diff options
Diffstat (limited to 'JavaScriptCore/tests/mozilla/ecma/Expressions/11.6.3.js')
-rw-r--r-- | JavaScriptCore/tests/mozilla/ecma/Expressions/11.6.3.js | 116 |
1 files changed, 0 insertions, 116 deletions
diff --git a/JavaScriptCore/tests/mozilla/ecma/Expressions/11.6.3.js b/JavaScriptCore/tests/mozilla/ecma/Expressions/11.6.3.js deleted file mode 100644 index 91af1b7..0000000 --- a/JavaScriptCore/tests/mozilla/ecma/Expressions/11.6.3.js +++ /dev/null @@ -1,116 +0,0 @@ -/* The contents of this file are subject to the Netscape Public - * License Version 1.1 (the "License"); you may not use this file - * except in compliance with the License. You may obtain a copy of - * the License at http://www.mozilla.org/NPL/ - * - * Software distributed under the License is distributed on an "AS - * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or - * implied. See the License for the specific language governing - * rights and limitations under the License. - * - * The Original Code is Mozilla Communicator client code, released March - * 31, 1998. - * - * The Initial Developer of the Original Code is Netscape Communications - * Corporation. Portions created by Netscape are - * Copyright (C) 1998 Netscape Communications Corporation. All - * Rights Reserved. - * - * Contributor(s): - * - */ -/** - File Name: 11.6.3.js - ECMA Section: 11.6.3 Applying the additive operators - (+, -) to numbers - Description: - The + operator performs addition when applied to two operands of numeric - type, producing the sum of the operands. The - operator performs - subtraction, producing the difference of two numeric operands. - - Addition is a commutative operation, but not always associative. - - The result of an addition is determined using the rules of IEEE 754 - double-precision arithmetic: - - If either operand is NaN, the result is NaN. - The sum of two infinities of opposite sign is NaN. - The sum of two infinities of the same sign is the infinity of that sign. - The sum of an infinity and a finite value is equal to the infinite operand. - The sum of two negative zeros is 0. The sum of two positive zeros, or of - two zeros of opposite sign, is +0. - The sum of a zero and a nonzero finite value is equal to the nonzero - operand. - The sum of two nonzero finite values of the same magnitude and opposite - sign is +0. - In the remaining cases, where neither an infinity, nor a zero, nor NaN is - involved, and the operands have the same sign or have different - magnitudes, the sum is computed and rounded to the nearest - representable value using IEEE 754 round-to-nearest mode. If the - magnitude is too large to represent, the operation overflows and - the result is then an infinity of appropriate sign. The ECMAScript - language requires support of gradual underflow as defined by IEEE 754. - - Author: christine@netscape.com - Date: 12 november 1997 -*/ - var SECTION = "11.6.3"; - var VERSION = "ECMA_1"; - startTest(); - var testcases = getTestCases(); - - writeHeaderToLog( SECTION + " Applying the additive operators (+,-) to numbers"); - test(); - -function test() { - for ( tc=0; tc < testcases.length; tc++ ) { - testcases[tc].passed = writeTestCaseResult( - testcases[tc].expect, - testcases[tc].actual, - testcases[tc].description +" = "+ - testcases[tc].actual ); - - testcases[tc].reason += ( testcases[tc].passed ) ? "" : "wrong value "; - } - stopTest(); - return ( testcases ); -} -function getTestCases() { - var array = new Array(); - var item = 0; - - array[item++] = new TestCase( SECTION, "Number.NaN + 1", Number.NaN, Number.NaN + 1 ); - array[item++] = new TestCase( SECTION, "1 + Number.NaN", Number.NaN, 1 + Number.NaN ); - - array[item++] = new TestCase( SECTION, "Number.NaN - 1", Number.NaN, Number.NaN - 1 ); - array[item++] = new TestCase( SECTION, "1 - Number.NaN", Number.NaN, 1 - Number.NaN ); - - array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY + Number.POSITIVE_INFINITY", Number.POSITIVE_INFINITY, Number.POSITIVE_INFINITY + Number.POSITIVE_INFINITY); - array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY + Number.NEGATIVE_INFINITY", Number.NEGATIVE_INFINITY, Number.NEGATIVE_INFINITY + Number.NEGATIVE_INFINITY); - - array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY + Number.NEGATIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY + Number.NEGATIVE_INFINITY); - array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY + Number.POSITIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY + Number.POSITIVE_INFINITY); - - array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY - Number.POSITIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY - Number.POSITIVE_INFINITY); - array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY - Number.NEGATIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY - Number.NEGATIVE_INFINITY); - - array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY - Number.NEGATIVE_INFINITY", Number.POSITIVE_INFINITY, Number.POSITIVE_INFINITY - Number.NEGATIVE_INFINITY); - array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY - Number.POSITIVE_INFINITY", Number.NEGATIVE_INFINITY, Number.NEGATIVE_INFINITY - Number.POSITIVE_INFINITY); - - array[item++] = new TestCase( SECTION, "-0 + -0", -0, -0 + -0 ); - array[item++] = new TestCase( SECTION, "-0 - 0", -0, -0 - 0 ); - - array[item++] = new TestCase( SECTION, "0 + 0", 0, 0 + 0 ); - array[item++] = new TestCase( SECTION, "0 + -0", 0, 0 + -0 ); - array[item++] = new TestCase( SECTION, "0 - -0", 0, 0 - -0 ); - array[item++] = new TestCase( SECTION, "0 - 0", 0, 0 - 0 ); - array[item++] = new TestCase( SECTION, "-0 - -0", 0, -0 - -0 ); - array[item++] = new TestCase( SECTION, "-0 + 0", 0, -0 + 0 ); - - array[item++] = new TestCase( SECTION, "Number.MAX_VALUE - Number.MAX_VALUE", 0, Number.MAX_VALUE - Number.MAX_VALUE ); - array[item++] = new TestCase( SECTION, "1/Number.MAX_VALUE - 1/Number.MAX_VALUE", 0, 1/Number.MAX_VALUE - 1/Number.MAX_VALUE ); - - array[item++] = new TestCase( SECTION, "Number.MIN_VALUE - Number.MIN_VALUE", 0, Number.MIN_VALUE - Number.MIN_VALUE ); - - return ( array ); -} |