);
+ }
+ node->set_being_calculated(false);
+}
+
+
+class AddDispatchRange {
+ public:
+ explicit AddDispatchRange(DispatchTableConstructor* constructor)
+ : constructor_(constructor) { }
+ void Call(uc32 from, DispatchTable::Entry entry);
+ private:
+ DispatchTableConstructor* constructor_;
+};
+
+
+void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) {
+ CharacterRange range(from, entry.to());
+ constructor_->AddRange(range);
+}
+
+
+void DispatchTableConstructor::VisitChoice(ChoiceNode* node) {
+ if (node->being_calculated())
+ return;
+ DispatchTable* table = node->GetTable(ignore_case_);
+ AddDispatchRange adder(this);
+ table->ForEach(&adder);
+}
+
+
+void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) {
+ // TODO(160): Find the node that we refer back to and propagate its start
+ // set back to here. For now we just accept anything.
+ AddRange(CharacterRange::Everything());
+}
+
+
+void DispatchTableConstructor::VisitAssertion(AssertionNode* that) {
+ RegExpNode* target = that->on_success();
+ target->Accept(this);
+}
+
+
+
+static int CompareRangeByFrom(const CharacterRange* a,
+ const CharacterRange* b) {
+ return Compare<uc16>(a->from(), b->from());
+}
+
+
+void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) {
+ ranges->Sort(CompareRangeByFrom);
+ uc16 last = 0;
+ for (int i = 0; i < ranges->length(); i++) {
+ CharacterRange range = ranges->at(i);
+ if (last < range.from())
+ AddRange(CharacterRange(last, range.from() - 1));
+ if (range.to() >= last) {
+ if (range.to() == String::kMaxUC16CharCode) {
+ return;
+ } else {
+ last = range.to() + 1;
+ }
+ }
+ }
+ AddRange(CharacterRange(last, String::kMaxUC16CharCode));
+}
+
+
+void DispatchTableConstructor::VisitText(TextNode* that) {
+ TextElement elm = that->elements()->at(0);
+ switch (elm.type) {
+ case TextElement::ATOM: {
+ uc16 c = elm.data.u_atom->data()[0];
+ AddRange(CharacterRange(c, c));
+ break;
+ }
+ case TextElement::CHAR_CLASS: {
+ RegExpCharacterClass* tree = elm.data.u_char_class;
+ ZoneList<CharacterRange>* ranges = tree->ranges();
+ if (tree->is_negated()) {
+ AddInverse(ranges);
+ } else {
+ for (int i = 0; i < ranges->length(); i++)
+ AddRange(ranges->at(i));
+ }
+ break;
+ }
+ default: {
+ UNIMPLEMENTED();
+ }
+ }
+}
+
+
+void DispatchTableConstructor::VisitAction(ActionNode* that) {
+ RegExpNode* target = that->on_success();
+ target->Accept(this);
+}
+
+
+RegExpEngine::CompilationResult RegExpEngine::Compile(RegExpCompileData* data,
+ bool ignore_case,
+ bool is_multiline,
+ Handle<String> pattern,
+ bool is_ascii) {
+ if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) {
+ return IrregexpRegExpTooBig();
+ }
+ RegExpCompiler compiler(data->capture_count, ignore_case, is_ascii);
+ // Wrap the body of the regexp in capture #0.
+ RegExpNode* captured_body = RegExpCapture::ToNode(data->tree,
+ 0,
+ &compiler,
+ compiler.accept());
+ RegExpNode* node = captured_body;
+ if (!data->tree->IsAnchored()) {
+ // Add a .*? at the beginning, outside the body capture, unless
+ // this expression is anchored at the beginning.
+ RegExpNode* loop_node =
+ RegExpQuantifier::ToNode(0,
+ RegExpTree::kInfinity,
+ false,
+ new RegExpCharacterClass('*'),
+ &compiler,
+ captured_body,
+ data->contains_anchor);
+
+ if (data->contains_anchor) {
+ // Unroll loop once, to take care of the case that might start
+ // at the start of input.
+ ChoiceNode* first_step_node = new ChoiceNode(2);
+ first_step_node->AddAlternative(GuardedAlternative(captured_body));
+ first_step_node->AddAlternative(GuardedAlternative(
+ new TextNode(new RegExpCharacterClass('*'), loop_node)));
+ node = first_step_node;
+ } else {
+ node = loop_node;
+ }
+ }
+ data->node = node;
+ Analysis analysis(ignore_case);
+ analysis.EnsureAnalyzed(node);
+ if (analysis.has_failed()) {
+ const char* error_message = analysis.error_message();
+ return CompilationResult(error_message);
+ }
+
+ NodeInfo info = *node->info();
+
+ if (RegExpImpl::UseNativeRegexp()) {
+#ifdef V8_TARGET_ARCH_ARM
+ UNREACHABLE();
+#endif
+#ifdef V8_TARGET_ARCH_X64
+ UNREACHABLE();
+#endif
+#ifdef V8_TARGET_ARCH_IA32
+ RegExpMacroAssemblerIA32::Mode mode;
+ if (is_ascii) {
+ mode = RegExpMacroAssemblerIA32::ASCII;
+ } else {
+ mode = RegExpMacroAssemblerIA32::UC16;
+ }
+ RegExpMacroAssemblerIA32 macro_assembler(mode,
+ (data->capture_count + 1) * 2);
+ return compiler.Assemble(&macro_assembler,
+ node,
+ data->capture_count,
+ pattern);
+#endif
+ }
+ EmbeddedVector<byte, 1024> codes;
+ RegExpMacroAssemblerIrregexp macro_assembler(codes);
+ return compiler.Assemble(&macro_assembler,
+ node,
+ data->capture_count,
+ pattern);
+}
+
+
+}} // namespace v8::internal