diff options
Diffstat (limited to 'JavaScriptCore/tests/mozilla/ecma/Expressions/11.6.3.js')
-rw-r--r-- | JavaScriptCore/tests/mozilla/ecma/Expressions/11.6.3.js | 116 |
1 files changed, 116 insertions, 0 deletions
diff --git a/JavaScriptCore/tests/mozilla/ecma/Expressions/11.6.3.js b/JavaScriptCore/tests/mozilla/ecma/Expressions/11.6.3.js new file mode 100644 index 0000000..91af1b7 --- /dev/null +++ b/JavaScriptCore/tests/mozilla/ecma/Expressions/11.6.3.js @@ -0,0 +1,116 @@ +/* The contents of this file are subject to the Netscape Public + * License Version 1.1 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.mozilla.org/NPL/ + * + * Software distributed under the License is distributed on an "AS + * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or + * implied. See the License for the specific language governing + * rights and limitations under the License. + * + * The Original Code is Mozilla Communicator client code, released March + * 31, 1998. + * + * The Initial Developer of the Original Code is Netscape Communications + * Corporation. Portions created by Netscape are + * Copyright (C) 1998 Netscape Communications Corporation. All + * Rights Reserved. + * + * Contributor(s): + * + */ +/** + File Name: 11.6.3.js + ECMA Section: 11.6.3 Applying the additive operators + (+, -) to numbers + Description: + The + operator performs addition when applied to two operands of numeric + type, producing the sum of the operands. The - operator performs + subtraction, producing the difference of two numeric operands. + + Addition is a commutative operation, but not always associative. + + The result of an addition is determined using the rules of IEEE 754 + double-precision arithmetic: + + If either operand is NaN, the result is NaN. + The sum of two infinities of opposite sign is NaN. + The sum of two infinities of the same sign is the infinity of that sign. + The sum of an infinity and a finite value is equal to the infinite operand. + The sum of two negative zeros is 0. The sum of two positive zeros, or of + two zeros of opposite sign, is +0. + The sum of a zero and a nonzero finite value is equal to the nonzero + operand. + The sum of two nonzero finite values of the same magnitude and opposite + sign is +0. + In the remaining cases, where neither an infinity, nor a zero, nor NaN is + involved, and the operands have the same sign or have different + magnitudes, the sum is computed and rounded to the nearest + representable value using IEEE 754 round-to-nearest mode. If the + magnitude is too large to represent, the operation overflows and + the result is then an infinity of appropriate sign. The ECMAScript + language requires support of gradual underflow as defined by IEEE 754. + + Author: christine@netscape.com + Date: 12 november 1997 +*/ + var SECTION = "11.6.3"; + var VERSION = "ECMA_1"; + startTest(); + var testcases = getTestCases(); + + writeHeaderToLog( SECTION + " Applying the additive operators (+,-) to numbers"); + test(); + +function test() { + for ( tc=0; tc < testcases.length; tc++ ) { + testcases[tc].passed = writeTestCaseResult( + testcases[tc].expect, + testcases[tc].actual, + testcases[tc].description +" = "+ + testcases[tc].actual ); + + testcases[tc].reason += ( testcases[tc].passed ) ? "" : "wrong value "; + } + stopTest(); + return ( testcases ); +} +function getTestCases() { + var array = new Array(); + var item = 0; + + array[item++] = new TestCase( SECTION, "Number.NaN + 1", Number.NaN, Number.NaN + 1 ); + array[item++] = new TestCase( SECTION, "1 + Number.NaN", Number.NaN, 1 + Number.NaN ); + + array[item++] = new TestCase( SECTION, "Number.NaN - 1", Number.NaN, Number.NaN - 1 ); + array[item++] = new TestCase( SECTION, "1 - Number.NaN", Number.NaN, 1 - Number.NaN ); + + array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY + Number.POSITIVE_INFINITY", Number.POSITIVE_INFINITY, Number.POSITIVE_INFINITY + Number.POSITIVE_INFINITY); + array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY + Number.NEGATIVE_INFINITY", Number.NEGATIVE_INFINITY, Number.NEGATIVE_INFINITY + Number.NEGATIVE_INFINITY); + + array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY + Number.NEGATIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY + Number.NEGATIVE_INFINITY); + array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY + Number.POSITIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY + Number.POSITIVE_INFINITY); + + array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY - Number.POSITIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY - Number.POSITIVE_INFINITY); + array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY - Number.NEGATIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY - Number.NEGATIVE_INFINITY); + + array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY - Number.NEGATIVE_INFINITY", Number.POSITIVE_INFINITY, Number.POSITIVE_INFINITY - Number.NEGATIVE_INFINITY); + array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY - Number.POSITIVE_INFINITY", Number.NEGATIVE_INFINITY, Number.NEGATIVE_INFINITY - Number.POSITIVE_INFINITY); + + array[item++] = new TestCase( SECTION, "-0 + -0", -0, -0 + -0 ); + array[item++] = new TestCase( SECTION, "-0 - 0", -0, -0 - 0 ); + + array[item++] = new TestCase( SECTION, "0 + 0", 0, 0 + 0 ); + array[item++] = new TestCase( SECTION, "0 + -0", 0, 0 + -0 ); + array[item++] = new TestCase( SECTION, "0 - -0", 0, 0 - -0 ); + array[item++] = new TestCase( SECTION, "0 - 0", 0, 0 - 0 ); + array[item++] = new TestCase( SECTION, "-0 - -0", 0, -0 - -0 ); + array[item++] = new TestCase( SECTION, "-0 + 0", 0, -0 + 0 ); + + array[item++] = new TestCase( SECTION, "Number.MAX_VALUE - Number.MAX_VALUE", 0, Number.MAX_VALUE - Number.MAX_VALUE ); + array[item++] = new TestCase( SECTION, "1/Number.MAX_VALUE - 1/Number.MAX_VALUE", 0, 1/Number.MAX_VALUE - 1/Number.MAX_VALUE ); + + array[item++] = new TestCase( SECTION, "Number.MIN_VALUE - Number.MIN_VALUE", 0, Number.MIN_VALUE - Number.MIN_VALUE ); + + return ( array ); +} |