summaryrefslogtreecommitdiffstats
path: root/V8Binding/v8/src/x64/codegen-x64.cc
diff options
context:
space:
mode:
authorSteve Block <steveblock@google.com>2009-10-30 11:49:59 +0000
committerSteve Block <steveblock@google.com>2009-10-30 19:03:37 +0000
commit20bb23f8cbd4643c5da24601959b015e98374b44 (patch)
tree743b40f3f7b5b7a4ad2b32906dcea772730a0792 /V8Binding/v8/src/x64/codegen-x64.cc
parent84191aa5bc11de486d662f98d4d618b179ca45ca (diff)
downloadexternal_webkit-20bb23f8cbd4643c5da24601959b015e98374b44.zip
external_webkit-20bb23f8cbd4643c5da24601959b015e98374b44.tar.gz
external_webkit-20bb23f8cbd4643c5da24601959b015e98374b44.tar.bz2
Move V8 to external/v8
Change-Id: I9ef85bb1a4fd0e808ca37ac532803542b6dfb04d
Diffstat (limited to 'V8Binding/v8/src/x64/codegen-x64.cc')
-rw-r--r--V8Binding/v8/src/x64/codegen-x64.cc7684
1 files changed, 0 insertions, 7684 deletions
diff --git a/V8Binding/v8/src/x64/codegen-x64.cc b/V8Binding/v8/src/x64/codegen-x64.cc
deleted file mode 100644
index 8e6dbef..0000000
--- a/V8Binding/v8/src/x64/codegen-x64.cc
+++ /dev/null
@@ -1,7684 +0,0 @@
-// Copyright 2009 the V8 project authors. All rights reserved.
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following
-// disclaimer in the documentation and/or other materials provided
-// with the distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived
-// from this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#include "v8.h"
-
-#include "bootstrapper.h"
-#include "codegen-inl.h"
-#include "debug.h"
-#include "ic-inl.h"
-#include "parser.h"
-#include "register-allocator-inl.h"
-#include "scopes.h"
-
-namespace v8 {
-namespace internal {
-
-#define __ ACCESS_MASM(masm_)
-
-// -------------------------------------------------------------------------
-// Platform-specific DeferredCode functions.
-
-void DeferredCode::SaveRegisters() {
- for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
- int action = registers_[i];
- if (action == kPush) {
- __ push(RegisterAllocator::ToRegister(i));
- } else if (action != kIgnore && (action & kSyncedFlag) == 0) {
- __ movq(Operand(rbp, action), RegisterAllocator::ToRegister(i));
- }
- }
-}
-
-void DeferredCode::RestoreRegisters() {
- // Restore registers in reverse order due to the stack.
- for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) {
- int action = registers_[i];
- if (action == kPush) {
- __ pop(RegisterAllocator::ToRegister(i));
- } else if (action != kIgnore) {
- action &= ~kSyncedFlag;
- __ movq(RegisterAllocator::ToRegister(i), Operand(rbp, action));
- }
- }
-}
-
-
-// -------------------------------------------------------------------------
-// CodeGenState implementation.
-
-CodeGenState::CodeGenState(CodeGenerator* owner)
- : owner_(owner),
- typeof_state_(NOT_INSIDE_TYPEOF),
- destination_(NULL),
- previous_(NULL) {
- owner_->set_state(this);
-}
-
-
-CodeGenState::CodeGenState(CodeGenerator* owner,
- TypeofState typeof_state,
- ControlDestination* destination)
- : owner_(owner),
- typeof_state_(typeof_state),
- destination_(destination),
- previous_(owner->state()) {
- owner_->set_state(this);
-}
-
-
-CodeGenState::~CodeGenState() {
- ASSERT(owner_->state() == this);
- owner_->set_state(previous_);
-}
-
-
-// -------------------------------------------------------------------------
-// Deferred code objects
-//
-// These subclasses of DeferredCode add pieces of code to the end of generated
-// code. They are branched to from the generated code, and
-// keep some slower code out of the main body of the generated code.
-// Many of them call a code stub or a runtime function.
-
-class DeferredInlineSmiAdd: public DeferredCode {
- public:
- DeferredInlineSmiAdd(Register dst,
- Smi* value,
- OverwriteMode overwrite_mode)
- : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
- set_comment("[ DeferredInlineSmiAdd");
- }
-
- virtual void Generate();
-
- private:
- Register dst_;
- Smi* value_;
- OverwriteMode overwrite_mode_;
-};
-
-
-// The result of value + src is in dst. It either overflowed or was not
-// smi tagged. Undo the speculative addition and call the appropriate
-// specialized stub for add. The result is left in dst.
-class DeferredInlineSmiAddReversed: public DeferredCode {
- public:
- DeferredInlineSmiAddReversed(Register dst,
- Smi* value,
- OverwriteMode overwrite_mode)
- : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
- set_comment("[ DeferredInlineSmiAddReversed");
- }
-
- virtual void Generate();
-
- private:
- Register dst_;
- Smi* value_;
- OverwriteMode overwrite_mode_;
-};
-
-
-class DeferredInlineSmiSub: public DeferredCode {
- public:
- DeferredInlineSmiSub(Register dst,
- Smi* value,
- OverwriteMode overwrite_mode)
- : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
- set_comment("[ DeferredInlineSmiSub");
- }
-
- virtual void Generate();
-
- private:
- Register dst_;
- Smi* value_;
- OverwriteMode overwrite_mode_;
-};
-
-
-// Call the appropriate binary operation stub to compute src op value
-// and leave the result in dst.
-class DeferredInlineSmiOperation: public DeferredCode {
- public:
- DeferredInlineSmiOperation(Token::Value op,
- Register dst,
- Register src,
- Smi* value,
- OverwriteMode overwrite_mode)
- : op_(op),
- dst_(dst),
- src_(src),
- value_(value),
- overwrite_mode_(overwrite_mode) {
- set_comment("[ DeferredInlineSmiOperation");
- }
-
- virtual void Generate();
-
- private:
- Token::Value op_;
- Register dst_;
- Register src_;
- Smi* value_;
- OverwriteMode overwrite_mode_;
-};
-
-
-class FloatingPointHelper : public AllStatic {
- public:
- // Code pattern for loading a floating point value. Input value must
- // be either a smi or a heap number object (fp value). Requirements:
- // operand on TOS+1. Returns operand as floating point number on FPU
- // stack.
- static void LoadFloatOperand(MacroAssembler* masm, Register scratch);
-
- // Code pattern for loading a floating point value. Input value must
- // be either a smi or a heap number object (fp value). Requirements:
- // operand in src register. Returns operand as floating point number
- // in XMM register
- static void LoadFloatOperand(MacroAssembler* masm,
- Register src,
- XMMRegister dst);
-
- // Code pattern for loading floating point values. Input values must
- // be either smi or heap number objects (fp values). Requirements:
- // operand_1 on TOS+1 , operand_2 on TOS+2; Returns operands as
- // floating point numbers in XMM registers.
- static void LoadFloatOperands(MacroAssembler* masm,
- XMMRegister dst1,
- XMMRegister dst2);
-
- // Code pattern for loading floating point values onto the fp stack.
- // Input values must be either smi or heap number objects (fp values).
- // Requirements:
- // Register version: operands in registers lhs and rhs.
- // Stack version: operands on TOS+1 and TOS+2.
- // Returns operands as floating point numbers on fp stack.
- static void LoadFloatOperands(MacroAssembler* masm);
- static void LoadFloatOperands(MacroAssembler* masm,
- Register lhs,
- Register rhs);
-
- // Code pattern for loading a floating point value and converting it
- // to a 32 bit integer. Input value must be either a smi or a heap number
- // object.
- // Returns operands as 32-bit sign extended integers in a general purpose
- // registers.
- static void LoadInt32Operand(MacroAssembler* masm,
- const Operand& src,
- Register dst);
-
- // Test if operands are smi or number objects (fp). Requirements:
- // operand_1 in rax, operand_2 in rdx; falls through on float or smi
- // operands, jumps to the non_float label otherwise.
- static void CheckFloatOperands(MacroAssembler* masm,
- Label* non_float);
-
- // Allocate a heap number in new space with undefined value.
- // Returns tagged pointer in result, or jumps to need_gc if new space is full.
- static void AllocateHeapNumber(MacroAssembler* masm,
- Label* need_gc,
- Register scratch,
- Register result);
-};
-
-
-// -----------------------------------------------------------------------------
-// CodeGenerator implementation.
-
-CodeGenerator::CodeGenerator(int buffer_size,
- Handle<Script> script,
- bool is_eval)
- : is_eval_(is_eval),
- script_(script),
- deferred_(8),
- masm_(new MacroAssembler(NULL, buffer_size)),
- scope_(NULL),
- frame_(NULL),
- allocator_(NULL),
- state_(NULL),
- loop_nesting_(0),
- function_return_is_shadowed_(false),
- in_spilled_code_(false) {
-}
-
-
-void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
- // Call the runtime to declare the globals. The inevitable call
- // will sync frame elements to memory anyway, so we do it eagerly to
- // allow us to push the arguments directly into place.
- frame_->SyncRange(0, frame_->element_count() - 1);
-
- __ movq(kScratchRegister, pairs, RelocInfo::EMBEDDED_OBJECT);
- frame_->EmitPush(kScratchRegister);
- frame_->EmitPush(rsi); // The context is the second argument.
- frame_->EmitPush(Immediate(Smi::FromInt(is_eval() ? 1 : 0)));
- Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 3);
- // Return value is ignored.
-}
-
-
-void CodeGenerator::GenCode(FunctionLiteral* function) {
- // Record the position for debugging purposes.
- CodeForFunctionPosition(function);
- ZoneList<Statement*>* body = function->body();
-
- // Initialize state.
- ASSERT(scope_ == NULL);
- scope_ = function->scope();
- ASSERT(allocator_ == NULL);
- RegisterAllocator register_allocator(this);
- allocator_ = &register_allocator;
- ASSERT(frame_ == NULL);
- frame_ = new VirtualFrame();
- set_in_spilled_code(false);
-
- // Adjust for function-level loop nesting.
- loop_nesting_ += function->loop_nesting();
-
- JumpTarget::set_compiling_deferred_code(false);
-
-#ifdef DEBUG
- if (strlen(FLAG_stop_at) > 0 &&
- function->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
- frame_->SpillAll();
- __ int3();
- }
-#endif
-
- // New scope to get automatic timing calculation.
- { // NOLINT
- HistogramTimerScope codegen_timer(&Counters::code_generation);
- CodeGenState state(this);
-
- // Entry:
- // Stack: receiver, arguments, return address.
- // rbp: caller's frame pointer
- // rsp: stack pointer
- // rdi: called JS function
- // rsi: callee's context
- allocator_->Initialize();
- frame_->Enter();
-
- // Allocate space for locals and initialize them.
- frame_->AllocateStackSlots();
- // Initialize the function return target after the locals are set
- // up, because it needs the expected frame height from the frame.
- function_return_.set_direction(JumpTarget::BIDIRECTIONAL);
- function_return_is_shadowed_ = false;
-
- // Allocate the local context if needed.
- if (scope_->num_heap_slots() > 0) {
- Comment cmnt(masm_, "[ allocate local context");
- // Allocate local context.
- // Get outer context and create a new context based on it.
- frame_->PushFunction();
- Result context = frame_->CallRuntime(Runtime::kNewContext, 1);
-
- // Update context local.
- frame_->SaveContextRegister();
-
- // Verify that the runtime call result and rsi agree.
- if (FLAG_debug_code) {
- __ cmpq(context.reg(), rsi);
- __ Assert(equal, "Runtime::NewContext should end up in rsi");
- }
- }
-
- // TODO(1241774): Improve this code:
- // 1) only needed if we have a context
- // 2) no need to recompute context ptr every single time
- // 3) don't copy parameter operand code from SlotOperand!
- {
- Comment cmnt2(masm_, "[ copy context parameters into .context");
-
- // Note that iteration order is relevant here! If we have the same
- // parameter twice (e.g., function (x, y, x)), and that parameter
- // needs to be copied into the context, it must be the last argument
- // passed to the parameter that needs to be copied. This is a rare
- // case so we don't check for it, instead we rely on the copying
- // order: such a parameter is copied repeatedly into the same
- // context location and thus the last value is what is seen inside
- // the function.
- for (int i = 0; i < scope_->num_parameters(); i++) {
- Variable* par = scope_->parameter(i);
- Slot* slot = par->slot();
- if (slot != NULL && slot->type() == Slot::CONTEXT) {
- // The use of SlotOperand below is safe in unspilled code
- // because the slot is guaranteed to be a context slot.
- //
- // There are no parameters in the global scope.
- ASSERT(!scope_->is_global_scope());
- frame_->PushParameterAt(i);
- Result value = frame_->Pop();
- value.ToRegister();
-
- // SlotOperand loads context.reg() with the context object
- // stored to, used below in RecordWrite.
- Result context = allocator_->Allocate();
- ASSERT(context.is_valid());
- __ movq(SlotOperand(slot, context.reg()), value.reg());
- int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
- Result scratch = allocator_->Allocate();
- ASSERT(scratch.is_valid());
- frame_->Spill(context.reg());
- frame_->Spill(value.reg());
- __ RecordWrite(context.reg(), offset, value.reg(), scratch.reg());
- }
- }
- }
-
- // Store the arguments object. This must happen after context
- // initialization because the arguments object may be stored in
- // the context.
- if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) {
- StoreArgumentsObject(true);
- }
-
- // Generate code to 'execute' declarations and initialize functions
- // (source elements). In case of an illegal redeclaration we need to
- // handle that instead of processing the declarations.
- if (scope_->HasIllegalRedeclaration()) {
- Comment cmnt(masm_, "[ illegal redeclarations");
- scope_->VisitIllegalRedeclaration(this);
- } else {
- Comment cmnt(masm_, "[ declarations");
- ProcessDeclarations(scope_->declarations());
- // Bail out if a stack-overflow exception occurred when processing
- // declarations.
- if (HasStackOverflow()) return;
- }
-
- if (FLAG_trace) {
- frame_->CallRuntime(Runtime::kTraceEnter, 0);
- // Ignore the return value.
- }
- CheckStack();
-
- // Compile the body of the function in a vanilla state. Don't
- // bother compiling all the code if the scope has an illegal
- // redeclaration.
- if (!scope_->HasIllegalRedeclaration()) {
- Comment cmnt(masm_, "[ function body");
-#ifdef DEBUG
- bool is_builtin = Bootstrapper::IsActive();
- bool should_trace =
- is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls;
- if (should_trace) {
- frame_->CallRuntime(Runtime::kDebugTrace, 0);
- // Ignore the return value.
- }
-#endif
- VisitStatements(body);
-
- // Handle the return from the function.
- if (has_valid_frame()) {
- // If there is a valid frame, control flow can fall off the end of
- // the body. In that case there is an implicit return statement.
- ASSERT(!function_return_is_shadowed_);
- CodeForReturnPosition(function);
- frame_->PrepareForReturn();
- Result undefined(Factory::undefined_value());
- if (function_return_.is_bound()) {
- function_return_.Jump(&undefined);
- } else {
- function_return_.Bind(&undefined);
- GenerateReturnSequence(&undefined);
- }
- } else if (function_return_.is_linked()) {
- // If the return target has dangling jumps to it, then we have not
- // yet generated the return sequence. This can happen when (a)
- // control does not flow off the end of the body so we did not
- // compile an artificial return statement just above, and (b) there
- // are return statements in the body but (c) they are all shadowed.
- Result return_value;
- function_return_.Bind(&return_value);
- GenerateReturnSequence(&return_value);
- }
- }
- }
-
- // Adjust for function-level loop nesting.
- loop_nesting_ -= function->loop_nesting();
-
- // Code generation state must be reset.
- ASSERT(state_ == NULL);
- ASSERT(loop_nesting() == 0);
- ASSERT(!function_return_is_shadowed_);
- function_return_.Unuse();
- DeleteFrame();
-
- // Process any deferred code using the register allocator.
- if (!HasStackOverflow()) {
- HistogramTimerScope deferred_timer(&Counters::deferred_code_generation);
- JumpTarget::set_compiling_deferred_code(true);
- ProcessDeferred();
- JumpTarget::set_compiling_deferred_code(false);
- }
-
- // There is no need to delete the register allocator, it is a
- // stack-allocated local.
- allocator_ = NULL;
- scope_ = NULL;
-}
-
-void CodeGenerator::GenerateReturnSequence(Result* return_value) {
- // The return value is a live (but not currently reference counted)
- // reference to rax. This is safe because the current frame does not
- // contain a reference to rax (it is prepared for the return by spilling
- // all registers).
- if (FLAG_trace) {
- frame_->Push(return_value);
- *return_value = frame_->CallRuntime(Runtime::kTraceExit, 1);
- }
- return_value->ToRegister(rax);
-
- // Add a label for checking the size of the code used for returning.
-#ifdef DEBUG
- Label check_exit_codesize;
- masm_->bind(&check_exit_codesize);
-#endif
-
- // Leave the frame and return popping the arguments and the
- // receiver.
- frame_->Exit();
- masm_->ret((scope_->num_parameters() + 1) * kPointerSize);
-#ifdef ENABLE_DEBUGGER_SUPPORT
- // Add padding that will be overwritten by a debugger breakpoint.
- // frame_->Exit() generates "movq rsp, rbp; pop rbp; ret k"
- // with length 7 (3 + 1 + 3).
- const int kPadding = Debug::kX64JSReturnSequenceLength - 7;
- for (int i = 0; i < kPadding; ++i) {
- masm_->int3();
- }
- // Check that the size of the code used for returning matches what is
- // expected by the debugger.
- ASSERT_EQ(Debug::kX64JSReturnSequenceLength,
- masm_->SizeOfCodeGeneratedSince(&check_exit_codesize));
-#endif
- DeleteFrame();
-}
-
-
-#ifdef DEBUG
-bool CodeGenerator::HasValidEntryRegisters() {
- return (allocator()->count(rax) == (frame()->is_used(rax) ? 1 : 0))
- && (allocator()->count(rbx) == (frame()->is_used(rbx) ? 1 : 0))
- && (allocator()->count(rcx) == (frame()->is_used(rcx) ? 1 : 0))
- && (allocator()->count(rdx) == (frame()->is_used(rdx) ? 1 : 0))
- && (allocator()->count(rdi) == (frame()->is_used(rdi) ? 1 : 0))
- && (allocator()->count(r8) == (frame()->is_used(r8) ? 1 : 0))
- && (allocator()->count(r9) == (frame()->is_used(r9) ? 1 : 0))
- && (allocator()->count(r11) == (frame()->is_used(r11) ? 1 : 0))
- && (allocator()->count(r14) == (frame()->is_used(r14) ? 1 : 0))
- && (allocator()->count(r15) == (frame()->is_used(r15) ? 1 : 0))
- && (allocator()->count(r12) == (frame()->is_used(r12) ? 1 : 0));
-}
-#endif
-
-
-class DeferredReferenceGetKeyedValue: public DeferredCode {
- public:
- explicit DeferredReferenceGetKeyedValue(Register dst,
- Register receiver,
- Register key,
- bool is_global)
- : dst_(dst), receiver_(receiver), key_(key), is_global_(is_global) {
- set_comment("[ DeferredReferenceGetKeyedValue");
- }
-
- virtual void Generate();
-
- Label* patch_site() { return &patch_site_; }
-
- private:
- Label patch_site_;
- Register dst_;
- Register receiver_;
- Register key_;
- bool is_global_;
-};
-
-
-void DeferredReferenceGetKeyedValue::Generate() {
- __ push(receiver_); // First IC argument.
- __ push(key_); // Second IC argument.
-
- // Calculate the delta from the IC call instruction to the map check
- // movq instruction in the inlined version. This delta is stored in
- // a test(rax, delta) instruction after the call so that we can find
- // it in the IC initialization code and patch the movq instruction.
- // This means that we cannot allow test instructions after calls to
- // KeyedLoadIC stubs in other places.
- Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
- RelocInfo::Mode mode = is_global_
- ? RelocInfo::CODE_TARGET_CONTEXT
- : RelocInfo::CODE_TARGET;
- __ Call(ic, mode);
- // The delta from the start of the map-compare instruction to the
- // test instruction. We use masm_-> directly here instead of the __
- // macro because the macro sometimes uses macro expansion to turn
- // into something that can't return a value. This is encountered
- // when doing generated code coverage tests.
- int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
- // Here we use masm_-> instead of the __ macro because this is the
- // instruction that gets patched and coverage code gets in the way.
- // TODO(X64): Consider whether it's worth switching the test to a
- // 7-byte NOP with non-zero immediate (0f 1f 80 xxxxxxxx) which won't
- // be generated normally.
- masm_->testl(rax, Immediate(-delta_to_patch_site));
- __ IncrementCounter(&Counters::keyed_load_inline_miss, 1);
-
- if (!dst_.is(rax)) __ movq(dst_, rax);
- __ pop(key_);
- __ pop(receiver_);
-}
-
-
-class DeferredReferenceSetKeyedValue: public DeferredCode {
- public:
- DeferredReferenceSetKeyedValue(Register value,
- Register key,
- Register receiver)
- : value_(value), key_(key), receiver_(receiver) {
- set_comment("[ DeferredReferenceSetKeyedValue");
- }
-
- virtual void Generate();
-
- Label* patch_site() { return &patch_site_; }
-
- private:
- Register value_;
- Register key_;
- Register receiver_;
- Label patch_site_;
-};
-
-
-void DeferredReferenceSetKeyedValue::Generate() {
- __ IncrementCounter(&Counters::keyed_store_inline_miss, 1);
- // Push receiver and key arguments on the stack.
- __ push(receiver_);
- __ push(key_);
- // Move value argument to eax as expected by the IC stub.
- if (!value_.is(rax)) __ movq(rax, value_);
- // Call the IC stub.
- Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
- __ Call(ic, RelocInfo::CODE_TARGET);
- // The delta from the start of the map-compare instructions (initial movq)
- // to the test instruction. We use masm_-> directly here instead of the
- // __ macro because the macro sometimes uses macro expansion to turn
- // into something that can't return a value. This is encountered
- // when doing generated code coverage tests.
- int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
- // Here we use masm_-> instead of the __ macro because this is the
- // instruction that gets patched and coverage code gets in the way.
- masm_->testl(rax, Immediate(-delta_to_patch_site));
- // Restore value (returned from store IC), key and receiver
- // registers.
- if (!value_.is(rax)) __ movq(value_, rax);
- __ pop(key_);
- __ pop(receiver_);
-}
-
-
-class CallFunctionStub: public CodeStub {
- public:
- CallFunctionStub(int argc, InLoopFlag in_loop)
- : argc_(argc), in_loop_(in_loop) { }
-
- void Generate(MacroAssembler* masm);
-
- private:
- int argc_;
- InLoopFlag in_loop_;
-
-#ifdef DEBUG
- void Print() { PrintF("CallFunctionStub (args %d)\n", argc_); }
-#endif
-
- Major MajorKey() { return CallFunction; }
- int MinorKey() { return argc_; }
- InLoopFlag InLoop() { return in_loop_; }
-};
-
-
-void CodeGenerator::CallApplyLazy(Property* apply,
- Expression* receiver,
- VariableProxy* arguments,
- int position) {
- ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION);
- ASSERT(arguments->IsArguments());
-
- JumpTarget slow, done;
-
- // Load the apply function onto the stack. This will usually
- // give us a megamorphic load site. Not super, but it works.
- Reference ref(this, apply);
- ref.GetValue(NOT_INSIDE_TYPEOF);
- ASSERT(ref.type() == Reference::NAMED);
-
- // Load the receiver and the existing arguments object onto the
- // expression stack. Avoid allocating the arguments object here.
- Load(receiver);
- LoadFromSlot(scope_->arguments()->var()->slot(), NOT_INSIDE_TYPEOF);
-
- // Emit the source position information after having loaded the
- // receiver and the arguments.
- CodeForSourcePosition(position);
-
- // Check if the arguments object has been lazily allocated
- // already. If so, just use that instead of copying the arguments
- // from the stack. This also deals with cases where a local variable
- // named 'arguments' has been introduced.
- frame_->Dup();
- Result probe = frame_->Pop();
- bool try_lazy = true;
- if (probe.is_constant()) {
- try_lazy = probe.handle()->IsTheHole();
- } else {
- __ Cmp(probe.reg(), Factory::the_hole_value());
- probe.Unuse();
- slow.Branch(not_equal);
- }
-
- if (try_lazy) {
- JumpTarget build_args;
-
- // Get rid of the arguments object probe.
- frame_->Drop();
-
- // Before messing with the execution stack, we sync all
- // elements. This is bound to happen anyway because we're
- // about to call a function.
- frame_->SyncRange(0, frame_->element_count() - 1);
-
- // Check that the receiver really is a JavaScript object.
- {
- frame_->PushElementAt(0);
- Result receiver = frame_->Pop();
- receiver.ToRegister();
- Condition is_smi = masm_->CheckSmi(receiver.reg());
- build_args.Branch(is_smi);
- // We allow all JSObjects including JSFunctions. As long as
- // JS_FUNCTION_TYPE is the last instance type and it is right
- // after LAST_JS_OBJECT_TYPE, we do not have to check the upper
- // bound.
- ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
- ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
- __ CmpObjectType(receiver.reg(), FIRST_JS_OBJECT_TYPE, kScratchRegister);
- build_args.Branch(below);
- }
-
- // Verify that we're invoking Function.prototype.apply.
- {
- frame_->PushElementAt(1);
- Result apply = frame_->Pop();
- apply.ToRegister();
- Condition is_smi = masm_->CheckSmi(apply.reg());
- build_args.Branch(is_smi);
- Result tmp = allocator_->Allocate();
- __ CmpObjectType(apply.reg(), JS_FUNCTION_TYPE, tmp.reg());
- build_args.Branch(not_equal);
- __ movq(tmp.reg(),
- FieldOperand(apply.reg(), JSFunction::kSharedFunctionInfoOffset));
- Handle<Code> apply_code(Builtins::builtin(Builtins::FunctionApply));
- __ Cmp(FieldOperand(tmp.reg(), SharedFunctionInfo::kCodeOffset),
- apply_code);
- build_args.Branch(not_equal);
- }
-
- // Get the function receiver from the stack. Check that it
- // really is a function.
- __ movq(rdi, Operand(rsp, 2 * kPointerSize));
- Condition is_smi = masm_->CheckSmi(rdi);
- build_args.Branch(is_smi);
- __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
- build_args.Branch(not_equal);
-
- // Copy the arguments to this function possibly from the
- // adaptor frame below it.
- Label invoke, adapted;
- __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
- __ movq(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
- __ cmpq(rcx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
- __ j(equal, &adapted);
-
- // No arguments adaptor frame. Copy fixed number of arguments.
- __ movq(rax, Immediate(scope_->num_parameters()));
- for (int i = 0; i < scope_->num_parameters(); i++) {
- __ push(frame_->ParameterAt(i));
- }
- __ jmp(&invoke);
-
- // Arguments adaptor frame present. Copy arguments from there, but
- // avoid copying too many arguments to avoid stack overflows.
- __ bind(&adapted);
- static const uint32_t kArgumentsLimit = 1 * KB;
- __ movq(rax, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
- __ SmiToInteger32(rax, rax);
- __ movq(rcx, rax);
- __ cmpq(rax, Immediate(kArgumentsLimit));
- build_args.Branch(above);
-
- // Loop through the arguments pushing them onto the execution
- // stack. We don't inform the virtual frame of the push, so we don't
- // have to worry about getting rid of the elements from the virtual
- // frame.
- Label loop;
- __ bind(&loop);
- __ testl(rcx, rcx);
- __ j(zero, &invoke);
- __ push(Operand(rdx, rcx, times_pointer_size, 1 * kPointerSize));
- __ decl(rcx);
- __ jmp(&loop);
-
- // Invoke the function. The virtual frame knows about the receiver
- // so make sure to forget that explicitly.
- __ bind(&invoke);
- ParameterCount actual(rax);
- __ InvokeFunction(rdi, actual, CALL_FUNCTION);
- frame_->Forget(1);
- Result result = allocator()->Allocate(rax);
- frame_->SetElementAt(0, &result);
- done.Jump();
-
- // Slow-case: Allocate the arguments object since we know it isn't
- // there, and fall-through to the slow-case where we call
- // Function.prototype.apply.
- build_args.Bind();
- Result arguments_object = StoreArgumentsObject(false);
- frame_->Push(&arguments_object);
- slow.Bind();
- }
-
- // Flip the apply function and the function to call on the stack, so
- // the function looks like the receiver of the apply call. This way,
- // the generic Function.prototype.apply implementation can deal with
- // the call like it usually does.
- Result a2 = frame_->Pop();
- Result a1 = frame_->Pop();
- Result ap = frame_->Pop();
- Result fn = frame_->Pop();
- frame_->Push(&ap);
- frame_->Push(&fn);
- frame_->Push(&a1);
- frame_->Push(&a2);
- CallFunctionStub call_function(2, NOT_IN_LOOP);
- Result res = frame_->CallStub(&call_function, 3);
- frame_->Push(&res);
-
- // All done. Restore context register after call.
- if (try_lazy) done.Bind();
- frame_->RestoreContextRegister();
-}
-
-
-class DeferredStackCheck: public DeferredCode {
- public:
- DeferredStackCheck() {
- set_comment("[ DeferredStackCheck");
- }
-
- virtual void Generate();
-};
-
-
-void DeferredStackCheck::Generate() {
- StackCheckStub stub;
- __ CallStub(&stub);
-}
-
-
-void CodeGenerator::CheckStack() {
- if (FLAG_check_stack) {
- DeferredStackCheck* deferred = new DeferredStackCheck;
- __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
- deferred->Branch(below);
- deferred->BindExit();
- }
-}
-
-
-void CodeGenerator::VisitAndSpill(Statement* statement) {
- // TODO(X64): No architecture specific code. Move to shared location.
- ASSERT(in_spilled_code());
- set_in_spilled_code(false);
- Visit(statement);
- if (frame_ != NULL) {
- frame_->SpillAll();
- }
- set_in_spilled_code(true);
-}
-
-
-void CodeGenerator::VisitStatementsAndSpill(ZoneList<Statement*>* statements) {
- ASSERT(in_spilled_code());
- set_in_spilled_code(false);
- VisitStatements(statements);
- if (frame_ != NULL) {
- frame_->SpillAll();
- }
- set_in_spilled_code(true);
-}
-
-
-void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) {
- ASSERT(!in_spilled_code());
- for (int i = 0; has_valid_frame() && i < statements->length(); i++) {
- Visit(statements->at(i));
- }
-}
-
-
-void CodeGenerator::VisitBlock(Block* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ Block");
- CodeForStatementPosition(node);
- node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
- VisitStatements(node->statements());
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
- node->break_target()->Unuse();
-}
-
-
-void CodeGenerator::VisitDeclaration(Declaration* node) {
- Comment cmnt(masm_, "[ Declaration");
- Variable* var = node->proxy()->var();
- ASSERT(var != NULL); // must have been resolved
- Slot* slot = var->slot();
-
- // If it was not possible to allocate the variable at compile time,
- // we need to "declare" it at runtime to make sure it actually
- // exists in the local context.
- if (slot != NULL && slot->type() == Slot::LOOKUP) {
- // Variables with a "LOOKUP" slot were introduced as non-locals
- // during variable resolution and must have mode DYNAMIC.
- ASSERT(var->is_dynamic());
- // For now, just do a runtime call. Sync the virtual frame eagerly
- // so we can simply push the arguments into place.
- frame_->SyncRange(0, frame_->element_count() - 1);
- frame_->EmitPush(rsi);
- __ movq(kScratchRegister, var->name(), RelocInfo::EMBEDDED_OBJECT);
- frame_->EmitPush(kScratchRegister);
- // Declaration nodes are always introduced in one of two modes.
- ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST);
- PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY;
- frame_->EmitPush(Immediate(Smi::FromInt(attr)));
- // Push initial value, if any.
- // Note: For variables we must not push an initial value (such as
- // 'undefined') because we may have a (legal) redeclaration and we
- // must not destroy the current value.
- if (node->mode() == Variable::CONST) {
- frame_->EmitPush(Heap::kTheHoleValueRootIndex);
- } else if (node->fun() != NULL) {
- Load(node->fun());
- } else {
- frame_->EmitPush(Immediate(Smi::FromInt(0))); // no initial value!
- }
- Result ignored = frame_->CallRuntime(Runtime::kDeclareContextSlot, 4);
- // Ignore the return value (declarations are statements).
- return;
- }
-
- ASSERT(!var->is_global());
-
- // If we have a function or a constant, we need to initialize the variable.
- Expression* val = NULL;
- if (node->mode() == Variable::CONST) {
- val = new Literal(Factory::the_hole_value());
- } else {
- val = node->fun(); // NULL if we don't have a function
- }
-
- if (val != NULL) {
- {
- // Set the initial value.
- Reference target(this, node->proxy());
- Load(val);
- target.SetValue(NOT_CONST_INIT);
- // The reference is removed from the stack (preserving TOS) when
- // it goes out of scope.
- }
- // Get rid of the assigned value (declarations are statements).
- frame_->Drop();
- }
-}
-
-
-void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ ExpressionStatement");
- CodeForStatementPosition(node);
- Expression* expression = node->expression();
- expression->MarkAsStatement();
- Load(expression);
- // Remove the lingering expression result from the top of stack.
- frame_->Drop();
-}
-
-
-void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "// EmptyStatement");
- CodeForStatementPosition(node);
- // nothing to do
-}
-
-
-void CodeGenerator::VisitIfStatement(IfStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ IfStatement");
- // Generate different code depending on which parts of the if statement
- // are present or not.
- bool has_then_stm = node->HasThenStatement();
- bool has_else_stm = node->HasElseStatement();
-
- CodeForStatementPosition(node);
- JumpTarget exit;
- if (has_then_stm && has_else_stm) {
- JumpTarget then;
- JumpTarget else_;
- ControlDestination dest(&then, &else_, true);
- LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, true);
-
- if (dest.false_was_fall_through()) {
- // The else target was bound, so we compile the else part first.
- Visit(node->else_statement());
-
- // We may have dangling jumps to the then part.
- if (then.is_linked()) {
- if (has_valid_frame()) exit.Jump();
- then.Bind();
- Visit(node->then_statement());
- }
- } else {
- // The then target was bound, so we compile the then part first.
- Visit(node->then_statement());
-
- if (else_.is_linked()) {
- if (has_valid_frame()) exit.Jump();
- else_.Bind();
- Visit(node->else_statement());
- }
- }
-
- } else if (has_then_stm) {
- ASSERT(!has_else_stm);
- JumpTarget then;
- ControlDestination dest(&then, &exit, true);
- LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, true);
-
- if (dest.false_was_fall_through()) {
- // The exit label was bound. We may have dangling jumps to the
- // then part.
- if (then.is_linked()) {
- exit.Unuse();
- exit.Jump();
- then.Bind();
- Visit(node->then_statement());
- }
- } else {
- // The then label was bound.
- Visit(node->then_statement());
- }
-
- } else if (has_else_stm) {
- ASSERT(!has_then_stm);
- JumpTarget else_;
- ControlDestination dest(&exit, &else_, false);
- LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, true);
-
- if (dest.true_was_fall_through()) {
- // The exit label was bound. We may have dangling jumps to the
- // else part.
- if (else_.is_linked()) {
- exit.Unuse();
- exit.Jump();
- else_.Bind();
- Visit(node->else_statement());
- }
- } else {
- // The else label was bound.
- Visit(node->else_statement());
- }
-
- } else {
- ASSERT(!has_then_stm && !has_else_stm);
- // We only care about the condition's side effects (not its value
- // or control flow effect). LoadCondition is called without
- // forcing control flow.
- ControlDestination dest(&exit, &exit, true);
- LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, false);
- if (!dest.is_used()) {
- // We got a value on the frame rather than (or in addition to)
- // control flow.
- frame_->Drop();
- }
- }
-
- if (exit.is_linked()) {
- exit.Bind();
- }
-}
-
-
-void CodeGenerator::VisitContinueStatement(ContinueStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ ContinueStatement");
- CodeForStatementPosition(node);
- node->target()->continue_target()->Jump();
-}
-
-
-void CodeGenerator::VisitBreakStatement(BreakStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ BreakStatement");
- CodeForStatementPosition(node);
- node->target()->break_target()->Jump();
-}
-
-
-void CodeGenerator::VisitReturnStatement(ReturnStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ ReturnStatement");
-
- CodeForStatementPosition(node);
- Load(node->expression());
- Result return_value = frame_->Pop();
- if (function_return_is_shadowed_) {
- function_return_.Jump(&return_value);
- } else {
- frame_->PrepareForReturn();
- if (function_return_.is_bound()) {
- // If the function return label is already bound we reuse the
- // code by jumping to the return site.
- function_return_.Jump(&return_value);
- } else {
- function_return_.Bind(&return_value);
- GenerateReturnSequence(&return_value);
- }
- }
-}
-
-
-void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ WithEnterStatement");
- CodeForStatementPosition(node);
- Load(node->expression());
- Result context;
- if (node->is_catch_block()) {
- context = frame_->CallRuntime(Runtime::kPushCatchContext, 1);
- } else {
- context = frame_->CallRuntime(Runtime::kPushContext, 1);
- }
-
- // Update context local.
- frame_->SaveContextRegister();
-
- // Verify that the runtime call result and rsi agree.
- if (FLAG_debug_code) {
- __ cmpq(context.reg(), rsi);
- __ Assert(equal, "Runtime::NewContext should end up in rsi");
- }
-}
-
-
-void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ WithExitStatement");
- CodeForStatementPosition(node);
- // Pop context.
- __ movq(rsi, ContextOperand(rsi, Context::PREVIOUS_INDEX));
- // Update context local.
- frame_->SaveContextRegister();
-}
-
-
-void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) {
- // TODO(X64): This code is completely generic and should be moved somewhere
- // where it can be shared between architectures.
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ SwitchStatement");
- CodeForStatementPosition(node);
- node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
-
- // Compile the switch value.
- Load(node->tag());
-
- ZoneList<CaseClause*>* cases = node->cases();
- int length = cases->length();
- CaseClause* default_clause = NULL;
-
- JumpTarget next_test;
- // Compile the case label expressions and comparisons. Exit early
- // if a comparison is unconditionally true. The target next_test is
- // bound before the loop in order to indicate control flow to the
- // first comparison.
- next_test.Bind();
- for (int i = 0; i < length && !next_test.is_unused(); i++) {
- CaseClause* clause = cases->at(i);
- // The default is not a test, but remember it for later.
- if (clause->is_default()) {
- default_clause = clause;
- continue;
- }
-
- Comment cmnt(masm_, "[ Case comparison");
- // We recycle the same target next_test for each test. Bind it if
- // the previous test has not done so and then unuse it for the
- // loop.
- if (next_test.is_linked()) {
- next_test.Bind();
- }
- next_test.Unuse();
-
- // Duplicate the switch value.
- frame_->Dup();
-
- // Compile the label expression.
- Load(clause->label());
-
- // Compare and branch to the body if true or the next test if
- // false. Prefer the next test as a fall through.
- ControlDestination dest(clause->body_target(), &next_test, false);
- Comparison(equal, true, &dest);
-
- // If the comparison fell through to the true target, jump to the
- // actual body.
- if (dest.true_was_fall_through()) {
- clause->body_target()->Unuse();
- clause->body_target()->Jump();
- }
- }
-
- // If there was control flow to a next test from the last one
- // compiled, compile a jump to the default or break target.
- if (!next_test.is_unused()) {
- if (next_test.is_linked()) {
- next_test.Bind();
- }
- // Drop the switch value.
- frame_->Drop();
- if (default_clause != NULL) {
- default_clause->body_target()->Jump();
- } else {
- node->break_target()->Jump();
- }
- }
-
- // The last instruction emitted was a jump, either to the default
- // clause or the break target, or else to a case body from the loop
- // that compiles the tests.
- ASSERT(!has_valid_frame());
- // Compile case bodies as needed.
- for (int i = 0; i < length; i++) {
- CaseClause* clause = cases->at(i);
-
- // There are two ways to reach the body: from the corresponding
- // test or as the fall through of the previous body.
- if (clause->body_target()->is_linked() || has_valid_frame()) {
- if (clause->body_target()->is_linked()) {
- if (has_valid_frame()) {
- // If we have both a jump to the test and a fall through, put
- // a jump on the fall through path to avoid the dropping of
- // the switch value on the test path. The exception is the
- // default which has already had the switch value dropped.
- if (clause->is_default()) {
- clause->body_target()->Bind();
- } else {
- JumpTarget body;
- body.Jump();
- clause->body_target()->Bind();
- frame_->Drop();
- body.Bind();
- }
- } else {
- // No fall through to worry about.
- clause->body_target()->Bind();
- if (!clause->is_default()) {
- frame_->Drop();
- }
- }
- } else {
- // Otherwise, we have only fall through.
- ASSERT(has_valid_frame());
- }
-
- // We are now prepared to compile the body.
- Comment cmnt(masm_, "[ Case body");
- VisitStatements(clause->statements());
- }
- clause->body_target()->Unuse();
- }
-
- // We may not have a valid frame here so bind the break target only
- // if needed.
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
- node->break_target()->Unuse();
-}
-
-
-void CodeGenerator::VisitLoopStatement(LoopStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ LoopStatement");
- CodeForStatementPosition(node);
- node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
-
- // Simple condition analysis. ALWAYS_TRUE and ALWAYS_FALSE represent a
- // known result for the test expression, with no side effects.
- enum { ALWAYS_TRUE, ALWAYS_FALSE, DONT_KNOW } info = DONT_KNOW;
- if (node->cond() == NULL) {
- ASSERT(node->type() == LoopStatement::FOR_LOOP);
- info = ALWAYS_TRUE;
- } else {
- Literal* lit = node->cond()->AsLiteral();
- if (lit != NULL) {
- if (lit->IsTrue()) {
- info = ALWAYS_TRUE;
- } else if (lit->IsFalse()) {
- info = ALWAYS_FALSE;
- }
- }
- }
-
- switch (node->type()) {
- case LoopStatement::DO_LOOP: {
- JumpTarget body(JumpTarget::BIDIRECTIONAL);
- IncrementLoopNesting();
-
- // Label the top of the loop for the backward jump if necessary.
- if (info == ALWAYS_TRUE) {
- // Use the continue target.
- node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
- node->continue_target()->Bind();
- } else if (info == ALWAYS_FALSE) {
- // No need to label it.
- node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
- } else {
- // Continue is the test, so use the backward body target.
- ASSERT(info == DONT_KNOW);
- node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
- body.Bind();
- }
-
- CheckStack(); // TODO(1222600): ignore if body contains calls.
- Visit(node->body());
-
- // Compile the test.
- if (info == ALWAYS_TRUE) {
- // If control flow can fall off the end of the body, jump back
- // to the top and bind the break target at the exit.
- if (has_valid_frame()) {
- node->continue_target()->Jump();
- }
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
-
- } else if (info == ALWAYS_FALSE) {
- // We may have had continues or breaks in the body.
- if (node->continue_target()->is_linked()) {
- node->continue_target()->Bind();
- }
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
-
- } else {
- ASSERT(info == DONT_KNOW);
- // We have to compile the test expression if it can be reached by
- // control flow falling out of the body or via continue.
- if (node->continue_target()->is_linked()) {
- node->continue_target()->Bind();
- }
- if (has_valid_frame()) {
- ControlDestination dest(&body, node->break_target(), false);
- LoadCondition(node->cond(), NOT_INSIDE_TYPEOF, &dest, true);
- }
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
- }
- break;
- }
-
- case LoopStatement::WHILE_LOOP: {
- // Do not duplicate conditions that may have function literal
- // subexpressions. This can cause us to compile the function
- // literal twice.
- bool test_at_bottom = !node->may_have_function_literal();
-
- IncrementLoopNesting();
-
- // If the condition is always false and has no side effects, we
- // do not need to compile anything.
- if (info == ALWAYS_FALSE) break;
-
- JumpTarget body;
- if (test_at_bottom) {
- body.set_direction(JumpTarget::BIDIRECTIONAL);
- }
-
- // Based on the condition analysis, compile the test as necessary.
- if (info == ALWAYS_TRUE) {
- // We will not compile the test expression. Label the top of
- // the loop with the continue target.
- node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
- node->continue_target()->Bind();
- } else {
- ASSERT(info == DONT_KNOW); // ALWAYS_FALSE cannot reach here.
- if (test_at_bottom) {
- // Continue is the test at the bottom, no need to label the
- // test at the top. The body is a backward target.
- node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
- } else {
- // Label the test at the top as the continue target. The
- // body is a forward-only target.
- node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
- node->continue_target()->Bind();
- }
- // Compile the test with the body as the true target and
- // preferred fall-through and with the break target as the
- // false target.
- ControlDestination dest(&body, node->break_target(), true);
- LoadCondition(node->cond(), NOT_INSIDE_TYPEOF, &dest, true);
-
- if (dest.false_was_fall_through()) {
- // If we got the break target as fall-through, the test may
- // have been unconditionally false (if there are no jumps to
- // the body).
- if (!body.is_linked()) break;
-
- // Otherwise, jump around the body on the fall through and
- // then bind the body target.
- node->break_target()->Unuse();
- node->break_target()->Jump();
- body.Bind();
- }
- }
-
- CheckStack(); // TODO(1222600): ignore if body contains calls.
- Visit(node->body());
-
- // Based on the condition analysis, compile the backward jump as
- // necessary.
- if (info == ALWAYS_TRUE) {
- // The loop body has been labeled with the continue target.
- if (has_valid_frame()) {
- node->continue_target()->Jump();
- }
- } else {
- ASSERT(info == DONT_KNOW); // ALWAYS_FALSE cannot reach here.
- if (test_at_bottom) {
- // If we have chosen to recompile the test at the bottom,
- // then it is the continue target.
- if (node->continue_target()->is_linked()) {
- node->continue_target()->Bind();
- }
- if (has_valid_frame()) {
- // The break target is the fall-through (body is a backward
- // jump from here and thus an invalid fall-through).
- ControlDestination dest(&body, node->break_target(), false);
- LoadCondition(node->cond(), NOT_INSIDE_TYPEOF, &dest, true);
- }
- } else {
- // If we have chosen not to recompile the test at the
- // bottom, jump back to the one at the top.
- if (has_valid_frame()) {
- node->continue_target()->Jump();
- }
- }
- }
-
- // The break target may be already bound (by the condition), or
- // there may not be a valid frame. Bind it only if needed.
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
- break;
- }
-
- case LoopStatement::FOR_LOOP: {
- // Do not duplicate conditions that may have function literal
- // subexpressions. This can cause us to compile the function
- // literal twice.
- bool test_at_bottom = !node->may_have_function_literal();
-
- // Compile the init expression if present.
- if (node->init() != NULL) {
- Visit(node->init());
- }
-
- IncrementLoopNesting();
-
- // If the condition is always false and has no side effects, we
- // do not need to compile anything else.
- if (info == ALWAYS_FALSE) break;
-
- // Target for backward edge if no test at the bottom, otherwise
- // unused.
- JumpTarget loop(JumpTarget::BIDIRECTIONAL);
-
- // Target for backward edge if there is a test at the bottom,
- // otherwise used as target for test at the top.
- JumpTarget body;
- if (test_at_bottom) {
- body.set_direction(JumpTarget::BIDIRECTIONAL);
- }
-
- // Based on the condition analysis, compile the test as necessary.
- if (info == ALWAYS_TRUE) {
- // We will not compile the test expression. Label the top of
- // the loop.
- if (node->next() == NULL) {
- // Use the continue target if there is no update expression.
- node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
- node->continue_target()->Bind();
- } else {
- // Otherwise use the backward loop target.
- node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
- loop.Bind();
- }
- } else {
- ASSERT(info == DONT_KNOW);
- if (test_at_bottom) {
- // Continue is either the update expression or the test at
- // the bottom, no need to label the test at the top.
- node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
- } else if (node->next() == NULL) {
- // We are not recompiling the test at the bottom and there
- // is no update expression.
- node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
- node->continue_target()->Bind();
- } else {
- // We are not recompiling the test at the bottom and there
- // is an update expression.
- node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
- loop.Bind();
- }
-
- // Compile the test with the body as the true target and
- // preferred fall-through and with the break target as the
- // false target.
- ControlDestination dest(&body, node->break_target(), true);
- LoadCondition(node->cond(), NOT_INSIDE_TYPEOF, &dest, true);
-
- if (dest.false_was_fall_through()) {
- // If we got the break target as fall-through, the test may
- // have been unconditionally false (if there are no jumps to
- // the body).
- if (!body.is_linked()) break;
-
- // Otherwise, jump around the body on the fall through and
- // then bind the body target.
- node->break_target()->Unuse();
- node->break_target()->Jump();
- body.Bind();
- }
- }
-
- CheckStack(); // TODO(1222600): ignore if body contains calls.
- Visit(node->body());
-
- // If there is an update expression, compile it if necessary.
- if (node->next() != NULL) {
- if (node->continue_target()->is_linked()) {
- node->continue_target()->Bind();
- }
-
- // Control can reach the update by falling out of the body or
- // by a continue.
- if (has_valid_frame()) {
- // Record the source position of the statement as this code
- // which is after the code for the body actually belongs to
- // the loop statement and not the body.
- CodeForStatementPosition(node);
- Visit(node->next());
- }
- }
-
- // Based on the condition analysis, compile the backward jump as
- // necessary.
- if (info == ALWAYS_TRUE) {
- if (has_valid_frame()) {
- if (node->next() == NULL) {
- node->continue_target()->Jump();
- } else {
- loop.Jump();
- }
- }
- } else {
- ASSERT(info == DONT_KNOW); // ALWAYS_FALSE cannot reach here.
- if (test_at_bottom) {
- if (node->continue_target()->is_linked()) {
- // We can have dangling jumps to the continue target if
- // there was no update expression.
- node->continue_target()->Bind();
- }
- // Control can reach the test at the bottom by falling out
- // of the body, by a continue in the body, or from the
- // update expression.
- if (has_valid_frame()) {
- // The break target is the fall-through (body is a
- // backward jump from here).
- ControlDestination dest(&body, node->break_target(), false);
- LoadCondition(node->cond(), NOT_INSIDE_TYPEOF, &dest, true);
- }
- } else {
- // Otherwise, jump back to the test at the top.
- if (has_valid_frame()) {
- if (node->next() == NULL) {
- node->continue_target()->Jump();
- } else {
- loop.Jump();
- }
- }
- }
- }
-
- // The break target may be already bound (by the condition), or
- // there may not be a valid frame. Bind it only if needed.
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
- break;
- }
- }
-
- DecrementLoopNesting();
- node->continue_target()->Unuse();
- node->break_target()->Unuse();
-}
-
-
-void CodeGenerator::VisitForInStatement(ForInStatement* node) {
- ASSERT(!in_spilled_code());
- VirtualFrame::SpilledScope spilled_scope;
- Comment cmnt(masm_, "[ ForInStatement");
- CodeForStatementPosition(node);
-
- JumpTarget primitive;
- JumpTarget jsobject;
- JumpTarget fixed_array;
- JumpTarget entry(JumpTarget::BIDIRECTIONAL);
- JumpTarget end_del_check;
- JumpTarget exit;
-
- // Get the object to enumerate over (converted to JSObject).
- LoadAndSpill(node->enumerable());
-
- // Both SpiderMonkey and kjs ignore null and undefined in contrast
- // to the specification. 12.6.4 mandates a call to ToObject.
- frame_->EmitPop(rax);
-
- // rax: value to be iterated over
- __ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
- exit.Branch(equal);
- __ CompareRoot(rax, Heap::kNullValueRootIndex);
- exit.Branch(equal);
-
- // Stack layout in body:
- // [iteration counter (smi)] <- slot 0
- // [length of array] <- slot 1
- // [FixedArray] <- slot 2
- // [Map or 0] <- slot 3
- // [Object] <- slot 4
-
- // Check if enumerable is already a JSObject
- // rax: value to be iterated over
- Condition is_smi = masm_->CheckSmi(rax);
- primitive.Branch(is_smi);
- __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
- jsobject.Branch(above_equal);
-
- primitive.Bind();
- frame_->EmitPush(rax);
- frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION, 1);
- // function call returns the value in rax, which is where we want it below
-
- jsobject.Bind();
- // Get the set of properties (as a FixedArray or Map).
- // rax: value to be iterated over
- frame_->EmitPush(rax); // push the object being iterated over (slot 4)
-
- frame_->EmitPush(rax); // push the Object (slot 4) for the runtime call
- frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1);
-
- // If we got a Map, we can do a fast modification check.
- // Otherwise, we got a FixedArray, and we have to do a slow check.
- // rax: map or fixed array (result from call to
- // Runtime::kGetPropertyNamesFast)
- __ movq(rdx, rax);
- __ movq(rcx, FieldOperand(rdx, HeapObject::kMapOffset));
- __ CompareRoot(rcx, Heap::kMetaMapRootIndex);
- fixed_array.Branch(not_equal);
-
- // Get enum cache
- // rax: map (result from call to Runtime::kGetPropertyNamesFast)
- __ movq(rcx, rax);
- __ movq(rcx, FieldOperand(rcx, Map::kInstanceDescriptorsOffset));
- // Get the bridge array held in the enumeration index field.
- __ movq(rcx, FieldOperand(rcx, DescriptorArray::kEnumerationIndexOffset));
- // Get the cache from the bridge array.
- __ movq(rdx, FieldOperand(rcx, DescriptorArray::kEnumCacheBridgeCacheOffset));
-
- frame_->EmitPush(rax); // <- slot 3
- frame_->EmitPush(rdx); // <- slot 2
- __ movl(rax, FieldOperand(rdx, FixedArray::kLengthOffset));
- __ Integer32ToSmi(rax, rax);
- frame_->EmitPush(rax); // <- slot 1
- frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 0
- entry.Jump();
-
- fixed_array.Bind();
- // rax: fixed array (result from call to Runtime::kGetPropertyNamesFast)
- frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 3
- frame_->EmitPush(rax); // <- slot 2
-
- // Push the length of the array and the initial index onto the stack.
- __ movl(rax, FieldOperand(rax, FixedArray::kLengthOffset));
- __ Integer32ToSmi(rax, rax);
- frame_->EmitPush(rax); // <- slot 1
- frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 0
-
- // Condition.
- entry.Bind();
- // Grab the current frame's height for the break and continue
- // targets only after all the state is pushed on the frame.
- node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
- node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
-
- __ movq(rax, frame_->ElementAt(0)); // load the current count
- __ cmpl(rax, frame_->ElementAt(1)); // compare to the array length
- node->break_target()->Branch(above_equal);
-
- // Get the i'th entry of the array.
- __ movq(rdx, frame_->ElementAt(2));
- SmiIndex index = masm_->SmiToIndex(rbx, rax, kPointerSizeLog2);
- __ movq(rbx,
- FieldOperand(rdx, index.reg, index.scale, FixedArray::kHeaderSize));
-
- // Get the expected map from the stack or a zero map in the
- // permanent slow case rax: current iteration count rbx: i'th entry
- // of the enum cache
- __ movq(rdx, frame_->ElementAt(3));
- // Check if the expected map still matches that of the enumerable.
- // If not, we have to filter the key.
- // rax: current iteration count
- // rbx: i'th entry of the enum cache
- // rdx: expected map value
- __ movq(rcx, frame_->ElementAt(4));
- __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
- __ cmpq(rcx, rdx);
- end_del_check.Branch(equal);
-
- // Convert the entry to a string (or null if it isn't a property anymore).
- frame_->EmitPush(frame_->ElementAt(4)); // push enumerable
- frame_->EmitPush(rbx); // push entry
- frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION, 2);
- __ movq(rbx, rax);
-
- // If the property has been removed while iterating, we just skip it.
- __ CompareRoot(rbx, Heap::kNullValueRootIndex);
- node->continue_target()->Branch(equal);
-
- end_del_check.Bind();
- // Store the entry in the 'each' expression and take another spin in the
- // loop. rdx: i'th entry of the enum cache (or string there of)
- frame_->EmitPush(rbx);
- { Reference each(this, node->each());
- // Loading a reference may leave the frame in an unspilled state.
- frame_->SpillAll();
- if (!each.is_illegal()) {
- if (each.size() > 0) {
- frame_->EmitPush(frame_->ElementAt(each.size()));
- }
- // If the reference was to a slot we rely on the convenient property
- // that it doesn't matter whether a value (eg, ebx pushed above) is
- // right on top of or right underneath a zero-sized reference.
- each.SetValue(NOT_CONST_INIT);
- if (each.size() > 0) {
- // It's safe to pop the value lying on top of the reference before
- // unloading the reference itself (which preserves the top of stack,
- // ie, now the topmost value of the non-zero sized reference), since
- // we will discard the top of stack after unloading the reference
- // anyway.
- frame_->Drop();
- }
- }
- }
- // Unloading a reference may leave the frame in an unspilled state.
- frame_->SpillAll();
-
- // Discard the i'th entry pushed above or else the remainder of the
- // reference, whichever is currently on top of the stack.
- frame_->Drop();
-
- // Body.
- CheckStack(); // TODO(1222600): ignore if body contains calls.
- VisitAndSpill(node->body());
-
- // Next. Reestablish a spilled frame in case we are coming here via
- // a continue in the body.
- node->continue_target()->Bind();
- frame_->SpillAll();
- frame_->EmitPop(rax);
- __ addq(rax, Immediate(Smi::FromInt(1)));
- frame_->EmitPush(rax);
- entry.Jump();
-
- // Cleanup. No need to spill because VirtualFrame::Drop is safe for
- // any frame.
- node->break_target()->Bind();
- frame_->Drop(5);
-
- // Exit.
- exit.Bind();
-
- node->continue_target()->Unuse();
- node->break_target()->Unuse();
-}
-
-void CodeGenerator::VisitTryCatch(TryCatch* node) {
- ASSERT(!in_spilled_code());
- VirtualFrame::SpilledScope spilled_scope;
- Comment cmnt(masm_, "[ TryCatch");
- CodeForStatementPosition(node);
-
- JumpTarget try_block;
- JumpTarget exit;
-
- try_block.Call();
- // --- Catch block ---
- frame_->EmitPush(rax);
-
- // Store the caught exception in the catch variable.
- { Reference ref(this, node->catch_var());
- ASSERT(ref.is_slot());
- // Load the exception to the top of the stack. Here we make use of the
- // convenient property that it doesn't matter whether a value is
- // immediately on top of or underneath a zero-sized reference.
- ref.SetValue(NOT_CONST_INIT);
- }
-
- // Remove the exception from the stack.
- frame_->Drop();
-
- VisitStatementsAndSpill(node->catch_block()->statements());
- if (has_valid_frame()) {
- exit.Jump();
- }
-
-
- // --- Try block ---
- try_block.Bind();
-
- frame_->PushTryHandler(TRY_CATCH_HANDLER);
- int handler_height = frame_->height();
-
- // Shadow the jump targets for all escapes from the try block, including
- // returns. During shadowing, the original target is hidden as the
- // ShadowTarget and operations on the original actually affect the
- // shadowing target.
- //
- // We should probably try to unify the escaping targets and the return
- // target.
- int nof_escapes = node->escaping_targets()->length();
- List<ShadowTarget*> shadows(1 + nof_escapes);
-
- // Add the shadow target for the function return.
- static const int kReturnShadowIndex = 0;
- shadows.Add(new ShadowTarget(&function_return_));
- bool function_return_was_shadowed = function_return_is_shadowed_;
- function_return_is_shadowed_ = true;
- ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
-
- // Add the remaining shadow targets.
- for (int i = 0; i < nof_escapes; i++) {
- shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
- }
-
- // Generate code for the statements in the try block.
- VisitStatementsAndSpill(node->try_block()->statements());
-
- // Stop the introduced shadowing and count the number of required unlinks.
- // After shadowing stops, the original targets are unshadowed and the
- // ShadowTargets represent the formerly shadowing targets.
- bool has_unlinks = false;
- for (int i = 0; i < shadows.length(); i++) {
- shadows[i]->StopShadowing();
- has_unlinks = has_unlinks || shadows[i]->is_linked();
- }
- function_return_is_shadowed_ = function_return_was_shadowed;
-
- // Get an external reference to the handler address.
- ExternalReference handler_address(Top::k_handler_address);
-
- // Make sure that there's nothing left on the stack above the
- // handler structure.
- if (FLAG_debug_code) {
- __ movq(kScratchRegister, handler_address);
- __ cmpq(rsp, Operand(kScratchRegister, 0));
- __ Assert(equal, "stack pointer should point to top handler");
- }
-
- // If we can fall off the end of the try block, unlink from try chain.
- if (has_valid_frame()) {
- // The next handler address is on top of the frame. Unlink from
- // the handler list and drop the rest of this handler from the
- // frame.
- ASSERT(StackHandlerConstants::kNextOffset == 0);
- __ movq(kScratchRegister, handler_address);
- frame_->EmitPop(Operand(kScratchRegister, 0));
- frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
- if (has_unlinks) {
- exit.Jump();
- }
- }
-
- // Generate unlink code for the (formerly) shadowing targets that
- // have been jumped to. Deallocate each shadow target.
- Result return_value;
- for (int i = 0; i < shadows.length(); i++) {
- if (shadows[i]->is_linked()) {
- // Unlink from try chain; be careful not to destroy the TOS if
- // there is one.
- if (i == kReturnShadowIndex) {
- shadows[i]->Bind(&return_value);
- return_value.ToRegister(rax);
- } else {
- shadows[i]->Bind();
- }
- // Because we can be jumping here (to spilled code) from
- // unspilled code, we need to reestablish a spilled frame at
- // this block.
- frame_->SpillAll();
-
- // Reload sp from the top handler, because some statements that we
- // break from (eg, for...in) may have left stuff on the stack.
- __ movq(kScratchRegister, handler_address);
- __ movq(rsp, Operand(kScratchRegister, 0));
- frame_->Forget(frame_->height() - handler_height);
-
- ASSERT(StackHandlerConstants::kNextOffset == 0);
- __ movq(kScratchRegister, handler_address);
- frame_->EmitPop(Operand(kScratchRegister, 0));
- frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
-
- if (i == kReturnShadowIndex) {
- if (!function_return_is_shadowed_) frame_->PrepareForReturn();
- shadows[i]->other_target()->Jump(&return_value);
- } else {
- shadows[i]->other_target()->Jump();
- }
- }
- }
-
- exit.Bind();
-}
-
-
-void CodeGenerator::VisitTryFinally(TryFinally* node) {
- ASSERT(!in_spilled_code());
- VirtualFrame::SpilledScope spilled_scope;
- Comment cmnt(masm_, "[ TryFinally");
- CodeForStatementPosition(node);
-
- // State: Used to keep track of reason for entering the finally
- // block. Should probably be extended to hold information for
- // break/continue from within the try block.
- enum { FALLING, THROWING, JUMPING };
-
- JumpTarget try_block;
- JumpTarget finally_block;
-
- try_block.Call();
-
- frame_->EmitPush(rax);
- // In case of thrown exceptions, this is where we continue.
- __ movq(rcx, Immediate(Smi::FromInt(THROWING)));
- finally_block.Jump();
-
- // --- Try block ---
- try_block.Bind();
-
- frame_->PushTryHandler(TRY_FINALLY_HANDLER);
- int handler_height = frame_->height();
-
- // Shadow the jump targets for all escapes from the try block, including
- // returns. During shadowing, the original target is hidden as the
- // ShadowTarget and operations on the original actually affect the
- // shadowing target.
- //
- // We should probably try to unify the escaping targets and the return
- // target.
- int nof_escapes = node->escaping_targets()->length();
- List<ShadowTarget*> shadows(1 + nof_escapes);
-
- // Add the shadow target for the function return.
- static const int kReturnShadowIndex = 0;
- shadows.Add(new ShadowTarget(&function_return_));
- bool function_return_was_shadowed = function_return_is_shadowed_;
- function_return_is_shadowed_ = true;
- ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
-
- // Add the remaining shadow targets.
- for (int i = 0; i < nof_escapes; i++) {
- shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
- }
-
- // Generate code for the statements in the try block.
- VisitStatementsAndSpill(node->try_block()->statements());
-
- // Stop the introduced shadowing and count the number of required unlinks.
- // After shadowing stops, the original targets are unshadowed and the
- // ShadowTargets represent the formerly shadowing targets.
- int nof_unlinks = 0;
- for (int i = 0; i < shadows.length(); i++) {
- shadows[i]->StopShadowing();
- if (shadows[i]->is_linked()) nof_unlinks++;
- }
- function_return_is_shadowed_ = function_return_was_shadowed;
-
- // Get an external reference to the handler address.
- ExternalReference handler_address(Top::k_handler_address);
-
- // If we can fall off the end of the try block, unlink from the try
- // chain and set the state on the frame to FALLING.
- if (has_valid_frame()) {
- // The next handler address is on top of the frame.
- ASSERT(StackHandlerConstants::kNextOffset == 0);
- __ movq(kScratchRegister, handler_address);
- frame_->EmitPop(Operand(kScratchRegister, 0));
- frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
-
- // Fake a top of stack value (unneeded when FALLING) and set the
- // state in ecx, then jump around the unlink blocks if any.
- frame_->EmitPush(Heap::kUndefinedValueRootIndex);
- __ movq(rcx, Immediate(Smi::FromInt(FALLING)));
- if (nof_unlinks > 0) {
- finally_block.Jump();
- }
- }
-
- // Generate code to unlink and set the state for the (formerly)
- // shadowing targets that have been jumped to.
- for (int i = 0; i < shadows.length(); i++) {
- if (shadows[i]->is_linked()) {
- // If we have come from the shadowed return, the return value is
- // on the virtual frame. We must preserve it until it is
- // pushed.
- if (i == kReturnShadowIndex) {
- Result return_value;
- shadows[i]->Bind(&return_value);
- return_value.ToRegister(rax);
- } else {
- shadows[i]->Bind();
- }
- // Because we can be jumping here (to spilled code) from
- // unspilled code, we need to reestablish a spilled frame at
- // this block.
- frame_->SpillAll();
-
- // Reload sp from the top handler, because some statements that
- // we break from (eg, for...in) may have left stuff on the
- // stack.
- __ movq(kScratchRegister, handler_address);
- __ movq(rsp, Operand(kScratchRegister, 0));
- frame_->Forget(frame_->height() - handler_height);
-
- // Unlink this handler and drop it from the frame.
- ASSERT(StackHandlerConstants::kNextOffset == 0);
- __ movq(kScratchRegister, handler_address);
- frame_->EmitPop(Operand(kScratchRegister, 0));
- frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
-
- if (i == kReturnShadowIndex) {
- // If this target shadowed the function return, materialize
- // the return value on the stack.
- frame_->EmitPush(rax);
- } else {
- // Fake TOS for targets that shadowed breaks and continues.
- frame_->EmitPush(Heap::kUndefinedValueRootIndex);
- }
- __ movq(rcx, Immediate(Smi::FromInt(JUMPING + i)));
- if (--nof_unlinks > 0) {
- // If this is not the last unlink block, jump around the next.
- finally_block.Jump();
- }
- }
- }
-
- // --- Finally block ---
- finally_block.Bind();
-
- // Push the state on the stack.
- frame_->EmitPush(rcx);
-
- // We keep two elements on the stack - the (possibly faked) result
- // and the state - while evaluating the finally block.
- //
- // Generate code for the statements in the finally block.
- VisitStatementsAndSpill(node->finally_block()->statements());
-
- if (has_valid_frame()) {
- // Restore state and return value or faked TOS.
- frame_->EmitPop(rcx);
- frame_->EmitPop(rax);
- }
-
- // Generate code to jump to the right destination for all used
- // formerly shadowing targets. Deallocate each shadow target.
- for (int i = 0; i < shadows.length(); i++) {
- if (has_valid_frame() && shadows[i]->is_bound()) {
- BreakTarget* original = shadows[i]->other_target();
- __ cmpq(rcx, Immediate(Smi::FromInt(JUMPING + i)));
- if (i == kReturnShadowIndex) {
- // The return value is (already) in rax.
- Result return_value = allocator_->Allocate(rax);
- ASSERT(return_value.is_valid());
- if (function_return_is_shadowed_) {
- original->Branch(equal, &return_value);
- } else {
- // Branch around the preparation for return which may emit
- // code.
- JumpTarget skip;
- skip.Branch(not_equal);
- frame_->PrepareForReturn();
- original->Jump(&return_value);
- skip.Bind();
- }
- } else {
- original->Branch(equal);
- }
- }
- }
-
- if (has_valid_frame()) {
- // Check if we need to rethrow the exception.
- JumpTarget exit;
- __ cmpq(rcx, Immediate(Smi::FromInt(THROWING)));
- exit.Branch(not_equal);
-
- // Rethrow exception.
- frame_->EmitPush(rax); // undo pop from above
- frame_->CallRuntime(Runtime::kReThrow, 1);
-
- // Done.
- exit.Bind();
- }
-}
-
-
-void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ DebuggerStatement");
- CodeForStatementPosition(node);
-#ifdef ENABLE_DEBUGGER_SUPPORT
- // Spill everything, even constants, to the frame.
- frame_->SpillAll();
- frame_->CallRuntime(Runtime::kDebugBreak, 0);
- // Ignore the return value.
-#endif
-}
-
-
-void CodeGenerator::InstantiateBoilerplate(Handle<JSFunction> boilerplate) {
- // Call the runtime to instantiate the function boilerplate object.
- // The inevitable call will sync frame elements to memory anyway, so
- // we do it eagerly to allow us to push the arguments directly into
- // place.
- ASSERT(boilerplate->IsBoilerplate());
- frame_->SyncRange(0, frame_->element_count() - 1);
-
- // Push the boilerplate on the stack.
- __ movq(kScratchRegister, boilerplate, RelocInfo::EMBEDDED_OBJECT);
- frame_->EmitPush(kScratchRegister);
-
- // Create a new closure.
- frame_->EmitPush(rsi);
- Result result = frame_->CallRuntime(Runtime::kNewClosure, 2);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) {
- Comment cmnt(masm_, "[ FunctionLiteral");
-
- // Build the function boilerplate and instantiate it.
- Handle<JSFunction> boilerplate = BuildBoilerplate(node);
- // Check for stack-overflow exception.
- if (HasStackOverflow()) return;
- InstantiateBoilerplate(boilerplate);
-}
-
-
-void CodeGenerator::VisitFunctionBoilerplateLiteral(
- FunctionBoilerplateLiteral* node) {
- Comment cmnt(masm_, "[ FunctionBoilerplateLiteral");
- InstantiateBoilerplate(node->boilerplate());
-}
-
-
-void CodeGenerator::VisitConditional(Conditional* node) {
- Comment cmnt(masm_, "[ Conditional");
- JumpTarget then;
- JumpTarget else_;
- JumpTarget exit;
- ControlDestination dest(&then, &else_, true);
- LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, true);
-
- if (dest.false_was_fall_through()) {
- // The else target was bound, so we compile the else part first.
- Load(node->else_expression(), typeof_state());
-
- if (then.is_linked()) {
- exit.Jump();
- then.Bind();
- Load(node->then_expression(), typeof_state());
- }
- } else {
- // The then target was bound, so we compile the then part first.
- Load(node->then_expression(), typeof_state());
-
- if (else_.is_linked()) {
- exit.Jump();
- else_.Bind();
- Load(node->else_expression(), typeof_state());
- }
- }
-
- exit.Bind();
-}
-
-
-void CodeGenerator::VisitSlot(Slot* node) {
- Comment cmnt(masm_, "[ Slot");
- LoadFromSlotCheckForArguments(node, typeof_state());
-}
-
-
-void CodeGenerator::VisitVariableProxy(VariableProxy* node) {
- Comment cmnt(masm_, "[ VariableProxy");
- Variable* var = node->var();
- Expression* expr = var->rewrite();
- if (expr != NULL) {
- Visit(expr);
- } else {
- ASSERT(var->is_global());
- Reference ref(this, node);
- ref.GetValue(typeof_state());
- }
-}
-
-
-void CodeGenerator::VisitLiteral(Literal* node) {
- Comment cmnt(masm_, "[ Literal");
- frame_->Push(node->handle());
-}
-
-
-// Materialize the regexp literal 'node' in the literals array
-// 'literals' of the function. Leave the regexp boilerplate in
-// 'boilerplate'.
-class DeferredRegExpLiteral: public DeferredCode {
- public:
- DeferredRegExpLiteral(Register boilerplate,
- Register literals,
- RegExpLiteral* node)
- : boilerplate_(boilerplate), literals_(literals), node_(node) {
- set_comment("[ DeferredRegExpLiteral");
- }
-
- void Generate();
-
- private:
- Register boilerplate_;
- Register literals_;
- RegExpLiteral* node_;
-};
-
-
-void DeferredRegExpLiteral::Generate() {
- // Since the entry is undefined we call the runtime system to
- // compute the literal.
- // Literal array (0).
- __ push(literals_);
- // Literal index (1).
- __ push(Immediate(Smi::FromInt(node_->literal_index())));
- // RegExp pattern (2).
- __ Push(node_->pattern());
- // RegExp flags (3).
- __ Push(node_->flags());
- __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
- if (!boilerplate_.is(rax)) __ movq(boilerplate_, rax);
-}
-
-
-void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) {
- Comment cmnt(masm_, "[ RegExp Literal");
-
- // Retrieve the literals array and check the allocated entry. Begin
- // with a writable copy of the function of this activation in a
- // register.
- frame_->PushFunction();
- Result literals = frame_->Pop();
- literals.ToRegister();
- frame_->Spill(literals.reg());
-
- // Load the literals array of the function.
- __ movq(literals.reg(),
- FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
-
- // Load the literal at the ast saved index.
- Result boilerplate = allocator_->Allocate();
- ASSERT(boilerplate.is_valid());
- int literal_offset =
- FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
- __ movq(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset));
-
- // Check whether we need to materialize the RegExp object. If so,
- // jump to the deferred code passing the literals array.
- DeferredRegExpLiteral* deferred =
- new DeferredRegExpLiteral(boilerplate.reg(), literals.reg(), node);
- __ CompareRoot(boilerplate.reg(), Heap::kUndefinedValueRootIndex);
- deferred->Branch(equal);
- deferred->BindExit();
- literals.Unuse();
-
- // Push the boilerplate object.
- frame_->Push(&boilerplate);
-}
-
-
-// Materialize the object literal 'node' in the literals array
-// 'literals' of the function. Leave the object boilerplate in
-// 'boilerplate'.
-class DeferredObjectLiteral: public DeferredCode {
- public:
- DeferredObjectLiteral(Register boilerplate,
- Register literals,
- ObjectLiteral* node)
- : boilerplate_(boilerplate), literals_(literals), node_(node) {
- set_comment("[ DeferredObjectLiteral");
- }
-
- void Generate();
-
- private:
- Register boilerplate_;
- Register literals_;
- ObjectLiteral* node_;
-};
-
-
-void DeferredObjectLiteral::Generate() {
- // Since the entry is undefined we call the runtime system to
- // compute the literal.
- // Literal array (0).
- __ push(literals_);
- // Literal index (1).
- __ push(Immediate(Smi::FromInt(node_->literal_index())));
- // Constant properties (2).
- __ Push(node_->constant_properties());
- __ CallRuntime(Runtime::kCreateObjectLiteralBoilerplate, 3);
- if (!boilerplate_.is(rax)) __ movq(boilerplate_, rax);
-}
-
-
-void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) {
- Comment cmnt(masm_, "[ ObjectLiteral");
-
- // Retrieve the literals array and check the allocated entry. Begin
- // with a writable copy of the function of this activation in a
- // register.
- frame_->PushFunction();
- Result literals = frame_->Pop();
- literals.ToRegister();
- frame_->Spill(literals.reg());
-
- // Load the literals array of the function.
- __ movq(literals.reg(),
- FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
-
- // Load the literal at the ast saved index.
- Result boilerplate = allocator_->Allocate();
- ASSERT(boilerplate.is_valid());
- int literal_offset =
- FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
- __ movq(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset));
-
- // Check whether we need to materialize the object literal boilerplate.
- // If so, jump to the deferred code passing the literals array.
- DeferredObjectLiteral* deferred =
- new DeferredObjectLiteral(boilerplate.reg(), literals.reg(), node);
- __ CompareRoot(boilerplate.reg(), Heap::kUndefinedValueRootIndex);
- deferred->Branch(equal);
- deferred->BindExit();
- literals.Unuse();
-
- // Push the boilerplate object.
- frame_->Push(&boilerplate);
- // Clone the boilerplate object.
- Runtime::FunctionId clone_function_id = Runtime::kCloneLiteralBoilerplate;
- if (node->depth() == 1) {
- clone_function_id = Runtime::kCloneShallowLiteralBoilerplate;
- }
- Result clone = frame_->CallRuntime(clone_function_id, 1);
- // Push the newly cloned literal object as the result.
- frame_->Push(&clone);
-
- for (int i = 0; i < node->properties()->length(); i++) {
- ObjectLiteral::Property* property = node->properties()->at(i);
- switch (property->kind()) {
- case ObjectLiteral::Property::CONSTANT:
- break;
- case ObjectLiteral::Property::MATERIALIZED_LITERAL:
- if (CompileTimeValue::IsCompileTimeValue(property->value())) break;
- // else fall through.
- case ObjectLiteral::Property::COMPUTED: {
- Handle<Object> key(property->key()->handle());
- if (key->IsSymbol()) {
- // Duplicate the object as the IC receiver.
- frame_->Dup();
- Load(property->value());
- frame_->Push(key);
- Result ignored = frame_->CallStoreIC();
- // Drop the duplicated receiver and ignore the result.
- frame_->Drop();
- break;
- }
- // Fall through
- }
- case ObjectLiteral::Property::PROTOTYPE: {
- // Duplicate the object as an argument to the runtime call.
- frame_->Dup();
- Load(property->key());
- Load(property->value());
- Result ignored = frame_->CallRuntime(Runtime::kSetProperty, 3);
- // Ignore the result.
- break;
- }
- case ObjectLiteral::Property::SETTER: {
- // Duplicate the object as an argument to the runtime call.
- frame_->Dup();
- Load(property->key());
- frame_->Push(Smi::FromInt(1));
- Load(property->value());
- Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
- // Ignore the result.
- break;
- }
- case ObjectLiteral::Property::GETTER: {
- // Duplicate the object as an argument to the runtime call.
- frame_->Dup();
- Load(property->key());
- frame_->Push(Smi::FromInt(0));
- Load(property->value());
- Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
- // Ignore the result.
- break;
- }
- default: UNREACHABLE();
- }
- }
-}
-
-
-// Materialize the array literal 'node' in the literals array 'literals'
-// of the function. Leave the array boilerplate in 'boilerplate'.
-class DeferredArrayLiteral: public DeferredCode {
- public:
- DeferredArrayLiteral(Register boilerplate,
- Register literals,
- ArrayLiteral* node)
- : boilerplate_(boilerplate), literals_(literals), node_(node) {
- set_comment("[ DeferredArrayLiteral");
- }
-
- void Generate();
-
- private:
- Register boilerplate_;
- Register literals_;
- ArrayLiteral* node_;
-};
-
-
-void DeferredArrayLiteral::Generate() {
- // Since the entry is undefined we call the runtime system to
- // compute the literal.
- // Literal array (0).
- __ push(literals_);
- // Literal index (1).
- __ push(Immediate(Smi::FromInt(node_->literal_index())));
- // Constant properties (2).
- __ Push(node_->literals());
- __ CallRuntime(Runtime::kCreateArrayLiteralBoilerplate, 3);
- if (!boilerplate_.is(rax)) __ movq(boilerplate_, rax);
-}
-
-
-void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) {
- Comment cmnt(masm_, "[ ArrayLiteral");
-
- // Retrieve the literals array and check the allocated entry. Begin
- // with a writable copy of the function of this activation in a
- // register.
- frame_->PushFunction();
- Result literals = frame_->Pop();
- literals.ToRegister();
- frame_->Spill(literals.reg());
-
- // Load the literals array of the function.
- __ movq(literals.reg(),
- FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
-
- // Load the literal at the ast saved index.
- Result boilerplate = allocator_->Allocate();
- ASSERT(boilerplate.is_valid());
- int literal_offset =
- FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
- __ movq(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset));
-
- // Check whether we need to materialize the object literal boilerplate.
- // If so, jump to the deferred code passing the literals array.
- DeferredArrayLiteral* deferred =
- new DeferredArrayLiteral(boilerplate.reg(), literals.reg(), node);
- __ CompareRoot(boilerplate.reg(), Heap::kUndefinedValueRootIndex);
- deferred->Branch(equal);
- deferred->BindExit();
- literals.Unuse();
-
- // Push the resulting array literal boilerplate on the stack.
- frame_->Push(&boilerplate);
- // Clone the boilerplate object.
- Runtime::FunctionId clone_function_id = Runtime::kCloneLiteralBoilerplate;
- if (node->depth() == 1) {
- clone_function_id = Runtime::kCloneShallowLiteralBoilerplate;
- }
- Result clone = frame_->CallRuntime(clone_function_id, 1);
- // Push the newly cloned literal object as the result.
- frame_->Push(&clone);
-
- // Generate code to set the elements in the array that are not
- // literals.
- for (int i = 0; i < node->values()->length(); i++) {
- Expression* value = node->values()->at(i);
-
- // If value is a literal the property value is already set in the
- // boilerplate object.
- if (value->AsLiteral() != NULL) continue;
- // If value is a materialized literal the property value is already set
- // in the boilerplate object if it is simple.
- if (CompileTimeValue::IsCompileTimeValue(value)) continue;
-
- // The property must be set by generated code.
- Load(value);
-
- // Get the property value off the stack.
- Result prop_value = frame_->Pop();
- prop_value.ToRegister();
-
- // Fetch the array literal while leaving a copy on the stack and
- // use it to get the elements array.
- frame_->Dup();
- Result elements = frame_->Pop();
- elements.ToRegister();
- frame_->Spill(elements.reg());
- // Get the elements FixedArray.
- __ movq(elements.reg(),
- FieldOperand(elements.reg(), JSObject::kElementsOffset));
-
- // Write to the indexed properties array.
- int offset = i * kPointerSize + FixedArray::kHeaderSize;
- __ movq(FieldOperand(elements.reg(), offset), prop_value.reg());
-
- // Update the write barrier for the array address.
- frame_->Spill(prop_value.reg()); // Overwritten by the write barrier.
- Result scratch = allocator_->Allocate();
- ASSERT(scratch.is_valid());
- __ RecordWrite(elements.reg(), offset, prop_value.reg(), scratch.reg());
- }
-}
-
-
-void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) {
- ASSERT(!in_spilled_code());
- // Call runtime routine to allocate the catch extension object and
- // assign the exception value to the catch variable.
- Comment cmnt(masm_, "[ CatchExtensionObject");
- Load(node->key());
- Load(node->value());
- Result result =
- frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::VisitAssignment(Assignment* node) {
- Comment cmnt(masm_, "[ Assignment");
-
- { Reference target(this, node->target());
- if (target.is_illegal()) {
- // Fool the virtual frame into thinking that we left the assignment's
- // value on the frame.
- frame_->Push(Smi::FromInt(0));
- return;
- }
- Variable* var = node->target()->AsVariableProxy()->AsVariable();
-
- if (node->starts_initialization_block()) {
- ASSERT(target.type() == Reference::NAMED ||
- target.type() == Reference::KEYED);
- // Change to slow case in the beginning of an initialization
- // block to avoid the quadratic behavior of repeatedly adding
- // fast properties.
-
- // The receiver is the argument to the runtime call. It is the
- // first value pushed when the reference was loaded to the
- // frame.
- frame_->PushElementAt(target.size() - 1);
- Result ignored = frame_->CallRuntime(Runtime::kToSlowProperties, 1);
- }
- if (node->op() == Token::ASSIGN ||
- node->op() == Token::INIT_VAR ||
- node->op() == Token::INIT_CONST) {
- Load(node->value());
-
- } else {
- Literal* literal = node->value()->AsLiteral();
- bool overwrite_value =
- (node->value()->AsBinaryOperation() != NULL &&
- node->value()->AsBinaryOperation()->ResultOverwriteAllowed());
- Variable* right_var = node->value()->AsVariableProxy()->AsVariable();
- // There are two cases where the target is not read in the right hand
- // side, that are easy to test for: the right hand side is a literal,
- // or the right hand side is a different variable. TakeValue invalidates
- // the target, with an implicit promise that it will be written to again
- // before it is read.
- if (literal != NULL || (right_var != NULL && right_var != var)) {
- target.TakeValue(NOT_INSIDE_TYPEOF);
- } else {
- target.GetValue(NOT_INSIDE_TYPEOF);
- }
- Load(node->value());
- GenericBinaryOperation(node->binary_op(),
- node->type(),
- overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
- }
-
- if (var != NULL &&
- var->mode() == Variable::CONST &&
- node->op() != Token::INIT_VAR && node->op() != Token::INIT_CONST) {
- // Assignment ignored - leave the value on the stack.
- } else {
- CodeForSourcePosition(node->position());
- if (node->op() == Token::INIT_CONST) {
- // Dynamic constant initializations must use the function context
- // and initialize the actual constant declared. Dynamic variable
- // initializations are simply assignments and use SetValue.
- target.SetValue(CONST_INIT);
- } else {
- target.SetValue(NOT_CONST_INIT);
- }
- if (node->ends_initialization_block()) {
- ASSERT(target.type() == Reference::NAMED ||
- target.type() == Reference::KEYED);
- // End of initialization block. Revert to fast case. The
- // argument to the runtime call is the receiver, which is the
- // first value pushed as part of the reference, which is below
- // the lhs value.
- frame_->PushElementAt(target.size());
- Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1);
- }
- }
- }
-}
-
-
-void CodeGenerator::VisitThrow(Throw* node) {
- Comment cmnt(masm_, "[ Throw");
- Load(node->exception());
- Result result = frame_->CallRuntime(Runtime::kThrow, 1);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::VisitProperty(Property* node) {
- Comment cmnt(masm_, "[ Property");
- Reference property(this, node);
- property.GetValue(typeof_state());
-}
-
-
-void CodeGenerator::VisitCall(Call* node) {
- Comment cmnt(masm_, "[ Call");
-
- ZoneList<Expression*>* args = node->arguments();
-
- // Check if the function is a variable or a property.
- Expression* function = node->expression();
- Variable* var = function->AsVariableProxy()->AsVariable();
- Property* property = function->AsProperty();
-
- // ------------------------------------------------------------------------
- // Fast-case: Use inline caching.
- // ---
- // According to ECMA-262, section 11.2.3, page 44, the function to call
- // must be resolved after the arguments have been evaluated. The IC code
- // automatically handles this by loading the arguments before the function
- // is resolved in cache misses (this also holds for megamorphic calls).
- // ------------------------------------------------------------------------
-
- if (var != NULL && var->is_possibly_eval()) {
- // ----------------------------------
- // JavaScript example: 'eval(arg)' // eval is not known to be shadowed
- // ----------------------------------
-
- // In a call to eval, we first call %ResolvePossiblyDirectEval to
- // resolve the function we need to call and the receiver of the
- // call. Then we call the resolved function using the given
- // arguments.
-
- // Prepare the stack for the call to the resolved function.
- Load(function);
-
- // Allocate a frame slot for the receiver.
- frame_->Push(Factory::undefined_value());
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- Load(args->at(i));
- }
-
- // Prepare the stack for the call to ResolvePossiblyDirectEval.
- frame_->PushElementAt(arg_count + 1);
- if (arg_count > 0) {
- frame_->PushElementAt(arg_count);
- } else {
- frame_->Push(Factory::undefined_value());
- }
-
- // Resolve the call.
- Result result =
- frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 2);
-
- // Touch up the stack with the right values for the function and the
- // receiver. Use a scratch register to avoid destroying the result.
- Result scratch = allocator_->Allocate();
- ASSERT(scratch.is_valid());
- __ movq(scratch.reg(),
- FieldOperand(result.reg(), FixedArray::OffsetOfElementAt(0)));
- frame_->SetElementAt(arg_count + 1, &scratch);
-
- // We can reuse the result register now.
- frame_->Spill(result.reg());
- __ movq(result.reg(),
- FieldOperand(result.reg(), FixedArray::OffsetOfElementAt(1)));
- frame_->SetElementAt(arg_count, &result);
-
- // Call the function.
- CodeForSourcePosition(node->position());
- InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
- CallFunctionStub call_function(arg_count, in_loop);
- result = frame_->CallStub(&call_function, arg_count + 1);
-
- // Restore the context and overwrite the function on the stack with
- // the result.
- frame_->RestoreContextRegister();
- frame_->SetElementAt(0, &result);
-
- } else if (var != NULL && !var->is_this() && var->is_global()) {
- // ----------------------------------
- // JavaScript example: 'foo(1, 2, 3)' // foo is global
- // ----------------------------------
-
- // Push the name of the function and the receiver onto the stack.
- frame_->Push(var->name());
-
- // Pass the global object as the receiver and let the IC stub
- // patch the stack to use the global proxy as 'this' in the
- // invoked function.
- LoadGlobal();
-
- // Load the arguments.
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- Load(args->at(i));
- }
-
- // Call the IC initialization code.
- CodeForSourcePosition(node->position());
- Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET_CONTEXT,
- arg_count,
- loop_nesting());
- frame_->RestoreContextRegister();
- // Replace the function on the stack with the result.
- frame_->SetElementAt(0, &result);
-
- } else if (var != NULL && var->slot() != NULL &&
- var->slot()->type() == Slot::LOOKUP) {
- // ----------------------------------
- // JavaScript example: 'with (obj) foo(1, 2, 3)' // foo is in obj
- // ----------------------------------
-
- // Load the function from the context. Sync the frame so we can
- // push the arguments directly into place.
- frame_->SyncRange(0, frame_->element_count() - 1);
- frame_->EmitPush(rsi);
- frame_->EmitPush(var->name());
- frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
- // The runtime call returns a pair of values in rax and rdx. The
- // looked-up function is in rax and the receiver is in rdx. These
- // register references are not ref counted here. We spill them
- // eagerly since they are arguments to an inevitable call (and are
- // not sharable by the arguments).
- ASSERT(!allocator()->is_used(rax));
- frame_->EmitPush(rax);
-
- // Load the receiver.
- ASSERT(!allocator()->is_used(rdx));
- frame_->EmitPush(rdx);
-
- // Call the function.
- CallWithArguments(args, node->position());
-
- } else if (property != NULL) {
- // Check if the key is a literal string.
- Literal* literal = property->key()->AsLiteral();
-
- if (literal != NULL && literal->handle()->IsSymbol()) {
- // ------------------------------------------------------------------
- // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)'
- // ------------------------------------------------------------------
-
- Handle<String> name = Handle<String>::cast(literal->handle());
-
- if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION &&
- name->IsEqualTo(CStrVector("apply")) &&
- args->length() == 2 &&
- args->at(1)->AsVariableProxy() != NULL &&
- args->at(1)->AsVariableProxy()->IsArguments()) {
- // Use the optimized Function.prototype.apply that avoids
- // allocating lazily allocated arguments objects.
- CallApplyLazy(property,
- args->at(0),
- args->at(1)->AsVariableProxy(),
- node->position());
-
- } else {
- // Push the name of the function and the receiver onto the stack.
- frame_->Push(name);
- Load(property->obj());
-
- // Load the arguments.
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- Load(args->at(i));
- }
-
- // Call the IC initialization code.
- CodeForSourcePosition(node->position());
- Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET,
- arg_count,
- loop_nesting());
- frame_->RestoreContextRegister();
- // Replace the function on the stack with the result.
- frame_->SetElementAt(0, &result);
- }
-
- } else {
- // -------------------------------------------
- // JavaScript example: 'array[index](1, 2, 3)'
- // -------------------------------------------
-
- // Load the function to call from the property through a reference.
- Reference ref(this, property);
- ref.GetValue(NOT_INSIDE_TYPEOF);
-
- // Pass receiver to called function.
- if (property->is_synthetic()) {
- // Use global object as receiver.
- LoadGlobalReceiver();
- } else {
- // The reference's size is non-negative.
- frame_->PushElementAt(ref.size());
- }
-
- // Call the function.
- CallWithArguments(args, node->position());
- }
-
- } else {
- // ----------------------------------
- // JavaScript example: 'foo(1, 2, 3)' // foo is not global
- // ----------------------------------
-
- // Load the function.
- Load(function);
-
- // Pass the global proxy as the receiver.
- LoadGlobalReceiver();
-
- // Call the function.
- CallWithArguments(args, node->position());
- }
-}
-
-
-void CodeGenerator::VisitCallNew(CallNew* node) {
- Comment cmnt(masm_, "[ CallNew");
-
- // According to ECMA-262, section 11.2.2, page 44, the function
- // expression in new calls must be evaluated before the
- // arguments. This is different from ordinary calls, where the
- // actual function to call is resolved after the arguments have been
- // evaluated.
-
- // Compute function to call and use the global object as the
- // receiver. There is no need to use the global proxy here because
- // it will always be replaced with a newly allocated object.
- Load(node->expression());
- LoadGlobal();
-
- // Push the arguments ("left-to-right") on the stack.
- ZoneList<Expression*>* args = node->arguments();
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- Load(args->at(i));
- }
-
- // Call the construct call builtin that handles allocation and
- // constructor invocation.
- CodeForSourcePosition(node->position());
- Result result = frame_->CallConstructor(arg_count);
- // Replace the function on the stack with the result.
- frame_->SetElementAt(0, &result);
-}
-
-
-void CodeGenerator::VisitCallRuntime(CallRuntime* node) {
- if (CheckForInlineRuntimeCall(node)) {
- return;
- }
-
- ZoneList<Expression*>* args = node->arguments();
- Comment cmnt(masm_, "[ CallRuntime");
- Runtime::Function* function = node->function();
-
- if (function == NULL) {
- // Prepare stack for calling JS runtime function.
- frame_->Push(node->name());
- // Push the builtins object found in the current global object.
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
- __ movq(temp.reg(), GlobalObject());
- __ movq(temp.reg(),
- FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset));
- frame_->Push(&temp);
- }
-
- // Push the arguments ("left-to-right").
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- Load(args->at(i));
- }
-
- if (function == NULL) {
- // Call the JS runtime function.
- Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET,
- arg_count,
- loop_nesting_);
- frame_->RestoreContextRegister();
- frame_->SetElementAt(0, &answer);
- } else {
- // Call the C runtime function.
- Result answer = frame_->CallRuntime(function, arg_count);
- frame_->Push(&answer);
- }
-}
-
-
-void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) {
- // Note that because of NOT and an optimization in comparison of a typeof
- // expression to a literal string, this function can fail to leave a value
- // on top of the frame or in the cc register.
- Comment cmnt(masm_, "[ UnaryOperation");
-
- Token::Value op = node->op();
-
- if (op == Token::NOT) {
- // Swap the true and false targets but keep the same actual label
- // as the fall through.
- destination()->Invert();
- LoadCondition(node->expression(), NOT_INSIDE_TYPEOF, destination(), true);
- // Swap the labels back.
- destination()->Invert();
-
- } else if (op == Token::DELETE) {
- Property* property = node->expression()->AsProperty();
- if (property != NULL) {
- Load(property->obj());
- Load(property->key());
- Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 2);
- frame_->Push(&answer);
- return;
- }
-
- Variable* variable = node->expression()->AsVariableProxy()->AsVariable();
- if (variable != NULL) {
- Slot* slot = variable->slot();
- if (variable->is_global()) {
- LoadGlobal();
- frame_->Push(variable->name());
- Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
- CALL_FUNCTION, 2);
- frame_->Push(&answer);
- return;
-
- } else if (slot != NULL && slot->type() == Slot::LOOKUP) {
- // Call the runtime to look up the context holding the named
- // variable. Sync the virtual frame eagerly so we can push the
- // arguments directly into place.
- frame_->SyncRange(0, frame_->element_count() - 1);
- frame_->EmitPush(rsi);
- frame_->EmitPush(variable->name());
- Result context = frame_->CallRuntime(Runtime::kLookupContext, 2);
- ASSERT(context.is_register());
- frame_->EmitPush(context.reg());
- context.Unuse();
- frame_->EmitPush(variable->name());
- Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
- CALL_FUNCTION, 2);
- frame_->Push(&answer);
- return;
- }
-
- // Default: Result of deleting non-global, not dynamically
- // introduced variables is false.
- frame_->Push(Factory::false_value());
-
- } else {
- // Default: Result of deleting expressions is true.
- Load(node->expression()); // may have side-effects
- frame_->SetElementAt(0, Factory::true_value());
- }
-
- } else if (op == Token::TYPEOF) {
- // Special case for loading the typeof expression; see comment on
- // LoadTypeofExpression().
- LoadTypeofExpression(node->expression());
- Result answer = frame_->CallRuntime(Runtime::kTypeof, 1);
- frame_->Push(&answer);
-
- } else if (op == Token::VOID) {
- Expression* expression = node->expression();
- if (expression && expression->AsLiteral() && (
- expression->AsLiteral()->IsTrue() ||
- expression->AsLiteral()->IsFalse() ||
- expression->AsLiteral()->handle()->IsNumber() ||
- expression->AsLiteral()->handle()->IsString() ||
- expression->AsLiteral()->handle()->IsJSRegExp() ||
- expression->AsLiteral()->IsNull())) {
- // Omit evaluating the value of the primitive literal.
- // It will be discarded anyway, and can have no side effect.
- frame_->Push(Factory::undefined_value());
- } else {
- Load(node->expression());
- frame_->SetElementAt(0, Factory::undefined_value());
- }
-
- } else {
- Load(node->expression());
- switch (op) {
- case Token::NOT:
- case Token::DELETE:
- case Token::TYPEOF:
- UNREACHABLE(); // handled above
- break;
-
- case Token::SUB: {
- bool overwrite =
- (node->AsBinaryOperation() != NULL &&
- node->AsBinaryOperation()->ResultOverwriteAllowed());
- UnarySubStub stub(overwrite);
- // TODO(1222589): remove dependency of TOS being cached inside stub
- Result operand = frame_->Pop();
- Result answer = frame_->CallStub(&stub, &operand);
- frame_->Push(&answer);
- break;
- }
-
- case Token::BIT_NOT: {
- // Smi check.
- JumpTarget smi_label;
- JumpTarget continue_label;
- Result operand = frame_->Pop();
- operand.ToRegister();
-
- Condition is_smi = masm_->CheckSmi(operand.reg());
- smi_label.Branch(is_smi, &operand);
-
- frame_->Push(&operand); // undo popping of TOS
- Result answer = frame_->InvokeBuiltin(Builtins::BIT_NOT,
- CALL_FUNCTION, 1);
- continue_label.Jump(&answer);
- smi_label.Bind(&answer);
- answer.ToRegister();
- frame_->Spill(answer.reg());
- __ SmiNot(answer.reg(), answer.reg());
- continue_label.Bind(&answer);
- frame_->Push(&answer);
- break;
- }
-
- case Token::ADD: {
- // Smi check.
- JumpTarget continue_label;
- Result operand = frame_->Pop();
- operand.ToRegister();
- Condition is_smi = masm_->CheckSmi(operand.reg());
- continue_label.Branch(is_smi, &operand);
- frame_->Push(&operand);
- Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER,
- CALL_FUNCTION, 1);
-
- continue_label.Bind(&answer);
- frame_->Push(&answer);
- break;
- }
-
- default:
- UNREACHABLE();
- }
- }
-}
-
-
-// The value in dst was optimistically incremented or decremented. The
-// result overflowed or was not smi tagged. Undo the operation, call
-// into the runtime to convert the argument to a number, and call the
-// specialized add or subtract stub. The result is left in dst.
-class DeferredPrefixCountOperation: public DeferredCode {
- public:
- DeferredPrefixCountOperation(Register dst, bool is_increment)
- : dst_(dst), is_increment_(is_increment) {
- set_comment("[ DeferredCountOperation");
- }
-
- virtual void Generate();
-
- private:
- Register dst_;
- bool is_increment_;
-};
-
-
-void DeferredPrefixCountOperation::Generate() {
- __ push(dst_);
- __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
- __ push(rax);
- __ push(Immediate(Smi::FromInt(1)));
- if (is_increment_) {
- __ CallRuntime(Runtime::kNumberAdd, 2);
- } else {
- __ CallRuntime(Runtime::kNumberSub, 2);
- }
- if (!dst_.is(rax)) __ movq(dst_, rax);
-}
-
-
-// The value in dst was optimistically incremented or decremented. The
-// result overflowed or was not smi tagged. Undo the operation and call
-// into the runtime to convert the argument to a number. Update the
-// original value in old. Call the specialized add or subtract stub.
-// The result is left in dst.
-class DeferredPostfixCountOperation: public DeferredCode {
- public:
- DeferredPostfixCountOperation(Register dst, Register old, bool is_increment)
- : dst_(dst), old_(old), is_increment_(is_increment) {
- set_comment("[ DeferredCountOperation");
- }
-
- virtual void Generate();
-
- private:
- Register dst_;
- Register old_;
- bool is_increment_;
-};
-
-
-void DeferredPostfixCountOperation::Generate() {
- __ push(dst_);
- __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
-
- // Save the result of ToNumber to use as the old value.
- __ push(rax);
-
- // Call the runtime for the addition or subtraction.
- __ push(rax);
- __ push(Immediate(Smi::FromInt(1)));
- if (is_increment_) {
- __ CallRuntime(Runtime::kNumberAdd, 2);
- } else {
- __ CallRuntime(Runtime::kNumberSub, 2);
- }
- if (!dst_.is(rax)) __ movq(dst_, rax);
- __ pop(old_);
-}
-
-
-void CodeGenerator::VisitCountOperation(CountOperation* node) {
- Comment cmnt(masm_, "[ CountOperation");
-
- bool is_postfix = node->is_postfix();
- bool is_increment = node->op() == Token::INC;
-
- Variable* var = node->expression()->AsVariableProxy()->AsVariable();
- bool is_const = (var != NULL && var->mode() == Variable::CONST);
-
- // Postfix operations need a stack slot under the reference to hold
- // the old value while the new value is being stored. This is so that
- // in the case that storing the new value requires a call, the old
- // value will be in the frame to be spilled.
- if (is_postfix) frame_->Push(Smi::FromInt(0));
-
- { Reference target(this, node->expression());
- if (target.is_illegal()) {
- // Spoof the virtual frame to have the expected height (one higher
- // than on entry).
- if (!is_postfix) frame_->Push(Smi::FromInt(0));
- return;
- }
- target.TakeValue(NOT_INSIDE_TYPEOF);
-
- Result new_value = frame_->Pop();
- new_value.ToRegister();
-
- Result old_value; // Only allocated in the postfix case.
- if (is_postfix) {
- // Allocate a temporary to preserve the old value.
- old_value = allocator_->Allocate();
- ASSERT(old_value.is_valid());
- __ movq(old_value.reg(), new_value.reg());
- }
- // Ensure the new value is writable.
- frame_->Spill(new_value.reg());
-
- DeferredCode* deferred = NULL;
- if (is_postfix) {
- deferred = new DeferredPostfixCountOperation(new_value.reg(),
- old_value.reg(),
- is_increment);
- } else {
- deferred = new DeferredPrefixCountOperation(new_value.reg(),
- is_increment);
- }
-
- __ movq(kScratchRegister, new_value.reg());
- if (is_increment) {
- __ addl(kScratchRegister, Immediate(Smi::FromInt(1)));
- } else {
- __ subl(kScratchRegister, Immediate(Smi::FromInt(1)));
- }
- // Smi test.
- deferred->Branch(overflow);
- __ JumpIfNotSmi(kScratchRegister, deferred->entry_label());
- __ movq(new_value.reg(), kScratchRegister);
- deferred->BindExit();
-
- // Postfix: store the old value in the allocated slot under the
- // reference.
- if (is_postfix) frame_->SetElementAt(target.size(), &old_value);
-
- frame_->Push(&new_value);
- // Non-constant: update the reference.
- if (!is_const) target.SetValue(NOT_CONST_INIT);
- }
-
- // Postfix: drop the new value and use the old.
- if (is_postfix) frame_->Drop();
-}
-
-
-void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) {
- // TODO(X64): This code was copied verbatim from codegen-ia32.
- // Either find a reason to change it or move it to a shared location.
-
- // Note that due to an optimization in comparison operations (typeof
- // compared to a string literal), we can evaluate a binary expression such
- // as AND or OR and not leave a value on the frame or in the cc register.
- Comment cmnt(masm_, "[ BinaryOperation");
- Token::Value op = node->op();
-
- // According to ECMA-262 section 11.11, page 58, the binary logical
- // operators must yield the result of one of the two expressions
- // before any ToBoolean() conversions. This means that the value
- // produced by a && or || operator is not necessarily a boolean.
-
- // NOTE: If the left hand side produces a materialized value (not
- // control flow), we force the right hand side to do the same. This
- // is necessary because we assume that if we get control flow on the
- // last path out of an expression we got it on all paths.
- if (op == Token::AND) {
- JumpTarget is_true;
- ControlDestination dest(&is_true, destination()->false_target(), true);
- LoadCondition(node->left(), NOT_INSIDE_TYPEOF, &dest, false);
-
- if (dest.false_was_fall_through()) {
- // The current false target was used as the fall-through. If
- // there are no dangling jumps to is_true then the left
- // subexpression was unconditionally false. Otherwise we have
- // paths where we do have to evaluate the right subexpression.
- if (is_true.is_linked()) {
- // We need to compile the right subexpression. If the jump to
- // the current false target was a forward jump then we have a
- // valid frame, we have just bound the false target, and we
- // have to jump around the code for the right subexpression.
- if (has_valid_frame()) {
- destination()->false_target()->Unuse();
- destination()->false_target()->Jump();
- }
- is_true.Bind();
- // The left subexpression compiled to control flow, so the
- // right one is free to do so as well.
- LoadCondition(node->right(), NOT_INSIDE_TYPEOF, destination(), false);
- } else {
- // We have actually just jumped to or bound the current false
- // target but the current control destination is not marked as
- // used.
- destination()->Use(false);
- }
-
- } else if (dest.is_used()) {
- // The left subexpression compiled to control flow (and is_true
- // was just bound), so the right is free to do so as well.
- LoadCondition(node->right(), NOT_INSIDE_TYPEOF, destination(), false);
-
- } else {
- // We have a materialized value on the frame, so we exit with
- // one on all paths. There are possibly also jumps to is_true
- // from nested subexpressions.
- JumpTarget pop_and_continue;
- JumpTarget exit;
-
- // Avoid popping the result if it converts to 'false' using the
- // standard ToBoolean() conversion as described in ECMA-262,
- // section 9.2, page 30.
- //
- // Duplicate the TOS value. The duplicate will be popped by
- // ToBoolean.
- frame_->Dup();
- ControlDestination dest(&pop_and_continue, &exit, true);
- ToBoolean(&dest);
-
- // Pop the result of evaluating the first part.
- frame_->Drop();
-
- // Compile right side expression.
- is_true.Bind();
- Load(node->right());
-
- // Exit (always with a materialized value).
- exit.Bind();
- }
-
- } else if (op == Token::OR) {
- JumpTarget is_false;
- ControlDestination dest(destination()->true_target(), &is_false, false);
- LoadCondition(node->left(), NOT_INSIDE_TYPEOF, &dest, false);
-
- if (dest.true_was_fall_through()) {
- // The current true target was used as the fall-through. If
- // there are no dangling jumps to is_false then the left
- // subexpression was unconditionally true. Otherwise we have
- // paths where we do have to evaluate the right subexpression.
- if (is_false.is_linked()) {
- // We need to compile the right subexpression. If the jump to
- // the current true target was a forward jump then we have a
- // valid frame, we have just bound the true target, and we
- // have to jump around the code for the right subexpression.
- if (has_valid_frame()) {
- destination()->true_target()->Unuse();
- destination()->true_target()->Jump();
- }
- is_false.Bind();
- // The left subexpression compiled to control flow, so the
- // right one is free to do so as well.
- LoadCondition(node->right(), NOT_INSIDE_TYPEOF, destination(), false);
- } else {
- // We have just jumped to or bound the current true target but
- // the current control destination is not marked as used.
- destination()->Use(true);
- }
-
- } else if (dest.is_used()) {
- // The left subexpression compiled to control flow (and is_false
- // was just bound), so the right is free to do so as well.
- LoadCondition(node->right(), NOT_INSIDE_TYPEOF, destination(), false);
-
- } else {
- // We have a materialized value on the frame, so we exit with
- // one on all paths. There are possibly also jumps to is_false
- // from nested subexpressions.
- JumpTarget pop_and_continue;
- JumpTarget exit;
-
- // Avoid popping the result if it converts to 'true' using the
- // standard ToBoolean() conversion as described in ECMA-262,
- // section 9.2, page 30.
- //
- // Duplicate the TOS value. The duplicate will be popped by
- // ToBoolean.
- frame_->Dup();
- ControlDestination dest(&exit, &pop_and_continue, false);
- ToBoolean(&dest);
-
- // Pop the result of evaluating the first part.
- frame_->Drop();
-
- // Compile right side expression.
- is_false.Bind();
- Load(node->right());
-
- // Exit (always with a materialized value).
- exit.Bind();
- }
-
- } else {
- // NOTE: The code below assumes that the slow cases (calls to runtime)
- // never return a constant/immutable object.
- OverwriteMode overwrite_mode = NO_OVERWRITE;
- if (node->left()->AsBinaryOperation() != NULL &&
- node->left()->AsBinaryOperation()->ResultOverwriteAllowed()) {
- overwrite_mode = OVERWRITE_LEFT;
- } else if (node->right()->AsBinaryOperation() != NULL &&
- node->right()->AsBinaryOperation()->ResultOverwriteAllowed()) {
- overwrite_mode = OVERWRITE_RIGHT;
- }
-
- Load(node->left());
- Load(node->right());
- GenericBinaryOperation(node->op(), node->type(), overwrite_mode);
- }
-}
-
-
-
-void CodeGenerator::VisitCompareOperation(CompareOperation* node) {
- Comment cmnt(masm_, "[ CompareOperation");
-
- // Get the expressions from the node.
- Expression* left = node->left();
- Expression* right = node->right();
- Token::Value op = node->op();
- // To make typeof testing for natives implemented in JavaScript really
- // efficient, we generate special code for expressions of the form:
- // 'typeof <expression> == <string>'.
- UnaryOperation* operation = left->AsUnaryOperation();
- if ((op == Token::EQ || op == Token::EQ_STRICT) &&
- (operation != NULL && operation->op() == Token::TYPEOF) &&
- (right->AsLiteral() != NULL &&
- right->AsLiteral()->handle()->IsString())) {
- Handle<String> check(Handle<String>::cast(right->AsLiteral()->handle()));
-
- // Load the operand and move it to a register.
- LoadTypeofExpression(operation->expression());
- Result answer = frame_->Pop();
- answer.ToRegister();
-
- if (check->Equals(Heap::number_symbol())) {
- Condition is_smi = masm_->CheckSmi(answer.reg());
- destination()->true_target()->Branch(is_smi);
- frame_->Spill(answer.reg());
- __ movq(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
- __ CompareRoot(answer.reg(), Heap::kHeapNumberMapRootIndex);
- answer.Unuse();
- destination()->Split(equal);
-
- } else if (check->Equals(Heap::string_symbol())) {
- Condition is_smi = masm_->CheckSmi(answer.reg());
- destination()->false_target()->Branch(is_smi);
-
- // It can be an undetectable string object.
- __ movq(kScratchRegister,
- FieldOperand(answer.reg(), HeapObject::kMapOffset));
- __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
- Immediate(1 << Map::kIsUndetectable));
- destination()->false_target()->Branch(not_zero);
- __ CmpInstanceType(kScratchRegister, FIRST_NONSTRING_TYPE);
- answer.Unuse();
- destination()->Split(below); // Unsigned byte comparison needed.
-
- } else if (check->Equals(Heap::boolean_symbol())) {
- __ CompareRoot(answer.reg(), Heap::kTrueValueRootIndex);
- destination()->true_target()->Branch(equal);
- __ CompareRoot(answer.reg(), Heap::kFalseValueRootIndex);
- answer.Unuse();
- destination()->Split(equal);
-
- } else if (check->Equals(Heap::undefined_symbol())) {
- __ CompareRoot(answer.reg(), Heap::kUndefinedValueRootIndex);
- destination()->true_target()->Branch(equal);
-
- Condition is_smi = masm_->CheckSmi(answer.reg());
- destination()->false_target()->Branch(is_smi);
-
- // It can be an undetectable object.
- __ movq(kScratchRegister,
- FieldOperand(answer.reg(), HeapObject::kMapOffset));
- __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
- Immediate(1 << Map::kIsUndetectable));
- answer.Unuse();
- destination()->Split(not_zero);
-
- } else if (check->Equals(Heap::function_symbol())) {
- Condition is_smi = masm_->CheckSmi(answer.reg());
- destination()->false_target()->Branch(is_smi);
- frame_->Spill(answer.reg());
- __ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg());
- answer.Unuse();
- destination()->Split(equal);
-
- } else if (check->Equals(Heap::object_symbol())) {
- Condition is_smi = masm_->CheckSmi(answer.reg());
- destination()->false_target()->Branch(is_smi);
- __ CompareRoot(answer.reg(), Heap::kNullValueRootIndex);
- destination()->true_target()->Branch(equal);
-
- // It can be an undetectable object.
- __ movq(kScratchRegister,
- FieldOperand(answer.reg(), HeapObject::kMapOffset));
- __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
- Immediate(1 << Map::kIsUndetectable));
- destination()->false_target()->Branch(not_zero);
- __ CmpInstanceType(kScratchRegister, FIRST_JS_OBJECT_TYPE);
- destination()->false_target()->Branch(below);
- __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE);
- answer.Unuse();
- destination()->Split(below_equal);
- } else {
- // Uncommon case: typeof testing against a string literal that is
- // never returned from the typeof operator.
- answer.Unuse();
- destination()->Goto(false);
- }
- return;
- }
-
- Condition cc = no_condition;
- bool strict = false;
- switch (op) {
- case Token::EQ_STRICT:
- strict = true;
- // Fall through
- case Token::EQ:
- cc = equal;
- break;
- case Token::LT:
- cc = less;
- break;
- case Token::GT:
- cc = greater;
- break;
- case Token::LTE:
- cc = less_equal;
- break;
- case Token::GTE:
- cc = greater_equal;
- break;
- case Token::IN: {
- Load(left);
- Load(right);
- Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2);
- frame_->Push(&answer); // push the result
- return;
- }
- case Token::INSTANCEOF: {
- Load(left);
- Load(right);
- InstanceofStub stub;
- Result answer = frame_->CallStub(&stub, 2);
- answer.ToRegister();
- __ testq(answer.reg(), answer.reg());
- answer.Unuse();
- destination()->Split(zero);
- return;
- }
- default:
- UNREACHABLE();
- }
- Load(left);
- Load(right);
- Comparison(cc, strict, destination());
-}
-
-
-void CodeGenerator::VisitThisFunction(ThisFunction* node) {
- frame_->PushFunction();
-}
-
-
-void CodeGenerator::GenerateArgumentsAccess(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
-
- // ArgumentsAccessStub expects the key in rdx and the formal
- // parameter count in rax.
- Load(args->at(0));
- Result key = frame_->Pop();
- // Explicitly create a constant result.
- Result count(Handle<Smi>(Smi::FromInt(scope_->num_parameters())));
- // Call the shared stub to get to arguments[key].
- ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
- Result result = frame_->CallStub(&stub, &key, &count);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- Load(args->at(0));
- Result value = frame_->Pop();
- value.ToRegister();
- ASSERT(value.is_valid());
- Condition is_smi = masm_->CheckSmi(value.reg());
- destination()->false_target()->Branch(is_smi);
- // It is a heap object - get map.
- // Check if the object is a JS array or not.
- __ CmpObjectType(value.reg(), JS_ARRAY_TYPE, kScratchRegister);
- value.Unuse();
- destination()->Split(equal);
-}
-
-
-void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 0);
-
- // Get the frame pointer for the calling frame.
- Result fp = allocator()->Allocate();
- __ movq(fp.reg(), Operand(rbp, StandardFrameConstants::kCallerFPOffset));
-
- // Skip the arguments adaptor frame if it exists.
- Label check_frame_marker;
- __ cmpq(Operand(fp.reg(), StandardFrameConstants::kContextOffset),
- Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
- __ j(not_equal, &check_frame_marker);
- __ movq(fp.reg(), Operand(fp.reg(), StandardFrameConstants::kCallerFPOffset));
-
- // Check the marker in the calling frame.
- __ bind(&check_frame_marker);
- __ cmpq(Operand(fp.reg(), StandardFrameConstants::kMarkerOffset),
- Immediate(Smi::FromInt(StackFrame::CONSTRUCT)));
- fp.Unuse();
- destination()->Split(equal);
-}
-
-
-void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 0);
- // ArgumentsAccessStub takes the parameter count as an input argument
- // in register eax. Create a constant result for it.
- Result count(Handle<Smi>(Smi::FromInt(scope_->num_parameters())));
- // Call the shared stub to get to the arguments.length.
- ArgumentsAccessStub stub(ArgumentsAccessStub::READ_LENGTH);
- Result result = frame_->CallStub(&stub, &count);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateFastCharCodeAt(ZoneList<Expression*>* args) {
- Comment(masm_, "[ GenerateFastCharCodeAt");
- ASSERT(args->length() == 2);
-
- Label slow_case;
- Label end;
- Label not_a_flat_string;
- Label a_cons_string;
- Label try_again_with_new_string;
- Label ascii_string;
- Label got_char_code;
-
- Load(args->at(0));
- Load(args->at(1));
- Result index = frame_->Pop();
- Result object = frame_->Pop();
-
- // Get register rcx to use as shift amount later.
- Result shift_amount;
- if (object.is_register() && object.reg().is(rcx)) {
- Result fresh = allocator_->Allocate();
- shift_amount = object;
- object = fresh;
- __ movq(object.reg(), rcx);
- }
- if (index.is_register() && index.reg().is(rcx)) {
- Result fresh = allocator_->Allocate();
- shift_amount = index;
- index = fresh;
- __ movq(index.reg(), rcx);
- }
- // There could be references to ecx in the frame. Allocating will
- // spill them, otherwise spill explicitly.
- if (shift_amount.is_valid()) {
- frame_->Spill(rcx);
- } else {
- shift_amount = allocator()->Allocate(rcx);
- }
- ASSERT(shift_amount.is_register());
- ASSERT(shift_amount.reg().is(rcx));
- ASSERT(allocator_->count(rcx) == 1);
-
- // We will mutate the index register and possibly the object register.
- // The case where they are somehow the same register is handled
- // because we only mutate them in the case where the receiver is a
- // heap object and the index is not.
- object.ToRegister();
- index.ToRegister();
- frame_->Spill(object.reg());
- frame_->Spill(index.reg());
-
- // We need a single extra temporary register.
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
-
- // There is no virtual frame effect from here up to the final result
- // push.
-
- // If the receiver is a smi trigger the slow case.
- __ JumpIfSmi(object.reg(), &slow_case);
-
- // If the index is negative or non-smi trigger the slow case.
- __ JumpIfNotPositiveSmi(index.reg(), &slow_case);
-
- // Untag the index.
- __ SmiToInteger32(index.reg(), index.reg());
-
- __ bind(&try_again_with_new_string);
- // Fetch the instance type of the receiver into rcx.
- __ movq(rcx, FieldOperand(object.reg(), HeapObject::kMapOffset));
- __ movzxbl(rcx, FieldOperand(rcx, Map::kInstanceTypeOffset));
- // If the receiver is not a string trigger the slow case.
- __ testb(rcx, Immediate(kIsNotStringMask));
- __ j(not_zero, &slow_case);
-
- // Here we make assumptions about the tag values and the shifts needed.
- // See the comment in objects.h.
- ASSERT(kLongStringTag == 0);
- ASSERT(kMediumStringTag + String::kLongLengthShift ==
- String::kMediumLengthShift);
- ASSERT(kShortStringTag + String::kLongLengthShift ==
- String::kShortLengthShift);
- __ and_(rcx, Immediate(kStringSizeMask));
- __ addq(rcx, Immediate(String::kLongLengthShift));
- // Fetch the length field into the temporary register.
- __ movl(temp.reg(), FieldOperand(object.reg(), String::kLengthOffset));
- __ shrl(temp.reg()); // The shift amount in ecx is implicit operand.
- // Check for index out of range.
- __ cmpl(index.reg(), temp.reg());
- __ j(greater_equal, &slow_case);
- // Reload the instance type (into the temp register this time)..
- __ movq(temp.reg(), FieldOperand(object.reg(), HeapObject::kMapOffset));
- __ movzxbl(temp.reg(), FieldOperand(temp.reg(), Map::kInstanceTypeOffset));
-
- // We need special handling for non-flat strings.
- ASSERT(kSeqStringTag == 0);
- __ testb(temp.reg(), Immediate(kStringRepresentationMask));
- __ j(not_zero, &not_a_flat_string);
- // Check for 1-byte or 2-byte string.
- __ testb(temp.reg(), Immediate(kStringEncodingMask));
- __ j(not_zero, &ascii_string);
-
- // 2-byte string.
- // Load the 2-byte character code into the temp register.
- __ movzxwl(temp.reg(), FieldOperand(object.reg(),
- index.reg(),
- times_2,
- SeqTwoByteString::kHeaderSize));
- __ jmp(&got_char_code);
-
- // ASCII string.
- __ bind(&ascii_string);
- // Load the byte into the temp register.
- __ movzxbl(temp.reg(), FieldOperand(object.reg(),
- index.reg(),
- times_1,
- SeqAsciiString::kHeaderSize));
- __ bind(&got_char_code);
- __ Integer32ToSmi(temp.reg(), temp.reg());
- __ jmp(&end);
-
- // Handle non-flat strings.
- __ bind(&not_a_flat_string);
- __ and_(temp.reg(), Immediate(kStringRepresentationMask));
- __ cmpb(temp.reg(), Immediate(kConsStringTag));
- __ j(equal, &a_cons_string);
- __ cmpb(temp.reg(), Immediate(kSlicedStringTag));
- __ j(not_equal, &slow_case);
-
- // SlicedString.
- // Add the offset to the index and trigger the slow case on overflow.
- __ addl(index.reg(), FieldOperand(object.reg(), SlicedString::kStartOffset));
- __ j(overflow, &slow_case);
- // Getting the underlying string is done by running the cons string code.
-
- // ConsString.
- __ bind(&a_cons_string);
- // Get the first of the two strings. Both sliced and cons strings
- // store their source string at the same offset.
- ASSERT(SlicedString::kBufferOffset == ConsString::kFirstOffset);
- __ movq(object.reg(), FieldOperand(object.reg(), ConsString::kFirstOffset));
- __ jmp(&try_again_with_new_string);
-
- __ bind(&slow_case);
- // Move the undefined value into the result register, which will
- // trigger the slow case.
- __ LoadRoot(temp.reg(), Heap::kUndefinedValueRootIndex);
-
- __ bind(&end);
- frame_->Push(&temp);
-}
-
-
-void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- Load(args->at(0));
- Result value = frame_->Pop();
- value.ToRegister();
- ASSERT(value.is_valid());
- Condition positive_smi = masm_->CheckPositiveSmi(value.reg());
- value.Unuse();
- destination()->Split(positive_smi);
-}
-
-
-void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- Load(args->at(0));
- Result value = frame_->Pop();
- value.ToRegister();
- ASSERT(value.is_valid());
- Condition is_smi = masm_->CheckSmi(value.reg());
- value.Unuse();
- destination()->Split(is_smi);
-}
-
-
-void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) {
- // Conditionally generate a log call.
- // Args:
- // 0 (literal string): The type of logging (corresponds to the flags).
- // This is used to determine whether or not to generate the log call.
- // 1 (string): Format string. Access the string at argument index 2
- // with '%2s' (see Logger::LogRuntime for all the formats).
- // 2 (array): Arguments to the format string.
- ASSERT_EQ(args->length(), 3);
-#ifdef ENABLE_LOGGING_AND_PROFILING
- if (ShouldGenerateLog(args->at(0))) {
- Load(args->at(1));
- Load(args->at(2));
- frame_->CallRuntime(Runtime::kLog, 2);
- }
-#endif
- // Finally, we're expected to leave a value on the top of the stack.
- frame_->Push(Factory::undefined_value());
-}
-
-
-void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 2);
-
- // Load the two objects into registers and perform the comparison.
- Load(args->at(0));
- Load(args->at(1));
- Result right = frame_->Pop();
- Result left = frame_->Pop();
- right.ToRegister();
- left.ToRegister();
- __ cmpq(right.reg(), left.reg());
- right.Unuse();
- left.Unuse();
- destination()->Split(equal);
-}
-
-
-void CodeGenerator::GenerateGetFramePointer(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 0);
- // RBP value is aligned, so it should be tagged as a smi (without necesarily
- // being padded as a smi).
- ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
- Result rbp_as_smi = allocator_->Allocate();
- ASSERT(rbp_as_smi.is_valid());
- __ movq(rbp_as_smi.reg(), rbp);
- frame_->Push(&rbp_as_smi);
-}
-
-
-void CodeGenerator::GenerateRandomPositiveSmi(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 0);
- frame_->SpillAll();
- __ push(rsi);
-
- // Make sure the frame is aligned like the OS expects.
- static const int kFrameAlignment = OS::ActivationFrameAlignment();
- if (kFrameAlignment > 0) {
- ASSERT(IsPowerOf2(kFrameAlignment));
- __ movq(rbx, rsp); // Save in AMD-64 abi callee-saved register.
- __ and_(rsp, Immediate(-kFrameAlignment));
- }
-
- // Call V8::RandomPositiveSmi().
- __ Call(FUNCTION_ADDR(V8::RandomPositiveSmi), RelocInfo::RUNTIME_ENTRY);
-
- // Restore stack pointer from callee-saved register.
- if (kFrameAlignment > 0) {
- __ movq(rsp, rbx);
- }
-
- __ pop(rsi);
- Result result = allocator_->Allocate(rax);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateFastMathOp(MathOp op, ZoneList<Expression*>* args) {
- JumpTarget done;
- JumpTarget call_runtime;
- ASSERT(args->length() == 1);
-
- // Load number and duplicate it.
- Load(args->at(0));
- frame_->Dup();
-
- // Get the number into an unaliased register and load it onto the
- // floating point stack still leaving one copy on the frame.
- Result number = frame_->Pop();
- number.ToRegister();
- frame_->Spill(number.reg());
- FloatingPointHelper::LoadFloatOperand(masm_, number.reg());
- number.Unuse();
-
- // Perform the operation on the number.
- switch (op) {
- case SIN:
- __ fsin();
- break;
- case COS:
- __ fcos();
- break;
- }
-
- // Go slow case if argument to operation is out of range.
- Result eax_reg = allocator()->Allocate(rax);
- ASSERT(eax_reg.is_valid());
- __ fnstsw_ax();
- __ testl(rax, Immediate(0x0400)); // Bit 10 is condition flag C2.
- eax_reg.Unuse();
- call_runtime.Branch(not_zero);
-
- // Allocate heap number for result if possible.
- Result scratch = allocator()->Allocate();
- Result heap_number = allocator()->Allocate();
- FloatingPointHelper::AllocateHeapNumber(masm_,
- call_runtime.entry_label(),
- scratch.reg(),
- heap_number.reg());
- scratch.Unuse();
-
- // Store the result in the allocated heap number.
- __ fstp_d(FieldOperand(heap_number.reg(), HeapNumber::kValueOffset));
- // Replace the extra copy of the argument with the result.
- frame_->SetElementAt(0, &heap_number);
- done.Jump();
-
- call_runtime.Bind();
- // Free ST(0) which was not popped before calling into the runtime.
- __ ffree(0);
- Result answer;
- switch (op) {
- case SIN:
- answer = frame_->CallRuntime(Runtime::kMath_sin, 1);
- break;
- case COS:
- answer = frame_->CallRuntime(Runtime::kMath_cos, 1);
- break;
- }
- frame_->Push(&answer);
- done.Bind();
-}
-
-
-void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- JumpTarget leave, null, function, non_function_constructor;
- Load(args->at(0)); // Load the object.
- Result obj = frame_->Pop();
- obj.ToRegister();
- frame_->Spill(obj.reg());
-
- // If the object is a smi, we return null.
- Condition is_smi = masm_->CheckSmi(obj.reg());
- null.Branch(is_smi);
-
- // Check that the object is a JS object but take special care of JS
- // functions to make sure they have 'Function' as their class.
-
- __ CmpObjectType(obj.reg(), FIRST_JS_OBJECT_TYPE, obj.reg());
- null.Branch(below);
-
- // As long as JS_FUNCTION_TYPE is the last instance type and it is
- // right after LAST_JS_OBJECT_TYPE, we can avoid checking for
- // LAST_JS_OBJECT_TYPE.
- ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
- ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
- __ CmpInstanceType(obj.reg(), JS_FUNCTION_TYPE);
- function.Branch(equal);
-
- // Check if the constructor in the map is a function.
- __ movq(obj.reg(), FieldOperand(obj.reg(), Map::kConstructorOffset));
- __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister);
- non_function_constructor.Branch(not_equal);
-
- // The obj register now contains the constructor function. Grab the
- // instance class name from there.
- __ movq(obj.reg(),
- FieldOperand(obj.reg(), JSFunction::kSharedFunctionInfoOffset));
- __ movq(obj.reg(),
- FieldOperand(obj.reg(),
- SharedFunctionInfo::kInstanceClassNameOffset));
- frame_->Push(&obj);
- leave.Jump();
-
- // Functions have class 'Function'.
- function.Bind();
- frame_->Push(Factory::function_class_symbol());
- leave.Jump();
-
- // Objects with a non-function constructor have class 'Object'.
- non_function_constructor.Bind();
- frame_->Push(Factory::Object_symbol());
- leave.Jump();
-
- // Non-JS objects have class null.
- null.Bind();
- frame_->Push(Factory::null_value());
-
- // All done.
- leave.Bind();
-}
-
-
-void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 2);
- JumpTarget leave;
- Load(args->at(0)); // Load the object.
- Load(args->at(1)); // Load the value.
- Result value = frame_->Pop();
- Result object = frame_->Pop();
- value.ToRegister();
- object.ToRegister();
-
- // if (object->IsSmi()) return value.
- Condition is_smi = masm_->CheckSmi(object.reg());
- leave.Branch(is_smi, &value);
-
- // It is a heap object - get its map.
- Result scratch = allocator_->Allocate();
- ASSERT(scratch.is_valid());
- // if (!object->IsJSValue()) return value.
- __ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg());
- leave.Branch(not_equal, &value);
-
- // Store the value.
- __ movq(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg());
- // Update the write barrier. Save the value as it will be
- // overwritten by the write barrier code and is needed afterward.
- Result duplicate_value = allocator_->Allocate();
- ASSERT(duplicate_value.is_valid());
- __ movq(duplicate_value.reg(), value.reg());
- // The object register is also overwritten by the write barrier and
- // possibly aliased in the frame.
- frame_->Spill(object.reg());
- __ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(),
- scratch.reg());
- object.Unuse();
- scratch.Unuse();
- duplicate_value.Unuse();
-
- // Leave.
- leave.Bind(&value);
- frame_->Push(&value);
-}
-
-
-void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- JumpTarget leave;
- Load(args->at(0)); // Load the object.
- frame_->Dup();
- Result object = frame_->Pop();
- object.ToRegister();
- ASSERT(object.is_valid());
- // if (object->IsSmi()) return object.
- Condition is_smi = masm_->CheckSmi(object.reg());
- leave.Branch(is_smi);
- // It is a heap object - get map.
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
- // if (!object->IsJSValue()) return object.
- __ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg());
- leave.Branch(not_equal);
- __ movq(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset));
- object.Unuse();
- frame_->SetElementAt(0, &temp);
- leave.Bind();
-}
-
-
-// -----------------------------------------------------------------------------
-// CodeGenerator implementation of Expressions
-
-void CodeGenerator::LoadAndSpill(Expression* expression,
- TypeofState typeof_state) {
- // TODO(x64): No architecture specific code. Move to shared location.
- ASSERT(in_spilled_code());
- set_in_spilled_code(false);
- Load(expression, typeof_state);
- frame_->SpillAll();
- set_in_spilled_code(true);
-}
-
-
-void CodeGenerator::Load(Expression* x, TypeofState typeof_state) {
-#ifdef DEBUG
- int original_height = frame_->height();
-#endif
- ASSERT(!in_spilled_code());
- JumpTarget true_target;
- JumpTarget false_target;
- ControlDestination dest(&true_target, &false_target, true);
- LoadCondition(x, typeof_state, &dest, false);
-
- if (dest.false_was_fall_through()) {
- // The false target was just bound.
- JumpTarget loaded;
- frame_->Push(Factory::false_value());
- // There may be dangling jumps to the true target.
- if (true_target.is_linked()) {
- loaded.Jump();
- true_target.Bind();
- frame_->Push(Factory::true_value());
- loaded.Bind();
- }
-
- } else if (dest.is_used()) {
- // There is true, and possibly false, control flow (with true as
- // the fall through).
- JumpTarget loaded;
- frame_->Push(Factory::true_value());
- if (false_target.is_linked()) {
- loaded.Jump();
- false_target.Bind();
- frame_->Push(Factory::false_value());
- loaded.Bind();
- }
-
- } else {
- // We have a valid value on top of the frame, but we still may
- // have dangling jumps to the true and false targets from nested
- // subexpressions (eg, the left subexpressions of the
- // short-circuited boolean operators).
- ASSERT(has_valid_frame());
- if (true_target.is_linked() || false_target.is_linked()) {
- JumpTarget loaded;
- loaded.Jump(); // Don't lose the current TOS.
- if (true_target.is_linked()) {
- true_target.Bind();
- frame_->Push(Factory::true_value());
- if (false_target.is_linked()) {
- loaded.Jump();
- }
- }
- if (false_target.is_linked()) {
- false_target.Bind();
- frame_->Push(Factory::false_value());
- }
- loaded.Bind();
- }
- }
-
- ASSERT(has_valid_frame());
- ASSERT(frame_->height() == original_height + 1);
-}
-
-
-// Emit code to load the value of an expression to the top of the
-// frame. If the expression is boolean-valued it may be compiled (or
-// partially compiled) into control flow to the control destination.
-// If force_control is true, control flow is forced.
-void CodeGenerator::LoadCondition(Expression* x,
- TypeofState typeof_state,
- ControlDestination* dest,
- bool force_control) {
- ASSERT(!in_spilled_code());
- int original_height = frame_->height();
-
- { CodeGenState new_state(this, typeof_state, dest);
- Visit(x);
-
- // If we hit a stack overflow, we may not have actually visited
- // the expression. In that case, we ensure that we have a
- // valid-looking frame state because we will continue to generate
- // code as we unwind the C++ stack.
- //
- // It's possible to have both a stack overflow and a valid frame
- // state (eg, a subexpression overflowed, visiting it returned
- // with a dummied frame state, and visiting this expression
- // returned with a normal-looking state).
- if (HasStackOverflow() &&
- !dest->is_used() &&
- frame_->height() == original_height) {
- dest->Goto(true);
- }
- }
-
- if (force_control && !dest->is_used()) {
- // Convert the TOS value into flow to the control destination.
- // TODO(X64): Make control flow to control destinations work.
- ToBoolean(dest);
- }
-
- ASSERT(!(force_control && !dest->is_used()));
- ASSERT(dest->is_used() || frame_->height() == original_height + 1);
-}
-
-
-class ToBooleanStub: public CodeStub {
- public:
- ToBooleanStub() { }
-
- void Generate(MacroAssembler* masm);
-
- private:
- Major MajorKey() { return ToBoolean; }
- int MinorKey() { return 0; }
-};
-
-
-// ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and
-// convert it to a boolean in the condition code register or jump to
-// 'false_target'/'true_target' as appropriate.
-void CodeGenerator::ToBoolean(ControlDestination* dest) {
- Comment cmnt(masm_, "[ ToBoolean");
-
- // The value to convert should be popped from the frame.
- Result value = frame_->Pop();
- value.ToRegister();
- // Fast case checks.
-
- // 'false' => false.
- __ CompareRoot(value.reg(), Heap::kFalseValueRootIndex);
- dest->false_target()->Branch(equal);
-
- // 'true' => true.
- __ CompareRoot(value.reg(), Heap::kTrueValueRootIndex);
- dest->true_target()->Branch(equal);
-
- // 'undefined' => false.
- __ CompareRoot(value.reg(), Heap::kUndefinedValueRootIndex);
- dest->false_target()->Branch(equal);
-
- // Smi => false iff zero.
- Condition equals = masm_->CheckSmiEqualsConstant(value.reg(), 0);
- dest->false_target()->Branch(equals);
- Condition is_smi = masm_->CheckSmi(value.reg());
- dest->true_target()->Branch(is_smi);
-
- // Call the stub for all other cases.
- frame_->Push(&value); // Undo the Pop() from above.
- ToBooleanStub stub;
- Result temp = frame_->CallStub(&stub, 1);
- // Convert the result to a condition code.
- __ testq(temp.reg(), temp.reg());
- temp.Unuse();
- dest->Split(not_equal);
-}
-
-
-void CodeGenerator::LoadUnsafeSmi(Register target, Handle<Object> value) {
- UNIMPLEMENTED();
- // TODO(X64): Implement security policy for loads of smis.
-}
-
-
-bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) {
- return false;
-}
-
-//------------------------------------------------------------------------------
-// CodeGenerator implementation of variables, lookups, and stores.
-
-Reference::Reference(CodeGenerator* cgen, Expression* expression)
- : cgen_(cgen), expression_(expression), type_(ILLEGAL) {
- cgen->LoadReference(this);
-}
-
-
-Reference::~Reference() {
- cgen_->UnloadReference(this);
-}
-
-
-void CodeGenerator::LoadReference(Reference* ref) {
- // References are loaded from both spilled and unspilled code. Set the
- // state to unspilled to allow that (and explicitly spill after
- // construction at the construction sites).
- bool was_in_spilled_code = in_spilled_code_;
- in_spilled_code_ = false;
-
- Comment cmnt(masm_, "[ LoadReference");
- Expression* e = ref->expression();
- Property* property = e->AsProperty();
- Variable* var = e->AsVariableProxy()->AsVariable();
-
- if (property != NULL) {
- // The expression is either a property or a variable proxy that rewrites
- // to a property.
- Load(property->obj());
- // We use a named reference if the key is a literal symbol, unless it is
- // a string that can be legally parsed as an integer. This is because
- // otherwise we will not get into the slow case code that handles [] on
- // String objects.
- Literal* literal = property->key()->AsLiteral();
- uint32_t dummy;
- if (literal != NULL &&
- literal->handle()->IsSymbol() &&
- !String::cast(*(literal->handle()))->AsArrayIndex(&dummy)) {
- ref->set_type(Reference::NAMED);
- } else {
- Load(property->key());
- ref->set_type(Reference::KEYED);
- }
- } else if (var != NULL) {
- // The expression is a variable proxy that does not rewrite to a
- // property. Global variables are treated as named property references.
- if (var->is_global()) {
- LoadGlobal();
- ref->set_type(Reference::NAMED);
- } else {
- ASSERT(var->slot() != NULL);
- ref->set_type(Reference::SLOT);
- }
- } else {
- // Anything else is a runtime error.
- Load(e);
- frame_->CallRuntime(Runtime::kThrowReferenceError, 1);
- }
-
- in_spilled_code_ = was_in_spilled_code;
-}
-
-
-void CodeGenerator::UnloadReference(Reference* ref) {
- // Pop a reference from the stack while preserving TOS.
- Comment cmnt(masm_, "[ UnloadReference");
- frame_->Nip(ref->size());
-}
-
-
-Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
- // Currently, this assertion will fail if we try to assign to
- // a constant variable that is constant because it is read-only
- // (such as the variable referring to a named function expression).
- // We need to implement assignments to read-only variables.
- // Ideally, we should do this during AST generation (by converting
- // such assignments into expression statements); however, in general
- // we may not be able to make the decision until past AST generation,
- // that is when the entire program is known.
- ASSERT(slot != NULL);
- int index = slot->index();
- switch (slot->type()) {
- case Slot::PARAMETER:
- return frame_->ParameterAt(index);
-
- case Slot::LOCAL:
- return frame_->LocalAt(index);
-
- case Slot::CONTEXT: {
- // Follow the context chain if necessary.
- ASSERT(!tmp.is(rsi)); // do not overwrite context register
- Register context = rsi;
- int chain_length = scope()->ContextChainLength(slot->var()->scope());
- for (int i = 0; i < chain_length; i++) {
- // Load the closure.
- // (All contexts, even 'with' contexts, have a closure,
- // and it is the same for all contexts inside a function.
- // There is no need to go to the function context first.)
- __ movq(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
- // Load the function context (which is the incoming, outer context).
- __ movq(tmp, FieldOperand(tmp, JSFunction::kContextOffset));
- context = tmp;
- }
- // We may have a 'with' context now. Get the function context.
- // (In fact this mov may never be the needed, since the scope analysis
- // may not permit a direct context access in this case and thus we are
- // always at a function context. However it is safe to dereference be-
- // cause the function context of a function context is itself. Before
- // deleting this mov we should try to create a counter-example first,
- // though...)
- __ movq(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
- return ContextOperand(tmp, index);
- }
-
- default:
- UNREACHABLE();
- return Operand(rsp, 0);
- }
-}
-
-
-Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot,
- Result tmp,
- JumpTarget* slow) {
- ASSERT(slot->type() == Slot::CONTEXT);
- ASSERT(tmp.is_register());
- Register context = rsi;
-
- for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) {
- if (s->num_heap_slots() > 0) {
- if (s->calls_eval()) {
- // Check that extension is NULL.
- __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX),
- Immediate(0));
- slow->Branch(not_equal, not_taken);
- }
- __ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
- __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
- context = tmp.reg();
- }
- }
- // Check that last extension is NULL.
- __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0));
- slow->Branch(not_equal, not_taken);
- __ movq(tmp.reg(), ContextOperand(context, Context::FCONTEXT_INDEX));
- return ContextOperand(tmp.reg(), slot->index());
-}
-
-
-void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
- if (slot->type() == Slot::LOOKUP) {
- ASSERT(slot->var()->is_dynamic());
-
- JumpTarget slow;
- JumpTarget done;
- Result value;
-
- // Generate fast-case code for variables that might be shadowed by
- // eval-introduced variables. Eval is used a lot without
- // introducing variables. In those cases, we do not want to
- // perform a runtime call for all variables in the scope
- // containing the eval.
- if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
- value = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, &slow);
- // If there was no control flow to slow, we can exit early.
- if (!slow.is_linked()) {
- frame_->Push(&value);
- return;
- }
-
- done.Jump(&value);
-
- } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
- Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot();
- // Only generate the fast case for locals that rewrite to slots.
- // This rules out argument loads.
- if (potential_slot != NULL) {
- // Allocate a fresh register to use as a temp in
- // ContextSlotOperandCheckExtensions and to hold the result
- // value.
- value = allocator_->Allocate();
- ASSERT(value.is_valid());
- __ movq(value.reg(),
- ContextSlotOperandCheckExtensions(potential_slot,
- value,
- &slow));
- if (potential_slot->var()->mode() == Variable::CONST) {
- __ CompareRoot(value.reg(), Heap::kTheHoleValueRootIndex);
- done.Branch(not_equal, &value);
- __ LoadRoot(value.reg(), Heap::kUndefinedValueRootIndex);
- }
- // There is always control flow to slow from
- // ContextSlotOperandCheckExtensions so we have to jump around
- // it.
- done.Jump(&value);
- }
- }
-
- slow.Bind();
- // A runtime call is inevitable. We eagerly sync frame elements
- // to memory so that we can push the arguments directly into place
- // on top of the frame.
- frame_->SyncRange(0, frame_->element_count() - 1);
- frame_->EmitPush(rsi);
- __ movq(kScratchRegister, slot->var()->name(), RelocInfo::EMBEDDED_OBJECT);
- frame_->EmitPush(kScratchRegister);
- if (typeof_state == INSIDE_TYPEOF) {
- value =
- frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
- } else {
- value = frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
- }
-
- done.Bind(&value);
- frame_->Push(&value);
-
- } else if (slot->var()->mode() == Variable::CONST) {
- // Const slots may contain 'the hole' value (the constant hasn't been
- // initialized yet) which needs to be converted into the 'undefined'
- // value.
- //
- // We currently spill the virtual frame because constants use the
- // potentially unsafe direct-frame access of SlotOperand.
- VirtualFrame::SpilledScope spilled_scope;
- Comment cmnt(masm_, "[ Load const");
- JumpTarget exit;
- __ movq(rcx, SlotOperand(slot, rcx));
- __ CompareRoot(rcx, Heap::kTheHoleValueRootIndex);
- exit.Branch(not_equal);
- __ LoadRoot(rcx, Heap::kUndefinedValueRootIndex);
- exit.Bind();
- frame_->EmitPush(rcx);
-
- } else if (slot->type() == Slot::PARAMETER) {
- frame_->PushParameterAt(slot->index());
-
- } else if (slot->type() == Slot::LOCAL) {
- frame_->PushLocalAt(slot->index());
-
- } else {
- // The other remaining slot types (LOOKUP and GLOBAL) cannot reach
- // here.
- //
- // The use of SlotOperand below is safe for an unspilled frame
- // because it will always be a context slot.
- ASSERT(slot->type() == Slot::CONTEXT);
- Result temp = allocator_->Allocate();
- ASSERT(temp.is_valid());
- __ movq(temp.reg(), SlotOperand(slot, temp.reg()));
- frame_->Push(&temp);
- }
-}
-
-
-void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot,
- TypeofState state) {
- LoadFromSlot(slot, state);
-
- // Bail out quickly if we're not using lazy arguments allocation.
- if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return;
-
- // ... or if the slot isn't a non-parameter arguments slot.
- if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return;
-
- // Pop the loaded value from the stack.
- Result value = frame_->Pop();
-
- // If the loaded value is a constant, we know if the arguments
- // object has been lazily loaded yet.
- if (value.is_constant()) {
- if (value.handle()->IsTheHole()) {
- Result arguments = StoreArgumentsObject(false);
- frame_->Push(&arguments);
- } else {
- frame_->Push(&value);
- }
- return;
- }
-
- // The loaded value is in a register. If it is the sentinel that
- // indicates that we haven't loaded the arguments object yet, we
- // need to do it now.
- JumpTarget exit;
- __ CompareRoot(value.reg(), Heap::kTheHoleValueRootIndex);
- frame_->Push(&value);
- exit.Branch(not_equal);
- Result arguments = StoreArgumentsObject(false);
- frame_->SetElementAt(0, &arguments);
- exit.Bind();
-}
-
-
-void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) {
- if (slot->type() == Slot::LOOKUP) {
- ASSERT(slot->var()->is_dynamic());
-
- // For now, just do a runtime call. Since the call is inevitable,
- // we eagerly sync the virtual frame so we can directly push the
- // arguments into place.
- frame_->SyncRange(0, frame_->element_count() - 1);
-
- frame_->EmitPush(rsi);
- frame_->EmitPush(slot->var()->name());
-
- Result value;
- if (init_state == CONST_INIT) {
- // Same as the case for a normal store, but ignores attribute
- // (e.g. READ_ONLY) of context slot so that we can initialize const
- // properties (introduced via eval("const foo = (some expr);")). Also,
- // uses the current function context instead of the top context.
- //
- // Note that we must declare the foo upon entry of eval(), via a
- // context slot declaration, but we cannot initialize it at the same
- // time, because the const declaration may be at the end of the eval
- // code (sigh...) and the const variable may have been used before
- // (where its value is 'undefined'). Thus, we can only do the
- // initialization when we actually encounter the expression and when
- // the expression operands are defined and valid, and thus we need the
- // split into 2 operations: declaration of the context slot followed
- // by initialization.
- value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3);
- } else {
- value = frame_->CallRuntime(Runtime::kStoreContextSlot, 3);
- }
- // Storing a variable must keep the (new) value on the expression
- // stack. This is necessary for compiling chained assignment
- // expressions.
- frame_->Push(&value);
- } else {
- ASSERT(!slot->var()->is_dynamic());
-
- JumpTarget exit;
- if (init_state == CONST_INIT) {
- ASSERT(slot->var()->mode() == Variable::CONST);
- // Only the first const initialization must be executed (the slot
- // still contains 'the hole' value). When the assignment is executed,
- // the code is identical to a normal store (see below).
- //
- // We spill the frame in the code below because the direct-frame
- // access of SlotOperand is potentially unsafe with an unspilled
- // frame.
- VirtualFrame::SpilledScope spilled_scope;
- Comment cmnt(masm_, "[ Init const");
- __ movq(rcx, SlotOperand(slot, rcx));
- __ CompareRoot(rcx, Heap::kTheHoleValueRootIndex);
- exit.Branch(not_equal);
- }
-
- // We must execute the store. Storing a variable must keep the (new)
- // value on the stack. This is necessary for compiling assignment
- // expressions.
- //
- // Note: We will reach here even with slot->var()->mode() ==
- // Variable::CONST because of const declarations which will initialize
- // consts to 'the hole' value and by doing so, end up calling this code.
- if (slot->type() == Slot::PARAMETER) {
- frame_->StoreToParameterAt(slot->index());
- } else if (slot->type() == Slot::LOCAL) {
- frame_->StoreToLocalAt(slot->index());
- } else {
- // The other slot types (LOOKUP and GLOBAL) cannot reach here.
- //
- // The use of SlotOperand below is safe for an unspilled frame
- // because the slot is a context slot.
- ASSERT(slot->type() == Slot::CONTEXT);
- frame_->Dup();
- Result value = frame_->Pop();
- value.ToRegister();
- Result start = allocator_->Allocate();
- ASSERT(start.is_valid());
- __ movq(SlotOperand(slot, start.reg()), value.reg());
- // RecordWrite may destroy the value registers.
- //
- // TODO(204): Avoid actually spilling when the value is not
- // needed (probably the common case).
- frame_->Spill(value.reg());
- int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
- Result temp = allocator_->Allocate();
- ASSERT(temp.is_valid());
- __ RecordWrite(start.reg(), offset, value.reg(), temp.reg());
- // The results start, value, and temp are unused by going out of
- // scope.
- }
-
- exit.Bind();
- }
-}
-
-
-Result CodeGenerator::LoadFromGlobalSlotCheckExtensions(
- Slot* slot,
- TypeofState typeof_state,
- JumpTarget* slow) {
- // Check that no extension objects have been created by calls to
- // eval from the current scope to the global scope.
- Register context = rsi;
- Result tmp = allocator_->Allocate();
- ASSERT(tmp.is_valid()); // All non-reserved registers were available.
-
- Scope* s = scope();
- while (s != NULL) {
- if (s->num_heap_slots() > 0) {
- if (s->calls_eval()) {
- // Check that extension is NULL.
- __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX),
- Immediate(0));
- slow->Branch(not_equal, not_taken);
- }
- // Load next context in chain.
- __ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
- __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
- context = tmp.reg();
- }
- // If no outer scope calls eval, we do not need to check more
- // context extensions. If we have reached an eval scope, we check
- // all extensions from this point.
- if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break;
- s = s->outer_scope();
- }
-
- if (s->is_eval_scope()) {
- // Loop up the context chain. There is no frame effect so it is
- // safe to use raw labels here.
- Label next, fast;
- if (!context.is(tmp.reg())) {
- __ movq(tmp.reg(), context);
- }
- // Load map for comparison into register, outside loop.
- __ LoadRoot(kScratchRegister, Heap::kGlobalContextMapRootIndex);
- __ bind(&next);
- // Terminate at global context.
- __ cmpq(kScratchRegister, FieldOperand(tmp.reg(), HeapObject::kMapOffset));
- __ j(equal, &fast);
- // Check that extension is NULL.
- __ cmpq(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0));
- slow->Branch(not_equal);
- // Load next context in chain.
- __ movq(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX));
- __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
- __ jmp(&next);
- __ bind(&fast);
- }
- tmp.Unuse();
-
- // All extension objects were empty and it is safe to use a global
- // load IC call.
- LoadGlobal();
- frame_->Push(slot->var()->name());
- RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
- ? RelocInfo::CODE_TARGET
- : RelocInfo::CODE_TARGET_CONTEXT;
- Result answer = frame_->CallLoadIC(mode);
- // A test rax instruction following the call signals that the inobject
- // property case was inlined. Ensure that there is not a test rax
- // instruction here.
- masm_->nop();
- // Discard the global object. The result is in answer.
- frame_->Drop();
- return answer;
-}
-
-
-void CodeGenerator::LoadGlobal() {
- if (in_spilled_code()) {
- frame_->EmitPush(GlobalObject());
- } else {
- Result temp = allocator_->Allocate();
- __ movq(temp.reg(), GlobalObject());
- frame_->Push(&temp);
- }
-}
-
-
-void CodeGenerator::LoadGlobalReceiver() {
- Result temp = allocator_->Allocate();
- Register reg = temp.reg();
- __ movq(reg, GlobalObject());
- __ movq(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset));
- frame_->Push(&temp);
-}
-
-
-ArgumentsAllocationMode CodeGenerator::ArgumentsMode() const {
- if (scope_->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION;
- ASSERT(scope_->arguments_shadow() != NULL);
- // We don't want to do lazy arguments allocation for functions that
- // have heap-allocated contexts, because it interfers with the
- // uninitialized const tracking in the context objects.
- return (scope_->num_heap_slots() > 0)
- ? EAGER_ARGUMENTS_ALLOCATION
- : LAZY_ARGUMENTS_ALLOCATION;
-}
-
-
-Result CodeGenerator::StoreArgumentsObject(bool initial) {
- ArgumentsAllocationMode mode = ArgumentsMode();
- ASSERT(mode != NO_ARGUMENTS_ALLOCATION);
-
- Comment cmnt(masm_, "[ store arguments object");
- if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) {
- // When using lazy arguments allocation, we store the hole value
- // as a sentinel indicating that the arguments object hasn't been
- // allocated yet.
- frame_->Push(Factory::the_hole_value());
- } else {
- ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
- frame_->PushFunction();
- frame_->PushReceiverSlotAddress();
- frame_->Push(Smi::FromInt(scope_->num_parameters()));
- Result result = frame_->CallStub(&stub, 3);
- frame_->Push(&result);
- }
-
- { Reference shadow_ref(this, scope_->arguments_shadow());
- Reference arguments_ref(this, scope_->arguments());
- ASSERT(shadow_ref.is_slot() && arguments_ref.is_slot());
- // Here we rely on the convenient property that references to slot
- // take up zero space in the frame (ie, it doesn't matter that the
- // stored value is actually below the reference on the frame).
- JumpTarget done;
- bool skip_arguments = false;
- if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) {
- // We have to skip storing into the arguments slot if it has
- // already been written to. This can happen if the a function
- // has a local variable named 'arguments'.
- LoadFromSlot(scope_->arguments()->var()->slot(), NOT_INSIDE_TYPEOF);
- Result arguments = frame_->Pop();
- if (arguments.is_constant()) {
- // We have to skip updating the arguments object if it has
- // been assigned a proper value.
- skip_arguments = !arguments.handle()->IsTheHole();
- } else {
- __ CompareRoot(arguments.reg(), Heap::kTheHoleValueRootIndex);
- arguments.Unuse();
- done.Branch(not_equal);
- }
- }
- if (!skip_arguments) {
- arguments_ref.SetValue(NOT_CONST_INIT);
- if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind();
- }
- shadow_ref.SetValue(NOT_CONST_INIT);
- }
- return frame_->Pop();
-}
-
-
-// TODO(1241834): Get rid of this function in favor of just using Load, now
-// that we have the INSIDE_TYPEOF typeof state. => Need to handle global
-// variables w/o reference errors elsewhere.
-void CodeGenerator::LoadTypeofExpression(Expression* x) {
- Variable* variable = x->AsVariableProxy()->AsVariable();
- if (variable != NULL && !variable->is_this() && variable->is_global()) {
- // NOTE: This is somewhat nasty. We force the compiler to load
- // the variable as if through '<global>.<variable>' to make sure we
- // do not get reference errors.
- Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX);
- Literal key(variable->name());
- // TODO(1241834): Fetch the position from the variable instead of using
- // no position.
- Property property(&global, &key, RelocInfo::kNoPosition);
- Load(&property);
- } else {
- Load(x, INSIDE_TYPEOF);
- }
-}
-
-
-void CodeGenerator::Comparison(Condition cc,
- bool strict,
- ControlDestination* dest) {
- // Strict only makes sense for equality comparisons.
- ASSERT(!strict || cc == equal);
-
- Result left_side;
- Result right_side;
- // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order.
- if (cc == greater || cc == less_equal) {
- cc = ReverseCondition(cc);
- left_side = frame_->Pop();
- right_side = frame_->Pop();
- } else {
- right_side = frame_->Pop();
- left_side = frame_->Pop();
- }
- ASSERT(cc == less || cc == equal || cc == greater_equal);
-
- // If either side is a constant smi, optimize the comparison.
- bool left_side_constant_smi =
- left_side.is_constant() && left_side.handle()->IsSmi();
- bool right_side_constant_smi =
- right_side.is_constant() && right_side.handle()->IsSmi();
- bool left_side_constant_null =
- left_side.is_constant() && left_side.handle()->IsNull();
- bool right_side_constant_null =
- right_side.is_constant() && right_side.handle()->IsNull();
-
- if (left_side_constant_smi || right_side_constant_smi) {
- if (left_side_constant_smi && right_side_constant_smi) {
- // Trivial case, comparing two constants.
- int left_value = Smi::cast(*left_side.handle())->value();
- int right_value = Smi::cast(*right_side.handle())->value();
- switch (cc) {
- case less:
- dest->Goto(left_value < right_value);
- break;
- case equal:
- dest->Goto(left_value == right_value);
- break;
- case greater_equal:
- dest->Goto(left_value >= right_value);
- break;
- default:
- UNREACHABLE();
- }
- } else { // Only one side is a constant Smi.
- // If left side is a constant Smi, reverse the operands.
- // Since one side is a constant Smi, conversion order does not matter.
- if (left_side_constant_smi) {
- Result temp = left_side;
- left_side = right_side;
- right_side = temp;
- cc = ReverseCondition(cc);
- // This may reintroduce greater or less_equal as the value of cc.
- // CompareStub and the inline code both support all values of cc.
- }
- // Implement comparison against a constant Smi, inlining the case
- // where both sides are Smis.
- left_side.ToRegister();
-
- // Here we split control flow to the stub call and inlined cases
- // before finally splitting it to the control destination. We use
- // a jump target and branching to duplicate the virtual frame at
- // the first split. We manually handle the off-frame references
- // by reconstituting them on the non-fall-through path.
- JumpTarget is_smi;
- Register left_reg = left_side.reg();
- Handle<Object> right_val = right_side.handle();
-
- Condition left_is_smi = masm_->CheckSmi(left_side.reg());
- is_smi.Branch(left_is_smi);
-
- // Setup and call the compare stub.
- CompareStub stub(cc, strict);
- Result result = frame_->CallStub(&stub, &left_side, &right_side);
- result.ToRegister();
- __ testq(result.reg(), result.reg());
- result.Unuse();
- dest->true_target()->Branch(cc);
- dest->false_target()->Jump();
-
- is_smi.Bind();
- left_side = Result(left_reg);
- right_side = Result(right_val);
- // Test smi equality and comparison by signed int comparison.
- // Both sides are smis, so we can use an Immediate.
- __ cmpl(left_side.reg(), Immediate(Smi::cast(*right_side.handle())));
- left_side.Unuse();
- right_side.Unuse();
- dest->Split(cc);
- }
- } else if (cc == equal &&
- (left_side_constant_null || right_side_constant_null)) {
- // To make null checks efficient, we check if either the left side or
- // the right side is the constant 'null'.
- // If so, we optimize the code by inlining a null check instead of
- // calling the (very) general runtime routine for checking equality.
- Result operand = left_side_constant_null ? right_side : left_side;
- right_side.Unuse();
- left_side.Unuse();
- operand.ToRegister();
- __ CompareRoot(operand.reg(), Heap::kNullValueRootIndex);
- if (strict) {
- operand.Unuse();
- dest->Split(equal);
- } else {
- // The 'null' value is only equal to 'undefined' if using non-strict
- // comparisons.
- dest->true_target()->Branch(equal);
- __ CompareRoot(operand.reg(), Heap::kUndefinedValueRootIndex);
- dest->true_target()->Branch(equal);
- Condition is_smi = masm_->CheckSmi(operand.reg());
- dest->false_target()->Branch(is_smi);
-
- // It can be an undetectable object.
- // Use a scratch register in preference to spilling operand.reg().
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
- __ movq(temp.reg(),
- FieldOperand(operand.reg(), HeapObject::kMapOffset));
- __ testb(FieldOperand(temp.reg(), Map::kBitFieldOffset),
- Immediate(1 << Map::kIsUndetectable));
- temp.Unuse();
- operand.Unuse();
- dest->Split(not_zero);
- }
- } else { // Neither side is a constant Smi or null.
- // If either side is a non-smi constant, skip the smi check.
- bool known_non_smi =
- (left_side.is_constant() && !left_side.handle()->IsSmi()) ||
- (right_side.is_constant() && !right_side.handle()->IsSmi());
- left_side.ToRegister();
- right_side.ToRegister();
-
- if (known_non_smi) {
- // When non-smi, call out to the compare stub.
- CompareStub stub(cc, strict);
- Result answer = frame_->CallStub(&stub, &left_side, &right_side);
- // The result is a Smi, which is negative, zero, or positive.
- __ testl(answer.reg(), answer.reg()); // Both zero and sign flag right.
- answer.Unuse();
- dest->Split(cc);
- } else {
- // Here we split control flow to the stub call and inlined cases
- // before finally splitting it to the control destination. We use
- // a jump target and branching to duplicate the virtual frame at
- // the first split. We manually handle the off-frame references
- // by reconstituting them on the non-fall-through path.
- JumpTarget is_smi;
- Register left_reg = left_side.reg();
- Register right_reg = right_side.reg();
-
- Condition both_smi = masm_->CheckBothSmi(left_reg, right_reg);
- is_smi.Branch(both_smi);
- // When non-smi, call out to the compare stub.
- CompareStub stub(cc, strict);
- Result answer = frame_->CallStub(&stub, &left_side, &right_side);
- __ testl(answer.reg(), answer.reg()); // Sets both zero and sign flags.
- answer.Unuse();
- dest->true_target()->Branch(cc);
- dest->false_target()->Jump();
-
- is_smi.Bind();
- left_side = Result(left_reg);
- right_side = Result(right_reg);
- __ cmpl(left_side.reg(), right_side.reg());
- right_side.Unuse();
- left_side.Unuse();
- dest->Split(cc);
- }
- }
-}
-
-
-class DeferredInlineBinaryOperation: public DeferredCode {
- public:
- DeferredInlineBinaryOperation(Token::Value op,
- Register dst,
- Register left,
- Register right,
- OverwriteMode mode)
- : op_(op), dst_(dst), left_(left), right_(right), mode_(mode) {
- set_comment("[ DeferredInlineBinaryOperation");
- }
-
- virtual void Generate();
-
- private:
- Token::Value op_;
- Register dst_;
- Register left_;
- Register right_;
- OverwriteMode mode_;
-};
-
-
-void DeferredInlineBinaryOperation::Generate() {
- __ push(left_);
- __ push(right_);
- GenericBinaryOpStub stub(op_, mode_, SMI_CODE_INLINED);
- __ CallStub(&stub);
- if (!dst_.is(rax)) __ movq(dst_, rax);
-}
-
-
-void CodeGenerator::GenericBinaryOperation(Token::Value op,
- SmiAnalysis* type,
- OverwriteMode overwrite_mode) {
- Comment cmnt(masm_, "[ BinaryOperation");
- Comment cmnt_token(masm_, Token::String(op));
-
- if (op == Token::COMMA) {
- // Simply discard left value.
- frame_->Nip(1);
- return;
- }
-
- // Set the flags based on the operation, type and loop nesting level.
- GenericBinaryFlags flags;
- switch (op) {
- case Token::BIT_OR:
- case Token::BIT_AND:
- case Token::BIT_XOR:
- case Token::SHL:
- case Token::SHR:
- case Token::SAR:
- // Bit operations always assume they likely operate on Smis. Still only
- // generate the inline Smi check code if this operation is part of a loop.
- flags = (loop_nesting() > 0)
- ? SMI_CODE_INLINED
- : SMI_CODE_IN_STUB;
- break;
-
- default:
- // By default only inline the Smi check code for likely smis if this
- // operation is part of a loop.
- flags = ((loop_nesting() > 0) && type->IsLikelySmi())
- ? SMI_CODE_INLINED
- : SMI_CODE_IN_STUB;
- break;
- }
-
- Result right = frame_->Pop();
- Result left = frame_->Pop();
-
- if (op == Token::ADD) {
- bool left_is_string = left.is_constant() && left.handle()->IsString();
- bool right_is_string = right.is_constant() && right.handle()->IsString();
- if (left_is_string || right_is_string) {
- frame_->Push(&left);
- frame_->Push(&right);
- Result answer;
- if (left_is_string) {
- if (right_is_string) {
- // TODO(lrn): if both are constant strings
- // -- do a compile time cons, if allocation during codegen is allowed.
- answer = frame_->CallRuntime(Runtime::kStringAdd, 2);
- } else {
- answer =
- frame_->InvokeBuiltin(Builtins::STRING_ADD_LEFT, CALL_FUNCTION, 2);
- }
- } else if (right_is_string) {
- answer =
- frame_->InvokeBuiltin(Builtins::STRING_ADD_RIGHT, CALL_FUNCTION, 2);
- }
- frame_->Push(&answer);
- return;
- }
- // Neither operand is known to be a string.
- }
-
- bool left_is_smi = left.is_constant() && left.handle()->IsSmi();
- bool left_is_non_smi = left.is_constant() && !left.handle()->IsSmi();
- bool right_is_smi = right.is_constant() && right.handle()->IsSmi();
- bool right_is_non_smi = right.is_constant() && !right.handle()->IsSmi();
- bool generate_no_smi_code = false; // No smi code at all, inline or in stub.
-
- if (left_is_smi && right_is_smi) {
- // Compute the constant result at compile time, and leave it on the frame.
- int left_int = Smi::cast(*left.handle())->value();
- int right_int = Smi::cast(*right.handle())->value();
- if (FoldConstantSmis(op, left_int, right_int)) return;
- }
-
- if (left_is_non_smi || right_is_non_smi) {
- // Set flag so that we go straight to the slow case, with no smi code.
- generate_no_smi_code = true;
- } else if (right_is_smi) {
- ConstantSmiBinaryOperation(op, &left, right.handle(),
- type, false, overwrite_mode);
- return;
- } else if (left_is_smi) {
- ConstantSmiBinaryOperation(op, &right, left.handle(),
- type, true, overwrite_mode);
- return;
- }
-
- if (flags == SMI_CODE_INLINED && !generate_no_smi_code) {
- LikelySmiBinaryOperation(op, &left, &right, overwrite_mode);
- } else {
- frame_->Push(&left);
- frame_->Push(&right);
- // If we know the arguments aren't smis, use the binary operation stub
- // that does not check for the fast smi case.
- // The same stub is used for NO_SMI_CODE and SMI_CODE_INLINED.
- if (generate_no_smi_code) {
- flags = SMI_CODE_INLINED;
- }
- GenericBinaryOpStub stub(op, overwrite_mode, flags);
- Result answer = frame_->CallStub(&stub, 2);
- frame_->Push(&answer);
- }
-}
-
-
-// Emit a LoadIC call to get the value from receiver and leave it in
-// dst. The receiver register is restored after the call.
-class DeferredReferenceGetNamedValue: public DeferredCode {
- public:
- DeferredReferenceGetNamedValue(Register dst,
- Register receiver,
- Handle<String> name)
- : dst_(dst), receiver_(receiver), name_(name) {
- set_comment("[ DeferredReferenceGetNamedValue");
- }
-
- virtual void Generate();
-
- Label* patch_site() { return &patch_site_; }
-
- private:
- Label patch_site_;
- Register dst_;
- Register receiver_;
- Handle<String> name_;
-};
-
-
-void DeferredReferenceGetNamedValue::Generate() {
- __ push(receiver_);
- __ Move(rcx, name_);
- Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
- __ Call(ic, RelocInfo::CODE_TARGET);
- // The call must be followed by a test rax instruction to indicate
- // that the inobject property case was inlined.
- //
- // Store the delta to the map check instruction here in the test
- // instruction. Use masm_-> instead of the __ macro since the
- // latter can't return a value.
- int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
- // Here we use masm_-> instead of the __ macro because this is the
- // instruction that gets patched and coverage code gets in the way.
- masm_->testl(rax, Immediate(-delta_to_patch_site));
- __ IncrementCounter(&Counters::named_load_inline_miss, 1);
-
- if (!dst_.is(rax)) __ movq(dst_, rax);
- __ pop(receiver_);
-}
-
-
-void DeferredInlineSmiAdd::Generate() {
- __ push(dst_);
- __ push(Immediate(value_));
- GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, SMI_CODE_INLINED);
- __ CallStub(&igostub);
- if (!dst_.is(rax)) __ movq(dst_, rax);
-}
-
-
-void DeferredInlineSmiAddReversed::Generate() {
- __ push(Immediate(value_)); // Note: sign extended.
- __ push(dst_);
- GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, SMI_CODE_INLINED);
- __ CallStub(&igostub);
- if (!dst_.is(rax)) __ movq(dst_, rax);
-}
-
-
-void DeferredInlineSmiSub::Generate() {
- __ push(dst_);
- __ push(Immediate(value_)); // Note: sign extended.
- GenericBinaryOpStub igostub(Token::SUB, overwrite_mode_, SMI_CODE_INLINED);
- __ CallStub(&igostub);
- if (!dst_.is(rax)) __ movq(dst_, rax);
-}
-
-
-void DeferredInlineSmiOperation::Generate() {
- __ push(src_);
- __ push(Immediate(value_)); // Note: sign extended.
- // For mod we don't generate all the Smi code inline.
- GenericBinaryOpStub stub(
- op_,
- overwrite_mode_,
- (op_ == Token::MOD) ? SMI_CODE_IN_STUB : SMI_CODE_INLINED);
- __ CallStub(&stub);
- if (!dst_.is(rax)) __ movq(dst_, rax);
-}
-
-
-void CodeGenerator::ConstantSmiBinaryOperation(Token::Value op,
- Result* operand,
- Handle<Object> value,
- SmiAnalysis* type,
- bool reversed,
- OverwriteMode overwrite_mode) {
- // NOTE: This is an attempt to inline (a bit) more of the code for
- // some possible smi operations (like + and -) when (at least) one
- // of the operands is a constant smi.
- // Consumes the argument "operand".
-
- // TODO(199): Optimize some special cases of operations involving a
- // smi literal (multiply by 2, shift by 0, etc.).
- if (IsUnsafeSmi(value)) {
- Result unsafe_operand(value);
- if (reversed) {
- LikelySmiBinaryOperation(op, &unsafe_operand, operand,
- overwrite_mode);
- } else {
- LikelySmiBinaryOperation(op, operand, &unsafe_operand,
- overwrite_mode);
- }
- ASSERT(!operand->is_valid());
- return;
- }
-
- // Get the literal value.
- Smi* smi_value = Smi::cast(*value);
- int int_value = smi_value->value();
-
- switch (op) {
- case Token::ADD: {
- operand->ToRegister();
- frame_->Spill(operand->reg());
- DeferredCode* deferred = NULL;
- if (reversed) {
- deferred = new DeferredInlineSmiAddReversed(operand->reg(),
- smi_value,
- overwrite_mode);
- } else {
- deferred = new DeferredInlineSmiAdd(operand->reg(),
- smi_value,
- overwrite_mode);
- }
- __ JumpIfNotSmi(operand->reg(), deferred->entry_label());
- __ SmiAddConstant(operand->reg(),
- operand->reg(),
- int_value,
- deferred->entry_label());
- deferred->BindExit();
- frame_->Push(operand);
- break;
- }
-
- case Token::SUB: {
- if (reversed) {
- Result constant_operand(value);
- LikelySmiBinaryOperation(op, &constant_operand, operand,
- overwrite_mode);
- } else {
- operand->ToRegister();
- frame_->Spill(operand->reg());
- DeferredCode* deferred = new DeferredInlineSmiSub(operand->reg(),
- smi_value,
- overwrite_mode);
- __ JumpIfNotSmi(operand->reg(), deferred->entry_label());
- // A smi currently fits in a 32-bit Immediate.
- __ SmiSubConstant(operand->reg(),
- operand->reg(),
- int_value,
- deferred->entry_label());
- deferred->BindExit();
- frame_->Push(operand);
- }
- break;
- }
-
- case Token::SAR:
- if (reversed) {
- Result constant_operand(value);
- LikelySmiBinaryOperation(op, &constant_operand, operand,
- overwrite_mode);
- } else {
- // Only the least significant 5 bits of the shift value are used.
- // In the slow case, this masking is done inside the runtime call.
- int shift_value = int_value & 0x1f;
- operand->ToRegister();
- frame_->Spill(operand->reg());
- DeferredInlineSmiOperation* deferred =
- new DeferredInlineSmiOperation(op,
- operand->reg(),
- operand->reg(),
- smi_value,
- overwrite_mode);
- __ JumpIfNotSmi(operand->reg(), deferred->entry_label());
- __ SmiShiftArithmeticRightConstant(operand->reg(),
- operand->reg(),
- shift_value);
- deferred->BindExit();
- frame_->Push(operand);
- }
- break;
-
- case Token::SHR:
- if (reversed) {
- Result constant_operand(value);
- LikelySmiBinaryOperation(op, &constant_operand, operand,
- overwrite_mode);
- } else {
- // Only the least significant 5 bits of the shift value are used.
- // In the slow case, this masking is done inside the runtime call.
- int shift_value = int_value & 0x1f;
- operand->ToRegister();
- Result answer = allocator()->Allocate();
- ASSERT(answer.is_valid());
- DeferredInlineSmiOperation* deferred =
- new DeferredInlineSmiOperation(op,
- answer.reg(),
- operand->reg(),
- smi_value,
- overwrite_mode);
- __ JumpIfNotSmi(operand->reg(), deferred->entry_label());
- __ SmiShiftLogicalRightConstant(answer.reg(),
- operand->reg(),
- shift_value,
- deferred->entry_label());
- deferred->BindExit();
- operand->Unuse();
- frame_->Push(&answer);
- }
- break;
-
- case Token::SHL:
- if (reversed) {
- Result constant_operand(value);
- LikelySmiBinaryOperation(op, &constant_operand, operand,
- overwrite_mode);
- } else {
- // Only the least significant 5 bits of the shift value are used.
- // In the slow case, this masking is done inside the runtime call.
- int shift_value = int_value & 0x1f;
- operand->ToRegister();
- if (shift_value == 0) {
- // Spill operand so it can be overwritten in the slow case.
- frame_->Spill(operand->reg());
- DeferredInlineSmiOperation* deferred =
- new DeferredInlineSmiOperation(op,
- operand->reg(),
- operand->reg(),
- smi_value,
- overwrite_mode);
- __ JumpIfNotSmi(operand->reg(), deferred->entry_label());
- deferred->BindExit();
- frame_->Push(operand);
- } else {
- // Use a fresh temporary for nonzero shift values.
- Result answer = allocator()->Allocate();
- ASSERT(answer.is_valid());
- DeferredInlineSmiOperation* deferred =
- new DeferredInlineSmiOperation(op,
- answer.reg(),
- operand->reg(),
- smi_value,
- overwrite_mode);
- __ JumpIfNotSmi(operand->reg(), deferred->entry_label());
- __ SmiShiftLeftConstant(answer.reg(),
- operand->reg(),
- shift_value,
- deferred->entry_label());
- deferred->BindExit();
- operand->Unuse();
- frame_->Push(&answer);
- }
- }
- break;
-
- case Token::BIT_OR:
- case Token::BIT_XOR:
- case Token::BIT_AND: {
- operand->ToRegister();
- frame_->Spill(operand->reg());
- if (reversed) {
- // Bit operations with a constant smi are commutative.
- // We can swap left and right operands with no problem.
- // Swap left and right overwrite modes. 0->0, 1->2, 2->1.
- overwrite_mode = static_cast<OverwriteMode>((2 * overwrite_mode) % 3);
- }
- DeferredCode* deferred = new DeferredInlineSmiOperation(op,
- operand->reg(),
- operand->reg(),
- smi_value,
- overwrite_mode);
- __ JumpIfNotSmi(operand->reg(), deferred->entry_label());
- if (op == Token::BIT_AND) {
- __ SmiAndConstant(operand->reg(), operand->reg(), int_value);
- } else if (op == Token::BIT_XOR) {
- if (int_value != 0) {
- __ SmiXorConstant(operand->reg(), operand->reg(), int_value);
- }
- } else {
- ASSERT(op == Token::BIT_OR);
- if (int_value != 0) {
- __ SmiOrConstant(operand->reg(), operand->reg(), int_value);
- }
- }
- deferred->BindExit();
- frame_->Push(operand);
- break;
- }
-
- // Generate inline code for mod of powers of 2 and negative powers of 2.
- case Token::MOD:
- if (!reversed &&
- int_value != 0 &&
- (IsPowerOf2(int_value) || IsPowerOf2(-int_value))) {
- operand->ToRegister();
- frame_->Spill(operand->reg());
- DeferredCode* deferred = new DeferredInlineSmiOperation(op,
- operand->reg(),
- operand->reg(),
- smi_value,
- overwrite_mode);
- // Check for negative or non-Smi left hand side.
- __ JumpIfNotPositiveSmi(operand->reg(), deferred->entry_label());
- if (int_value < 0) int_value = -int_value;
- if (int_value == 1) {
- __ movl(operand->reg(), Immediate(Smi::FromInt(0)));
- } else {
- __ SmiAndConstant(operand->reg(), operand->reg(), int_value - 1);
- }
- deferred->BindExit();
- frame_->Push(operand);
- break; // This break only applies if we generated code for MOD.
- }
- // Fall through if we did not find a power of 2 on the right hand side!
- // The next case must be the default.
-
- default: {
- Result constant_operand(value);
- if (reversed) {
- LikelySmiBinaryOperation(op, &constant_operand, operand,
- overwrite_mode);
- } else {
- LikelySmiBinaryOperation(op, operand, &constant_operand,
- overwrite_mode);
- }
- break;
- }
- }
- ASSERT(!operand->is_valid());
-}
-
-void CodeGenerator::LikelySmiBinaryOperation(Token::Value op,
- Result* left,
- Result* right,
- OverwriteMode overwrite_mode) {
- // Special handling of div and mod because they use fixed registers.
- if (op == Token::DIV || op == Token::MOD) {
- // We need rax as the quotient register, rdx as the remainder
- // register, neither left nor right in rax or rdx, and left copied
- // to rax.
- Result quotient;
- Result remainder;
- bool left_is_in_rax = false;
- // Step 1: get rax for quotient.
- if ((left->is_register() && left->reg().is(rax)) ||
- (right->is_register() && right->reg().is(rax))) {
- // One or both is in rax. Use a fresh non-rdx register for
- // them.
- Result fresh = allocator_->Allocate();
- ASSERT(fresh.is_valid());
- if (fresh.reg().is(rdx)) {
- remainder = fresh;
- fresh = allocator_->Allocate();
- ASSERT(fresh.is_valid());
- }
- if (left->is_register() && left->reg().is(rax)) {
- quotient = *left;
- *left = fresh;
- left_is_in_rax = true;
- }
- if (right->is_register() && right->reg().is(rax)) {
- quotient = *right;
- *right = fresh;
- }
- __ movq(fresh.reg(), rax);
- } else {
- // Neither left nor right is in rax.
- quotient = allocator_->Allocate(rax);
- }
- ASSERT(quotient.is_register() && quotient.reg().is(rax));
- ASSERT(!(left->is_register() && left->reg().is(rax)));
- ASSERT(!(right->is_register() && right->reg().is(rax)));
-
- // Step 2: get rdx for remainder if necessary.
- if (!remainder.is_valid()) {
- if ((left->is_register() && left->reg().is(rdx)) ||
- (right->is_register() && right->reg().is(rdx))) {
- Result fresh = allocator_->Allocate();
- ASSERT(fresh.is_valid());
- if (left->is_register() && left->reg().is(rdx)) {
- remainder = *left;
- *left = fresh;
- }
- if (right->is_register() && right->reg().is(rdx)) {
- remainder = *right;
- *right = fresh;
- }
- __ movq(fresh.reg(), rdx);
- } else {
- // Neither left nor right is in rdx.
- remainder = allocator_->Allocate(rdx);
- }
- }
- ASSERT(remainder.is_register() && remainder.reg().is(rdx));
- ASSERT(!(left->is_register() && left->reg().is(rdx)));
- ASSERT(!(right->is_register() && right->reg().is(rdx)));
-
- left->ToRegister();
- right->ToRegister();
- frame_->Spill(rax);
- frame_->Spill(rdx);
-
- // Check that left and right are smi tagged.
- DeferredInlineBinaryOperation* deferred =
- new DeferredInlineBinaryOperation(op,
- (op == Token::DIV) ? rax : rdx,
- left->reg(),
- right->reg(),
- overwrite_mode);
- __ JumpIfNotBothSmi(left->reg(), right->reg(), deferred->entry_label());
-
- if (op == Token::DIV) {
- __ SmiDiv(rax, left->reg(), right->reg(), deferred->entry_label());
- deferred->BindExit();
- left->Unuse();
- right->Unuse();
- frame_->Push(&quotient);
- } else {
- ASSERT(op == Token::MOD);
- __ SmiMod(rdx, left->reg(), right->reg(), deferred->entry_label());
- deferred->BindExit();
- left->Unuse();
- right->Unuse();
- frame_->Push(&remainder);
- }
- return;
- }
-
- // Special handling of shift operations because they use fixed
- // registers.
- if (op == Token::SHL || op == Token::SHR || op == Token::SAR) {
- // Move left out of rcx if necessary.
- if (left->is_register() && left->reg().is(rcx)) {
- *left = allocator_->Allocate();
- ASSERT(left->is_valid());
- __ movq(left->reg(), rcx);
- }
- right->ToRegister(rcx);
- left->ToRegister();
- ASSERT(left->is_register() && !left->reg().is(rcx));
- ASSERT(right->is_register() && right->reg().is(rcx));
-
- // We will modify right, it must be spilled.
- frame_->Spill(rcx);
-
- // Use a fresh answer register to avoid spilling the left operand.
- Result answer = allocator_->Allocate();
- ASSERT(answer.is_valid());
- // Check that both operands are smis using the answer register as a
- // temporary.
- DeferredInlineBinaryOperation* deferred =
- new DeferredInlineBinaryOperation(op,
- answer.reg(),
- left->reg(),
- rcx,
- overwrite_mode);
- __ movq(answer.reg(), left->reg());
- __ or_(answer.reg(), rcx);
- __ JumpIfNotSmi(answer.reg(), deferred->entry_label());
-
- // Perform the operation.
- switch (op) {
- case Token::SAR:
- __ SmiShiftArithmeticRight(answer.reg(), left->reg(), rcx);
- break;
- case Token::SHR: {
- __ SmiShiftLogicalRight(answer.reg(),
- left->reg(),
- rcx,
- deferred->entry_label());
- break;
- }
- case Token::SHL: {
- __ SmiShiftLeft(answer.reg(),
- left->reg(),
- rcx,
- deferred->entry_label());
- break;
- }
- default:
- UNREACHABLE();
- }
- deferred->BindExit();
- left->Unuse();
- right->Unuse();
- frame_->Push(&answer);
- return;
- }
-
- // Handle the other binary operations.
- left->ToRegister();
- right->ToRegister();
- // A newly allocated register answer is used to hold the answer. The
- // registers containing left and right are not modified so they don't
- // need to be spilled in the fast case.
- Result answer = allocator_->Allocate();
- ASSERT(answer.is_valid());
-
- // Perform the smi tag check.
- DeferredInlineBinaryOperation* deferred =
- new DeferredInlineBinaryOperation(op,
- answer.reg(),
- left->reg(),
- right->reg(),
- overwrite_mode);
- __ JumpIfNotBothSmi(left->reg(), right->reg(), deferred->entry_label());
-
- switch (op) {
- case Token::ADD:
- __ SmiAdd(answer.reg(),
- left->reg(),
- right->reg(),
- deferred->entry_label());
- break;
-
- case Token::SUB:
- __ SmiSub(answer.reg(),
- left->reg(),
- right->reg(),
- deferred->entry_label());
- break;
-
- case Token::MUL: {
- __ SmiMul(answer.reg(),
- left->reg(),
- right->reg(),
- deferred->entry_label());
- break;
- }
-
- case Token::BIT_OR:
- __ SmiOr(answer.reg(), left->reg(), right->reg());
- break;
-
- case Token::BIT_AND:
- __ SmiAnd(answer.reg(), left->reg(), right->reg());
- break;
-
- case Token::BIT_XOR:
- __ SmiXor(answer.reg(), left->reg(), right->reg());
- break;
-
- default:
- UNREACHABLE();
- break;
- }
- deferred->BindExit();
- left->Unuse();
- right->Unuse();
- frame_->Push(&answer);
-}
-
-
-#undef __
-#define __ ACCESS_MASM(masm)
-
-
-Handle<String> Reference::GetName() {
- ASSERT(type_ == NAMED);
- Property* property = expression_->AsProperty();
- if (property == NULL) {
- // Global variable reference treated as a named property reference.
- VariableProxy* proxy = expression_->AsVariableProxy();
- ASSERT(proxy->AsVariable() != NULL);
- ASSERT(proxy->AsVariable()->is_global());
- return proxy->name();
- } else {
- Literal* raw_name = property->key()->AsLiteral();
- ASSERT(raw_name != NULL);
- return Handle<String>(String::cast(*raw_name->handle()));
- }
-}
-
-
-void Reference::GetValue(TypeofState typeof_state) {
- ASSERT(!cgen_->in_spilled_code());
- ASSERT(cgen_->HasValidEntryRegisters());
- ASSERT(!is_illegal());
- MacroAssembler* masm = cgen_->masm();
-
- // Record the source position for the property load.
- Property* property = expression_->AsProperty();
- if (property != NULL) {
- cgen_->CodeForSourcePosition(property->position());
- }
-
- switch (type_) {
- case SLOT: {
- Comment cmnt(masm, "[ Load from Slot");
- Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
- ASSERT(slot != NULL);
- cgen_->LoadFromSlotCheckForArguments(slot, typeof_state);
- break;
- }
-
- case NAMED: {
- // TODO(1241834): Make sure that it is safe to ignore the
- // distinction between expressions in a typeof and not in a
- // typeof. If there is a chance that reference errors can be
- // thrown below, we must distinguish between the two kinds of
- // loads (typeof expression loads must not throw a reference
- // error).
- Variable* var = expression_->AsVariableProxy()->AsVariable();
- bool is_global = var != NULL;
- ASSERT(!is_global || var->is_global());
-
- // Do not inline the inobject property case for loads from the global
- // object. Also do not inline for unoptimized code. This saves time
- // in the code generator. Unoptimized code is toplevel code or code
- // that is not in a loop.
- if (is_global ||
- cgen_->scope()->is_global_scope() ||
- cgen_->loop_nesting() == 0) {
- Comment cmnt(masm, "[ Load from named Property");
- cgen_->frame()->Push(GetName());
-
- RelocInfo::Mode mode = is_global
- ? RelocInfo::CODE_TARGET_CONTEXT
- : RelocInfo::CODE_TARGET;
- Result answer = cgen_->frame()->CallLoadIC(mode);
- // A test rax instruction following the call signals that the
- // inobject property case was inlined. Ensure that there is not
- // a test rax instruction here.
- __ nop();
- cgen_->frame()->Push(&answer);
- } else {
- // Inline the inobject property case.
- Comment cmnt(masm, "[ Inlined named property load");
- Result receiver = cgen_->frame()->Pop();
- receiver.ToRegister();
- Result value = cgen_->allocator()->Allocate();
- ASSERT(value.is_valid());
- // Cannot use r12 for receiver, because that changes
- // the distance between a call and a fixup location,
- // due to a special encoding of r12 as r/m in a ModR/M byte.
- if (receiver.reg().is(r12)) {
- // Swap receiver and value.
- __ movq(value.reg(), receiver.reg());
- Result temp = receiver;
- receiver = value;
- value = temp;
- cgen_->frame()->Spill(value.reg()); // r12 may have been shared.
- }
-
- DeferredReferenceGetNamedValue* deferred =
- new DeferredReferenceGetNamedValue(value.reg(),
- receiver.reg(),
- GetName());
-
- // Check that the receiver is a heap object.
- __ JumpIfSmi(receiver.reg(), deferred->entry_label());
-
- __ bind(deferred->patch_site());
- // This is the map check instruction that will be patched (so we can't
- // use the double underscore macro that may insert instructions).
- // Initially use an invalid map to force a failure.
- masm->Move(kScratchRegister, Factory::null_value());
- masm->cmpq(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
- kScratchRegister);
- // This branch is always a forwards branch so it's always a fixed
- // size which allows the assert below to succeed and patching to work.
- // Don't use deferred->Branch(...), since that might add coverage code.
- masm->j(not_equal, deferred->entry_label());
-
- // The delta from the patch label to the load offset must be
- // statically known.
- ASSERT(masm->SizeOfCodeGeneratedSince(deferred->patch_site()) ==
- LoadIC::kOffsetToLoadInstruction);
- // The initial (invalid) offset has to be large enough to force
- // a 32-bit instruction encoding to allow patching with an
- // arbitrary offset. Use kMaxInt (minus kHeapObjectTag).
- int offset = kMaxInt;
- masm->movq(value.reg(), FieldOperand(receiver.reg(), offset));
-
- __ IncrementCounter(&Counters::named_load_inline, 1);
- deferred->BindExit();
- cgen_->frame()->Push(&receiver);
- cgen_->frame()->Push(&value);
- }
- break;
- }
-
- case KEYED: {
- // TODO(1241834): Make sure that this it is safe to ignore the
- // distinction between expressions in a typeof and not in a typeof.
- Comment cmnt(masm, "[ Load from keyed Property");
- Variable* var = expression_->AsVariableProxy()->AsVariable();
- bool is_global = var != NULL;
- ASSERT(!is_global || var->is_global());
-
- // Inline array load code if inside of a loop. We do not know
- // the receiver map yet, so we initially generate the code with
- // a check against an invalid map. In the inline cache code, we
- // patch the map check if appropriate.
- if (cgen_->loop_nesting() > 0) {
- Comment cmnt(masm, "[ Inlined load from keyed Property");
-
- Result key = cgen_->frame()->Pop();
- Result receiver = cgen_->frame()->Pop();
- key.ToRegister();
- receiver.ToRegister();
-
- // Use a fresh temporary to load the elements without destroying
- // the receiver which is needed for the deferred slow case.
- Result elements = cgen_->allocator()->Allocate();
- ASSERT(elements.is_valid());
-
- // Use a fresh temporary for the index and later the loaded
- // value.
- Result index = cgen_->allocator()->Allocate();
- ASSERT(index.is_valid());
-
- DeferredReferenceGetKeyedValue* deferred =
- new DeferredReferenceGetKeyedValue(index.reg(),
- receiver.reg(),
- key.reg(),
- is_global);
-
- // Check that the receiver is not a smi (only needed if this
- // is not a load from the global context) and that it has the
- // expected map.
- if (!is_global) {
- __ JumpIfSmi(receiver.reg(), deferred->entry_label());
- }
-
- // Initially, use an invalid map. The map is patched in the IC
- // initialization code.
- __ bind(deferred->patch_site());
- // Use masm-> here instead of the double underscore macro since extra
- // coverage code can interfere with the patching.
- masm->movq(kScratchRegister, Factory::null_value(),
- RelocInfo::EMBEDDED_OBJECT);
- masm->cmpq(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
- kScratchRegister);
- deferred->Branch(not_equal);
-
- // Check that the key is a non-negative smi.
- __ JumpIfNotPositiveSmi(key.reg(), deferred->entry_label());
-
- // Get the elements array from the receiver and check that it
- // is not a dictionary.
- __ movq(elements.reg(),
- FieldOperand(receiver.reg(), JSObject::kElementsOffset));
- __ Cmp(FieldOperand(elements.reg(), HeapObject::kMapOffset),
- Factory::fixed_array_map());
- deferred->Branch(not_equal);
-
- // Shift the key to get the actual index value and check that
- // it is within bounds.
- __ SmiToInteger32(index.reg(), key.reg());
- __ cmpl(index.reg(),
- FieldOperand(elements.reg(), FixedArray::kLengthOffset));
- deferred->Branch(above_equal);
-
- // The index register holds the un-smi-tagged key. It has been
- // zero-extended to 64-bits, so it can be used directly as index in the
- // operand below.
- // Load and check that the result is not the hole. We could
- // reuse the index or elements register for the value.
- //
- // TODO(206): Consider whether it makes sense to try some
- // heuristic about which register to reuse. For example, if
- // one is rax, the we can reuse that one because the value
- // coming from the deferred code will be in rax.
- Result value = index;
- __ movq(value.reg(),
- Operand(elements.reg(),
- index.reg(),
- times_pointer_size,
- FixedArray::kHeaderSize - kHeapObjectTag));
- elements.Unuse();
- index.Unuse();
- __ CompareRoot(value.reg(), Heap::kTheHoleValueRootIndex);
- deferred->Branch(equal);
- __ IncrementCounter(&Counters::keyed_load_inline, 1);
-
- deferred->BindExit();
- // Restore the receiver and key to the frame and push the
- // result on top of it.
- cgen_->frame()->Push(&receiver);
- cgen_->frame()->Push(&key);
- cgen_->frame()->Push(&value);
-
- } else {
- Comment cmnt(masm, "[ Load from keyed Property");
- RelocInfo::Mode mode = is_global
- ? RelocInfo::CODE_TARGET_CONTEXT
- : RelocInfo::CODE_TARGET;
- Result answer = cgen_->frame()->CallKeyedLoadIC(mode);
- // Make sure that we do not have a test instruction after the
- // call. A test instruction after the call is used to
- // indicate that we have generated an inline version of the
- // keyed load. The explicit nop instruction is here because
- // the push that follows might be peep-hole optimized away.
- __ nop();
- cgen_->frame()->Push(&answer);
- }
- break;
- }
-
- default:
- UNREACHABLE();
- }
-}
-
-
-void Reference::TakeValue(TypeofState typeof_state) {
- // TODO(X64): This function is completely architecture independent. Move
- // it somewhere shared.
-
- // For non-constant frame-allocated slots, we invalidate the value in the
- // slot. For all others, we fall back on GetValue.
- ASSERT(!cgen_->in_spilled_code());
- ASSERT(!is_illegal());
- if (type_ != SLOT) {
- GetValue(typeof_state);
- return;
- }
-
- Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
- ASSERT(slot != NULL);
- if (slot->type() == Slot::LOOKUP ||
- slot->type() == Slot::CONTEXT ||
- slot->var()->mode() == Variable::CONST ||
- slot->is_arguments()) {
- GetValue(typeof_state);
- return;
- }
-
- // Only non-constant, frame-allocated parameters and locals can reach
- // here. Be careful not to use the optimizations for arguments
- // object access since it may not have been initialized yet.
- ASSERT(!slot->is_arguments());
- if (slot->type() == Slot::PARAMETER) {
- cgen_->frame()->TakeParameterAt(slot->index());
- } else {
- ASSERT(slot->type() == Slot::LOCAL);
- cgen_->frame()->TakeLocalAt(slot->index());
- }
-}
-
-
-void Reference::SetValue(InitState init_state) {
- ASSERT(cgen_->HasValidEntryRegisters());
- ASSERT(!is_illegal());
- MacroAssembler* masm = cgen_->masm();
- switch (type_) {
- case SLOT: {
- Comment cmnt(masm, "[ Store to Slot");
- Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
- ASSERT(slot != NULL);
- cgen_->StoreToSlot(slot, init_state);
- break;
- }
-
- case NAMED: {
- Comment cmnt(masm, "[ Store to named Property");
- cgen_->frame()->Push(GetName());
- Result answer = cgen_->frame()->CallStoreIC();
- cgen_->frame()->Push(&answer);
- break;
- }
-
- case KEYED: {
- Comment cmnt(masm, "[ Store to keyed Property");
-
- // Generate inlined version of the keyed store if the code is in
- // a loop and the key is likely to be a smi.
- Property* property = expression()->AsProperty();
- ASSERT(property != NULL);
- SmiAnalysis* key_smi_analysis = property->key()->type();
-
- if (cgen_->loop_nesting() > 0 && key_smi_analysis->IsLikelySmi()) {
- Comment cmnt(masm, "[ Inlined store to keyed Property");
-
- // Get the receiver, key and value into registers.
- Result value = cgen_->frame()->Pop();
- Result key = cgen_->frame()->Pop();
- Result receiver = cgen_->frame()->Pop();
-
- Result tmp = cgen_->allocator_->Allocate();
- ASSERT(tmp.is_valid());
-
- // Determine whether the value is a constant before putting it
- // in a register.
- bool value_is_constant = value.is_constant();
-
- // Make sure that value, key and receiver are in registers.
- value.ToRegister();
- key.ToRegister();
- receiver.ToRegister();
-
- DeferredReferenceSetKeyedValue* deferred =
- new DeferredReferenceSetKeyedValue(value.reg(),
- key.reg(),
- receiver.reg());
-
- // Check that the value is a smi if it is not a constant.
- // We can skip the write barrier for smis and constants.
- if (!value_is_constant) {
- __ JumpIfNotSmi(value.reg(), deferred->entry_label());
- }
-
- // Check that the key is a non-negative smi.
- __ JumpIfNotPositiveSmi(key.reg(), deferred->entry_label());
- // Ensure that the smi is zero-extended. This is not guaranteed.
- __ movl(key.reg(), key.reg());
-
- // Check that the receiver is not a smi.
- __ JumpIfSmi(receiver.reg(), deferred->entry_label());
-
- // Check that the receiver is a JSArray.
- __ CmpObjectType(receiver.reg(), JS_ARRAY_TYPE, kScratchRegister);
- deferred->Branch(not_equal);
-
- // Check that the key is within bounds. Both the key and the
- // length of the JSArray are smis, so compare only low 32 bits.
- __ cmpl(key.reg(),
- FieldOperand(receiver.reg(), JSArray::kLengthOffset));
- deferred->Branch(greater_equal);
-
- // Get the elements array from the receiver and check that it
- // is a flat array (not a dictionary).
- __ movq(tmp.reg(),
- FieldOperand(receiver.reg(), JSObject::kElementsOffset));
- // Bind the deferred code patch site to be able to locate the
- // fixed array map comparison. When debugging, we patch this
- // comparison to always fail so that we will hit the IC call
- // in the deferred code which will allow the debugger to
- // break for fast case stores.
- __ bind(deferred->patch_site());
- // Avoid using __ to ensure the distance from patch_site
- // to the map address is always the same.
- masm->movq(kScratchRegister, Factory::fixed_array_map(),
- RelocInfo::EMBEDDED_OBJECT);
- __ cmpq(FieldOperand(tmp.reg(), HeapObject::kMapOffset),
- kScratchRegister);
- deferred->Branch(not_equal);
-
- // Store the value.
- SmiIndex index =
- masm->SmiToIndex(kScratchRegister, key.reg(), kPointerSizeLog2);
- __ movq(Operand(tmp.reg(),
- index.reg,
- index.scale,
- FixedArray::kHeaderSize - kHeapObjectTag),
- value.reg());
- __ IncrementCounter(&Counters::keyed_store_inline, 1);
-
- deferred->BindExit();
-
- cgen_->frame()->Push(&receiver);
- cgen_->frame()->Push(&key);
- cgen_->frame()->Push(&value);
- } else {
- Result answer = cgen_->frame()->CallKeyedStoreIC();
- // Make sure that we do not have a test instruction after the
- // call. A test instruction after the call is used to
- // indicate that we have generated an inline version of the
- // keyed store.
- masm->nop();
- cgen_->frame()->Push(&answer);
- }
- break;
- }
-
- default:
- UNREACHABLE();
- }
-}
-
-
-void ToBooleanStub::Generate(MacroAssembler* masm) {
- Label false_result, true_result, not_string;
- __ movq(rax, Operand(rsp, 1 * kPointerSize));
-
- // 'null' => false.
- __ CompareRoot(rax, Heap::kNullValueRootIndex);
- __ j(equal, &false_result);
-
- // Get the map and type of the heap object.
- // We don't use CmpObjectType because we manipulate the type field.
- __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
- __ movzxbq(rcx, FieldOperand(rdx, Map::kInstanceTypeOffset));
-
- // Undetectable => false.
- __ movzxbq(rbx, FieldOperand(rdx, Map::kBitFieldOffset));
- __ and_(rbx, Immediate(1 << Map::kIsUndetectable));
- __ j(not_zero, &false_result);
-
- // JavaScript object => true.
- __ cmpq(rcx, Immediate(FIRST_JS_OBJECT_TYPE));
- __ j(above_equal, &true_result);
-
- // String value => false iff empty.
- __ cmpq(rcx, Immediate(FIRST_NONSTRING_TYPE));
- __ j(above_equal, &not_string);
- __ and_(rcx, Immediate(kStringSizeMask));
- __ cmpq(rcx, Immediate(kShortStringTag));
- __ j(not_equal, &true_result); // Empty string is always short.
- __ movl(rdx, FieldOperand(rax, String::kLengthOffset));
- __ shr(rdx, Immediate(String::kShortLengthShift));
- __ j(zero, &false_result);
- __ jmp(&true_result);
-
- __ bind(&not_string);
- // HeapNumber => false iff +0, -0, or NaN.
- // These three cases set C3 when compared to zero in the FPU.
- __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
- __ j(not_equal, &true_result);
- // TODO(x64): Don't use fp stack, use MMX registers?
- __ fldz(); // Load zero onto fp stack
- // Load heap-number double value onto fp stack
- __ fld_d(FieldOperand(rax, HeapNumber::kValueOffset));
- __ fucompp(); // Compare and pop both values.
- __ movq(kScratchRegister, rax);
- __ fnstsw_ax(); // Store fp status word in ax, no checking for exceptions.
- __ testl(rax, Immediate(0x4000)); // Test FP condition flag C3, bit 16.
- __ movq(rax, kScratchRegister);
- __ j(not_zero, &false_result);
- // Fall through to |true_result|.
-
- // Return 1/0 for true/false in rax.
- __ bind(&true_result);
- __ movq(rax, Immediate(1));
- __ ret(1 * kPointerSize);
- __ bind(&false_result);
- __ xor_(rax, rax);
- __ ret(1 * kPointerSize);
-}
-
-
-bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) {
- // TODO(X64): This method is identical to the ia32 version.
- // Either find a reason to change it, or move it somewhere where it can be
- // shared. (Notice: It assumes that a Smi can fit in an int).
-
- Object* answer_object = Heap::undefined_value();
- switch (op) {
- case Token::ADD:
- if (Smi::IsValid(left + right)) {
- answer_object = Smi::FromInt(left + right);
- }
- break;
- case Token::SUB:
- if (Smi::IsValid(left - right)) {
- answer_object = Smi::FromInt(left - right);
- }
- break;
- case Token::MUL: {
- double answer = static_cast<double>(left) * right;
- if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) {
- // If the product is zero and the non-zero factor is negative,
- // the spec requires us to return floating point negative zero.
- if (answer != 0 || (left + right) >= 0) {
- answer_object = Smi::FromInt(static_cast<int>(answer));
- }
- }
- }
- break;
- case Token::DIV:
- case Token::MOD:
- break;
- case Token::BIT_OR:
- answer_object = Smi::FromInt(left | right);
- break;
- case Token::BIT_AND:
- answer_object = Smi::FromInt(left & right);
- break;
- case Token::BIT_XOR:
- answer_object = Smi::FromInt(left ^ right);
- break;
-
- case Token::SHL: {
- int shift_amount = right & 0x1F;
- if (Smi::IsValid(left << shift_amount)) {
- answer_object = Smi::FromInt(left << shift_amount);
- }
- break;
- }
- case Token::SHR: {
- int shift_amount = right & 0x1F;
- unsigned int unsigned_left = left;
- unsigned_left >>= shift_amount;
- if (unsigned_left <= static_cast<unsigned int>(Smi::kMaxValue)) {
- answer_object = Smi::FromInt(unsigned_left);
- }
- break;
- }
- case Token::SAR: {
- int shift_amount = right & 0x1F;
- unsigned int unsigned_left = left;
- if (left < 0) {
- // Perform arithmetic shift of a negative number by
- // complementing number, logical shifting, complementing again.
- unsigned_left = ~unsigned_left;
- unsigned_left >>= shift_amount;
- unsigned_left = ~unsigned_left;
- } else {
- unsigned_left >>= shift_amount;
- }
- ASSERT(Smi::IsValid(static_cast<int32_t>(unsigned_left)));
- answer_object = Smi::FromInt(static_cast<int32_t>(unsigned_left));
- break;
- }
- default:
- UNREACHABLE();
- break;
- }
- if (answer_object == Heap::undefined_value()) {
- return false;
- }
- frame_->Push(Handle<Object>(answer_object));
- return true;
-}
-
-
-// End of CodeGenerator implementation.
-
-void UnarySubStub::Generate(MacroAssembler* masm) {
- Label slow;
- Label done;
- Label try_float;
- Label special;
- // Check whether the value is a smi.
- __ JumpIfNotSmi(rax, &try_float);
-
- // Enter runtime system if the value of the smi is zero
- // to make sure that we switch between 0 and -0.
- // Also enter it if the value of the smi is Smi::kMinValue
- __ testl(rax, Immediate(0x7FFFFFFE));
- __ j(zero, &special);
- __ negl(rax);
- __ jmp(&done);
-
- __ bind(&special);
- // Either zero or -0x4000000, neither of which become a smi when negated.
- __ testl(rax, rax);
- __ j(not_zero, &slow);
- __ Move(rax, Factory::minus_zero_value());
- __ jmp(&done);
-
- // Enter runtime system.
- __ bind(&slow);
- __ pop(rcx); // pop return address
- __ push(rax);
- __ push(rcx); // push return address
- __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
- __ jmp(&done);
-
- // Try floating point case.
- __ bind(&try_float);
- __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
- __ Cmp(rdx, Factory::heap_number_map());
- __ j(not_equal, &slow);
- // Operand is a float, negate its value by flipping sign bit.
- __ movq(rdx, FieldOperand(rax, HeapNumber::kValueOffset));
- __ movq(kScratchRegister, Immediate(0x01));
- __ shl(kScratchRegister, Immediate(63));
- __ xor_(rdx, kScratchRegister); // Flip sign.
- // rdx is value to store.
- if (overwrite_) {
- __ movq(FieldOperand(rax, HeapNumber::kValueOffset), rdx);
- } else {
- FloatingPointHelper::AllocateHeapNumber(masm, &slow, rbx, rcx);
- // rcx: allocated 'empty' number
- __ movq(FieldOperand(rcx, HeapNumber::kValueOffset), rdx);
- __ movq(rax, rcx);
- }
-
- __ bind(&done);
- __ StubReturn(1);
-}
-
-
-void CompareStub::Generate(MacroAssembler* masm) {
- Label call_builtin, done;
-
- // NOTICE! This code is only reached after a smi-fast-case check, so
- // it is certain that at least one operand isn't a smi.
-
- if (cc_ == equal) { // Both strict and non-strict.
- Label slow; // Fallthrough label.
- // Equality is almost reflexive (everything but NaN), so start by testing
- // for "identity and not NaN".
- {
- Label not_identical;
- __ cmpq(rax, rdx);
- __ j(not_equal, &not_identical);
- // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
- // so we do the second best thing - test it ourselves.
-
- Label return_equal;
- Label heap_number;
- // If it's not a heap number, then return equal.
- __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
- Factory::heap_number_map());
- __ j(equal, &heap_number);
- __ bind(&return_equal);
- __ xor_(rax, rax);
- __ ret(0);
-
- __ bind(&heap_number);
- // It is a heap number, so return non-equal if it's NaN and equal if it's
- // not NaN.
- // The representation of NaN values has all exponent bits (52..62) set,
- // and not all mantissa bits (0..51) clear.
- // Read double representation into rax.
- __ movq(rbx, V8_UINT64_C(0x7ff0000000000000), RelocInfo::NONE);
- __ movq(rax, FieldOperand(rdx, HeapNumber::kValueOffset));
- // Test that exponent bits are all set.
- __ or_(rbx, rax);
- __ cmpq(rbx, rax);
- __ j(not_equal, &return_equal);
- // Shift out flag and all exponent bits, retaining only mantissa.
- __ shl(rax, Immediate(12));
- // If all bits in the mantissa are zero the number is Infinity, and
- // we return zero. Otherwise it is a NaN, and we return non-zero.
- // We cannot just return rax because only eax is tested on return.
- __ setcc(not_zero, rax);
- __ ret(0);
-
- __ bind(&not_identical);
- }
-
- // If we're doing a strict equality comparison, we don't have to do
- // type conversion, so we generate code to do fast comparison for objects
- // and oddballs. Non-smi numbers and strings still go through the usual
- // slow-case code.
- if (strict_) {
- // If either is a Smi (we know that not both are), then they can only
- // be equal if the other is a HeapNumber. If so, use the slow case.
- {
- Label not_smis;
- __ SelectNonSmi(rbx, rax, rdx, &not_smis);
-
- // Check if the non-smi operand is a heap number.
- __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
- Factory::heap_number_map());
- // If heap number, handle it in the slow case.
- __ j(equal, &slow);
- // Return non-equal. ebx (the lower half of rbx) is not zero.
- __ movq(rax, rbx);
- __ ret(0);
-
- __ bind(&not_smis);
- }
-
- // If either operand is a JSObject or an oddball value, then they are not
- // equal since their pointers are different
- // There is no test for undetectability in strict equality.
-
- // If the first object is a JS object, we have done pointer comparison.
- ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
- Label first_non_object;
- __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
- __ j(below, &first_non_object);
- // Return non-zero (eax (not rax) is not zero)
- Label return_not_equal;
- ASSERT(kHeapObjectTag != 0);
- __ bind(&return_not_equal);
- __ ret(0);
-
- __ bind(&first_non_object);
- // Check for oddballs: true, false, null, undefined.
- __ CmpInstanceType(rcx, ODDBALL_TYPE);
- __ j(equal, &return_not_equal);
-
- __ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx);
- __ j(above_equal, &return_not_equal);
-
- // Check for oddballs: true, false, null, undefined.
- __ CmpInstanceType(rcx, ODDBALL_TYPE);
- __ j(equal, &return_not_equal);
-
- // Fall through to the general case.
- }
- __ bind(&slow);
- }
-
- // Push arguments below the return address to prepare jump to builtin.
- __ pop(rcx);
- __ push(rax);
- __ push(rdx);
- __ push(rcx);
-
- // Inlined floating point compare.
- // Call builtin if operands are not floating point or smi.
- Label check_for_symbols;
- // Push arguments on stack, for helper functions.
- FloatingPointHelper::CheckFloatOperands(masm, &check_for_symbols);
- FloatingPointHelper::LoadFloatOperands(masm, rax, rdx);
- __ FCmp();
-
- // Jump to builtin for NaN.
- __ j(parity_even, &call_builtin);
-
- // TODO(1243847): Use cmov below once CpuFeatures are properly hooked up.
- Label below_lbl, above_lbl;
- // use rdx, rax to convert unsigned to signed comparison
- __ j(below, &below_lbl);
- __ j(above, &above_lbl);
-
- __ xor_(rax, rax); // equal
- __ ret(2 * kPointerSize);
-
- __ bind(&below_lbl);
- __ movq(rax, Immediate(-1));
- __ ret(2 * kPointerSize);
-
- __ bind(&above_lbl);
- __ movq(rax, Immediate(1));
- __ ret(2 * kPointerSize); // rax, rdx were pushed
-
- // Fast negative check for symbol-to-symbol equality.
- __ bind(&check_for_symbols);
- if (cc_ == equal) {
- BranchIfNonSymbol(masm, &call_builtin, rax, kScratchRegister);
- BranchIfNonSymbol(masm, &call_builtin, rdx, kScratchRegister);
-
- // We've already checked for object identity, so if both operands
- // are symbols they aren't equal. Register eax (not rax) already holds a
- // non-zero value, which indicates not equal, so just return.
- __ ret(2 * kPointerSize);
- }
-
- __ bind(&call_builtin);
- // must swap argument order
- __ pop(rcx);
- __ pop(rdx);
- __ pop(rax);
- __ push(rdx);
- __ push(rax);
-
- // Figure out which native to call and setup the arguments.
- Builtins::JavaScript builtin;
- if (cc_ == equal) {
- builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
- } else {
- builtin = Builtins::COMPARE;
- int ncr; // NaN compare result
- if (cc_ == less || cc_ == less_equal) {
- ncr = GREATER;
- } else {
- ASSERT(cc_ == greater || cc_ == greater_equal); // remaining cases
- ncr = LESS;
- }
- __ push(Immediate(Smi::FromInt(ncr)));
- }
-
- // Restore return address on the stack.
- __ push(rcx);
-
- // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
- // tagged as a small integer.
- __ InvokeBuiltin(builtin, JUMP_FUNCTION);
-}
-
-
-void CompareStub::BranchIfNonSymbol(MacroAssembler* masm,
- Label* label,
- Register object,
- Register scratch) {
- __ JumpIfSmi(object, label);
- __ movq(scratch, FieldOperand(object, HeapObject::kMapOffset));
- __ movzxbq(scratch,
- FieldOperand(scratch, Map::kInstanceTypeOffset));
- __ and_(scratch, Immediate(kIsSymbolMask | kIsNotStringMask));
- __ cmpb(scratch, Immediate(kSymbolTag | kStringTag));
- __ j(not_equal, label);
-}
-
-
-// Call the function just below TOS on the stack with the given
-// arguments. The receiver is the TOS.
-void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
- int position) {
- // Push the arguments ("left-to-right") on the stack.
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- Load(args->at(i));
- }
-
- // Record the position for debugging purposes.
- CodeForSourcePosition(position);
-
- // Use the shared code stub to call the function.
- InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
- CallFunctionStub call_function(arg_count, in_loop);
- Result answer = frame_->CallStub(&call_function, arg_count + 1);
- // Restore context and replace function on the stack with the
- // result of the stub invocation.
- frame_->RestoreContextRegister();
- frame_->SetElementAt(0, &answer);
-}
-
-
-void InstanceofStub::Generate(MacroAssembler* masm) {
- // Implements "value instanceof function" operator.
- // Expected input state:
- // rsp[0] : return address
- // rsp[1] : function pointer
- // rsp[2] : value
-
- // Get the object - go slow case if it's a smi.
- Label slow;
- __ movq(rax, Operand(rsp, 2 * kPointerSize));
- __ JumpIfSmi(rax, &slow);
-
- // Check that the left hand is a JS object. Leave its map in rax.
- __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rax);
- __ j(below, &slow);
- __ CmpInstanceType(rax, LAST_JS_OBJECT_TYPE);
- __ j(above, &slow);
-
- // Get the prototype of the function.
- __ movq(rdx, Operand(rsp, 1 * kPointerSize));
- __ TryGetFunctionPrototype(rdx, rbx, &slow);
-
- // Check that the function prototype is a JS object.
- __ JumpIfSmi(rbx, &slow);
- __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, kScratchRegister);
- __ j(below, &slow);
- __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE);
- __ j(above, &slow);
-
- // Register mapping: rax is object map and rbx is function prototype.
- __ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset));
-
- // Loop through the prototype chain looking for the function prototype.
- Label loop, is_instance, is_not_instance;
- __ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex);
- __ bind(&loop);
- __ cmpq(rcx, rbx);
- __ j(equal, &is_instance);
- __ cmpq(rcx, kScratchRegister);
- __ j(equal, &is_not_instance);
- __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
- __ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset));
- __ jmp(&loop);
-
- __ bind(&is_instance);
- __ xor_(rax, rax);
- __ ret(2 * kPointerSize);
-
- __ bind(&is_not_instance);
- __ movq(rax, Immediate(Smi::FromInt(1)));
- __ ret(2 * kPointerSize);
-
- // Slow-case: Go through the JavaScript implementation.
- __ bind(&slow);
- __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
-}
-
-
-void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
- // The displacement is used for skipping the return address and the
- // frame pointer on the stack. It is the offset of the last
- // parameter (if any) relative to the frame pointer.
- static const int kDisplacement = 2 * kPointerSize;
-
- // Check if the calling frame is an arguments adaptor frame.
- Label runtime;
- __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
- __ movq(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
- __ cmpq(rcx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
- __ j(not_equal, &runtime);
- // Value in rcx is Smi encoded.
-
- // Patch the arguments.length and the parameters pointer.
- __ movq(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
- __ movq(Operand(rsp, 1 * kPointerSize), rcx);
- SmiIndex index = masm->SmiToIndex(rcx, rcx, kPointerSizeLog2);
- __ lea(rdx, Operand(rdx, index.reg, index.scale, kDisplacement));
- __ movq(Operand(rsp, 2 * kPointerSize), rdx);
-
- // Do the runtime call to allocate the arguments object.
- __ bind(&runtime);
- Runtime::Function* f = Runtime::FunctionForId(Runtime::kNewArgumentsFast);
- __ TailCallRuntime(ExternalReference(f), 3, f->result_size);
-}
-
-
-void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
- // The key is in rdx and the parameter count is in rax.
-
- // The displacement is used for skipping the frame pointer on the
- // stack. It is the offset of the last parameter (if any) relative
- // to the frame pointer.
- static const int kDisplacement = 1 * kPointerSize;
-
- // Check that the key is a smi.
- Label slow;
- __ JumpIfNotSmi(rdx, &slow);
-
- // Check if the calling frame is an arguments adaptor frame.
- Label adaptor;
- __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
- __ movq(rcx, Operand(rbx, StandardFrameConstants::kContextOffset));
- __ cmpq(rcx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
- __ j(equal, &adaptor);
-
- // Check index against formal parameters count limit passed in
- // through register rax. Use unsigned comparison to get negative
- // check for free.
- __ cmpq(rdx, rax);
- __ j(above_equal, &slow);
-
- // Read the argument from the stack and return it.
- SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
- __ lea(rbx, Operand(rbp, index.reg, index.scale, 0));
- index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
- __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
- __ Ret();
-
- // Arguments adaptor case: Check index against actual arguments
- // limit found in the arguments adaptor frame. Use unsigned
- // comparison to get negative check for free.
- __ bind(&adaptor);
- __ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
- __ cmpq(rdx, rcx);
- __ j(above_equal, &slow);
-
- // Read the argument from the stack and return it.
- index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2);
- __ lea(rbx, Operand(rbx, index.reg, index.scale, 0));
- index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
- __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
- __ Ret();
-
- // Slow-case: Handle non-smi or out-of-bounds access to arguments
- // by calling the runtime system.
- __ bind(&slow);
- __ pop(rbx); // Return address.
- __ push(rdx);
- __ push(rbx);
- Runtime::Function* f =
- Runtime::FunctionForId(Runtime::kGetArgumentsProperty);
- __ TailCallRuntime(ExternalReference(f), 1, f->result_size);
-}
-
-
-void ArgumentsAccessStub::GenerateReadLength(MacroAssembler* masm) {
- // Check if the calling frame is an arguments adaptor frame.
- Label adaptor;
- __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
- __ movq(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
- __ cmpq(rcx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
- __ j(equal, &adaptor);
-
- // Nothing to do: The formal number of parameters has already been
- // passed in register rax by calling function. Just return it.
- __ ret(0);
-
- // Arguments adaptor case: Read the arguments length from the
- // adaptor frame and return it.
- __ bind(&adaptor);
- __ movq(rax, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
- __ ret(0);
-}
-
-
-int CEntryStub::MinorKey() {
- ASSERT(result_size_ <= 2);
-#ifdef _WIN64
- // Simple results returned in rax (using default code).
- // Complex results must be written to address passed as first argument.
- // Use even numbers for minor keys, reserving the odd numbers for
- // CEntryDebugBreakStub.
- return (result_size_ < 2) ? 0 : result_size_ * 2;
-#else
- // Single results returned in rax (both AMD64 and Win64 calling conventions)
- // and a struct of two pointers in rax+rdx (AMD64 calling convention only)
- // by default.
- return 0;
-#endif
-}
-
-
-void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
- // Check that stack should contain next handler, frame pointer, state and
- // return address in that order.
- ASSERT_EQ(StackHandlerConstants::kFPOffset + kPointerSize,
- StackHandlerConstants::kStateOffset);
- ASSERT_EQ(StackHandlerConstants::kStateOffset + kPointerSize,
- StackHandlerConstants::kPCOffset);
-
- ExternalReference handler_address(Top::k_handler_address);
- __ movq(kScratchRegister, handler_address);
- __ movq(rsp, Operand(kScratchRegister, 0));
- // get next in chain
- __ pop(rcx);
- __ movq(Operand(kScratchRegister, 0), rcx);
- __ pop(rbp); // pop frame pointer
- __ pop(rdx); // remove state
-
- // Before returning we restore the context from the frame pointer if not NULL.
- // The frame pointer is NULL in the exception handler of a JS entry frame.
- __ xor_(rsi, rsi); // tentatively set context pointer to NULL
- Label skip;
- __ cmpq(rbp, Immediate(0));
- __ j(equal, &skip);
- __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
- __ bind(&skip);
- __ ret(0);
-}
-
-
-void CEntryStub::GenerateCore(MacroAssembler* masm,
- Label* throw_normal_exception,
- Label* throw_termination_exception,
- Label* throw_out_of_memory_exception,
- StackFrame::Type frame_type,
- bool do_gc,
- bool always_allocate_scope) {
- // rax: result parameter for PerformGC, if any.
- // rbx: pointer to C function (C callee-saved).
- // rbp: frame pointer (restored after C call).
- // rsp: stack pointer (restored after C call).
- // r14: number of arguments including receiver (C callee-saved).
- // r15: pointer to the first argument (C callee-saved).
- // This pointer is reused in LeaveExitFrame(), so it is stored in a
- // callee-saved register.
-
- if (do_gc) {
- // Pass failure code returned from last attempt as first argument to GC.
-#ifdef _WIN64
- __ movq(rcx, rax);
-#else // ! defined(_WIN64)
- __ movq(rdi, rax);
-#endif
- __ movq(kScratchRegister,
- FUNCTION_ADDR(Runtime::PerformGC),
- RelocInfo::RUNTIME_ENTRY);
- __ call(kScratchRegister);
- }
-
- ExternalReference scope_depth =
- ExternalReference::heap_always_allocate_scope_depth();
- if (always_allocate_scope) {
- __ movq(kScratchRegister, scope_depth);
- __ incl(Operand(kScratchRegister, 0));
- }
-
- // Call C function.
-#ifdef _WIN64
- // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9
- // Store Arguments object on stack, below the 4 WIN64 ABI parameter slots.
- __ movq(Operand(rsp, 4 * kPointerSize), r14); // argc.
- __ movq(Operand(rsp, 5 * kPointerSize), r15); // argv.
- if (result_size_ < 2) {
- // Pass a pointer to the Arguments object as the first argument.
- // Return result in single register (rax).
- __ lea(rcx, Operand(rsp, 4 * kPointerSize));
- } else {
- ASSERT_EQ(2, result_size_);
- // Pass a pointer to the result location as the first argument.
- __ lea(rcx, Operand(rsp, 6 * kPointerSize));
- // Pass a pointer to the Arguments object as the second argument.
- __ lea(rdx, Operand(rsp, 4 * kPointerSize));
- }
-
-#else // ! defined(_WIN64)
- // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9.
- __ movq(rdi, r14); // argc.
- __ movq(rsi, r15); // argv.
-#endif
- __ call(rbx);
- // Result is in rax - do not destroy this register!
-
- if (always_allocate_scope) {
- __ movq(kScratchRegister, scope_depth);
- __ decl(Operand(kScratchRegister, 0));
- }
-
- // Check for failure result.
- Label failure_returned;
- ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
- __ lea(rcx, Operand(rax, 1));
- // Lower 2 bits of rcx are 0 iff rax has failure tag.
- __ testl(rcx, Immediate(kFailureTagMask));
- __ j(zero, &failure_returned);
-
- // Exit the JavaScript to C++ exit frame.
- __ LeaveExitFrame(frame_type, result_size_);
- __ ret(0);
-
- // Handling of failure.
- __ bind(&failure_returned);
-
- Label retry;
- // If the returned exception is RETRY_AFTER_GC continue at retry label
- ASSERT(Failure::RETRY_AFTER_GC == 0);
- __ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
- __ j(zero, &retry);
-
- // Special handling of out of memory exceptions.
- __ movq(kScratchRegister, Failure::OutOfMemoryException(), RelocInfo::NONE);
- __ cmpq(rax, kScratchRegister);
- __ j(equal, throw_out_of_memory_exception);
-
- // Retrieve the pending exception and clear the variable.
- ExternalReference pending_exception_address(Top::k_pending_exception_address);
- __ movq(kScratchRegister, pending_exception_address);
- __ movq(rax, Operand(kScratchRegister, 0));
- __ movq(rdx, ExternalReference::the_hole_value_location());
- __ movq(rdx, Operand(rdx, 0));
- __ movq(Operand(kScratchRegister, 0), rdx);
-
- // Special handling of termination exceptions which are uncatchable
- // by javascript code.
- __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex);
- __ j(equal, throw_termination_exception);
-
- // Handle normal exception.
- __ jmp(throw_normal_exception);
-
- // Retry.
- __ bind(&retry);
-}
-
-
-void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
- UncatchableExceptionType type) {
- // Fetch top stack handler.
- ExternalReference handler_address(Top::k_handler_address);
- __ movq(kScratchRegister, handler_address);
- __ movq(rsp, Operand(kScratchRegister, 0));
-
- // Unwind the handlers until the ENTRY handler is found.
- Label loop, done;
- __ bind(&loop);
- // Load the type of the current stack handler.
- const int kStateOffset = StackHandlerConstants::kStateOffset;
- __ cmpq(Operand(rsp, kStateOffset), Immediate(StackHandler::ENTRY));
- __ j(equal, &done);
- // Fetch the next handler in the list.
- const int kNextOffset = StackHandlerConstants::kNextOffset;
- __ movq(rsp, Operand(rsp, kNextOffset));
- __ jmp(&loop);
- __ bind(&done);
-
- // Set the top handler address to next handler past the current ENTRY handler.
- __ movq(kScratchRegister, handler_address);
- __ pop(Operand(kScratchRegister, 0));
-
- if (type == OUT_OF_MEMORY) {
- // Set external caught exception to false.
- ExternalReference external_caught(Top::k_external_caught_exception_address);
- __ movq(rax, Immediate(false));
- __ store_rax(external_caught);
-
- // Set pending exception and rax to out of memory exception.
- ExternalReference pending_exception(Top::k_pending_exception_address);
- __ movq(rax, Failure::OutOfMemoryException(), RelocInfo::NONE);
- __ store_rax(pending_exception);
- }
-
- // Clear the context pointer.
- __ xor_(rsi, rsi);
-
- // Restore registers from handler.
- ASSERT_EQ(StackHandlerConstants::kNextOffset + kPointerSize,
- StackHandlerConstants::kFPOffset);
- __ pop(rbp); // FP
- ASSERT_EQ(StackHandlerConstants::kFPOffset + kPointerSize,
- StackHandlerConstants::kStateOffset);
- __ pop(rdx); // State
-
- ASSERT_EQ(StackHandlerConstants::kStateOffset + kPointerSize,
- StackHandlerConstants::kPCOffset);
- __ ret(0);
-}
-
-
-void CallFunctionStub::Generate(MacroAssembler* masm) {
- Label slow;
-
- // Get the function to call from the stack.
- // +2 ~ receiver, return address
- __ movq(rdi, Operand(rsp, (argc_ + 2) * kPointerSize));
-
- // Check that the function really is a JavaScript function.
- __ JumpIfSmi(rdi, &slow);
- // Goto slow case if we do not have a function.
- __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
- __ j(not_equal, &slow);
-
- // Fast-case: Just invoke the function.
- ParameterCount actual(argc_);
- __ InvokeFunction(rdi, actual, JUMP_FUNCTION);
-
- // Slow-case: Non-function called.
- __ bind(&slow);
- __ Set(rax, argc_);
- __ Set(rbx, 0);
- __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
- Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
- __ Jump(adaptor, RelocInfo::CODE_TARGET);
-}
-
-
-void CEntryStub::GenerateBody(MacroAssembler* masm, bool is_debug_break) {
- // rax: number of arguments including receiver
- // rbx: pointer to C function (C callee-saved)
- // rbp: frame pointer of calling JS frame (restored after C call)
- // rsp: stack pointer (restored after C call)
- // rsi: current context (restored)
-
- // NOTE: Invocations of builtins may return failure objects
- // instead of a proper result. The builtin entry handles
- // this by performing a garbage collection and retrying the
- // builtin once.
-
- StackFrame::Type frame_type = is_debug_break ?
- StackFrame::EXIT_DEBUG :
- StackFrame::EXIT;
-
- // Enter the exit frame that transitions from JavaScript to C++.
- __ EnterExitFrame(frame_type, result_size_);
-
- // rax: Holds the context at this point, but should not be used.
- // On entry to code generated by GenerateCore, it must hold
- // a failure result if the collect_garbage argument to GenerateCore
- // is true. This failure result can be the result of code
- // generated by a previous call to GenerateCore. The value
- // of rax is then passed to Runtime::PerformGC.
- // rbx: pointer to builtin function (C callee-saved).
- // rbp: frame pointer of exit frame (restored after C call).
- // rsp: stack pointer (restored after C call).
- // r14: number of arguments including receiver (C callee-saved).
- // r15: argv pointer (C callee-saved).
-
- Label throw_normal_exception;
- Label throw_termination_exception;
- Label throw_out_of_memory_exception;
-
- // Call into the runtime system.
- GenerateCore(masm,
- &throw_normal_exception,
- &throw_termination_exception,
- &throw_out_of_memory_exception,
- frame_type,
- false,
- false);
-
- // Do space-specific GC and retry runtime call.
- GenerateCore(masm,
- &throw_normal_exception,
- &throw_termination_exception,
- &throw_out_of_memory_exception,
- frame_type,
- true,
- false);
-
- // Do full GC and retry runtime call one final time.
- Failure* failure = Failure::InternalError();
- __ movq(rax, failure, RelocInfo::NONE);
- GenerateCore(masm,
- &throw_normal_exception,
- &throw_termination_exception,
- &throw_out_of_memory_exception,
- frame_type,
- true,
- true);
-
- __ bind(&throw_out_of_memory_exception);
- GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
-
- __ bind(&throw_termination_exception);
- GenerateThrowUncatchable(masm, TERMINATION);
-
- __ bind(&throw_normal_exception);
- GenerateThrowTOS(masm);
-}
-
-
-void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
- Label invoke, exit;
-#ifdef ENABLE_LOGGING_AND_PROFILING
- Label not_outermost_js, not_outermost_js_2;
-#endif
-
- // Setup frame.
- __ push(rbp);
- __ movq(rbp, rsp);
-
- // Push the stack frame type marker twice.
- int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
- __ push(Immediate(Smi::FromInt(marker))); // context slot
- __ push(Immediate(Smi::FromInt(marker))); // function slot
- // Save callee-saved registers (X64 calling conventions).
- __ push(r12);
- __ push(r13);
- __ push(r14);
- __ push(r15);
- __ push(rdi);
- __ push(rsi);
- __ push(rbx);
- // TODO(X64): Push XMM6-XMM15 (low 64 bits) as well, or make them
- // callee-save in JS code as well.
-
- // Save copies of the top frame descriptor on the stack.
- ExternalReference c_entry_fp(Top::k_c_entry_fp_address);
- __ load_rax(c_entry_fp);
- __ push(rax);
-
-#ifdef ENABLE_LOGGING_AND_PROFILING
- // If this is the outermost JS call, set js_entry_sp value.
- ExternalReference js_entry_sp(Top::k_js_entry_sp_address);
- __ load_rax(js_entry_sp);
- __ testq(rax, rax);
- __ j(not_zero, &not_outermost_js);
- __ movq(rax, rbp);
- __ store_rax(js_entry_sp);
- __ bind(&not_outermost_js);
-#endif
-
- // Call a faked try-block that does the invoke.
- __ call(&invoke);
-
- // Caught exception: Store result (exception) in the pending
- // exception field in the JSEnv and return a failure sentinel.
- ExternalReference pending_exception(Top::k_pending_exception_address);
- __ store_rax(pending_exception);
- __ movq(rax, Failure::Exception(), RelocInfo::NONE);
- __ jmp(&exit);
-
- // Invoke: Link this frame into the handler chain.
- __ bind(&invoke);
- __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
-
- // Clear any pending exceptions.
- __ load_rax(ExternalReference::the_hole_value_location());
- __ store_rax(pending_exception);
-
- // Fake a receiver (NULL).
- __ push(Immediate(0)); // receiver
-
- // Invoke the function by calling through JS entry trampoline
- // builtin and pop the faked function when we return. We load the address
- // from an external reference instead of inlining the call target address
- // directly in the code, because the builtin stubs may not have been
- // generated yet at the time this code is generated.
- if (is_construct) {
- ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
- __ load_rax(construct_entry);
- } else {
- ExternalReference entry(Builtins::JSEntryTrampoline);
- __ load_rax(entry);
- }
- __ lea(kScratchRegister, FieldOperand(rax, Code::kHeaderSize));
- __ call(kScratchRegister);
-
- // Unlink this frame from the handler chain.
- __ movq(kScratchRegister, ExternalReference(Top::k_handler_address));
- __ pop(Operand(kScratchRegister, 0));
- // Pop next_sp.
- __ addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize));
-
-#ifdef ENABLE_LOGGING_AND_PROFILING
- // If current EBP value is the same as js_entry_sp value, it means that
- // the current function is the outermost.
- __ movq(kScratchRegister, js_entry_sp);
- __ cmpq(rbp, Operand(kScratchRegister, 0));
- __ j(not_equal, &not_outermost_js_2);
- __ movq(Operand(kScratchRegister, 0), Immediate(0));
- __ bind(&not_outermost_js_2);
-#endif
-
- // Restore the top frame descriptor from the stack.
- __ bind(&exit);
- __ movq(kScratchRegister, ExternalReference(Top::k_c_entry_fp_address));
- __ pop(Operand(kScratchRegister, 0));
-
- // Restore callee-saved registers (X64 conventions).
- __ pop(rbx);
- __ pop(rsi);
- __ pop(rdi);
- __ pop(r15);
- __ pop(r14);
- __ pop(r13);
- __ pop(r12);
- __ addq(rsp, Immediate(2 * kPointerSize)); // remove markers
-
- // Restore frame pointer and return.
- __ pop(rbp);
- __ ret(0);
-}
-
-
-// -----------------------------------------------------------------------------
-// Implementation of stubs.
-
-// Stub classes have public member named masm, not masm_.
-
-void StackCheckStub::Generate(MacroAssembler* masm) {
- // Because builtins always remove the receiver from the stack, we
- // have to fake one to avoid underflowing the stack. The receiver
- // must be inserted below the return address on the stack so we
- // temporarily store that in a register.
- __ pop(rax);
- __ push(Immediate(Smi::FromInt(0)));
- __ push(rax);
-
- // Do tail-call to runtime routine.
- Runtime::Function* f = Runtime::FunctionForId(Runtime::kStackGuard);
- __ TailCallRuntime(ExternalReference(f), 1, f->result_size);
-}
-
-
-void FloatingPointHelper::AllocateHeapNumber(MacroAssembler* masm,
- Label* need_gc,
- Register scratch,
- Register result) {
- // Allocate heap number in new space.
- __ AllocateInNewSpace(HeapNumber::kSize,
- result,
- scratch,
- no_reg,
- need_gc,
- TAG_OBJECT);
-
- // Set the map and tag the result.
- __ LoadRoot(kScratchRegister, Heap::kHeapNumberMapRootIndex);
- __ movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
-}
-
-
-void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
- Register number) {
- Label load_smi, done;
-
- __ JumpIfSmi(number, &load_smi);
- __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
- __ jmp(&done);
-
- __ bind(&load_smi);
- __ SmiToInteger32(number, number);
- __ push(number);
- __ fild_s(Operand(rsp, 0));
- __ pop(number);
-
- __ bind(&done);
-}
-
-
-void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
- Register src,
- XMMRegister dst) {
- Label load_smi, done;
-
- __ JumpIfSmi(src, &load_smi);
- __ movsd(dst, FieldOperand(src, HeapNumber::kValueOffset));
- __ jmp(&done);
-
- __ bind(&load_smi);
- __ SmiToInteger32(src, src);
- __ cvtlsi2sd(dst, src);
-
- __ bind(&done);
-}
-
-
-void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm,
- XMMRegister dst1,
- XMMRegister dst2) {
- __ movq(kScratchRegister, Operand(rsp, 2 * kPointerSize));
- LoadFloatOperand(masm, kScratchRegister, dst1);
- __ movq(kScratchRegister, Operand(rsp, 1 * kPointerSize));
- LoadFloatOperand(masm, kScratchRegister, dst2);
-}
-
-
-void FloatingPointHelper::LoadInt32Operand(MacroAssembler* masm,
- const Operand& src,
- Register dst) {
- // TODO(X64): Convert number operands to int32 values.
- // Don't convert a Smi to a double first.
- UNIMPLEMENTED();
-}
-
-
-void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm) {
- Label load_smi_1, load_smi_2, done_load_1, done;
- __ movq(kScratchRegister, Operand(rsp, 2 * kPointerSize));
- __ JumpIfSmi(kScratchRegister, &load_smi_1);
- __ fld_d(FieldOperand(kScratchRegister, HeapNumber::kValueOffset));
- __ bind(&done_load_1);
-
- __ movq(kScratchRegister, Operand(rsp, 1 * kPointerSize));
- __ JumpIfSmi(kScratchRegister, &load_smi_2);
- __ fld_d(FieldOperand(kScratchRegister, HeapNumber::kValueOffset));
- __ jmp(&done);
-
- __ bind(&load_smi_1);
- __ SmiToInteger32(kScratchRegister, kScratchRegister);
- __ push(kScratchRegister);
- __ fild_s(Operand(rsp, 0));
- __ pop(kScratchRegister);
- __ jmp(&done_load_1);
-
- __ bind(&load_smi_2);
- __ SmiToInteger32(kScratchRegister, kScratchRegister);
- __ push(kScratchRegister);
- __ fild_s(Operand(rsp, 0));
- __ pop(kScratchRegister);
-
- __ bind(&done);
-}
-
-
-void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm,
- Register lhs,
- Register rhs) {
- Label load_smi_lhs, load_smi_rhs, done_load_lhs, done;
- __ JumpIfSmi(lhs, &load_smi_lhs);
- __ fld_d(FieldOperand(lhs, HeapNumber::kValueOffset));
- __ bind(&done_load_lhs);
-
- __ JumpIfSmi(rhs, &load_smi_rhs);
- __ fld_d(FieldOperand(rhs, HeapNumber::kValueOffset));
- __ jmp(&done);
-
- __ bind(&load_smi_lhs);
- __ SmiToInteger64(kScratchRegister, lhs);
- __ push(kScratchRegister);
- __ fild_d(Operand(rsp, 0));
- __ pop(kScratchRegister);
- __ jmp(&done_load_lhs);
-
- __ bind(&load_smi_rhs);
- __ SmiToInteger64(kScratchRegister, rhs);
- __ push(kScratchRegister);
- __ fild_d(Operand(rsp, 0));
- __ pop(kScratchRegister);
-
- __ bind(&done);
-}
-
-
-void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
- Label* non_float) {
- Label test_other, done;
- // Test if both operands are numbers (heap_numbers or smis).
- // If not, jump to label non_float.
- __ JumpIfSmi(rdx, &test_other); // argument in rdx is OK
- __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset), Factory::heap_number_map());
- __ j(not_equal, non_float); // The argument in rdx is not a number.
-
- __ bind(&test_other);
- __ JumpIfSmi(rax, &done); // argument in rax is OK
- __ Cmp(FieldOperand(rax, HeapObject::kMapOffset), Factory::heap_number_map());
- __ j(not_equal, non_float); // The argument in rax is not a number.
-
- // Fall-through: Both operands are numbers.
- __ bind(&done);
-}
-
-
-const char* GenericBinaryOpStub::GetName() {
- switch (op_) {
- case Token::ADD: return "GenericBinaryOpStub_ADD";
- case Token::SUB: return "GenericBinaryOpStub_SUB";
- case Token::MUL: return "GenericBinaryOpStub_MUL";
- case Token::DIV: return "GenericBinaryOpStub_DIV";
- case Token::BIT_OR: return "GenericBinaryOpStub_BIT_OR";
- case Token::BIT_AND: return "GenericBinaryOpStub_BIT_AND";
- case Token::BIT_XOR: return "GenericBinaryOpStub_BIT_XOR";
- case Token::SAR: return "GenericBinaryOpStub_SAR";
- case Token::SHL: return "GenericBinaryOpStub_SHL";
- case Token::SHR: return "GenericBinaryOpStub_SHR";
- default: return "GenericBinaryOpStub";
- }
-}
-
-
-void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
- // Perform fast-case smi code for the operation (rax <op> rbx) and
- // leave result in register rax.
-
- // Smi check both operands.
- __ JumpIfNotBothSmi(rax, rbx, slow);
-
- switch (op_) {
- case Token::ADD: {
- __ SmiAdd(rax, rax, rbx, slow);
- break;
- }
-
- case Token::SUB: {
- __ SmiSub(rax, rax, rbx, slow);
- break;
- }
-
- case Token::MUL:
- __ SmiMul(rax, rax, rbx, slow);
- break;
-
- case Token::DIV:
- __ SmiDiv(rax, rax, rbx, slow);
- break;
-
- case Token::MOD:
- __ SmiMod(rax, rax, rbx, slow);
- break;
-
- case Token::BIT_OR:
- __ SmiOr(rax, rax, rbx);
- break;
-
- case Token::BIT_AND:
- __ SmiAnd(rax, rax, rbx);
- break;
-
- case Token::BIT_XOR:
- __ SmiXor(rax, rax, rbx);
- break;
-
- case Token::SHL:
- case Token::SHR:
- case Token::SAR:
- // Move the second operand into register ecx.
- __ movl(rcx, rbx);
- // Perform the operation.
- switch (op_) {
- case Token::SAR:
- __ SmiShiftArithmeticRight(rax, rax, rbx);
- break;
- case Token::SHR:
- __ SmiShiftLogicalRight(rax, rax, rbx, slow);
- break;
- case Token::SHL:
- __ SmiShiftLeft(rax, rax, rbx, slow);
- break;
- default:
- UNREACHABLE();
- }
- break;
-
- default:
- UNREACHABLE();
- break;
- }
-}
-
-
-void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
- Label call_runtime;
- if (flags_ == SMI_CODE_IN_STUB) {
- // The fast case smi code wasn't inlined in the stub caller
- // code. Generate it here to speed up common operations.
- Label slow;
- __ movq(rbx, Operand(rsp, 1 * kPointerSize)); // get y
- __ movq(rax, Operand(rsp, 2 * kPointerSize)); // get x
- GenerateSmiCode(masm, &slow);
- __ ret(2 * kPointerSize); // remove both operands
-
- // Too bad. The fast case smi code didn't succeed.
- __ bind(&slow);
- }
-
- // Setup registers.
- __ movq(rax, Operand(rsp, 1 * kPointerSize)); // get y
- __ movq(rdx, Operand(rsp, 2 * kPointerSize)); // get x
-
- // Floating point case.
- switch (op_) {
- case Token::ADD:
- case Token::SUB:
- case Token::MUL:
- case Token::DIV: {
- // rax: y
- // rdx: x
- FloatingPointHelper::CheckFloatOperands(masm, &call_runtime);
- // Fast-case: Both operands are numbers.
- // Allocate a heap number, if needed.
- Label skip_allocation;
- switch (mode_) {
- case OVERWRITE_LEFT:
- __ movq(rax, rdx);
- // Fall through!
- case OVERWRITE_RIGHT:
- // If the argument in rax is already an object, we skip the
- // allocation of a heap number.
- __ JumpIfNotSmi(rax, &skip_allocation);
- // Fall through!
- case NO_OVERWRITE:
- FloatingPointHelper::AllocateHeapNumber(masm,
- &call_runtime,
- rcx,
- rax);
- __ bind(&skip_allocation);
- break;
- default: UNREACHABLE();
- }
- // xmm4 and xmm5 are volatile XMM registers.
- FloatingPointHelper::LoadFloatOperands(masm, xmm4, xmm5);
-
- switch (op_) {
- case Token::ADD: __ addsd(xmm4, xmm5); break;
- case Token::SUB: __ subsd(xmm4, xmm5); break;
- case Token::MUL: __ mulsd(xmm4, xmm5); break;
- case Token::DIV: __ divsd(xmm4, xmm5); break;
- default: UNREACHABLE();
- }
- __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm4);
- __ ret(2 * kPointerSize);
- }
- case Token::MOD: {
- // For MOD we go directly to runtime in the non-smi case.
- break;
- }
- case Token::BIT_OR:
- case Token::BIT_AND:
- case Token::BIT_XOR:
- case Token::SAR:
- case Token::SHL:
- case Token::SHR: {
- FloatingPointHelper::CheckFloatOperands(masm, &call_runtime);
- // TODO(X64): Don't convert a Smi to float and then back to int32
- // afterwards.
- FloatingPointHelper::LoadFloatOperands(masm);
-
- Label skip_allocation, non_smi_result, operand_conversion_failure;
-
- // Reserve space for converted numbers.
- __ subq(rsp, Immediate(2 * kPointerSize));
-
- if (use_sse3_) {
- // Truncate the operands to 32-bit integers and check for
- // exceptions in doing so.
- CpuFeatures::Scope scope(CpuFeatures::SSE3);
- __ fisttp_s(Operand(rsp, 0 * kPointerSize));
- __ fisttp_s(Operand(rsp, 1 * kPointerSize));
- __ fnstsw_ax();
- __ testl(rax, Immediate(1));
- __ j(not_zero, &operand_conversion_failure);
- } else {
- // Check if right operand is int32.
- __ fist_s(Operand(rsp, 0 * kPointerSize));
- __ fild_s(Operand(rsp, 0 * kPointerSize));
- __ fucompp();
- __ fnstsw_ax();
- if (CpuFeatures::IsSupported(CpuFeatures::SAHF)) {
- __ sahf();
- __ j(not_zero, &operand_conversion_failure);
- __ j(parity_even, &operand_conversion_failure);
- } else {
- __ and_(rax, Immediate(0x4400));
- __ cmpl(rax, Immediate(0x4000));
- __ j(not_zero, &operand_conversion_failure);
- }
- // Check if left operand is int32.
- __ fist_s(Operand(rsp, 1 * kPointerSize));
- __ fild_s(Operand(rsp, 1 * kPointerSize));
- __ fucompp();
- __ fnstsw_ax();
- if (CpuFeatures::IsSupported(CpuFeatures::SAHF)) {
- __ sahf();
- __ j(not_zero, &operand_conversion_failure);
- __ j(parity_even, &operand_conversion_failure);
- } else {
- __ and_(rax, Immediate(0x4400));
- __ cmpl(rax, Immediate(0x4000));
- __ j(not_zero, &operand_conversion_failure);
- }
- }
-
- // Get int32 operands and perform bitop.
- __ pop(rcx);
- __ pop(rax);
- switch (op_) {
- case Token::BIT_OR: __ or_(rax, rcx); break;
- case Token::BIT_AND: __ and_(rax, rcx); break;
- case Token::BIT_XOR: __ xor_(rax, rcx); break;
- case Token::SAR: __ sarl(rax); break;
- case Token::SHL: __ shll(rax); break;
- case Token::SHR: __ shrl(rax); break;
- default: UNREACHABLE();
- }
- if (op_ == Token::SHR) {
- // Check if result is non-negative and fits in a smi.
- __ testl(rax, Immediate(0xc0000000));
- __ j(not_zero, &non_smi_result);
- } else {
- // Check if result fits in a smi.
- __ cmpl(rax, Immediate(0xc0000000));
- __ j(negative, &non_smi_result);
- }
- // Tag smi result and return.
- __ Integer32ToSmi(rax, rax);
- __ ret(2 * kPointerSize);
-
- // All ops except SHR return a signed int32 that we load in a HeapNumber.
- if (op_ != Token::SHR) {
- __ bind(&non_smi_result);
- // Allocate a heap number if needed.
- __ movsxlq(rbx, rax); // rbx: sign extended 32-bit result
- switch (mode_) {
- case OVERWRITE_LEFT:
- case OVERWRITE_RIGHT:
- // If the operand was an object, we skip the
- // allocation of a heap number.
- __ movq(rax, Operand(rsp, mode_ == OVERWRITE_RIGHT ?
- 1 * kPointerSize : 2 * kPointerSize));
- __ JumpIfNotSmi(rax, &skip_allocation);
- // Fall through!
- case NO_OVERWRITE:
- FloatingPointHelper::AllocateHeapNumber(masm, &call_runtime,
- rcx, rax);
- __ bind(&skip_allocation);
- break;
- default: UNREACHABLE();
- }
- // Store the result in the HeapNumber and return.
- __ movq(Operand(rsp, 1 * kPointerSize), rbx);
- __ fild_s(Operand(rsp, 1 * kPointerSize));
- __ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset));
- __ ret(2 * kPointerSize);
- }
-
- // Clear the FPU exception flag and reset the stack before calling
- // the runtime system.
- __ bind(&operand_conversion_failure);
- __ addq(rsp, Immediate(2 * kPointerSize));
- if (use_sse3_) {
- // If we've used the SSE3 instructions for truncating the
- // floating point values to integers and it failed, we have a
- // pending #IA exception. Clear it.
- __ fnclex();
- } else {
- // The non-SSE3 variant does early bailout if the right
- // operand isn't a 32-bit integer, so we may have a single
- // value on the FPU stack we need to get rid of.
- __ ffree(0);
- }
-
- // SHR should return uint32 - go to runtime for non-smi/negative result.
- if (op_ == Token::SHR) {
- __ bind(&non_smi_result);
- }
- __ movq(rax, Operand(rsp, 1 * kPointerSize));
- __ movq(rdx, Operand(rsp, 2 * kPointerSize));
- break;
- }
- default: UNREACHABLE(); break;
- }
-
- // If all else fails, use the runtime system to get the correct
- // result.
- __ bind(&call_runtime);
- switch (op_) {
- case Token::ADD:
- __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
- break;
- case Token::SUB:
- __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
- break;
- case Token::MUL:
- __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
- break;
- case Token::DIV:
- __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
- break;
- case Token::MOD:
- __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
- break;
- case Token::BIT_OR:
- __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
- break;
- case Token::BIT_AND:
- __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
- break;
- case Token::BIT_XOR:
- __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
- break;
- case Token::SAR:
- __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
- break;
- case Token::SHL:
- __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
- break;
- case Token::SHR:
- __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
- break;
- default:
- UNREACHABLE();
- }
-}
-
-
-int CompareStub::MinorKey() {
- // Encode the two parameters in a unique 16 bit value.
- ASSERT(static_cast<unsigned>(cc_) < (1 << 15));
- return (static_cast<unsigned>(cc_) << 1) | (strict_ ? 1 : 0);
-}
-
-
-#undef __
-
-} } // namespace v8::internal