diff options
author | Feng Qian <fqian@google.com> | 2009-06-19 10:54:19 -0700 |
---|---|---|
committer | Feng Qian <fqian@google.com> | 2009-06-19 10:54:19 -0700 |
commit | 5c6ed9782f6ba890faf887aa2a434c6ec0d8db69 (patch) | |
tree | b0ee81af078307f558400c69e89169f6555e0fc9 /V8Binding/v8/src/jsregexp.cc | |
parent | 7f65b2f4c873a32f4d8e3c3ad8d339c57173a7b5 (diff) | |
download | external_webkit-5c6ed9782f6ba890faf887aa2a434c6ec0d8db69.zip external_webkit-5c6ed9782f6ba890faf887aa2a434c6ec0d8db69.tar.gz external_webkit-5c6ed9782f6ba890faf887aa2a434c6ec0d8db69.tar.bz2 |
Drop in v8 r2121
From: "http://v8.googlecode.com/svn/trunk@2121",
It matches "svn://chrome-svn/chrome/branches/187/src@18043"
Diffstat (limited to 'V8Binding/v8/src/jsregexp.cc')
-rw-r--r-- | V8Binding/v8/src/jsregexp.cc | 4489 |
1 files changed, 4489 insertions, 0 deletions
diff --git a/V8Binding/v8/src/jsregexp.cc b/V8Binding/v8/src/jsregexp.cc new file mode 100644 index 0000000..6fce1f5 --- /dev/null +++ b/V8Binding/v8/src/jsregexp.cc @@ -0,0 +1,4489 @@ +// Copyright 2006-2009 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following +// disclaimer in the documentation and/or other materials provided +// with the distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived +// from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "v8.h" + +#include "ast.h" +#include "compiler.h" +#include "execution.h" +#include "factory.h" +#include "jsregexp-inl.h" +#include "platform.h" +#include "runtime.h" +#include "top.h" +#include "compilation-cache.h" +#include "string-stream.h" +#include "parser.h" +#include "regexp-macro-assembler.h" +#include "regexp-macro-assembler-tracer.h" +#include "regexp-macro-assembler-irregexp.h" +#include "regexp-stack.h" + +#if V8_TARGET_ARCH_IA32 +#include "ia32/macro-assembler-ia32.h" +#include "ia32/regexp-macro-assembler-ia32.h" +#elif V8_TARGET_ARCH_X64 +#include "x64/macro-assembler-x64.h" +#include "x64/regexp-macro-assembler-x64.h" +#elif V8_TARGET_ARCH_ARM +#include "arm/regexp-macro-assembler-arm.h" +#endif + +#include "interpreter-irregexp.h" + + +namespace v8 { +namespace internal { + + +Handle<Object> RegExpImpl::CreateRegExpLiteral(Handle<JSFunction> constructor, + Handle<String> pattern, + Handle<String> flags, + bool* has_pending_exception) { + // Ensure that the constructor function has been loaded. + if (!constructor->IsLoaded()) { + LoadLazy(constructor, has_pending_exception); + if (*has_pending_exception) return Handle<Object>(); + } + // Call the construct code with 2 arguments. + Object** argv[2] = { Handle<Object>::cast(pattern).location(), + Handle<Object>::cast(flags).location() }; + return Execution::New(constructor, 2, argv, has_pending_exception); +} + + +static JSRegExp::Flags RegExpFlagsFromString(Handle<String> str) { + int flags = JSRegExp::NONE; + for (int i = 0; i < str->length(); i++) { + switch (str->Get(i)) { + case 'i': + flags |= JSRegExp::IGNORE_CASE; + break; + case 'g': + flags |= JSRegExp::GLOBAL; + break; + case 'm': + flags |= JSRegExp::MULTILINE; + break; + } + } + return JSRegExp::Flags(flags); +} + + +static inline void ThrowRegExpException(Handle<JSRegExp> re, + Handle<String> pattern, + Handle<String> error_text, + const char* message) { + Handle<JSArray> array = Factory::NewJSArray(2); + SetElement(array, 0, pattern); + SetElement(array, 1, error_text); + Handle<Object> regexp_err = Factory::NewSyntaxError(message, array); + Top::Throw(*regexp_err); +} + + +// Generic RegExp methods. Dispatches to implementation specific methods. + + +class OffsetsVector { + public: + inline OffsetsVector(int num_registers) + : offsets_vector_length_(num_registers) { + if (offsets_vector_length_ > kStaticOffsetsVectorSize) { + vector_ = NewArray<int>(offsets_vector_length_); + } else { + vector_ = static_offsets_vector_; + } + } + inline ~OffsetsVector() { + if (offsets_vector_length_ > kStaticOffsetsVectorSize) { + DeleteArray(vector_); + vector_ = NULL; + } + } + inline int* vector() { return vector_; } + inline int length() { return offsets_vector_length_; } + + private: + int* vector_; + int offsets_vector_length_; + static const int kStaticOffsetsVectorSize = 50; + static int static_offsets_vector_[kStaticOffsetsVectorSize]; +}; + + +int OffsetsVector::static_offsets_vector_[ + OffsetsVector::kStaticOffsetsVectorSize]; + + +Handle<Object> RegExpImpl::Compile(Handle<JSRegExp> re, + Handle<String> pattern, + Handle<String> flag_str) { + JSRegExp::Flags flags = RegExpFlagsFromString(flag_str); + Handle<FixedArray> cached = CompilationCache::LookupRegExp(pattern, flags); + bool in_cache = !cached.is_null(); + LOG(RegExpCompileEvent(re, in_cache)); + + Handle<Object> result; + if (in_cache) { + re->set_data(*cached); + return re; + } + FlattenString(pattern); + CompilationZoneScope zone_scope(DELETE_ON_EXIT); + RegExpCompileData parse_result; + FlatStringReader reader(pattern); + if (!ParseRegExp(&reader, flags.is_multiline(), &parse_result)) { + // Throw an exception if we fail to parse the pattern. + ThrowRegExpException(re, + pattern, + parse_result.error, + "malformed_regexp"); + return Handle<Object>::null(); + } + + if (parse_result.simple && !flags.is_ignore_case()) { + // Parse-tree is a single atom that is equal to the pattern. + AtomCompile(re, pattern, flags, pattern); + } else if (parse_result.tree->IsAtom() && + !flags.is_ignore_case() && + parse_result.capture_count == 0) { + RegExpAtom* atom = parse_result.tree->AsAtom(); + Vector<const uc16> atom_pattern = atom->data(); + Handle<String> atom_string = Factory::NewStringFromTwoByte(atom_pattern); + AtomCompile(re, pattern, flags, atom_string); + } else { + IrregexpPrepare(re, pattern, flags, parse_result.capture_count); + } + ASSERT(re->data()->IsFixedArray()); + // Compilation succeeded so the data is set on the regexp + // and we can store it in the cache. + Handle<FixedArray> data(FixedArray::cast(re->data())); + CompilationCache::PutRegExp(pattern, flags, data); + + return re; +} + + +Handle<Object> RegExpImpl::Exec(Handle<JSRegExp> regexp, + Handle<String> subject, + int index, + Handle<JSArray> last_match_info) { + switch (regexp->TypeTag()) { + case JSRegExp::ATOM: + return AtomExec(regexp, subject, index, last_match_info); + case JSRegExp::IRREGEXP: { + Handle<Object> result = + IrregexpExec(regexp, subject, index, last_match_info); + ASSERT(!result.is_null() || Top::has_pending_exception()); + return result; + } + default: + UNREACHABLE(); + return Handle<Object>::null(); + } +} + + +// RegExp Atom implementation: Simple string search using indexOf. + + +void RegExpImpl::AtomCompile(Handle<JSRegExp> re, + Handle<String> pattern, + JSRegExp::Flags flags, + Handle<String> match_pattern) { + Factory::SetRegExpAtomData(re, + JSRegExp::ATOM, + pattern, + flags, + match_pattern); +} + + +static void SetAtomLastCapture(FixedArray* array, + String* subject, + int from, + int to) { + NoHandleAllocation no_handles; + RegExpImpl::SetLastCaptureCount(array, 2); + RegExpImpl::SetLastSubject(array, subject); + RegExpImpl::SetLastInput(array, subject); + RegExpImpl::SetCapture(array, 0, from); + RegExpImpl::SetCapture(array, 1, to); +} + + +Handle<Object> RegExpImpl::AtomExec(Handle<JSRegExp> re, + Handle<String> subject, + int index, + Handle<JSArray> last_match_info) { + Handle<String> needle(String::cast(re->DataAt(JSRegExp::kAtomPatternIndex))); + + uint32_t start_index = index; + + int value = Runtime::StringMatch(subject, needle, start_index); + if (value == -1) return Factory::null_value(); + ASSERT(last_match_info->HasFastElements()); + + { + NoHandleAllocation no_handles; + FixedArray* array = last_match_info->elements(); + SetAtomLastCapture(array, *subject, value, value + needle->length()); + } + return last_match_info; +} + + +// Irregexp implementation. + + +// Ensures that the regexp object contains a compiled version of the +// source for either ASCII or non-ASCII strings. +// If the compiled version doesn't already exist, it is compiled +// from the source pattern. +// If compilation fails, an exception is thrown and this function +// returns false. +bool RegExpImpl::EnsureCompiledIrregexp(Handle<JSRegExp> re, bool is_ascii) { + int index; + if (is_ascii) { + index = JSRegExp::kIrregexpASCIICodeIndex; + } else { + index = JSRegExp::kIrregexpUC16CodeIndex; + } + Object* entry = re->DataAt(index); + if (!entry->IsTheHole()) { + // A value has already been compiled. + if (entry->IsJSObject()) { + // If it's a JS value, it's an error. + Top::Throw(entry); + return false; + } + return true; + } + + // Compile the RegExp. + CompilationZoneScope zone_scope(DELETE_ON_EXIT); + + JSRegExp::Flags flags = re->GetFlags(); + + Handle<String> pattern(re->Pattern()); + if (!pattern->IsFlat()) { + FlattenString(pattern); + } + + RegExpCompileData compile_data; + FlatStringReader reader(pattern); + if (!ParseRegExp(&reader, flags.is_multiline(), &compile_data)) { + // Throw an exception if we fail to parse the pattern. + // THIS SHOULD NOT HAPPEN. We already parsed it successfully once. + ThrowRegExpException(re, + pattern, + compile_data.error, + "malformed_regexp"); + return false; + } + RegExpEngine::CompilationResult result = + RegExpEngine::Compile(&compile_data, + flags.is_ignore_case(), + flags.is_multiline(), + pattern, + is_ascii); + if (result.error_message != NULL) { + // Unable to compile regexp. + Handle<JSArray> array = Factory::NewJSArray(2); + SetElement(array, 0, pattern); + SetElement(array, + 1, + Factory::NewStringFromUtf8(CStrVector(result.error_message))); + Handle<Object> regexp_err = + Factory::NewSyntaxError("malformed_regexp", array); + Top::Throw(*regexp_err); + re->SetDataAt(index, *regexp_err); + return false; + } + + NoHandleAllocation no_handles; + + FixedArray* data = FixedArray::cast(re->data()); + data->set(index, result.code); + int register_max = IrregexpMaxRegisterCount(data); + if (result.num_registers > register_max) { + SetIrregexpMaxRegisterCount(data, result.num_registers); + } + + return true; +} + + +int RegExpImpl::IrregexpMaxRegisterCount(FixedArray* re) { + return Smi::cast( + re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value(); +} + + +void RegExpImpl::SetIrregexpMaxRegisterCount(FixedArray* re, int value) { + re->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(value)); +} + + +int RegExpImpl::IrregexpNumberOfCaptures(FixedArray* re) { + return Smi::cast(re->get(JSRegExp::kIrregexpCaptureCountIndex))->value(); +} + + +int RegExpImpl::IrregexpNumberOfRegisters(FixedArray* re) { + return Smi::cast(re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value(); +} + + +ByteArray* RegExpImpl::IrregexpByteCode(FixedArray* re, bool is_ascii) { + int index; + if (is_ascii) { + index = JSRegExp::kIrregexpASCIICodeIndex; + } else { + index = JSRegExp::kIrregexpUC16CodeIndex; + } + return ByteArray::cast(re->get(index)); +} + + +Code* RegExpImpl::IrregexpNativeCode(FixedArray* re, bool is_ascii) { + int index; + if (is_ascii) { + index = JSRegExp::kIrregexpASCIICodeIndex; + } else { + index = JSRegExp::kIrregexpUC16CodeIndex; + } + return Code::cast(re->get(index)); +} + + +void RegExpImpl::IrregexpPrepare(Handle<JSRegExp> re, + Handle<String> pattern, + JSRegExp::Flags flags, + int capture_count) { + // Initialize compiled code entries to null. + Factory::SetRegExpIrregexpData(re, + JSRegExp::IRREGEXP, + pattern, + flags, + capture_count); +} + + +Handle<Object> RegExpImpl::IrregexpExec(Handle<JSRegExp> jsregexp, + Handle<String> subject, + int previous_index, + Handle<JSArray> last_match_info) { + ASSERT_EQ(jsregexp->TypeTag(), JSRegExp::IRREGEXP); + + // Prepare space for the return values. + int number_of_capture_registers = + (IrregexpNumberOfCaptures(FixedArray::cast(jsregexp->data())) + 1) * 2; + OffsetsVector offsets(number_of_capture_registers); + +#ifdef DEBUG + if (FLAG_trace_regexp_bytecodes) { + String* pattern = jsregexp->Pattern(); + PrintF("\n\nRegexp match: /%s/\n\n", *(pattern->ToCString())); + PrintF("\n\nSubject string: '%s'\n\n", *(subject->ToCString())); + } +#endif + + if (!subject->IsFlat()) { + FlattenString(subject); + } + + last_match_info->EnsureSize(number_of_capture_registers + kLastMatchOverhead); + + int* offsets_vector = offsets.vector(); + bool rc; + + // Dispatch to the correct RegExp implementation. + + Handle<String> original_subject = subject; + Handle<FixedArray> regexp(FixedArray::cast(jsregexp->data())); + if (UseNativeRegexp()) { +#if V8_TARGET_ARCH_IA32 + RegExpMacroAssemblerIA32::Result res; + do { + bool is_ascii = subject->IsAsciiRepresentation(); + if (!EnsureCompiledIrregexp(jsregexp, is_ascii)) { + return Handle<Object>::null(); + } + Handle<Code> code(RegExpImpl::IrregexpNativeCode(*regexp, is_ascii)); + res = RegExpMacroAssemblerIA32::Match(code, + subject, + offsets_vector, + offsets.length(), + previous_index); + // If result is RETRY, the string have changed representation, and we + // must restart from scratch. + } while (res == RegExpMacroAssemblerIA32::RETRY); + if (res == RegExpMacroAssemblerIA32::EXCEPTION) { + ASSERT(Top::has_pending_exception()); + return Handle<Object>::null(); + } + ASSERT(res == RegExpMacroAssemblerIA32::SUCCESS + || res == RegExpMacroAssemblerIA32::FAILURE); + + rc = (res == RegExpMacroAssemblerIA32::SUCCESS); +#else + UNREACHABLE(); +#endif + } else { + bool is_ascii = subject->IsAsciiRepresentation(); + if (!EnsureCompiledIrregexp(jsregexp, is_ascii)) { + return Handle<Object>::null(); + } + for (int i = number_of_capture_registers - 1; i >= 0; i--) { + offsets_vector[i] = -1; + } + Handle<ByteArray> byte_codes(IrregexpByteCode(*regexp, is_ascii)); + + rc = IrregexpInterpreter::Match(byte_codes, + subject, + offsets_vector, + previous_index); + } + + // Handle results from RegExp implementation. + + if (!rc) { + return Factory::null_value(); + } + + FixedArray* array = last_match_info->elements(); + ASSERT(array->length() >= number_of_capture_registers + kLastMatchOverhead); + // The captures come in (start, end+1) pairs. + SetLastCaptureCount(array, number_of_capture_registers); + SetLastSubject(array, *original_subject); + SetLastInput(array, *original_subject); + for (int i = 0; i < number_of_capture_registers; i+=2) { + SetCapture(array, i, offsets_vector[i]); + SetCapture(array, i + 1, offsets_vector[i + 1]); + } + return last_match_info; +} + + +// ------------------------------------------------------------------- +// Implementation of the Irregexp regular expression engine. +// +// The Irregexp regular expression engine is intended to be a complete +// implementation of ECMAScript regular expressions. It generates either +// bytecodes or native code. + +// The Irregexp regexp engine is structured in three steps. +// 1) The parser generates an abstract syntax tree. See ast.cc. +// 2) From the AST a node network is created. The nodes are all +// subclasses of RegExpNode. The nodes represent states when +// executing a regular expression. Several optimizations are +// performed on the node network. +// 3) From the nodes we generate either byte codes or native code +// that can actually execute the regular expression (perform +// the search). The code generation step is described in more +// detail below. + +// Code generation. +// +// The nodes are divided into four main categories. +// * Choice nodes +// These represent places where the regular expression can +// match in more than one way. For example on entry to an +// alternation (foo|bar) or a repetition (*, +, ? or {}). +// * Action nodes +// These represent places where some action should be +// performed. Examples include recording the current position +// in the input string to a register (in order to implement +// captures) or other actions on register for example in order +// to implement the counters needed for {} repetitions. +// * Matching nodes +// These attempt to match some element part of the input string. +// Examples of elements include character classes, plain strings +// or back references. +// * End nodes +// These are used to implement the actions required on finding +// a successful match or failing to find a match. +// +// The code generated (whether as byte codes or native code) maintains +// some state as it runs. This consists of the following elements: +// +// * The capture registers. Used for string captures. +// * Other registers. Used for counters etc. +// * The current position. +// * The stack of backtracking information. Used when a matching node +// fails to find a match and needs to try an alternative. +// +// Conceptual regular expression execution model: +// +// There is a simple conceptual model of regular expression execution +// which will be presented first. The actual code generated is a more +// efficient simulation of the simple conceptual model: +// +// * Choice nodes are implemented as follows: +// For each choice except the last { +// push current position +// push backtrack code location +// <generate code to test for choice> +// backtrack code location: +// pop current position +// } +// <generate code to test for last choice> +// +// * Actions nodes are generated as follows +// <push affected registers on backtrack stack> +// <generate code to perform action> +// push backtrack code location +// <generate code to test for following nodes> +// backtrack code location: +// <pop affected registers to restore their state> +// <pop backtrack location from stack and go to it> +// +// * Matching nodes are generated as follows: +// if input string matches at current position +// update current position +// <generate code to test for following nodes> +// else +// <pop backtrack location from stack and go to it> +// +// Thus it can be seen that the current position is saved and restored +// by the choice nodes, whereas the registers are saved and restored by +// by the action nodes that manipulate them. +// +// The other interesting aspect of this model is that nodes are generated +// at the point where they are needed by a recursive call to Emit(). If +// the node has already been code generated then the Emit() call will +// generate a jump to the previously generated code instead. In order to +// limit recursion it is possible for the Emit() function to put the node +// on a work list for later generation and instead generate a jump. The +// destination of the jump is resolved later when the code is generated. +// +// Actual regular expression code generation. +// +// Code generation is actually more complicated than the above. In order +// to improve the efficiency of the generated code some optimizations are +// performed +// +// * Choice nodes have 1-character lookahead. +// A choice node looks at the following character and eliminates some of +// the choices immediately based on that character. This is not yet +// implemented. +// * Simple greedy loops store reduced backtracking information. +// A quantifier like /.*foo/m will greedily match the whole input. It will +// then need to backtrack to a point where it can match "foo". The naive +// implementation of this would push each character position onto the +// backtracking stack, then pop them off one by one. This would use space +// proportional to the length of the input string. However since the "." +// can only match in one way and always has a constant length (in this case +// of 1) it suffices to store the current position on the top of the stack +// once. Matching now becomes merely incrementing the current position and +// backtracking becomes decrementing the current position and checking the +// result against the stored current position. This is faster and saves +// space. +// * The current state is virtualized. +// This is used to defer expensive operations until it is clear that they +// are needed and to generate code for a node more than once, allowing +// specialized an efficient versions of the code to be created. This is +// explained in the section below. +// +// Execution state virtualization. +// +// Instead of emitting code, nodes that manipulate the state can record their +// manipulation in an object called the Trace. The Trace object can record a +// current position offset, an optional backtrack code location on the top of +// the virtualized backtrack stack and some register changes. When a node is +// to be emitted it can flush the Trace or update it. Flushing the Trace +// will emit code to bring the actual state into line with the virtual state. +// Avoiding flushing the state can postpone some work (eg updates of capture +// registers). Postponing work can save time when executing the regular +// expression since it may be found that the work never has to be done as a +// failure to match can occur. In addition it is much faster to jump to a +// known backtrack code location than it is to pop an unknown backtrack +// location from the stack and jump there. +// +// The virtual state found in the Trace affects code generation. For example +// the virtual state contains the difference between the actual current +// position and the virtual current position, and matching code needs to use +// this offset to attempt a match in the correct location of the input +// string. Therefore code generated for a non-trivial trace is specialized +// to that trace. The code generator therefore has the ability to generate +// code for each node several times. In order to limit the size of the +// generated code there is an arbitrary limit on how many specialized sets of +// code may be generated for a given node. If the limit is reached, the +// trace is flushed and a generic version of the code for a node is emitted. +// This is subsequently used for that node. The code emitted for non-generic +// trace is not recorded in the node and so it cannot currently be reused in +// the event that code generation is requested for an identical trace. + + +void RegExpTree::AppendToText(RegExpText* text) { + UNREACHABLE(); +} + + +void RegExpAtom::AppendToText(RegExpText* text) { + text->AddElement(TextElement::Atom(this)); +} + + +void RegExpCharacterClass::AppendToText(RegExpText* text) { + text->AddElement(TextElement::CharClass(this)); +} + + +void RegExpText::AppendToText(RegExpText* text) { + for (int i = 0; i < elements()->length(); i++) + text->AddElement(elements()->at(i)); +} + + +TextElement TextElement::Atom(RegExpAtom* atom) { + TextElement result = TextElement(ATOM); + result.data.u_atom = atom; + return result; +} + + +TextElement TextElement::CharClass( + RegExpCharacterClass* char_class) { + TextElement result = TextElement(CHAR_CLASS); + result.data.u_char_class = char_class; + return result; +} + + +int TextElement::length() { + if (type == ATOM) { + return data.u_atom->length(); + } else { + ASSERT(type == CHAR_CLASS); + return 1; + } +} + + +DispatchTable* ChoiceNode::GetTable(bool ignore_case) { + if (table_ == NULL) { + table_ = new DispatchTable(); + DispatchTableConstructor cons(table_, ignore_case); + cons.BuildTable(this); + } + return table_; +} + + +class RegExpCompiler { + public: + RegExpCompiler(int capture_count, bool ignore_case, bool is_ascii); + + int AllocateRegister() { + if (next_register_ >= RegExpMacroAssembler::kMaxRegister) { + reg_exp_too_big_ = true; + return next_register_; + } + return next_register_++; + } + + RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler, + RegExpNode* start, + int capture_count, + Handle<String> pattern); + + inline void AddWork(RegExpNode* node) { work_list_->Add(node); } + + static const int kImplementationOffset = 0; + static const int kNumberOfRegistersOffset = 0; + static const int kCodeOffset = 1; + + RegExpMacroAssembler* macro_assembler() { return macro_assembler_; } + EndNode* accept() { return accept_; } + + static const int kMaxRecursion = 100; + inline int recursion_depth() { return recursion_depth_; } + inline void IncrementRecursionDepth() { recursion_depth_++; } + inline void DecrementRecursionDepth() { recursion_depth_--; } + + void SetRegExpTooBig() { reg_exp_too_big_ = true; } + + inline bool ignore_case() { return ignore_case_; } + inline bool ascii() { return ascii_; } + + static const int kNoRegister = -1; + private: + EndNode* accept_; + int next_register_; + List<RegExpNode*>* work_list_; + int recursion_depth_; + RegExpMacroAssembler* macro_assembler_; + bool ignore_case_; + bool ascii_; + bool reg_exp_too_big_; +}; + + +class RecursionCheck { + public: + explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) { + compiler->IncrementRecursionDepth(); + } + ~RecursionCheck() { compiler_->DecrementRecursionDepth(); } + private: + RegExpCompiler* compiler_; +}; + + +static RegExpEngine::CompilationResult IrregexpRegExpTooBig() { + return RegExpEngine::CompilationResult("RegExp too big"); +} + + +// Attempts to compile the regexp using an Irregexp code generator. Returns +// a fixed array or a null handle depending on whether it succeeded. +RegExpCompiler::RegExpCompiler(int capture_count, bool ignore_case, bool ascii) + : next_register_(2 * (capture_count + 1)), + work_list_(NULL), + recursion_depth_(0), + ignore_case_(ignore_case), + ascii_(ascii), + reg_exp_too_big_(false) { + accept_ = new EndNode(EndNode::ACCEPT); + ASSERT(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister); +} + + +RegExpEngine::CompilationResult RegExpCompiler::Assemble( + RegExpMacroAssembler* macro_assembler, + RegExpNode* start, + int capture_count, + Handle<String> pattern) { +#ifdef DEBUG + if (FLAG_trace_regexp_assembler) + macro_assembler_ = new RegExpMacroAssemblerTracer(macro_assembler); + else +#endif + macro_assembler_ = macro_assembler; + List <RegExpNode*> work_list(0); + work_list_ = &work_list; + Label fail; + macro_assembler_->PushBacktrack(&fail); + Trace new_trace; + start->Emit(this, &new_trace); + macro_assembler_->Bind(&fail); + macro_assembler_->Fail(); + while (!work_list.is_empty()) { + work_list.RemoveLast()->Emit(this, &new_trace); + } + if (reg_exp_too_big_) return IrregexpRegExpTooBig(); + + Handle<Object> code = macro_assembler_->GetCode(pattern); + + work_list_ = NULL; +#ifdef DEBUG + if (FLAG_trace_regexp_assembler) { + delete macro_assembler_; + } +#endif + return RegExpEngine::CompilationResult(*code, next_register_); +} + + +bool Trace::DeferredAction::Mentions(int that) { + if (type() == ActionNode::CLEAR_CAPTURES) { + Interval range = static_cast<DeferredClearCaptures*>(this)->range(); + return range.Contains(that); + } else { + return reg() == that; + } +} + + +bool Trace::mentions_reg(int reg) { + for (DeferredAction* action = actions_; + action != NULL; + action = action->next()) { + if (action->Mentions(reg)) + return true; + } + return false; +} + + +bool Trace::GetStoredPosition(int reg, int* cp_offset) { + ASSERT_EQ(0, *cp_offset); + for (DeferredAction* action = actions_; + action != NULL; + action = action->next()) { + if (action->Mentions(reg)) { + if (action->type() == ActionNode::STORE_POSITION) { + *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset(); + return true; + } else { + return false; + } + } + } + return false; +} + + +int Trace::FindAffectedRegisters(OutSet* affected_registers) { + int max_register = RegExpCompiler::kNoRegister; + for (DeferredAction* action = actions_; + action != NULL; + action = action->next()) { + if (action->type() == ActionNode::CLEAR_CAPTURES) { + Interval range = static_cast<DeferredClearCaptures*>(action)->range(); + for (int i = range.from(); i <= range.to(); i++) + affected_registers->Set(i); + if (range.to() > max_register) max_register = range.to(); + } else { + affected_registers->Set(action->reg()); + if (action->reg() > max_register) max_register = action->reg(); + } + } + return max_register; +} + + +void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler, + int max_register, + OutSet& registers_to_pop, + OutSet& registers_to_clear) { + for (int reg = max_register; reg >= 0; reg--) { + if (registers_to_pop.Get(reg)) assembler->PopRegister(reg); + else if (registers_to_clear.Get(reg)) { + int clear_to = reg; + while (reg > 0 && registers_to_clear.Get(reg - 1)) { + reg--; + } + assembler->ClearRegisters(reg, clear_to); + } + } +} + + +void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, + int max_register, + OutSet& affected_registers, + OutSet* registers_to_pop, + OutSet* registers_to_clear) { + // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1. + const int push_limit = (assembler->stack_limit_slack() + 1) / 2; + + for (int reg = 0; reg <= max_register; reg++) { + if (!affected_registers.Get(reg)) { + continue; + } + // Count pushes performed to force a stack limit check occasionally. + int pushes = 0; + + // The chronologically first deferred action in the trace + // is used to infer the action needed to restore a register + // to its previous state (or not, if it's safe to ignore it). + enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR }; + DeferredActionUndoType undo_action = IGNORE; + + int value = 0; + bool absolute = false; + bool clear = false; + int store_position = -1; + // This is a little tricky because we are scanning the actions in reverse + // historical order (newest first). + for (DeferredAction* action = actions_; + action != NULL; + action = action->next()) { + if (action->Mentions(reg)) { + switch (action->type()) { + case ActionNode::SET_REGISTER: { + Trace::DeferredSetRegister* psr = + static_cast<Trace::DeferredSetRegister*>(action); + if (!absolute) { + value += psr->value(); + absolute = true; + } + // SET_REGISTER is currently only used for newly introduced loop + // counters. They can have a significant previous value if they + // occour in a loop. TODO(lrn): Propagate this information, so + // we can set undo_action to IGNORE if we know there is no value to + // restore. + undo_action = RESTORE; + ASSERT_EQ(store_position, -1); + ASSERT(!clear); + break; + } + case ActionNode::INCREMENT_REGISTER: + if (!absolute) { + value++; + } + ASSERT_EQ(store_position, -1); + ASSERT(!clear); + undo_action = RESTORE; + break; + case ActionNode::STORE_POSITION: { + Trace::DeferredCapture* pc = + static_cast<Trace::DeferredCapture*>(action); + if (!clear && store_position == -1) { + store_position = pc->cp_offset(); + } + + // For captures we know that stores and clears alternate. + // Other register, are never cleared, and if the occur + // inside a loop, they might be assigned more than once. + if (reg <= 1) { + // Registers zero and one, aka "capture zero", is + // always set correctly if we succeed. There is no + // need to undo a setting on backtrack, because we + // will set it again or fail. + undo_action = IGNORE; + } else { + undo_action = pc->is_capture() ? CLEAR : RESTORE; + } + ASSERT(!absolute); + ASSERT_EQ(value, 0); + break; + } + case ActionNode::CLEAR_CAPTURES: { + // Since we're scanning in reverse order, if we've already + // set the position we have to ignore historically earlier + // clearing operations. + if (store_position == -1) { + clear = true; + } + undo_action = RESTORE; + ASSERT(!absolute); + ASSERT_EQ(value, 0); + break; + } + default: + UNREACHABLE(); + break; + } + } + } + // Prepare for the undo-action (e.g., push if it's going to be popped). + if (undo_action == RESTORE) { + pushes++; + RegExpMacroAssembler::StackCheckFlag stack_check = + RegExpMacroAssembler::kNoStackLimitCheck; + if (pushes == push_limit) { + stack_check = RegExpMacroAssembler::kCheckStackLimit; + pushes = 0; + } + + assembler->PushRegister(reg, stack_check); + registers_to_pop->Set(reg); + } else if (undo_action == CLEAR) { + registers_to_clear->Set(reg); + } + // Perform the chronologically last action (or accumulated increment) + // for the register. + if (store_position != -1) { + assembler->WriteCurrentPositionToRegister(reg, store_position); + } else if (clear) { + assembler->ClearRegisters(reg, reg); + } else if (absolute) { + assembler->SetRegister(reg, value); + } else if (value != 0) { + assembler->AdvanceRegister(reg, value); + } + } +} + + +// This is called as we come into a loop choice node and some other tricky +// nodes. It normalizes the state of the code generator to ensure we can +// generate generic code. +void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + + ASSERT(!is_trivial()); + + if (actions_ == NULL && backtrack() == NULL) { + // Here we just have some deferred cp advances to fix and we are back to + // a normal situation. We may also have to forget some information gained + // through a quick check that was already performed. + if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_); + // Create a new trivial state and generate the node with that. + Trace new_state; + successor->Emit(compiler, &new_state); + return; + } + + // Generate deferred actions here along with code to undo them again. + OutSet affected_registers; + + if (backtrack() != NULL) { + // Here we have a concrete backtrack location. These are set up by choice + // nodes and so they indicate that we have a deferred save of the current + // position which we may need to emit here. + assembler->PushCurrentPosition(); + } + + int max_register = FindAffectedRegisters(&affected_registers); + OutSet registers_to_pop; + OutSet registers_to_clear; + PerformDeferredActions(assembler, + max_register, + affected_registers, + ®isters_to_pop, + ®isters_to_clear); + if (cp_offset_ != 0) { + assembler->AdvanceCurrentPosition(cp_offset_); + } + + // Create a new trivial state and generate the node with that. + Label undo; + assembler->PushBacktrack(&undo); + Trace new_state; + successor->Emit(compiler, &new_state); + + // On backtrack we need to restore state. + assembler->Bind(&undo); + RestoreAffectedRegisters(assembler, + max_register, + registers_to_pop, + registers_to_clear); + if (backtrack() == NULL) { + assembler->Backtrack(); + } else { + assembler->PopCurrentPosition(); + assembler->GoTo(backtrack()); + } +} + + +void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + + // Omit flushing the trace. We discard the entire stack frame anyway. + + if (!label()->is_bound()) { + // We are completely independent of the trace, since we ignore it, + // so this code can be used as the generic version. + assembler->Bind(label()); + } + + // Throw away everything on the backtrack stack since the start + // of the negative submatch and restore the character position. + assembler->ReadCurrentPositionFromRegister(current_position_register_); + assembler->ReadStackPointerFromRegister(stack_pointer_register_); + if (clear_capture_count_ > 0) { + // Clear any captures that might have been performed during the success + // of the body of the negative look-ahead. + int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1; + assembler->ClearRegisters(clear_capture_start_, clear_capture_end); + } + // Now that we have unwound the stack we find at the top of the stack the + // backtrack that the BeginSubmatch node got. + assembler->Backtrack(); +} + + +void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) { + if (!trace->is_trivial()) { + trace->Flush(compiler, this); + return; + } + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + if (!label()->is_bound()) { + assembler->Bind(label()); + } + switch (action_) { + case ACCEPT: + assembler->Succeed(); + return; + case BACKTRACK: + assembler->GoTo(trace->backtrack()); + return; + case NEGATIVE_SUBMATCH_SUCCESS: + // This case is handled in a different virtual method. + UNREACHABLE(); + } + UNIMPLEMENTED(); +} + + +void GuardedAlternative::AddGuard(Guard* guard) { + if (guards_ == NULL) + guards_ = new ZoneList<Guard*>(1); + guards_->Add(guard); +} + + +ActionNode* ActionNode::SetRegister(int reg, + int val, + RegExpNode* on_success) { + ActionNode* result = new ActionNode(SET_REGISTER, on_success); + result->data_.u_store_register.reg = reg; + result->data_.u_store_register.value = val; + return result; +} + + +ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) { + ActionNode* result = new ActionNode(INCREMENT_REGISTER, on_success); + result->data_.u_increment_register.reg = reg; + return result; +} + + +ActionNode* ActionNode::StorePosition(int reg, + bool is_capture, + RegExpNode* on_success) { + ActionNode* result = new ActionNode(STORE_POSITION, on_success); + result->data_.u_position_register.reg = reg; + result->data_.u_position_register.is_capture = is_capture; + return result; +} + + +ActionNode* ActionNode::ClearCaptures(Interval range, + RegExpNode* on_success) { + ActionNode* result = new ActionNode(CLEAR_CAPTURES, on_success); + result->data_.u_clear_captures.range_from = range.from(); + result->data_.u_clear_captures.range_to = range.to(); + return result; +} + + +ActionNode* ActionNode::BeginSubmatch(int stack_reg, + int position_reg, + RegExpNode* on_success) { + ActionNode* result = new ActionNode(BEGIN_SUBMATCH, on_success); + result->data_.u_submatch.stack_pointer_register = stack_reg; + result->data_.u_submatch.current_position_register = position_reg; + return result; +} + + +ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg, + int position_reg, + int clear_register_count, + int clear_register_from, + RegExpNode* on_success) { + ActionNode* result = new ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success); + result->data_.u_submatch.stack_pointer_register = stack_reg; + result->data_.u_submatch.current_position_register = position_reg; + result->data_.u_submatch.clear_register_count = clear_register_count; + result->data_.u_submatch.clear_register_from = clear_register_from; + return result; +} + + +ActionNode* ActionNode::EmptyMatchCheck(int start_register, + int repetition_register, + int repetition_limit, + RegExpNode* on_success) { + ActionNode* result = new ActionNode(EMPTY_MATCH_CHECK, on_success); + result->data_.u_empty_match_check.start_register = start_register; + result->data_.u_empty_match_check.repetition_register = repetition_register; + result->data_.u_empty_match_check.repetition_limit = repetition_limit; + return result; +} + + +#define DEFINE_ACCEPT(Type) \ + void Type##Node::Accept(NodeVisitor* visitor) { \ + visitor->Visit##Type(this); \ + } +FOR_EACH_NODE_TYPE(DEFINE_ACCEPT) +#undef DEFINE_ACCEPT + + +void LoopChoiceNode::Accept(NodeVisitor* visitor) { + visitor->VisitLoopChoice(this); +} + + +// ------------------------------------------------------------------- +// Emit code. + + +void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler, + Guard* guard, + Trace* trace) { + switch (guard->op()) { + case Guard::LT: + ASSERT(!trace->mentions_reg(guard->reg())); + macro_assembler->IfRegisterGE(guard->reg(), + guard->value(), + trace->backtrack()); + break; + case Guard::GEQ: + ASSERT(!trace->mentions_reg(guard->reg())); + macro_assembler->IfRegisterLT(guard->reg(), + guard->value(), + trace->backtrack()); + break; + } +} + + +static unibrow::Mapping<unibrow::Ecma262UnCanonicalize> uncanonicalize; +static unibrow::Mapping<unibrow::CanonicalizationRange> canonrange; + + +// Returns the number of characters in the equivalence class, omitting those +// that cannot occur in the source string because it is ASCII. +static int GetCaseIndependentLetters(uc16 character, + bool ascii_subject, + unibrow::uchar* letters) { + int length = uncanonicalize.get(character, '\0', letters); + // Unibrow returns 0 or 1 for characters where case independependence is + // trivial. + if (length == 0) { + letters[0] = character; + length = 1; + } + if (!ascii_subject || character <= String::kMaxAsciiCharCode) { + return length; + } + // The standard requires that non-ASCII characters cannot have ASCII + // character codes in their equivalence class. + return 0; +} + + +static inline bool EmitSimpleCharacter(RegExpCompiler* compiler, + uc16 c, + Label* on_failure, + int cp_offset, + bool check, + bool preloaded) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + bool bound_checked = false; + if (!preloaded) { + assembler->LoadCurrentCharacter( + cp_offset, + on_failure, + check); + bound_checked = true; + } + assembler->CheckNotCharacter(c, on_failure); + return bound_checked; +} + + +// Only emits non-letters (things that don't have case). Only used for case +// independent matches. +static inline bool EmitAtomNonLetter(RegExpCompiler* compiler, + uc16 c, + Label* on_failure, + int cp_offset, + bool check, + bool preloaded) { + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); + bool ascii = compiler->ascii(); + unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; + int length = GetCaseIndependentLetters(c, ascii, chars); + if (length < 1) { + // This can't match. Must be an ASCII subject and a non-ASCII character. + // We do not need to do anything since the ASCII pass already handled this. + return false; // Bounds not checked. + } + bool checked = false; + // We handle the length > 1 case in a later pass. + if (length == 1) { + if (ascii && c > String::kMaxAsciiCharCodeU) { + // Can't match - see above. + return false; // Bounds not checked. + } + if (!preloaded) { + macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check); + checked = check; + } + macro_assembler->CheckNotCharacter(c, on_failure); + } + return checked; +} + + +static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler, + bool ascii, + uc16 c1, + uc16 c2, + Label* on_failure) { + uc16 char_mask; + if (ascii) { + char_mask = String::kMaxAsciiCharCode; + } else { + char_mask = String::kMaxUC16CharCode; + } + uc16 exor = c1 ^ c2; + // Check whether exor has only one bit set. + if (((exor - 1) & exor) == 0) { + // If c1 and c2 differ only by one bit. + // Ecma262UnCanonicalize always gives the highest number last. + ASSERT(c2 > c1); + uc16 mask = char_mask ^ exor; + macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure); + return true; + } + ASSERT(c2 > c1); + uc16 diff = c2 - c1; + if (((diff - 1) & diff) == 0 && c1 >= diff) { + // If the characters differ by 2^n but don't differ by one bit then + // subtract the difference from the found character, then do the or + // trick. We avoid the theoretical case where negative numbers are + // involved in order to simplify code generation. + uc16 mask = char_mask ^ diff; + macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff, + diff, + mask, + on_failure); + return true; + } + return false; +} + + +typedef bool EmitCharacterFunction(RegExpCompiler* compiler, + uc16 c, + Label* on_failure, + int cp_offset, + bool check, + bool preloaded); + +// Only emits letters (things that have case). Only used for case independent +// matches. +static inline bool EmitAtomLetter(RegExpCompiler* compiler, + uc16 c, + Label* on_failure, + int cp_offset, + bool check, + bool preloaded) { + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); + bool ascii = compiler->ascii(); + unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; + int length = GetCaseIndependentLetters(c, ascii, chars); + if (length <= 1) return false; + // We may not need to check against the end of the input string + // if this character lies before a character that matched. + if (!preloaded) { + macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check); + } + Label ok; + ASSERT(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4); + switch (length) { + case 2: { + if (ShortCutEmitCharacterPair(macro_assembler, + ascii, + chars[0], + chars[1], + on_failure)) { + } else { + macro_assembler->CheckCharacter(chars[0], &ok); + macro_assembler->CheckNotCharacter(chars[1], on_failure); + macro_assembler->Bind(&ok); + } + break; + } + case 4: + macro_assembler->CheckCharacter(chars[3], &ok); + // Fall through! + case 3: + macro_assembler->CheckCharacter(chars[0], &ok); + macro_assembler->CheckCharacter(chars[1], &ok); + macro_assembler->CheckNotCharacter(chars[2], on_failure); + macro_assembler->Bind(&ok); + break; + default: + UNREACHABLE(); + break; + } + return true; +} + + +static void EmitCharClass(RegExpMacroAssembler* macro_assembler, + RegExpCharacterClass* cc, + bool ascii, + Label* on_failure, + int cp_offset, + bool check_offset, + bool preloaded) { + if (cc->is_standard() && + macro_assembler->CheckSpecialCharacterClass(cc->standard_type(), + cp_offset, + check_offset, + on_failure)) { + return; + } + + ZoneList<CharacterRange>* ranges = cc->ranges(); + int max_char; + if (ascii) { + max_char = String::kMaxAsciiCharCode; + } else { + max_char = String::kMaxUC16CharCode; + } + + Label success; + + Label* char_is_in_class = + cc->is_negated() ? on_failure : &success; + + int range_count = ranges->length(); + + int last_valid_range = range_count - 1; + while (last_valid_range >= 0) { + CharacterRange& range = ranges->at(last_valid_range); + if (range.from() <= max_char) { + break; + } + last_valid_range--; + } + + if (last_valid_range < 0) { + if (!cc->is_negated()) { + // TODO(plesner): We can remove this when the node level does our + // ASCII optimizations for us. + macro_assembler->GoTo(on_failure); + } + if (check_offset) { + macro_assembler->CheckPosition(cp_offset, on_failure); + } + return; + } + + if (last_valid_range == 0 && + !cc->is_negated() && + ranges->at(0).IsEverything(max_char)) { + // This is a common case hit by non-anchored expressions. + if (check_offset) { + macro_assembler->CheckPosition(cp_offset, on_failure); + } + return; + } + + if (!preloaded) { + macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset); + } + + for (int i = 0; i < last_valid_range; i++) { + CharacterRange& range = ranges->at(i); + Label next_range; + uc16 from = range.from(); + uc16 to = range.to(); + if (from > max_char) { + continue; + } + if (to > max_char) to = max_char; + if (to == from) { + macro_assembler->CheckCharacter(to, char_is_in_class); + } else { + if (from != 0) { + macro_assembler->CheckCharacterLT(from, &next_range); + } + if (to != max_char) { + macro_assembler->CheckCharacterLT(to + 1, char_is_in_class); + } else { + macro_assembler->GoTo(char_is_in_class); + } + } + macro_assembler->Bind(&next_range); + } + + CharacterRange& range = ranges->at(last_valid_range); + uc16 from = range.from(); + uc16 to = range.to(); + + if (to > max_char) to = max_char; + ASSERT(to >= from); + + if (to == from) { + if (cc->is_negated()) { + macro_assembler->CheckCharacter(to, on_failure); + } else { + macro_assembler->CheckNotCharacter(to, on_failure); + } + } else { + if (from != 0) { + if (cc->is_negated()) { + macro_assembler->CheckCharacterLT(from, &success); + } else { + macro_assembler->CheckCharacterLT(from, on_failure); + } + } + if (to != String::kMaxUC16CharCode) { + if (cc->is_negated()) { + macro_assembler->CheckCharacterLT(to + 1, on_failure); + } else { + macro_assembler->CheckCharacterGT(to, on_failure); + } + } else { + if (cc->is_negated()) { + macro_assembler->GoTo(on_failure); + } + } + } + macro_assembler->Bind(&success); +} + + +RegExpNode::~RegExpNode() { +} + + +RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler, + Trace* trace) { + // If we are generating a greedy loop then don't stop and don't reuse code. + if (trace->stop_node() != NULL) { + return CONTINUE; + } + + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); + if (trace->is_trivial()) { + if (label_.is_bound()) { + // We are being asked to generate a generic version, but that's already + // been done so just go to it. + macro_assembler->GoTo(&label_); + return DONE; + } + if (compiler->recursion_depth() >= RegExpCompiler::kMaxRecursion) { + // To avoid too deep recursion we push the node to the work queue and just + // generate a goto here. + compiler->AddWork(this); + macro_assembler->GoTo(&label_); + return DONE; + } + // Generate generic version of the node and bind the label for later use. + macro_assembler->Bind(&label_); + return CONTINUE; + } + + // We are being asked to make a non-generic version. Keep track of how many + // non-generic versions we generate so as not to overdo it. + trace_count_++; + if (FLAG_regexp_optimization && + trace_count_ < kMaxCopiesCodeGenerated && + compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion) { + return CONTINUE; + } + + // If we get here code has been generated for this node too many times or + // recursion is too deep. Time to switch to a generic version. The code for + // generic versions above can handle deep recursion properly. + trace->Flush(compiler, this); + return DONE; +} + + +int ActionNode::EatsAtLeast(int still_to_find, int recursion_depth) { + if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0; + if (type_ == POSITIVE_SUBMATCH_SUCCESS) return 0; // Rewinds input! + return on_success()->EatsAtLeast(still_to_find, recursion_depth + 1); +} + + +int AssertionNode::EatsAtLeast(int still_to_find, int recursion_depth) { + if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0; + return on_success()->EatsAtLeast(still_to_find, recursion_depth + 1); +} + + +int BackReferenceNode::EatsAtLeast(int still_to_find, int recursion_depth) { + if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0; + return on_success()->EatsAtLeast(still_to_find, recursion_depth + 1); +} + + +int TextNode::EatsAtLeast(int still_to_find, int recursion_depth) { + int answer = Length(); + if (answer >= still_to_find) return answer; + if (recursion_depth > RegExpCompiler::kMaxRecursion) return answer; + return answer + on_success()->EatsAtLeast(still_to_find - answer, + recursion_depth + 1); +} + + +int NegativeLookaheadChoiceNode:: EatsAtLeast(int still_to_find, + int recursion_depth) { + if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0; + // Alternative 0 is the negative lookahead, alternative 1 is what comes + // afterwards. + RegExpNode* node = alternatives_->at(1).node(); + return node->EatsAtLeast(still_to_find, recursion_depth + 1); +} + + +void NegativeLookaheadChoiceNode::GetQuickCheckDetails( + QuickCheckDetails* details, + RegExpCompiler* compiler, + int filled_in, + bool not_at_start) { + // Alternative 0 is the negative lookahead, alternative 1 is what comes + // afterwards. + RegExpNode* node = alternatives_->at(1).node(); + return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start); +} + + +int ChoiceNode::EatsAtLeastHelper(int still_to_find, + int recursion_depth, + RegExpNode* ignore_this_node) { + if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0; + int min = 100; + int choice_count = alternatives_->length(); + for (int i = 0; i < choice_count; i++) { + RegExpNode* node = alternatives_->at(i).node(); + if (node == ignore_this_node) continue; + int node_eats_at_least = node->EatsAtLeast(still_to_find, + recursion_depth + 1); + if (node_eats_at_least < min) min = node_eats_at_least; + } + return min; +} + + +int LoopChoiceNode::EatsAtLeast(int still_to_find, int recursion_depth) { + return EatsAtLeastHelper(still_to_find, recursion_depth, loop_node_); +} + + +int ChoiceNode::EatsAtLeast(int still_to_find, int recursion_depth) { + return EatsAtLeastHelper(still_to_find, recursion_depth, NULL); +} + + +// Takes the left-most 1-bit and smears it out, setting all bits to its right. +static inline uint32_t SmearBitsRight(uint32_t v) { + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + return v; +} + + +bool QuickCheckDetails::Rationalize(bool asc) { + bool found_useful_op = false; + uint32_t char_mask; + if (asc) { + char_mask = String::kMaxAsciiCharCode; + } else { + char_mask = String::kMaxUC16CharCode; + } + mask_ = 0; + value_ = 0; + int char_shift = 0; + for (int i = 0; i < characters_; i++) { + Position* pos = &positions_[i]; + if ((pos->mask & String::kMaxAsciiCharCode) != 0) { + found_useful_op = true; + } + mask_ |= (pos->mask & char_mask) << char_shift; + value_ |= (pos->value & char_mask) << char_shift; + char_shift += asc ? 8 : 16; + } + return found_useful_op; +} + + +bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler, + Trace* trace, + bool preload_has_checked_bounds, + Label* on_possible_success, + QuickCheckDetails* details, + bool fall_through_on_failure) { + if (details->characters() == 0) return false; + GetQuickCheckDetails(details, compiler, 0, trace->at_start() == Trace::FALSE); + if (details->cannot_match()) return false; + if (!details->Rationalize(compiler->ascii())) return false; + uint32_t mask = details->mask(); + uint32_t value = details->value(); + + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + + if (trace->characters_preloaded() != details->characters()) { + assembler->LoadCurrentCharacter(trace->cp_offset(), + trace->backtrack(), + !preload_has_checked_bounds, + details->characters()); + } + + + bool need_mask = true; + + if (details->characters() == 1) { + // If number of characters preloaded is 1 then we used a byte or 16 bit + // load so the value is already masked down. + uint32_t char_mask; + if (compiler->ascii()) { + char_mask = String::kMaxAsciiCharCode; + } else { + char_mask = String::kMaxUC16CharCode; + } + if ((mask & char_mask) == char_mask) need_mask = false; + mask &= char_mask; + } else { + // For 2-character preloads in ASCII mode we also use a 16 bit load with + // zero extend. + if (details->characters() == 2 && compiler->ascii()) { + if ((mask & 0xffff) == 0xffff) need_mask = false; + } else { + if (mask == 0xffffffff) need_mask = false; + } + } + + if (fall_through_on_failure) { + if (need_mask) { + assembler->CheckCharacterAfterAnd(value, mask, on_possible_success); + } else { + assembler->CheckCharacter(value, on_possible_success); + } + } else { + if (need_mask) { + assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack()); + } else { + assembler->CheckNotCharacter(value, trace->backtrack()); + } + } + return true; +} + + +// Here is the meat of GetQuickCheckDetails (see also the comment on the +// super-class in the .h file). +// +// We iterate along the text object, building up for each character a +// mask and value that can be used to test for a quick failure to match. +// The masks and values for the positions will be combined into a single +// machine word for the current character width in order to be used in +// generating a quick check. +void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, + int characters_filled_in, + bool not_at_start) { + ASSERT(characters_filled_in < details->characters()); + int characters = details->characters(); + int char_mask; + int char_shift; + if (compiler->ascii()) { + char_mask = String::kMaxAsciiCharCode; + char_shift = 8; + } else { + char_mask = String::kMaxUC16CharCode; + char_shift = 16; + } + for (int k = 0; k < elms_->length(); k++) { + TextElement elm = elms_->at(k); + if (elm.type == TextElement::ATOM) { + Vector<const uc16> quarks = elm.data.u_atom->data(); + for (int i = 0; i < characters && i < quarks.length(); i++) { + QuickCheckDetails::Position* pos = + details->positions(characters_filled_in); + uc16 c = quarks[i]; + if (c > char_mask) { + // If we expect a non-ASCII character from an ASCII string, + // there is no way we can match. Not even case independent + // matching can turn an ASCII character into non-ASCII or + // vice versa. + details->set_cannot_match(); + pos->determines_perfectly = false; + return; + } + if (compiler->ignore_case()) { + unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; + int length = GetCaseIndependentLetters(c, compiler->ascii(), chars); + ASSERT(length != 0); // Can only happen if c > char_mask (see above). + if (length == 1) { + // This letter has no case equivalents, so it's nice and simple + // and the mask-compare will determine definitely whether we have + // a match at this character position. + pos->mask = char_mask; + pos->value = c; + pos->determines_perfectly = true; + } else { + uint32_t common_bits = char_mask; + uint32_t bits = chars[0]; + for (int j = 1; j < length; j++) { + uint32_t differing_bits = ((chars[j] & common_bits) ^ bits); + common_bits ^= differing_bits; + bits &= common_bits; + } + // If length is 2 and common bits has only one zero in it then + // our mask and compare instruction will determine definitely + // whether we have a match at this character position. Otherwise + // it can only be an approximate check. + uint32_t one_zero = (common_bits | ~char_mask); + if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) { + pos->determines_perfectly = true; + } + pos->mask = common_bits; + pos->value = bits; + } + } else { + // Don't ignore case. Nice simple case where the mask-compare will + // determine definitely whether we have a match at this character + // position. + pos->mask = char_mask; + pos->value = c; + pos->determines_perfectly = true; + } + characters_filled_in++; + ASSERT(characters_filled_in <= details->characters()); + if (characters_filled_in == details->characters()) { + return; + } + } + } else { + QuickCheckDetails::Position* pos = + details->positions(characters_filled_in); + RegExpCharacterClass* tree = elm.data.u_char_class; + ZoneList<CharacterRange>* ranges = tree->ranges(); + if (tree->is_negated()) { + // A quick check uses multi-character mask and compare. There is no + // useful way to incorporate a negative char class into this scheme + // so we just conservatively create a mask and value that will always + // succeed. + pos->mask = 0; + pos->value = 0; + } else { + int first_range = 0; + while (ranges->at(first_range).from() > char_mask) { + first_range++; + if (first_range == ranges->length()) { + details->set_cannot_match(); + pos->determines_perfectly = false; + return; + } + } + CharacterRange range = ranges->at(first_range); + uc16 from = range.from(); + uc16 to = range.to(); + if (to > char_mask) { + to = char_mask; + } + uint32_t differing_bits = (from ^ to); + // A mask and compare is only perfect if the differing bits form a + // number like 00011111 with one single block of trailing 1s. + if ((differing_bits & (differing_bits + 1)) == 0) { + pos->determines_perfectly = true; + } + uint32_t common_bits = ~SmearBitsRight(differing_bits); + uint32_t bits = (from & common_bits); + for (int i = first_range + 1; i < ranges->length(); i++) { + CharacterRange range = ranges->at(i); + uc16 from = range.from(); + uc16 to = range.to(); + if (from > char_mask) continue; + if (to > char_mask) to = char_mask; + // Here we are combining more ranges into the mask and compare + // value. With each new range the mask becomes more sparse and + // so the chances of a false positive rise. A character class + // with multiple ranges is assumed never to be equivalent to a + // mask and compare operation. + pos->determines_perfectly = false; + uint32_t new_common_bits = (from ^ to); + new_common_bits = ~SmearBitsRight(new_common_bits); + common_bits &= new_common_bits; + bits &= new_common_bits; + uint32_t differing_bits = (from & common_bits) ^ bits; + common_bits ^= differing_bits; + bits &= common_bits; + } + pos->mask = common_bits; + pos->value = bits; + } + characters_filled_in++; + ASSERT(characters_filled_in <= details->characters()); + if (characters_filled_in == details->characters()) { + return; + } + } + } + ASSERT(characters_filled_in != details->characters()); + on_success()-> GetQuickCheckDetails(details, + compiler, + characters_filled_in, + true); +} + + +void QuickCheckDetails::Clear() { + for (int i = 0; i < characters_; i++) { + positions_[i].mask = 0; + positions_[i].value = 0; + positions_[i].determines_perfectly = false; + } + characters_ = 0; +} + + +void QuickCheckDetails::Advance(int by, bool ascii) { + ASSERT(by >= 0); + if (by >= characters_) { + Clear(); + return; + } + for (int i = 0; i < characters_ - by; i++) { + positions_[i] = positions_[by + i]; + } + for (int i = characters_ - by; i < characters_; i++) { + positions_[i].mask = 0; + positions_[i].value = 0; + positions_[i].determines_perfectly = false; + } + characters_ -= by; + // We could change mask_ and value_ here but we would never advance unless + // they had already been used in a check and they won't be used again because + // it would gain us nothing. So there's no point. +} + + +void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) { + ASSERT(characters_ == other->characters_); + if (other->cannot_match_) { + return; + } + if (cannot_match_) { + *this = *other; + return; + } + for (int i = from_index; i < characters_; i++) { + QuickCheckDetails::Position* pos = positions(i); + QuickCheckDetails::Position* other_pos = other->positions(i); + if (pos->mask != other_pos->mask || + pos->value != other_pos->value || + !other_pos->determines_perfectly) { + // Our mask-compare operation will be approximate unless we have the + // exact same operation on both sides of the alternation. + pos->determines_perfectly = false; + } + pos->mask &= other_pos->mask; + pos->value &= pos->mask; + other_pos->value &= pos->mask; + uc16 differing_bits = (pos->value ^ other_pos->value); + pos->mask &= ~differing_bits; + pos->value &= pos->mask; + } +} + + +class VisitMarker { + public: + explicit VisitMarker(NodeInfo* info) : info_(info) { + ASSERT(!info->visited); + info->visited = true; + } + ~VisitMarker() { + info_->visited = false; + } + private: + NodeInfo* info_; +}; + + +void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, + int characters_filled_in, + bool not_at_start) { + if (body_can_be_zero_length_ || info()->visited) return; + VisitMarker marker(info()); + return ChoiceNode::GetQuickCheckDetails(details, + compiler, + characters_filled_in, + not_at_start); +} + + +void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, + int characters_filled_in, + bool not_at_start) { + not_at_start = (not_at_start || not_at_start_); + int choice_count = alternatives_->length(); + ASSERT(choice_count > 0); + alternatives_->at(0).node()->GetQuickCheckDetails(details, + compiler, + characters_filled_in, + not_at_start); + for (int i = 1; i < choice_count; i++) { + QuickCheckDetails new_details(details->characters()); + RegExpNode* node = alternatives_->at(i).node(); + node->GetQuickCheckDetails(&new_details, compiler, + characters_filled_in, + not_at_start); + // Here we merge the quick match details of the two branches. + details->Merge(&new_details, characters_filled_in); + } +} + + +// Check for [0-9A-Z_a-z]. +static void EmitWordCheck(RegExpMacroAssembler* assembler, + Label* word, + Label* non_word, + bool fall_through_on_word) { + assembler->CheckCharacterGT('z', non_word); + assembler->CheckCharacterLT('0', non_word); + assembler->CheckCharacterGT('a' - 1, word); + assembler->CheckCharacterLT('9' + 1, word); + assembler->CheckCharacterLT('A', non_word); + assembler->CheckCharacterLT('Z' + 1, word); + if (fall_through_on_word) { + assembler->CheckNotCharacter('_', non_word); + } else { + assembler->CheckCharacter('_', word); + } +} + + +// Emit the code to check for a ^ in multiline mode (1-character lookbehind +// that matches newline or the start of input). +static void EmitHat(RegExpCompiler* compiler, + RegExpNode* on_success, + Trace* trace) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + // We will be loading the previous character into the current character + // register. + Trace new_trace(*trace); + new_trace.InvalidateCurrentCharacter(); + + Label ok; + if (new_trace.cp_offset() == 0) { + // The start of input counts as a newline in this context, so skip to + // ok if we are at the start. + assembler->CheckAtStart(&ok); + } + // We already checked that we are not at the start of input so it must be + // OK to load the previous character. + assembler->LoadCurrentCharacter(new_trace.cp_offset() -1, + new_trace.backtrack(), + false); + // Newline means \n, \r, 0x2028 or 0x2029. + if (!compiler->ascii()) { + assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok); + } + assembler->CheckCharacter('\n', &ok); + assembler->CheckNotCharacter('\r', new_trace.backtrack()); + assembler->Bind(&ok); + on_success->Emit(compiler, &new_trace); +} + + +// Emit the code to handle \b and \B (word-boundary or non-word-boundary). +static void EmitBoundaryCheck(AssertionNode::AssertionNodeType type, + RegExpCompiler* compiler, + RegExpNode* on_success, + Trace* trace) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + Label before_non_word; + Label before_word; + if (trace->characters_preloaded() != 1) { + assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word); + } + // Fall through on non-word. + EmitWordCheck(assembler, &before_word, &before_non_word, false); + + // We will be loading the previous character into the current character + // register. + Trace new_trace(*trace); + new_trace.InvalidateCurrentCharacter(); + + Label ok; + Label* boundary; + Label* not_boundary; + if (type == AssertionNode::AT_BOUNDARY) { + boundary = &ok; + not_boundary = new_trace.backtrack(); + } else { + not_boundary = &ok; + boundary = new_trace.backtrack(); + } + + // Next character is not a word character. + assembler->Bind(&before_non_word); + if (new_trace.cp_offset() == 0) { + // The start of input counts as a non-word character, so the question is + // decided if we are at the start. + assembler->CheckAtStart(not_boundary); + } + // We already checked that we are not at the start of input so it must be + // OK to load the previous character. + assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, + &ok, // Unused dummy label in this call. + false); + // Fall through on non-word. + EmitWordCheck(assembler, boundary, not_boundary, false); + assembler->GoTo(not_boundary); + + // Next character is a word character. + assembler->Bind(&before_word); + if (new_trace.cp_offset() == 0) { + // The start of input counts as a non-word character, so the question is + // decided if we are at the start. + assembler->CheckAtStart(boundary); + } + // We already checked that we are not at the start of input so it must be + // OK to load the previous character. + assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, + &ok, // Unused dummy label in this call. + false); + bool fall_through_on_word = (type == AssertionNode::AT_NON_BOUNDARY); + EmitWordCheck(assembler, not_boundary, boundary, fall_through_on_word); + + assembler->Bind(&ok); + + on_success->Emit(compiler, &new_trace); +} + + +void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, + int filled_in, + bool not_at_start) { + if (type_ == AT_START && not_at_start) { + details->set_cannot_match(); + return; + } + return on_success()->GetQuickCheckDetails(details, + compiler, + filled_in, + not_at_start); +} + + +void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + switch (type_) { + case AT_END: { + Label ok; + assembler->CheckPosition(trace->cp_offset(), &ok); + assembler->GoTo(trace->backtrack()); + assembler->Bind(&ok); + break; + } + case AT_START: { + if (trace->at_start() == Trace::FALSE) { + assembler->GoTo(trace->backtrack()); + return; + } + if (trace->at_start() == Trace::UNKNOWN) { + assembler->CheckNotAtStart(trace->backtrack()); + Trace at_start_trace = *trace; + at_start_trace.set_at_start(true); + on_success()->Emit(compiler, &at_start_trace); + return; + } + } + break; + case AFTER_NEWLINE: + EmitHat(compiler, on_success(), trace); + return; + case AT_NON_BOUNDARY: + case AT_BOUNDARY: + EmitBoundaryCheck(type_, compiler, on_success(), trace); + return; + } + on_success()->Emit(compiler, trace); +} + + +static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) { + if (quick_check == NULL) return false; + if (offset >= quick_check->characters()) return false; + return quick_check->positions(offset)->determines_perfectly; +} + + +static void UpdateBoundsCheck(int index, int* checked_up_to) { + if (index > *checked_up_to) { + *checked_up_to = index; + } +} + + +// We call this repeatedly to generate code for each pass over the text node. +// The passes are in increasing order of difficulty because we hope one +// of the first passes will fail in which case we are saved the work of the +// later passes. for example for the case independent regexp /%[asdfghjkl]a/ +// we will check the '%' in the first pass, the case independent 'a' in the +// second pass and the character class in the last pass. +// +// The passes are done from right to left, so for example to test for /bar/ +// we will first test for an 'r' with offset 2, then an 'a' with offset 1 +// and then a 'b' with offset 0. This means we can avoid the end-of-input +// bounds check most of the time. In the example we only need to check for +// end-of-input when loading the putative 'r'. +// +// A slight complication involves the fact that the first character may already +// be fetched into a register by the previous node. In this case we want to +// do the test for that character first. We do this in separate passes. The +// 'preloaded' argument indicates that we are doing such a 'pass'. If such a +// pass has been performed then subsequent passes will have true in +// first_element_checked to indicate that that character does not need to be +// checked again. +// +// In addition to all this we are passed a Trace, which can +// contain an AlternativeGeneration object. In this AlternativeGeneration +// object we can see details of any quick check that was already passed in +// order to get to the code we are now generating. The quick check can involve +// loading characters, which means we do not need to recheck the bounds +// up to the limit the quick check already checked. In addition the quick +// check can have involved a mask and compare operation which may simplify +// or obviate the need for further checks at some character positions. +void TextNode::TextEmitPass(RegExpCompiler* compiler, + TextEmitPassType pass, + bool preloaded, + Trace* trace, + bool first_element_checked, + int* checked_up_to) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + bool ascii = compiler->ascii(); + Label* backtrack = trace->backtrack(); + QuickCheckDetails* quick_check = trace->quick_check_performed(); + int element_count = elms_->length(); + for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) { + TextElement elm = elms_->at(i); + int cp_offset = trace->cp_offset() + elm.cp_offset; + if (elm.type == TextElement::ATOM) { + Vector<const uc16> quarks = elm.data.u_atom->data(); + for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) { + if (first_element_checked && i == 0 && j == 0) continue; + if (DeterminedAlready(quick_check, elm.cp_offset + j)) continue; + EmitCharacterFunction* emit_function = NULL; + switch (pass) { + case NON_ASCII_MATCH: + ASSERT(ascii); + if (quarks[j] > String::kMaxAsciiCharCode) { + assembler->GoTo(backtrack); + return; + } + break; + case NON_LETTER_CHARACTER_MATCH: + emit_function = &EmitAtomNonLetter; + break; + case SIMPLE_CHARACTER_MATCH: + emit_function = &EmitSimpleCharacter; + break; + case CASE_CHARACTER_MATCH: + emit_function = &EmitAtomLetter; + break; + default: + break; + } + if (emit_function != NULL) { + bool bound_checked = emit_function(compiler, + quarks[j], + backtrack, + cp_offset + j, + *checked_up_to < cp_offset + j, + preloaded); + if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to); + } + } + } else { + ASSERT_EQ(elm.type, TextElement::CHAR_CLASS); + if (pass == CHARACTER_CLASS_MATCH) { + if (first_element_checked && i == 0) continue; + if (DeterminedAlready(quick_check, elm.cp_offset)) continue; + RegExpCharacterClass* cc = elm.data.u_char_class; + EmitCharClass(assembler, + cc, + ascii, + backtrack, + cp_offset, + *checked_up_to < cp_offset, + preloaded); + UpdateBoundsCheck(cp_offset, checked_up_to); + } + } + } +} + + +int TextNode::Length() { + TextElement elm = elms_->last(); + ASSERT(elm.cp_offset >= 0); + if (elm.type == TextElement::ATOM) { + return elm.cp_offset + elm.data.u_atom->data().length(); + } else { + return elm.cp_offset + 1; + } +} + + +bool TextNode::SkipPass(int int_pass, bool ignore_case) { + TextEmitPassType pass = static_cast<TextEmitPassType>(int_pass); + if (ignore_case) { + return pass == SIMPLE_CHARACTER_MATCH; + } else { + return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH; + } +} + + +// This generates the code to match a text node. A text node can contain +// straight character sequences (possibly to be matched in a case-independent +// way) and character classes. For efficiency we do not do this in a single +// pass from left to right. Instead we pass over the text node several times, +// emitting code for some character positions every time. See the comment on +// TextEmitPass for details. +void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) { + LimitResult limit_result = LimitVersions(compiler, trace); + if (limit_result == DONE) return; + ASSERT(limit_result == CONTINUE); + + if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) { + compiler->SetRegExpTooBig(); + return; + } + + if (compiler->ascii()) { + int dummy = 0; + TextEmitPass(compiler, NON_ASCII_MATCH, false, trace, false, &dummy); + } + + bool first_elt_done = false; + int bound_checked_to = trace->cp_offset() - 1; + bound_checked_to += trace->bound_checked_up_to(); + + // If a character is preloaded into the current character register then + // check that now. + if (trace->characters_preloaded() == 1) { + for (int pass = kFirstRealPass; pass <= kLastPass; pass++) { + if (!SkipPass(pass, compiler->ignore_case())) { + TextEmitPass(compiler, + static_cast<TextEmitPassType>(pass), + true, + trace, + false, + &bound_checked_to); + } + } + first_elt_done = true; + } + + for (int pass = kFirstRealPass; pass <= kLastPass; pass++) { + if (!SkipPass(pass, compiler->ignore_case())) { + TextEmitPass(compiler, + static_cast<TextEmitPassType>(pass), + false, + trace, + first_elt_done, + &bound_checked_to); + } + } + + Trace successor_trace(*trace); + successor_trace.set_at_start(false); + successor_trace.AdvanceCurrentPositionInTrace(Length(), compiler); + RecursionCheck rc(compiler); + on_success()->Emit(compiler, &successor_trace); +} + + +void Trace::InvalidateCurrentCharacter() { + characters_preloaded_ = 0; +} + + +void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) { + ASSERT(by > 0); + // We don't have an instruction for shifting the current character register + // down or for using a shifted value for anything so lets just forget that + // we preloaded any characters into it. + characters_preloaded_ = 0; + // Adjust the offsets of the quick check performed information. This + // information is used to find out what we already determined about the + // characters by means of mask and compare. + quick_check_performed_.Advance(by, compiler->ascii()); + cp_offset_ += by; + if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) { + compiler->SetRegExpTooBig(); + cp_offset_ = 0; + } + bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by); +} + + +void TextNode::MakeCaseIndependent() { + int element_count = elms_->length(); + for (int i = 0; i < element_count; i++) { + TextElement elm = elms_->at(i); + if (elm.type == TextElement::CHAR_CLASS) { + RegExpCharacterClass* cc = elm.data.u_char_class; + ZoneList<CharacterRange>* ranges = cc->ranges(); + int range_count = ranges->length(); + for (int i = 0; i < range_count; i++) { + ranges->at(i).AddCaseEquivalents(ranges); + } + } + } +} + + +int TextNode::GreedyLoopTextLength() { + TextElement elm = elms_->at(elms_->length() - 1); + if (elm.type == TextElement::CHAR_CLASS) { + return elm.cp_offset + 1; + } else { + return elm.cp_offset + elm.data.u_atom->data().length(); + } +} + + +// Finds the fixed match length of a sequence of nodes that goes from +// this alternative and back to this choice node. If there are variable +// length nodes or other complications in the way then return a sentinel +// value indicating that a greedy loop cannot be constructed. +int ChoiceNode::GreedyLoopTextLength(GuardedAlternative* alternative) { + int length = 0; + RegExpNode* node = alternative->node(); + // Later we will generate code for all these text nodes using recursion + // so we have to limit the max number. + int recursion_depth = 0; + while (node != this) { + if (recursion_depth++ > RegExpCompiler::kMaxRecursion) { + return kNodeIsTooComplexForGreedyLoops; + } + int node_length = node->GreedyLoopTextLength(); + if (node_length == kNodeIsTooComplexForGreedyLoops) { + return kNodeIsTooComplexForGreedyLoops; + } + length += node_length; + SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node); + node = seq_node->on_success(); + } + return length; +} + + +void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) { + ASSERT_EQ(loop_node_, NULL); + AddAlternative(alt); + loop_node_ = alt.node(); +} + + +void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) { + ASSERT_EQ(continue_node_, NULL); + AddAlternative(alt); + continue_node_ = alt.node(); +} + + +void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); + if (trace->stop_node() == this) { + int text_length = GreedyLoopTextLength(&(alternatives_->at(0))); + ASSERT(text_length != kNodeIsTooComplexForGreedyLoops); + // Update the counter-based backtracking info on the stack. This is an + // optimization for greedy loops (see below). + ASSERT(trace->cp_offset() == text_length); + macro_assembler->AdvanceCurrentPosition(text_length); + macro_assembler->GoTo(trace->loop_label()); + return; + } + ASSERT(trace->stop_node() == NULL); + if (!trace->is_trivial()) { + trace->Flush(compiler, this); + return; + } + ChoiceNode::Emit(compiler, trace); +} + + +int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler) { + int preload_characters = EatsAtLeast(4, 0); +#ifdef V8_HOST_CAN_READ_UNALIGNED + bool ascii = compiler->ascii(); + if (ascii) { + if (preload_characters > 4) preload_characters = 4; + // We can't preload 3 characters because there is no machine instruction + // to do that. We can't just load 4 because we could be reading + // beyond the end of the string, which could cause a memory fault. + if (preload_characters == 3) preload_characters = 2; + } else { + if (preload_characters > 2) preload_characters = 2; + } +#else + if (preload_characters > 1) preload_characters = 1; +#endif + return preload_characters; +} + + +// This class is used when generating the alternatives in a choice node. It +// records the way the alternative is being code generated. +class AlternativeGeneration: public Malloced { + public: + AlternativeGeneration() + : possible_success(), + expects_preload(false), + after(), + quick_check_details() { } + Label possible_success; + bool expects_preload; + Label after; + QuickCheckDetails quick_check_details; +}; + + +// Creates a list of AlternativeGenerations. If the list has a reasonable +// size then it is on the stack, otherwise the excess is on the heap. +class AlternativeGenerationList { + public: + explicit AlternativeGenerationList(int count) + : alt_gens_(count) { + for (int i = 0; i < count && i < kAFew; i++) { + alt_gens_.Add(a_few_alt_gens_ + i); + } + for (int i = kAFew; i < count; i++) { + alt_gens_.Add(new AlternativeGeneration()); + } + } + ~AlternativeGenerationList() { + for (int i = kAFew; i < alt_gens_.length(); i++) { + delete alt_gens_[i]; + alt_gens_[i] = NULL; + } + } + + AlternativeGeneration* at(int i) { + return alt_gens_[i]; + } + private: + static const int kAFew = 10; + ZoneList<AlternativeGeneration*> alt_gens_; + AlternativeGeneration a_few_alt_gens_[kAFew]; +}; + + +/* Code generation for choice nodes. + * + * We generate quick checks that do a mask and compare to eliminate a + * choice. If the quick check succeeds then it jumps to the continuation to + * do slow checks and check subsequent nodes. If it fails (the common case) + * it falls through to the next choice. + * + * Here is the desired flow graph. Nodes directly below each other imply + * fallthrough. Alternatives 1 and 2 have quick checks. Alternative + * 3 doesn't have a quick check so we have to call the slow check. + * Nodes are marked Qn for quick checks and Sn for slow checks. The entire + * regexp continuation is generated directly after the Sn node, up to the + * next GoTo if we decide to reuse some already generated code. Some + * nodes expect preload_characters to be preloaded into the current + * character register. R nodes do this preloading. Vertices are marked + * F for failures and S for success (possible success in the case of quick + * nodes). L, V, < and > are used as arrow heads. + * + * ----------> R + * | + * V + * Q1 -----> S1 + * | S / + * F| / + * | F/ + * | / + * | R + * | / + * V L + * Q2 -----> S2 + * | S / + * F| / + * | F/ + * | / + * | R + * | / + * V L + * S3 + * | + * F| + * | + * R + * | + * backtrack V + * <----------Q4 + * \ F | + * \ |S + * \ F V + * \-----S4 + * + * For greedy loops we reverse our expectation and expect to match rather + * than fail. Therefore we want the loop code to look like this (U is the + * unwind code that steps back in the greedy loop). The following alternatives + * look the same as above. + * _____ + * / \ + * V | + * ----------> S1 | + * /| | + * / |S | + * F/ \_____/ + * / + * |<----------- + * | \ + * V \ + * Q2 ---> S2 \ + * | S / | + * F| / | + * | F/ | + * | / | + * | R | + * | / | + * F VL | + * <------U | + * back |S | + * \______________/ + */ + + +void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); + int choice_count = alternatives_->length(); +#ifdef DEBUG + for (int i = 0; i < choice_count - 1; i++) { + GuardedAlternative alternative = alternatives_->at(i); + ZoneList<Guard*>* guards = alternative.guards(); + int guard_count = (guards == NULL) ? 0 : guards->length(); + for (int j = 0; j < guard_count; j++) { + ASSERT(!trace->mentions_reg(guards->at(j)->reg())); + } + } +#endif + + LimitResult limit_result = LimitVersions(compiler, trace); + if (limit_result == DONE) return; + ASSERT(limit_result == CONTINUE); + + int new_flush_budget = trace->flush_budget() / choice_count; + if (trace->flush_budget() == 0 && trace->actions() != NULL) { + trace->Flush(compiler, this); + return; + } + + RecursionCheck rc(compiler); + + Trace* current_trace = trace; + + int text_length = GreedyLoopTextLength(&(alternatives_->at(0))); + bool greedy_loop = false; + Label greedy_loop_label; + Trace counter_backtrack_trace; + counter_backtrack_trace.set_backtrack(&greedy_loop_label); + if (not_at_start()) counter_backtrack_trace.set_at_start(false); + + if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) { + // Here we have special handling for greedy loops containing only text nodes + // and other simple nodes. These are handled by pushing the current + // position on the stack and then incrementing the current position each + // time around the switch. On backtrack we decrement the current position + // and check it against the pushed value. This avoids pushing backtrack + // information for each iteration of the loop, which could take up a lot of + // space. + greedy_loop = true; + ASSERT(trace->stop_node() == NULL); + macro_assembler->PushCurrentPosition(); + current_trace = &counter_backtrack_trace; + Label greedy_match_failed; + Trace greedy_match_trace; + if (not_at_start()) greedy_match_trace.set_at_start(false); + greedy_match_trace.set_backtrack(&greedy_match_failed); + Label loop_label; + macro_assembler->Bind(&loop_label); + greedy_match_trace.set_stop_node(this); + greedy_match_trace.set_loop_label(&loop_label); + alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace); + macro_assembler->Bind(&greedy_match_failed); + } + + Label second_choice; // For use in greedy matches. + macro_assembler->Bind(&second_choice); + + int first_normal_choice = greedy_loop ? 1 : 0; + + int preload_characters = CalculatePreloadCharacters(compiler); + bool preload_is_current = + (current_trace->characters_preloaded() == preload_characters); + bool preload_has_checked_bounds = preload_is_current; + + AlternativeGenerationList alt_gens(choice_count); + + // For now we just call all choices one after the other. The idea ultimately + // is to use the Dispatch table to try only the relevant ones. + for (int i = first_normal_choice; i < choice_count; i++) { + GuardedAlternative alternative = alternatives_->at(i); + AlternativeGeneration* alt_gen = alt_gens.at(i); + alt_gen->quick_check_details.set_characters(preload_characters); + ZoneList<Guard*>* guards = alternative.guards(); + int guard_count = (guards == NULL) ? 0 : guards->length(); + Trace new_trace(*current_trace); + new_trace.set_characters_preloaded(preload_is_current ? + preload_characters : + 0); + if (preload_has_checked_bounds) { + new_trace.set_bound_checked_up_to(preload_characters); + } + new_trace.quick_check_performed()->Clear(); + if (not_at_start_) new_trace.set_at_start(Trace::FALSE); + alt_gen->expects_preload = preload_is_current; + bool generate_full_check_inline = false; + if (FLAG_regexp_optimization && + try_to_emit_quick_check_for_alternative(i) && + alternative.node()->EmitQuickCheck(compiler, + &new_trace, + preload_has_checked_bounds, + &alt_gen->possible_success, + &alt_gen->quick_check_details, + i < choice_count - 1)) { + // Quick check was generated for this choice. + preload_is_current = true; + preload_has_checked_bounds = true; + // On the last choice in the ChoiceNode we generated the quick + // check to fall through on possible success. So now we need to + // generate the full check inline. + if (i == choice_count - 1) { + macro_assembler->Bind(&alt_gen->possible_success); + new_trace.set_quick_check_performed(&alt_gen->quick_check_details); + new_trace.set_characters_preloaded(preload_characters); + new_trace.set_bound_checked_up_to(preload_characters); + generate_full_check_inline = true; + } + } else if (alt_gen->quick_check_details.cannot_match()) { + if (i == choice_count - 1 && !greedy_loop) { + macro_assembler->GoTo(trace->backtrack()); + } + continue; + } else { + // No quick check was generated. Put the full code here. + // If this is not the first choice then there could be slow checks from + // previous cases that go here when they fail. There's no reason to + // insist that they preload characters since the slow check we are about + // to generate probably can't use it. + if (i != first_normal_choice) { + alt_gen->expects_preload = false; + new_trace.set_characters_preloaded(0); + } + if (i < choice_count - 1) { + new_trace.set_backtrack(&alt_gen->after); + } + generate_full_check_inline = true; + } + if (generate_full_check_inline) { + if (new_trace.actions() != NULL) { + new_trace.set_flush_budget(new_flush_budget); + } + for (int j = 0; j < guard_count; j++) { + GenerateGuard(macro_assembler, guards->at(j), &new_trace); + } + alternative.node()->Emit(compiler, &new_trace); + preload_is_current = false; + } + macro_assembler->Bind(&alt_gen->after); + } + if (greedy_loop) { + macro_assembler->Bind(&greedy_loop_label); + // If we have unwound to the bottom then backtrack. + macro_assembler->CheckGreedyLoop(trace->backtrack()); + // Otherwise try the second priority at an earlier position. + macro_assembler->AdvanceCurrentPosition(-text_length); + macro_assembler->GoTo(&second_choice); + } + + // At this point we need to generate slow checks for the alternatives where + // the quick check was inlined. We can recognize these because the associated + // label was bound. + for (int i = first_normal_choice; i < choice_count - 1; i++) { + AlternativeGeneration* alt_gen = alt_gens.at(i); + Trace new_trace(*current_trace); + // If there are actions to be flushed we have to limit how many times + // they are flushed. Take the budget of the parent trace and distribute + // it fairly amongst the children. + if (new_trace.actions() != NULL) { + new_trace.set_flush_budget(new_flush_budget); + } + EmitOutOfLineContinuation(compiler, + &new_trace, + alternatives_->at(i), + alt_gen, + preload_characters, + alt_gens.at(i + 1)->expects_preload); + } +} + + +void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler, + Trace* trace, + GuardedAlternative alternative, + AlternativeGeneration* alt_gen, + int preload_characters, + bool next_expects_preload) { + if (!alt_gen->possible_success.is_linked()) return; + + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); + macro_assembler->Bind(&alt_gen->possible_success); + Trace out_of_line_trace(*trace); + out_of_line_trace.set_characters_preloaded(preload_characters); + out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details); + if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE); + ZoneList<Guard*>* guards = alternative.guards(); + int guard_count = (guards == NULL) ? 0 : guards->length(); + if (next_expects_preload) { + Label reload_current_char; + out_of_line_trace.set_backtrack(&reload_current_char); + for (int j = 0; j < guard_count; j++) { + GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace); + } + alternative.node()->Emit(compiler, &out_of_line_trace); + macro_assembler->Bind(&reload_current_char); + // Reload the current character, since the next quick check expects that. + // We don't need to check bounds here because we only get into this + // code through a quick check which already did the checked load. + macro_assembler->LoadCurrentCharacter(trace->cp_offset(), + NULL, + false, + preload_characters); + macro_assembler->GoTo(&(alt_gen->after)); + } else { + out_of_line_trace.set_backtrack(&(alt_gen->after)); + for (int j = 0; j < guard_count; j++) { + GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace); + } + alternative.node()->Emit(compiler, &out_of_line_trace); + } +} + + +void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + LimitResult limit_result = LimitVersions(compiler, trace); + if (limit_result == DONE) return; + ASSERT(limit_result == CONTINUE); + + RecursionCheck rc(compiler); + + switch (type_) { + case STORE_POSITION: { + Trace::DeferredCapture + new_capture(data_.u_position_register.reg, + data_.u_position_register.is_capture, + trace); + Trace new_trace = *trace; + new_trace.add_action(&new_capture); + on_success()->Emit(compiler, &new_trace); + break; + } + case INCREMENT_REGISTER: { + Trace::DeferredIncrementRegister + new_increment(data_.u_increment_register.reg); + Trace new_trace = *trace; + new_trace.add_action(&new_increment); + on_success()->Emit(compiler, &new_trace); + break; + } + case SET_REGISTER: { + Trace::DeferredSetRegister + new_set(data_.u_store_register.reg, data_.u_store_register.value); + Trace new_trace = *trace; + new_trace.add_action(&new_set); + on_success()->Emit(compiler, &new_trace); + break; + } + case CLEAR_CAPTURES: { + Trace::DeferredClearCaptures + new_capture(Interval(data_.u_clear_captures.range_from, + data_.u_clear_captures.range_to)); + Trace new_trace = *trace; + new_trace.add_action(&new_capture); + on_success()->Emit(compiler, &new_trace); + break; + } + case BEGIN_SUBMATCH: + if (!trace->is_trivial()) { + trace->Flush(compiler, this); + } else { + assembler->WriteCurrentPositionToRegister( + data_.u_submatch.current_position_register, 0); + assembler->WriteStackPointerToRegister( + data_.u_submatch.stack_pointer_register); + on_success()->Emit(compiler, trace); + } + break; + case EMPTY_MATCH_CHECK: { + int start_pos_reg = data_.u_empty_match_check.start_register; + int stored_pos = 0; + int rep_reg = data_.u_empty_match_check.repetition_register; + bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister); + bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos); + if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) { + // If we know we haven't advanced and there is no minimum we + // can just backtrack immediately. + assembler->GoTo(trace->backtrack()); + } else if (know_dist && stored_pos < trace->cp_offset()) { + // If we know we've advanced we can generate the continuation + // immediately. + on_success()->Emit(compiler, trace); + } else if (!trace->is_trivial()) { + trace->Flush(compiler, this); + } else { + Label skip_empty_check; + // If we have a minimum number of repetitions we check the current + // number first and skip the empty check if it's not enough. + if (has_minimum) { + int limit = data_.u_empty_match_check.repetition_limit; + assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check); + } + // If the match is empty we bail out, otherwise we fall through + // to the on-success continuation. + assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register, + trace->backtrack()); + assembler->Bind(&skip_empty_check); + on_success()->Emit(compiler, trace); + } + break; + } + case POSITIVE_SUBMATCH_SUCCESS: { + if (!trace->is_trivial()) { + trace->Flush(compiler, this); + return; + } + assembler->ReadCurrentPositionFromRegister( + data_.u_submatch.current_position_register); + assembler->ReadStackPointerFromRegister( + data_.u_submatch.stack_pointer_register); + int clear_register_count = data_.u_submatch.clear_register_count; + if (clear_register_count == 0) { + on_success()->Emit(compiler, trace); + return; + } + int clear_registers_from = data_.u_submatch.clear_register_from; + Label clear_registers_backtrack; + Trace new_trace = *trace; + new_trace.set_backtrack(&clear_registers_backtrack); + on_success()->Emit(compiler, &new_trace); + + assembler->Bind(&clear_registers_backtrack); + int clear_registers_to = clear_registers_from + clear_register_count - 1; + assembler->ClearRegisters(clear_registers_from, clear_registers_to); + + ASSERT(trace->backtrack() == NULL); + assembler->Backtrack(); + return; + } + default: + UNREACHABLE(); + } +} + + +void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + if (!trace->is_trivial()) { + trace->Flush(compiler, this); + return; + } + + LimitResult limit_result = LimitVersions(compiler, trace); + if (limit_result == DONE) return; + ASSERT(limit_result == CONTINUE); + + RecursionCheck rc(compiler); + + ASSERT_EQ(start_reg_ + 1, end_reg_); + if (compiler->ignore_case()) { + assembler->CheckNotBackReferenceIgnoreCase(start_reg_, + trace->backtrack()); + } else { + assembler->CheckNotBackReference(start_reg_, trace->backtrack()); + } + on_success()->Emit(compiler, trace); +} + + +// ------------------------------------------------------------------- +// Dot/dotty output + + +#ifdef DEBUG + + +class DotPrinter: public NodeVisitor { + public: + explicit DotPrinter(bool ignore_case) + : ignore_case_(ignore_case), + stream_(&alloc_) { } + void PrintNode(const char* label, RegExpNode* node); + void Visit(RegExpNode* node); + void PrintAttributes(RegExpNode* from); + StringStream* stream() { return &stream_; } + void PrintOnFailure(RegExpNode* from, RegExpNode* to); +#define DECLARE_VISIT(Type) \ + virtual void Visit##Type(Type##Node* that); +FOR_EACH_NODE_TYPE(DECLARE_VISIT) +#undef DECLARE_VISIT + private: + bool ignore_case_; + HeapStringAllocator alloc_; + StringStream stream_; +}; + + +void DotPrinter::PrintNode(const char* label, RegExpNode* node) { + stream()->Add("digraph G {\n graph [label=\""); + for (int i = 0; label[i]; i++) { + switch (label[i]) { + case '\\': + stream()->Add("\\\\"); + break; + case '"': + stream()->Add("\""); + break; + default: + stream()->Put(label[i]); + break; + } + } + stream()->Add("\"];\n"); + Visit(node); + stream()->Add("}\n"); + printf("%s", *(stream()->ToCString())); +} + + +void DotPrinter::Visit(RegExpNode* node) { + if (node->info()->visited) return; + node->info()->visited = true; + node->Accept(this); +} + + +void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) { + stream()->Add(" n%p -> n%p [style=dotted];\n", from, on_failure); + Visit(on_failure); +} + + +class TableEntryBodyPrinter { + public: + TableEntryBodyPrinter(StringStream* stream, ChoiceNode* choice) + : stream_(stream), choice_(choice) { } + void Call(uc16 from, DispatchTable::Entry entry) { + OutSet* out_set = entry.out_set(); + for (unsigned i = 0; i < OutSet::kFirstLimit; i++) { + if (out_set->Get(i)) { + stream()->Add(" n%p:s%io%i -> n%p;\n", + choice(), + from, + i, + choice()->alternatives()->at(i).node()); + } + } + } + private: + StringStream* stream() { return stream_; } + ChoiceNode* choice() { return choice_; } + StringStream* stream_; + ChoiceNode* choice_; +}; + + +class TableEntryHeaderPrinter { + public: + explicit TableEntryHeaderPrinter(StringStream* stream) + : first_(true), stream_(stream) { } + void Call(uc16 from, DispatchTable::Entry entry) { + if (first_) { + first_ = false; + } else { + stream()->Add("|"); + } + stream()->Add("{\\%k-\\%k|{", from, entry.to()); + OutSet* out_set = entry.out_set(); + int priority = 0; + for (unsigned i = 0; i < OutSet::kFirstLimit; i++) { + if (out_set->Get(i)) { + if (priority > 0) stream()->Add("|"); + stream()->Add("<s%io%i> %i", from, i, priority); + priority++; + } + } + stream()->Add("}}"); + } + private: + bool first_; + StringStream* stream() { return stream_; } + StringStream* stream_; +}; + + +class AttributePrinter { + public: + explicit AttributePrinter(DotPrinter* out) + : out_(out), first_(true) { } + void PrintSeparator() { + if (first_) { + first_ = false; + } else { + out_->stream()->Add("|"); + } + } + void PrintBit(const char* name, bool value) { + if (!value) return; + PrintSeparator(); + out_->stream()->Add("{%s}", name); + } + void PrintPositive(const char* name, int value) { + if (value < 0) return; + PrintSeparator(); + out_->stream()->Add("{%s|%x}", name, value); + } + private: + DotPrinter* out_; + bool first_; +}; + + +void DotPrinter::PrintAttributes(RegExpNode* that) { + stream()->Add(" a%p [shape=Mrecord, color=grey, fontcolor=grey, " + "margin=0.1, fontsize=10, label=\"{", + that); + AttributePrinter printer(this); + NodeInfo* info = that->info(); + printer.PrintBit("NI", info->follows_newline_interest); + printer.PrintBit("WI", info->follows_word_interest); + printer.PrintBit("SI", info->follows_start_interest); + Label* label = that->label(); + if (label->is_bound()) + printer.PrintPositive("@", label->pos()); + stream()->Add("}\"];\n"); + stream()->Add(" a%p -> n%p [style=dashed, color=grey, " + "arrowhead=none];\n", that, that); +} + + +static const bool kPrintDispatchTable = false; +void DotPrinter::VisitChoice(ChoiceNode* that) { + if (kPrintDispatchTable) { + stream()->Add(" n%p [shape=Mrecord, label=\"", that); + TableEntryHeaderPrinter header_printer(stream()); + that->GetTable(ignore_case_)->ForEach(&header_printer); + stream()->Add("\"]\n", that); + PrintAttributes(that); + TableEntryBodyPrinter body_printer(stream(), that); + that->GetTable(ignore_case_)->ForEach(&body_printer); + } else { + stream()->Add(" n%p [shape=Mrecord, label=\"?\"];\n", that); + for (int i = 0; i < that->alternatives()->length(); i++) { + GuardedAlternative alt = that->alternatives()->at(i); + stream()->Add(" n%p -> n%p;\n", that, alt.node()); + } + } + for (int i = 0; i < that->alternatives()->length(); i++) { + GuardedAlternative alt = that->alternatives()->at(i); + alt.node()->Accept(this); + } +} + + +void DotPrinter::VisitText(TextNode* that) { + stream()->Add(" n%p [label=\"", that); + for (int i = 0; i < that->elements()->length(); i++) { + if (i > 0) stream()->Add(" "); + TextElement elm = that->elements()->at(i); + switch (elm.type) { + case TextElement::ATOM: { + stream()->Add("'%w'", elm.data.u_atom->data()); + break; + } + case TextElement::CHAR_CLASS: { + RegExpCharacterClass* node = elm.data.u_char_class; + stream()->Add("["); + if (node->is_negated()) + stream()->Add("^"); + for (int j = 0; j < node->ranges()->length(); j++) { + CharacterRange range = node->ranges()->at(j); + stream()->Add("%k-%k", range.from(), range.to()); + } + stream()->Add("]"); + break; + } + default: + UNREACHABLE(); + } + } + stream()->Add("\", shape=box, peripheries=2];\n"); + PrintAttributes(that); + stream()->Add(" n%p -> n%p;\n", that, that->on_success()); + Visit(that->on_success()); +} + + +void DotPrinter::VisitBackReference(BackReferenceNode* that) { + stream()->Add(" n%p [label=\"$%i..$%i\", shape=doubleoctagon];\n", + that, + that->start_register(), + that->end_register()); + PrintAttributes(that); + stream()->Add(" n%p -> n%p;\n", that, that->on_success()); + Visit(that->on_success()); +} + + +void DotPrinter::VisitEnd(EndNode* that) { + stream()->Add(" n%p [style=bold, shape=point];\n", that); + PrintAttributes(that); +} + + +void DotPrinter::VisitAssertion(AssertionNode* that) { + stream()->Add(" n%p [", that); + switch (that->type()) { + case AssertionNode::AT_END: + stream()->Add("label=\"$\", shape=septagon"); + break; + case AssertionNode::AT_START: + stream()->Add("label=\"^\", shape=septagon"); + break; + case AssertionNode::AT_BOUNDARY: + stream()->Add("label=\"\\b\", shape=septagon"); + break; + case AssertionNode::AT_NON_BOUNDARY: + stream()->Add("label=\"\\B\", shape=septagon"); + break; + case AssertionNode::AFTER_NEWLINE: + stream()->Add("label=\"(?<=\\n)\", shape=septagon"); + break; + } + stream()->Add("];\n"); + PrintAttributes(that); + RegExpNode* successor = that->on_success(); + stream()->Add(" n%p -> n%p;\n", that, successor); + Visit(successor); +} + + +void DotPrinter::VisitAction(ActionNode* that) { + stream()->Add(" n%p [", that); + switch (that->type_) { + case ActionNode::SET_REGISTER: + stream()->Add("label=\"$%i:=%i\", shape=octagon", + that->data_.u_store_register.reg, + that->data_.u_store_register.value); + break; + case ActionNode::INCREMENT_REGISTER: + stream()->Add("label=\"$%i++\", shape=octagon", + that->data_.u_increment_register.reg); + break; + case ActionNode::STORE_POSITION: + stream()->Add("label=\"$%i:=$pos\", shape=octagon", + that->data_.u_position_register.reg); + break; + case ActionNode::BEGIN_SUBMATCH: + stream()->Add("label=\"$%i:=$pos,begin\", shape=septagon", + that->data_.u_submatch.current_position_register); + break; + case ActionNode::POSITIVE_SUBMATCH_SUCCESS: + stream()->Add("label=\"escape\", shape=septagon"); + break; + case ActionNode::EMPTY_MATCH_CHECK: + stream()->Add("label=\"$%i=$pos?,$%i<%i?\", shape=septagon", + that->data_.u_empty_match_check.start_register, + that->data_.u_empty_match_check.repetition_register, + that->data_.u_empty_match_check.repetition_limit); + break; + case ActionNode::CLEAR_CAPTURES: { + stream()->Add("label=\"clear $%i to $%i\", shape=septagon", + that->data_.u_clear_captures.range_from, + that->data_.u_clear_captures.range_to); + break; + } + } + stream()->Add("];\n"); + PrintAttributes(that); + RegExpNode* successor = that->on_success(); + stream()->Add(" n%p -> n%p;\n", that, successor); + Visit(successor); +} + + +class DispatchTableDumper { + public: + explicit DispatchTableDumper(StringStream* stream) : stream_(stream) { } + void Call(uc16 key, DispatchTable::Entry entry); + StringStream* stream() { return stream_; } + private: + StringStream* stream_; +}; + + +void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) { + stream()->Add("[%k-%k]: {", key, entry.to()); + OutSet* set = entry.out_set(); + bool first = true; + for (unsigned i = 0; i < OutSet::kFirstLimit; i++) { + if (set->Get(i)) { + if (first) { + first = false; + } else { + stream()->Add(", "); + } + stream()->Add("%i", i); + } + } + stream()->Add("}\n"); +} + + +void DispatchTable::Dump() { + HeapStringAllocator alloc; + StringStream stream(&alloc); + DispatchTableDumper dumper(&stream); + tree()->ForEach(&dumper); + OS::PrintError("%s", *stream.ToCString()); +} + + +void RegExpEngine::DotPrint(const char* label, + RegExpNode* node, + bool ignore_case) { + DotPrinter printer(ignore_case); + printer.PrintNode(label, node); +} + + +#endif // DEBUG + + +// ------------------------------------------------------------------- +// Tree to graph conversion + +static const int kSpaceRangeCount = 20; +static const int kSpaceRangeAsciiCount = 4; +static const uc16 kSpaceRanges[kSpaceRangeCount] = { 0x0009, 0x000D, 0x0020, + 0x0020, 0x00A0, 0x00A0, 0x1680, 0x1680, 0x180E, 0x180E, 0x2000, 0x200A, + 0x2028, 0x2029, 0x202F, 0x202F, 0x205F, 0x205F, 0x3000, 0x3000 }; + +static const int kWordRangeCount = 8; +static const uc16 kWordRanges[kWordRangeCount] = { '0', '9', 'A', 'Z', '_', + '_', 'a', 'z' }; + +static const int kDigitRangeCount = 2; +static const uc16 kDigitRanges[kDigitRangeCount] = { '0', '9' }; + +static const int kLineTerminatorRangeCount = 6; +static const uc16 kLineTerminatorRanges[kLineTerminatorRangeCount] = { 0x000A, + 0x000A, 0x000D, 0x000D, 0x2028, 0x2029 }; + +RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + ZoneList<TextElement>* elms = new ZoneList<TextElement>(1); + elms->Add(TextElement::Atom(this)); + return new TextNode(elms, on_success); +} + + +RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + return new TextNode(elements(), on_success); +} + +static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges, + const uc16* special_class, + int length) { + ASSERT(ranges->length() != 0); + ASSERT(length != 0); + ASSERT(special_class[0] != 0); + if (ranges->length() != (length >> 1) + 1) { + return false; + } + CharacterRange range = ranges->at(0); + if (range.from() != 0) { + return false; + } + for (int i = 0; i < length; i += 2) { + if (special_class[i] != (range.to() + 1)) { + return false; + } + range = ranges->at((i >> 1) + 1); + if (special_class[i+1] != range.from() - 1) { + return false; + } + } + if (range.to() != 0xffff) { + return false; + } + return true; +} + + +static bool CompareRanges(ZoneList<CharacterRange>* ranges, + const uc16* special_class, + int length) { + if (ranges->length() * 2 != length) { + return false; + } + for (int i = 0; i < length; i += 2) { + CharacterRange range = ranges->at(i >> 1); + if (range.from() != special_class[i] || range.to() != special_class[i+1]) { + return false; + } + } + return true; +} + + +bool RegExpCharacterClass::is_standard() { + // TODO(lrn): Remove need for this function, by not throwing away information + // along the way. + if (is_negated_) { + return false; + } + if (set_.is_standard()) { + return true; + } + if (CompareRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) { + set_.set_standard_set_type('s'); + return true; + } + if (CompareInverseRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) { + set_.set_standard_set_type('S'); + return true; + } + if (CompareInverseRanges(set_.ranges(), + kLineTerminatorRanges, + kLineTerminatorRangeCount)) { + set_.set_standard_set_type('.'); + return true; + } + return false; +} + + +RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + return new TextNode(this, on_success); +} + + +RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + ZoneList<RegExpTree*>* alternatives = this->alternatives(); + int length = alternatives->length(); + ChoiceNode* result = new ChoiceNode(length); + for (int i = 0; i < length; i++) { + GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler, + on_success)); + result->AddAlternative(alternative); + } + return result; +} + + +RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + return ToNode(min(), + max(), + is_greedy(), + body(), + compiler, + on_success); +} + + +RegExpNode* RegExpQuantifier::ToNode(int min, + int max, + bool is_greedy, + RegExpTree* body, + RegExpCompiler* compiler, + RegExpNode* on_success, + bool not_at_start) { + // x{f, t} becomes this: + // + // (r++)<-. + // | ` + // | (x) + // v ^ + // (r=0)-->(?)---/ [if r < t] + // | + // [if r >= f] \----> ... + // + + // 15.10.2.5 RepeatMatcher algorithm. + // The parser has already eliminated the case where max is 0. In the case + // where max_match is zero the parser has removed the quantifier if min was + // > 0 and removed the atom if min was 0. See AddQuantifierToAtom. + + // If we know that we cannot match zero length then things are a little + // simpler since we don't need to make the special zero length match check + // from step 2.1. If the min and max are small we can unroll a little in + // this case. + static const int kMaxUnrolledMinMatches = 3; // Unroll (foo)+ and (foo){3,} + static const int kMaxUnrolledMaxMatches = 3; // Unroll (foo)? and (foo){x,3} + if (max == 0) return on_success; // This can happen due to recursion. + bool body_can_be_empty = (body->min_match() == 0); + int body_start_reg = RegExpCompiler::kNoRegister; + Interval capture_registers = body->CaptureRegisters(); + bool needs_capture_clearing = !capture_registers.is_empty(); + if (body_can_be_empty) { + body_start_reg = compiler->AllocateRegister(); + } else if (FLAG_regexp_optimization && !needs_capture_clearing) { + // Only unroll if there are no captures and the body can't be + // empty. + if (min > 0 && min <= kMaxUnrolledMinMatches) { + int new_max = (max == kInfinity) ? max : max - min; + // Recurse once to get the loop or optional matches after the fixed ones. + RegExpNode* answer = ToNode( + 0, new_max, is_greedy, body, compiler, on_success, true); + // Unroll the forced matches from 0 to min. This can cause chains of + // TextNodes (which the parser does not generate). These should be + // combined if it turns out they hinder good code generation. + for (int i = 0; i < min; i++) { + answer = body->ToNode(compiler, answer); + } + return answer; + } + if (max <= kMaxUnrolledMaxMatches) { + ASSERT(min == 0); + // Unroll the optional matches up to max. + RegExpNode* answer = on_success; + for (int i = 0; i < max; i++) { + ChoiceNode* alternation = new ChoiceNode(2); + if (is_greedy) { + alternation->AddAlternative(GuardedAlternative(body->ToNode(compiler, + answer))); + alternation->AddAlternative(GuardedAlternative(on_success)); + } else { + alternation->AddAlternative(GuardedAlternative(on_success)); + alternation->AddAlternative(GuardedAlternative(body->ToNode(compiler, + answer))); + } + answer = alternation; + if (not_at_start) alternation->set_not_at_start(); + } + return answer; + } + } + bool has_min = min > 0; + bool has_max = max < RegExpTree::kInfinity; + bool needs_counter = has_min || has_max; + int reg_ctr = needs_counter + ? compiler->AllocateRegister() + : RegExpCompiler::kNoRegister; + LoopChoiceNode* center = new LoopChoiceNode(body->min_match() == 0); + if (not_at_start) center->set_not_at_start(); + RegExpNode* loop_return = needs_counter + ? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center)) + : static_cast<RegExpNode*>(center); + if (body_can_be_empty) { + // If the body can be empty we need to check if it was and then + // backtrack. + loop_return = ActionNode::EmptyMatchCheck(body_start_reg, + reg_ctr, + min, + loop_return); + } + RegExpNode* body_node = body->ToNode(compiler, loop_return); + if (body_can_be_empty) { + // If the body can be empty we need to store the start position + // so we can bail out if it was empty. + body_node = ActionNode::StorePosition(body_start_reg, false, body_node); + } + if (needs_capture_clearing) { + // Before entering the body of this loop we need to clear captures. + body_node = ActionNode::ClearCaptures(capture_registers, body_node); + } + GuardedAlternative body_alt(body_node); + if (has_max) { + Guard* body_guard = new Guard(reg_ctr, Guard::LT, max); + body_alt.AddGuard(body_guard); + } + GuardedAlternative rest_alt(on_success); + if (has_min) { + Guard* rest_guard = new Guard(reg_ctr, Guard::GEQ, min); + rest_alt.AddGuard(rest_guard); + } + if (is_greedy) { + center->AddLoopAlternative(body_alt); + center->AddContinueAlternative(rest_alt); + } else { + center->AddContinueAlternative(rest_alt); + center->AddLoopAlternative(body_alt); + } + if (needs_counter) { + return ActionNode::SetRegister(reg_ctr, 0, center); + } else { + return center; + } +} + + +RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + NodeInfo info; + switch (type()) { + case START_OF_LINE: + return AssertionNode::AfterNewline(on_success); + case START_OF_INPUT: + return AssertionNode::AtStart(on_success); + case BOUNDARY: + return AssertionNode::AtBoundary(on_success); + case NON_BOUNDARY: + return AssertionNode::AtNonBoundary(on_success); + case END_OF_INPUT: + return AssertionNode::AtEnd(on_success); + case END_OF_LINE: { + // Compile $ in multiline regexps as an alternation with a positive + // lookahead in one side and an end-of-input on the other side. + // We need two registers for the lookahead. + int stack_pointer_register = compiler->AllocateRegister(); + int position_register = compiler->AllocateRegister(); + // The ChoiceNode to distinguish between a newline and end-of-input. + ChoiceNode* result = new ChoiceNode(2); + // Create a newline atom. + ZoneList<CharacterRange>* newline_ranges = + new ZoneList<CharacterRange>(3); + CharacterRange::AddClassEscape('n', newline_ranges); + RegExpCharacterClass* newline_atom = new RegExpCharacterClass('n'); + TextNode* newline_matcher = new TextNode( + newline_atom, + ActionNode::PositiveSubmatchSuccess(stack_pointer_register, + position_register, + 0, // No captures inside. + -1, // Ignored if no captures. + on_success)); + // Create an end-of-input matcher. + RegExpNode* end_of_line = ActionNode::BeginSubmatch( + stack_pointer_register, + position_register, + newline_matcher); + // Add the two alternatives to the ChoiceNode. + GuardedAlternative eol_alternative(end_of_line); + result->AddAlternative(eol_alternative); + GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success)); + result->AddAlternative(end_alternative); + return result; + } + default: + UNREACHABLE(); + } + return on_success; +} + + +RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + return new BackReferenceNode(RegExpCapture::StartRegister(index()), + RegExpCapture::EndRegister(index()), + on_success); +} + + +RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + return on_success; +} + + +RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + int stack_pointer_register = compiler->AllocateRegister(); + int position_register = compiler->AllocateRegister(); + + const int registers_per_capture = 2; + const int register_of_first_capture = 2; + int register_count = capture_count_ * registers_per_capture; + int register_start = + register_of_first_capture + capture_from_ * registers_per_capture; + + RegExpNode* success; + if (is_positive()) { + RegExpNode* node = ActionNode::BeginSubmatch( + stack_pointer_register, + position_register, + body()->ToNode( + compiler, + ActionNode::PositiveSubmatchSuccess(stack_pointer_register, + position_register, + register_count, + register_start, + on_success))); + return node; + } else { + // We use a ChoiceNode for a negative lookahead because it has most of + // the characteristics we need. It has the body of the lookahead as its + // first alternative and the expression after the lookahead of the second + // alternative. If the first alternative succeeds then the + // NegativeSubmatchSuccess will unwind the stack including everything the + // choice node set up and backtrack. If the first alternative fails then + // the second alternative is tried, which is exactly the desired result + // for a negative lookahead. The NegativeLookaheadChoiceNode is a special + // ChoiceNode that knows to ignore the first exit when calculating quick + // checks. + GuardedAlternative body_alt( + body()->ToNode( + compiler, + success = new NegativeSubmatchSuccess(stack_pointer_register, + position_register, + register_count, + register_start))); + ChoiceNode* choice_node = + new NegativeLookaheadChoiceNode(body_alt, + GuardedAlternative(on_success)); + return ActionNode::BeginSubmatch(stack_pointer_register, + position_register, + choice_node); + } +} + + +RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + return ToNode(body(), index(), compiler, on_success); +} + + +RegExpNode* RegExpCapture::ToNode(RegExpTree* body, + int index, + RegExpCompiler* compiler, + RegExpNode* on_success) { + int start_reg = RegExpCapture::StartRegister(index); + int end_reg = RegExpCapture::EndRegister(index); + RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success); + RegExpNode* body_node = body->ToNode(compiler, store_end); + return ActionNode::StorePosition(start_reg, true, body_node); +} + + +RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + ZoneList<RegExpTree*>* children = nodes(); + RegExpNode* current = on_success; + for (int i = children->length() - 1; i >= 0; i--) { + current = children->at(i)->ToNode(compiler, current); + } + return current; +} + + +static void AddClass(const uc16* elmv, + int elmc, + ZoneList<CharacterRange>* ranges) { + for (int i = 0; i < elmc; i += 2) { + ASSERT(elmv[i] <= elmv[i + 1]); + ranges->Add(CharacterRange(elmv[i], elmv[i + 1])); + } +} + + +static void AddClassNegated(const uc16 *elmv, + int elmc, + ZoneList<CharacterRange>* ranges) { + ASSERT(elmv[0] != 0x0000); + ASSERT(elmv[elmc-1] != String::kMaxUC16CharCode); + uc16 last = 0x0000; + for (int i = 0; i < elmc; i += 2) { + ASSERT(last <= elmv[i] - 1); + ASSERT(elmv[i] <= elmv[i + 1]); + ranges->Add(CharacterRange(last, elmv[i] - 1)); + last = elmv[i + 1] + 1; + } + ranges->Add(CharacterRange(last, String::kMaxUC16CharCode)); +} + + +void CharacterRange::AddClassEscape(uc16 type, + ZoneList<CharacterRange>* ranges) { + switch (type) { + case 's': + AddClass(kSpaceRanges, kSpaceRangeCount, ranges); + break; + case 'S': + AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges); + break; + case 'w': + AddClass(kWordRanges, kWordRangeCount, ranges); + break; + case 'W': + AddClassNegated(kWordRanges, kWordRangeCount, ranges); + break; + case 'd': + AddClass(kDigitRanges, kDigitRangeCount, ranges); + break; + case 'D': + AddClassNegated(kDigitRanges, kDigitRangeCount, ranges); + break; + case '.': + AddClassNegated(kLineTerminatorRanges, + kLineTerminatorRangeCount, + ranges); + break; + // This is not a character range as defined by the spec but a + // convenient shorthand for a character class that matches any + // character. + case '*': + ranges->Add(CharacterRange::Everything()); + break; + // This is the set of characters matched by the $ and ^ symbols + // in multiline mode. + case 'n': + AddClass(kLineTerminatorRanges, + kLineTerminatorRangeCount, + ranges); + break; + default: + UNREACHABLE(); + } +} + + +Vector<const uc16> CharacterRange::GetWordBounds() { + return Vector<const uc16>(kWordRanges, kWordRangeCount); +} + + +class CharacterRangeSplitter { + public: + CharacterRangeSplitter(ZoneList<CharacterRange>** included, + ZoneList<CharacterRange>** excluded) + : included_(included), + excluded_(excluded) { } + void Call(uc16 from, DispatchTable::Entry entry); + + static const int kInBase = 0; + static const int kInOverlay = 1; + + private: + ZoneList<CharacterRange>** included_; + ZoneList<CharacterRange>** excluded_; +}; + + +void CharacterRangeSplitter::Call(uc16 from, DispatchTable::Entry entry) { + if (!entry.out_set()->Get(kInBase)) return; + ZoneList<CharacterRange>** target = entry.out_set()->Get(kInOverlay) + ? included_ + : excluded_; + if (*target == NULL) *target = new ZoneList<CharacterRange>(2); + (*target)->Add(CharacterRange(entry.from(), entry.to())); +} + + +void CharacterRange::Split(ZoneList<CharacterRange>* base, + Vector<const uc16> overlay, + ZoneList<CharacterRange>** included, + ZoneList<CharacterRange>** excluded) { + ASSERT_EQ(NULL, *included); + ASSERT_EQ(NULL, *excluded); + DispatchTable table; + for (int i = 0; i < base->length(); i++) + table.AddRange(base->at(i), CharacterRangeSplitter::kInBase); + for (int i = 0; i < overlay.length(); i += 2) { + table.AddRange(CharacterRange(overlay[i], overlay[i+1]), + CharacterRangeSplitter::kInOverlay); + } + CharacterRangeSplitter callback(included, excluded); + table.ForEach(&callback); +} + + +void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges) { + unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; + if (IsSingleton()) { + // If this is a singleton we just expand the one character. + int length = uncanonicalize.get(from(), '\0', chars); + for (int i = 0; i < length; i++) { + uc32 chr = chars[i]; + if (chr != from()) { + ranges->Add(CharacterRange::Singleton(chars[i])); + } + } + } else if (from() <= kRangeCanonicalizeMax && + to() <= kRangeCanonicalizeMax) { + // If this is a range we expand the characters block by block, + // expanding contiguous subranges (blocks) one at a time. + // The approach is as follows. For a given start character we + // look up the block that contains it, for instance 'a' if the + // start character is 'c'. A block is characterized by the property + // that all characters uncanonicalize in the same way as the first + // element, except that each entry in the result is incremented + // by the distance from the first element. So a-z is a block + // because 'a' uncanonicalizes to ['a', 'A'] and the k'th letter + // uncanonicalizes to ['a' + k, 'A' + k]. + // Once we've found the start point we look up its uncanonicalization + // and produce a range for each element. For instance for [c-f] + // we look up ['a', 'A'] and produce [c-f] and [C-F]. We then only + // add a range if it is not already contained in the input, so [c-f] + // will be skipped but [C-F] will be added. If this range is not + // completely contained in a block we do this for all the blocks + // covered by the range. + unibrow::uchar range[unibrow::Ecma262UnCanonicalize::kMaxWidth]; + // First, look up the block that contains the 'from' character. + int length = canonrange.get(from(), '\0', range); + if (length == 0) { + range[0] = from(); + } else { + ASSERT_EQ(1, length); + } + int pos = from(); + // The start of the current block. Note that except for the first + // iteration 'start' is always equal to 'pos'. + int start; + // If it is not the start point of a block the entry contains the + // offset of the character from the start point. + if ((range[0] & kStartMarker) == 0) { + start = pos - range[0]; + } else { + start = pos; + } + // Then we add the ranges on at a time, incrementing the current + // position to be after the last block each time. The position + // always points to the start of a block. + while (pos < to()) { + length = canonrange.get(start, '\0', range); + if (length == 0) { + range[0] = start; + } else { + ASSERT_EQ(1, length); + } + ASSERT((range[0] & kStartMarker) != 0); + // The start point of a block contains the distance to the end + // of the range. + int block_end = start + (range[0] & kPayloadMask) - 1; + int end = (block_end > to()) ? to() : block_end; + length = uncanonicalize.get(start, '\0', range); + for (int i = 0; i < length; i++) { + uc32 c = range[i]; + uc16 range_from = c + (pos - start); + uc16 range_to = c + (end - start); + if (!(from() <= range_from && range_to <= to())) { + ranges->Add(CharacterRange(range_from, range_to)); + } + } + start = pos = block_end + 1; + } + } else { + // TODO(plesner) when we've fixed the 2^11 bug in unibrow. + } +} + + +ZoneList<CharacterRange>* CharacterSet::ranges() { + if (ranges_ == NULL) { + ranges_ = new ZoneList<CharacterRange>(2); + CharacterRange::AddClassEscape(standard_set_type_, ranges_); + } + return ranges_; +} + + + +// ------------------------------------------------------------------- +// Interest propagation + + +RegExpNode* RegExpNode::TryGetSibling(NodeInfo* info) { + for (int i = 0; i < siblings_.length(); i++) { + RegExpNode* sibling = siblings_.Get(i); + if (sibling->info()->Matches(info)) + return sibling; + } + return NULL; +} + + +RegExpNode* RegExpNode::EnsureSibling(NodeInfo* info, bool* cloned) { + ASSERT_EQ(false, *cloned); + siblings_.Ensure(this); + RegExpNode* result = TryGetSibling(info); + if (result != NULL) return result; + result = this->Clone(); + NodeInfo* new_info = result->info(); + new_info->ResetCompilationState(); + new_info->AddFromPreceding(info); + AddSibling(result); + *cloned = true; + return result; +} + + +template <class C> +static RegExpNode* PropagateToEndpoint(C* node, NodeInfo* info) { + NodeInfo full_info(*node->info()); + full_info.AddFromPreceding(info); + bool cloned = false; + return RegExpNode::EnsureSibling(node, &full_info, &cloned); +} + + +// ------------------------------------------------------------------- +// Splay tree + + +OutSet* OutSet::Extend(unsigned value) { + if (Get(value)) + return this; + if (successors() != NULL) { + for (int i = 0; i < successors()->length(); i++) { + OutSet* successor = successors()->at(i); + if (successor->Get(value)) + return successor; + } + } else { + successors_ = new ZoneList<OutSet*>(2); + } + OutSet* result = new OutSet(first_, remaining_); + result->Set(value); + successors()->Add(result); + return result; +} + + +void OutSet::Set(unsigned value) { + if (value < kFirstLimit) { + first_ |= (1 << value); + } else { + if (remaining_ == NULL) + remaining_ = new ZoneList<unsigned>(1); + if (remaining_->is_empty() || !remaining_->Contains(value)) + remaining_->Add(value); + } +} + + +bool OutSet::Get(unsigned value) { + if (value < kFirstLimit) { + return (first_ & (1 << value)) != 0; + } else if (remaining_ == NULL) { + return false; + } else { + return remaining_->Contains(value); + } +} + + +const uc16 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar; +const DispatchTable::Entry DispatchTable::Config::kNoValue; + + +void DispatchTable::AddRange(CharacterRange full_range, int value) { + CharacterRange current = full_range; + if (tree()->is_empty()) { + // If this is the first range we just insert into the table. + ZoneSplayTree<Config>::Locator loc; + ASSERT_RESULT(tree()->Insert(current.from(), &loc)); + loc.set_value(Entry(current.from(), current.to(), empty()->Extend(value))); + return; + } + // First see if there is a range to the left of this one that + // overlaps. + ZoneSplayTree<Config>::Locator loc; + if (tree()->FindGreatestLessThan(current.from(), &loc)) { + Entry* entry = &loc.value(); + // If we've found a range that overlaps with this one, and it + // starts strictly to the left of this one, we have to fix it + // because the following code only handles ranges that start on + // or after the start point of the range we're adding. + if (entry->from() < current.from() && entry->to() >= current.from()) { + // Snap the overlapping range in half around the start point of + // the range we're adding. + CharacterRange left(entry->from(), current.from() - 1); + CharacterRange right(current.from(), entry->to()); + // The left part of the overlapping range doesn't overlap. + // Truncate the whole entry to be just the left part. + entry->set_to(left.to()); + // The right part is the one that overlaps. We add this part + // to the map and let the next step deal with merging it with + // the range we're adding. + ZoneSplayTree<Config>::Locator loc; + ASSERT_RESULT(tree()->Insert(right.from(), &loc)); + loc.set_value(Entry(right.from(), + right.to(), + entry->out_set())); + } + } + while (current.is_valid()) { + if (tree()->FindLeastGreaterThan(current.from(), &loc) && + (loc.value().from() <= current.to()) && + (loc.value().to() >= current.from())) { + Entry* entry = &loc.value(); + // We have overlap. If there is space between the start point of + // the range we're adding and where the overlapping range starts + // then we have to add a range covering just that space. + if (current.from() < entry->from()) { + ZoneSplayTree<Config>::Locator ins; + ASSERT_RESULT(tree()->Insert(current.from(), &ins)); + ins.set_value(Entry(current.from(), + entry->from() - 1, + empty()->Extend(value))); + current.set_from(entry->from()); + } + ASSERT_EQ(current.from(), entry->from()); + // If the overlapping range extends beyond the one we want to add + // we have to snap the right part off and add it separately. + if (entry->to() > current.to()) { + ZoneSplayTree<Config>::Locator ins; + ASSERT_RESULT(tree()->Insert(current.to() + 1, &ins)); + ins.set_value(Entry(current.to() + 1, + entry->to(), + entry->out_set())); + entry->set_to(current.to()); + } + ASSERT(entry->to() <= current.to()); + // The overlapping range is now completely contained by the range + // we're adding so we can just update it and move the start point + // of the range we're adding just past it. + entry->AddValue(value); + // Bail out if the last interval ended at 0xFFFF since otherwise + // adding 1 will wrap around to 0. + if (entry->to() == String::kMaxUC16CharCode) + break; + ASSERT(entry->to() + 1 > current.from()); + current.set_from(entry->to() + 1); + } else { + // There is no overlap so we can just add the range + ZoneSplayTree<Config>::Locator ins; + ASSERT_RESULT(tree()->Insert(current.from(), &ins)); + ins.set_value(Entry(current.from(), + current.to(), + empty()->Extend(value))); + break; + } + } +} + + +OutSet* DispatchTable::Get(uc16 value) { + ZoneSplayTree<Config>::Locator loc; + if (!tree()->FindGreatestLessThan(value, &loc)) + return empty(); + Entry* entry = &loc.value(); + if (value <= entry->to()) + return entry->out_set(); + else + return empty(); +} + + +// ------------------------------------------------------------------- +// Analysis + + +void Analysis::EnsureAnalyzed(RegExpNode* that) { + StackLimitCheck check; + if (check.HasOverflowed()) { + fail("Stack overflow"); + return; + } + if (that->info()->been_analyzed || that->info()->being_analyzed) + return; + that->info()->being_analyzed = true; + that->Accept(this); + that->info()->being_analyzed = false; + that->info()->been_analyzed = true; +} + + +void Analysis::VisitEnd(EndNode* that) { + // nothing to do +} + + +void TextNode::CalculateOffsets() { + int element_count = elements()->length(); + // Set up the offsets of the elements relative to the start. This is a fixed + // quantity since a TextNode can only contain fixed-width things. + int cp_offset = 0; + for (int i = 0; i < element_count; i++) { + TextElement& elm = elements()->at(i); + elm.cp_offset = cp_offset; + if (elm.type == TextElement::ATOM) { + cp_offset += elm.data.u_atom->data().length(); + } else { + cp_offset++; + Vector<const uc16> quarks = elm.data.u_atom->data(); + } + } +} + + +void Analysis::VisitText(TextNode* that) { + if (ignore_case_) { + that->MakeCaseIndependent(); + } + EnsureAnalyzed(that->on_success()); + if (!has_failed()) { + that->CalculateOffsets(); + } +} + + +void Analysis::VisitAction(ActionNode* that) { + RegExpNode* target = that->on_success(); + EnsureAnalyzed(target); + if (!has_failed()) { + // If the next node is interested in what it follows then this node + // has to be interested too so it can pass the information on. + that->info()->AddFromFollowing(target->info()); + } +} + + +void Analysis::VisitChoice(ChoiceNode* that) { + NodeInfo* info = that->info(); + for (int i = 0; i < that->alternatives()->length(); i++) { + RegExpNode* node = that->alternatives()->at(i).node(); + EnsureAnalyzed(node); + if (has_failed()) return; + // Anything the following nodes need to know has to be known by + // this node also, so it can pass it on. + info->AddFromFollowing(node->info()); + } +} + + +void Analysis::VisitLoopChoice(LoopChoiceNode* that) { + NodeInfo* info = that->info(); + for (int i = 0; i < that->alternatives()->length(); i++) { + RegExpNode* node = that->alternatives()->at(i).node(); + if (node != that->loop_node()) { + EnsureAnalyzed(node); + if (has_failed()) return; + info->AddFromFollowing(node->info()); + } + } + // Check the loop last since it may need the value of this node + // to get a correct result. + EnsureAnalyzed(that->loop_node()); + if (!has_failed()) { + info->AddFromFollowing(that->loop_node()->info()); + } +} + + +void Analysis::VisitBackReference(BackReferenceNode* that) { + EnsureAnalyzed(that->on_success()); +} + + +void Analysis::VisitAssertion(AssertionNode* that) { + EnsureAnalyzed(that->on_success()); +} + + +// ------------------------------------------------------------------- +// Dispatch table construction + + +void DispatchTableConstructor::VisitEnd(EndNode* that) { + AddRange(CharacterRange::Everything()); +} + + +void DispatchTableConstructor::BuildTable(ChoiceNode* node) { + node->set_being_calculated(true); + ZoneList<GuardedAlternative>* alternatives = node->alternatives(); + for (int i = 0; i < alternatives->length(); i++) { + set_choice_index(i); + alternatives->at(i).node()->Accept(this); + } + node->set_being_calculated(false); +} + + +class AddDispatchRange { + public: + explicit AddDispatchRange(DispatchTableConstructor* constructor) + : constructor_(constructor) { } + void Call(uc32 from, DispatchTable::Entry entry); + private: + DispatchTableConstructor* constructor_; +}; + + +void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) { + CharacterRange range(from, entry.to()); + constructor_->AddRange(range); +} + + +void DispatchTableConstructor::VisitChoice(ChoiceNode* node) { + if (node->being_calculated()) + return; + DispatchTable* table = node->GetTable(ignore_case_); + AddDispatchRange adder(this); + table->ForEach(&adder); +} + + +void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) { + // TODO(160): Find the node that we refer back to and propagate its start + // set back to here. For now we just accept anything. + AddRange(CharacterRange::Everything()); +} + + +void DispatchTableConstructor::VisitAssertion(AssertionNode* that) { + RegExpNode* target = that->on_success(); + target->Accept(this); +} + + + +static int CompareRangeByFrom(const CharacterRange* a, + const CharacterRange* b) { + return Compare<uc16>(a->from(), b->from()); +} + + +void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) { + ranges->Sort(CompareRangeByFrom); + uc16 last = 0; + for (int i = 0; i < ranges->length(); i++) { + CharacterRange range = ranges->at(i); + if (last < range.from()) + AddRange(CharacterRange(last, range.from() - 1)); + if (range.to() >= last) { + if (range.to() == String::kMaxUC16CharCode) { + return; + } else { + last = range.to() + 1; + } + } + } + AddRange(CharacterRange(last, String::kMaxUC16CharCode)); +} + + +void DispatchTableConstructor::VisitText(TextNode* that) { + TextElement elm = that->elements()->at(0); + switch (elm.type) { + case TextElement::ATOM: { + uc16 c = elm.data.u_atom->data()[0]; + AddRange(CharacterRange(c, c)); + break; + } + case TextElement::CHAR_CLASS: { + RegExpCharacterClass* tree = elm.data.u_char_class; + ZoneList<CharacterRange>* ranges = tree->ranges(); + if (tree->is_negated()) { + AddInverse(ranges); + } else { + for (int i = 0; i < ranges->length(); i++) + AddRange(ranges->at(i)); + } + break; + } + default: { + UNIMPLEMENTED(); + } + } +} + + +void DispatchTableConstructor::VisitAction(ActionNode* that) { + RegExpNode* target = that->on_success(); + target->Accept(this); +} + + +RegExpEngine::CompilationResult RegExpEngine::Compile(RegExpCompileData* data, + bool ignore_case, + bool is_multiline, + Handle<String> pattern, + bool is_ascii) { + if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) { + return IrregexpRegExpTooBig(); + } + RegExpCompiler compiler(data->capture_count, ignore_case, is_ascii); + // Wrap the body of the regexp in capture #0. + RegExpNode* captured_body = RegExpCapture::ToNode(data->tree, + 0, + &compiler, + compiler.accept()); + RegExpNode* node = captured_body; + if (!data->tree->IsAnchored()) { + // Add a .*? at the beginning, outside the body capture, unless + // this expression is anchored at the beginning. + RegExpNode* loop_node = + RegExpQuantifier::ToNode(0, + RegExpTree::kInfinity, + false, + new RegExpCharacterClass('*'), + &compiler, + captured_body, + data->contains_anchor); + + if (data->contains_anchor) { + // Unroll loop once, to take care of the case that might start + // at the start of input. + ChoiceNode* first_step_node = new ChoiceNode(2); + first_step_node->AddAlternative(GuardedAlternative(captured_body)); + first_step_node->AddAlternative(GuardedAlternative( + new TextNode(new RegExpCharacterClass('*'), loop_node))); + node = first_step_node; + } else { + node = loop_node; + } + } + data->node = node; + Analysis analysis(ignore_case); + analysis.EnsureAnalyzed(node); + if (analysis.has_failed()) { + const char* error_message = analysis.error_message(); + return CompilationResult(error_message); + } + + NodeInfo info = *node->info(); + + if (RegExpImpl::UseNativeRegexp()) { +#ifdef V8_TARGET_ARCH_ARM + UNREACHABLE(); +#endif +#ifdef V8_TARGET_ARCH_X64 + UNREACHABLE(); +#endif +#ifdef V8_TARGET_ARCH_IA32 + RegExpMacroAssemblerIA32::Mode mode; + if (is_ascii) { + mode = RegExpMacroAssemblerIA32::ASCII; + } else { + mode = RegExpMacroAssemblerIA32::UC16; + } + RegExpMacroAssemblerIA32 macro_assembler(mode, + (data->capture_count + 1) * 2); + return compiler.Assemble(¯o_assembler, + node, + data->capture_count, + pattern); +#endif + } + EmbeddedVector<byte, 1024> codes; + RegExpMacroAssemblerIrregexp macro_assembler(codes); + return compiler.Assemble(¯o_assembler, + node, + data->capture_count, + pattern); +} + + +}} // namespace v8::internal |