summaryrefslogtreecommitdiffstats
path: root/Source/JavaScriptCore/jit/ExecutableAllocatorFixedVMPool.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Source/JavaScriptCore/jit/ExecutableAllocatorFixedVMPool.cpp')
-rw-r--r--Source/JavaScriptCore/jit/ExecutableAllocatorFixedVMPool.cpp470
1 files changed, 470 insertions, 0 deletions
diff --git a/Source/JavaScriptCore/jit/ExecutableAllocatorFixedVMPool.cpp b/Source/JavaScriptCore/jit/ExecutableAllocatorFixedVMPool.cpp
new file mode 100644
index 0000000..e280b2d
--- /dev/null
+++ b/Source/JavaScriptCore/jit/ExecutableAllocatorFixedVMPool.cpp
@@ -0,0 +1,470 @@
+/*
+ * Copyright (C) 2009 Apple Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "config.h"
+
+#include "ExecutableAllocator.h"
+
+#if ENABLE(EXECUTABLE_ALLOCATOR_FIXED)
+
+#include <errno.h>
+
+#include "TCSpinLock.h"
+#include <sys/mman.h>
+#include <unistd.h>
+#include <wtf/AVLTree.h>
+#include <wtf/PageReservation.h>
+#include <wtf/VMTags.h>
+
+#if CPU(X86_64)
+ // These limits suitable on 64-bit platforms (particularly x86-64, where we require all jumps to have a 2Gb max range).
+ #define VM_POOL_SIZE (2u * 1024u * 1024u * 1024u) // 2Gb
+ #define COALESCE_LIMIT (16u * 1024u * 1024u) // 16Mb
+#else
+ // These limits are hopefully sensible on embedded platforms.
+ #define VM_POOL_SIZE (32u * 1024u * 1024u) // 32Mb
+ #define COALESCE_LIMIT (4u * 1024u * 1024u) // 4Mb
+#endif
+
+using namespace WTF;
+
+namespace JSC {
+
+static size_t committedBytesCount = 0;
+static SpinLock spinlock = SPINLOCK_INITIALIZER;
+
+// FreeListEntry describes a free chunk of memory, stored in the freeList.
+struct FreeListEntry {
+ FreeListEntry(void* pointer, size_t size)
+ : pointer(pointer)
+ , size(size)
+ , nextEntry(0)
+ , less(0)
+ , greater(0)
+ , balanceFactor(0)
+ {
+ }
+
+ // All entries of the same size share a single entry
+ // in the AVLTree, and are linked together in a linked
+ // list, using nextEntry.
+ void* pointer;
+ size_t size;
+ FreeListEntry* nextEntry;
+
+ // These fields are used by AVLTree.
+ FreeListEntry* less;
+ FreeListEntry* greater;
+ int balanceFactor;
+};
+
+// Abstractor class for use in AVLTree.
+// Nodes in the AVLTree are of type FreeListEntry, keyed on
+// (and thus sorted by) their size.
+struct AVLTreeAbstractorForFreeList {
+ typedef FreeListEntry* handle;
+ typedef int32_t size;
+ typedef size_t key;
+
+ handle get_less(handle h) { return h->less; }
+ void set_less(handle h, handle lh) { h->less = lh; }
+ handle get_greater(handle h) { return h->greater; }
+ void set_greater(handle h, handle gh) { h->greater = gh; }
+ int get_balance_factor(handle h) { return h->balanceFactor; }
+ void set_balance_factor(handle h, int bf) { h->balanceFactor = bf; }
+
+ static handle null() { return 0; }
+
+ int compare_key_key(key va, key vb) { return va - vb; }
+ int compare_key_node(key k, handle h) { return compare_key_key(k, h->size); }
+ int compare_node_node(handle h1, handle h2) { return compare_key_key(h1->size, h2->size); }
+};
+
+// Used to reverse sort an array of FreeListEntry pointers.
+static int reverseSortFreeListEntriesByPointer(const void* leftPtr, const void* rightPtr)
+{
+ FreeListEntry* left = *(FreeListEntry**)leftPtr;
+ FreeListEntry* right = *(FreeListEntry**)rightPtr;
+
+ return (intptr_t)(right->pointer) - (intptr_t)(left->pointer);
+}
+
+// Used to reverse sort an array of pointers.
+static int reverseSortCommonSizedAllocations(const void* leftPtr, const void* rightPtr)
+{
+ void* left = *(void**)leftPtr;
+ void* right = *(void**)rightPtr;
+
+ return (intptr_t)right - (intptr_t)left;
+}
+
+class FixedVMPoolAllocator
+{
+ // The free list is stored in a sorted tree.
+ typedef AVLTree<AVLTreeAbstractorForFreeList, 40> SizeSortedFreeTree;
+
+ void release(void* position, size_t size)
+ {
+ m_allocation.decommit(position, size);
+ addToCommittedByteCount(-static_cast<long>(size));
+ }
+
+ void reuse(void* position, size_t size)
+ {
+ m_allocation.commit(position, size);
+ addToCommittedByteCount(static_cast<long>(size));
+ }
+
+ // All addition to the free list should go through this method, rather than
+ // calling insert directly, to avoid multiple entries being added with the
+ // same key. All nodes being added should be singletons, they should not
+ // already be a part of a chain.
+ void addToFreeList(FreeListEntry* entry)
+ {
+ ASSERT(!entry->nextEntry);
+
+ if (entry->size == m_commonSize) {
+ m_commonSizedAllocations.append(entry->pointer);
+ delete entry;
+ } else if (FreeListEntry* entryInFreeList = m_freeList.search(entry->size, m_freeList.EQUAL)) {
+ // m_freeList already contain an entry for this size - insert this node into the chain.
+ entry->nextEntry = entryInFreeList->nextEntry;
+ entryInFreeList->nextEntry = entry;
+ } else
+ m_freeList.insert(entry);
+ }
+
+ // We do not attempt to coalesce addition, which may lead to fragmentation;
+ // instead we periodically perform a sweep to try to coalesce neighboring
+ // entries in m_freeList. Presently this is triggered at the point 16MB
+ // of memory has been released.
+ void coalesceFreeSpace()
+ {
+ Vector<FreeListEntry*> freeListEntries;
+ SizeSortedFreeTree::Iterator iter;
+ iter.start_iter_least(m_freeList);
+
+ // Empty m_freeList into a Vector.
+ for (FreeListEntry* entry; (entry = *iter); ++iter) {
+ // Each entry in m_freeList might correspond to multiple
+ // free chunks of memory (of the same size). Walk the chain
+ // (this is likely of course only be one entry long!) adding
+ // each entry to the Vector (at reseting the next in chain
+ // pointer to separate each node out).
+ FreeListEntry* next;
+ do {
+ next = entry->nextEntry;
+ entry->nextEntry = 0;
+ freeListEntries.append(entry);
+ } while ((entry = next));
+ }
+ // All entries are now in the Vector; purge the tree.
+ m_freeList.purge();
+
+ // Reverse-sort the freeListEntries and m_commonSizedAllocations Vectors.
+ // We reverse-sort so that we can logically work forwards through memory,
+ // whilst popping items off the end of the Vectors using last() and removeLast().
+ qsort(freeListEntries.begin(), freeListEntries.size(), sizeof(FreeListEntry*), reverseSortFreeListEntriesByPointer);
+ qsort(m_commonSizedAllocations.begin(), m_commonSizedAllocations.size(), sizeof(void*), reverseSortCommonSizedAllocations);
+
+ // The entries from m_commonSizedAllocations that cannot be
+ // coalesced into larger chunks will be temporarily stored here.
+ Vector<void*> newCommonSizedAllocations;
+
+ // Keep processing so long as entries remain in either of the vectors.
+ while (freeListEntries.size() || m_commonSizedAllocations.size()) {
+ // We're going to try to find a FreeListEntry node that we can coalesce onto.
+ FreeListEntry* coalescionEntry = 0;
+
+ // Is the lowest addressed chunk of free memory of common-size, or is it in the free list?
+ if (m_commonSizedAllocations.size() && (!freeListEntries.size() || (m_commonSizedAllocations.last() < freeListEntries.last()->pointer))) {
+ // Pop an item from the m_commonSizedAllocations vector - this is the lowest
+ // addressed free chunk. Find out the begin and end addresses of the memory chunk.
+ void* begin = m_commonSizedAllocations.last();
+ void* end = (void*)((intptr_t)begin + m_commonSize);
+ m_commonSizedAllocations.removeLast();
+
+ // Try to find another free chunk abutting onto the end of the one we have already found.
+ if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) {
+ // There is an existing FreeListEntry for the next chunk of memory!
+ // we can reuse this. Pop it off the end of m_freeList.
+ coalescionEntry = freeListEntries.last();
+ freeListEntries.removeLast();
+ // Update the existing node to include the common-sized chunk that we also found.
+ coalescionEntry->pointer = (void*)((intptr_t)coalescionEntry->pointer - m_commonSize);
+ coalescionEntry->size += m_commonSize;
+ } else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) {
+ // There is a second common-sized chunk that can be coalesced.
+ // Allocate a new node.
+ m_commonSizedAllocations.removeLast();
+ coalescionEntry = new FreeListEntry(begin, 2 * m_commonSize);
+ } else {
+ // Nope - this poor little guy is all on his own. :-(
+ // Add him into the newCommonSizedAllocations vector for now, we're
+ // going to end up adding him back into the m_commonSizedAllocations
+ // list when we're done.
+ newCommonSizedAllocations.append(begin);
+ continue;
+ }
+ } else {
+ ASSERT(freeListEntries.size());
+ ASSERT(!m_commonSizedAllocations.size() || (freeListEntries.last()->pointer < m_commonSizedAllocations.last()));
+ // The lowest addressed item is from m_freeList; pop it from the Vector.
+ coalescionEntry = freeListEntries.last();
+ freeListEntries.removeLast();
+ }
+
+ // Right, we have a FreeListEntry, we just need check if there is anything else
+ // to coalesce onto the end.
+ ASSERT(coalescionEntry);
+ while (true) {
+ // Calculate the end address of the chunk we have found so far.
+ void* end = (void*)((intptr_t)coalescionEntry->pointer - coalescionEntry->size);
+
+ // Is there another chunk adjacent to the one we already have?
+ if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) {
+ // Yes - another FreeListEntry -pop it from the list.
+ FreeListEntry* coalescee = freeListEntries.last();
+ freeListEntries.removeLast();
+ // Add it's size onto our existing node.
+ coalescionEntry->size += coalescee->size;
+ delete coalescee;
+ } else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) {
+ // We can coalesce the next common-sized chunk.
+ m_commonSizedAllocations.removeLast();
+ coalescionEntry->size += m_commonSize;
+ } else
+ break; // Nope, nothing to be added - stop here.
+ }
+
+ // We've coalesced everything we can onto the current chunk.
+ // Add it back into m_freeList.
+ addToFreeList(coalescionEntry);
+ }
+
+ // All chunks of free memory larger than m_commonSize should be
+ // back in m_freeList by now. All that remains to be done is to
+ // copy the contents on the newCommonSizedAllocations back into
+ // the m_commonSizedAllocations Vector.
+ ASSERT(m_commonSizedAllocations.size() == 0);
+ m_commonSizedAllocations.append(newCommonSizedAllocations);
+ }
+
+public:
+
+ FixedVMPoolAllocator(size_t commonSize, size_t totalHeapSize)
+ : m_commonSize(commonSize)
+ , m_countFreedSinceLastCoalesce(0)
+ {
+ m_allocation = PageReservation::reserve(totalHeapSize, OSAllocator::JSJITCodePages, EXECUTABLE_POOL_WRITABLE, true);
+
+ if (!!m_allocation)
+ m_freeList.insert(new FreeListEntry(m_allocation.base(), m_allocation.size()));
+#if !ENABLE(INTERPRETER)
+ else
+ CRASH();
+#endif
+ }
+
+ ExecutablePool::Allocation alloc(size_t size)
+ {
+ return ExecutablePool::Allocation(allocInternal(size), size);
+ }
+
+ void free(ExecutablePool::Allocation allocation)
+ {
+ void* pointer = allocation.base();
+ size_t size = allocation.size();
+
+ ASSERT(!!m_allocation);
+ // Call release to report to the operating system that this
+ // memory is no longer in use, and need not be paged out.
+ ASSERT(isWithinVMPool(pointer, size));
+ release(pointer, size);
+
+ // Common-sized allocations are stored in the m_commonSizedAllocations
+ // vector; all other freed chunks are added to m_freeList.
+ if (size == m_commonSize)
+ m_commonSizedAllocations.append(pointer);
+ else
+ addToFreeList(new FreeListEntry(pointer, size));
+
+ // Do some housekeeping. Every time we reach a point that
+ // 16MB of allocations have been freed, sweep m_freeList
+ // coalescing any neighboring fragments.
+ m_countFreedSinceLastCoalesce += size;
+ if (m_countFreedSinceLastCoalesce >= COALESCE_LIMIT) {
+ m_countFreedSinceLastCoalesce = 0;
+ coalesceFreeSpace();
+ }
+ }
+
+ bool isValid() const { return !!m_allocation; }
+
+private:
+ void* allocInternal(size_t size)
+ {
+#if ENABLE(INTERPRETER)
+ if (!m_allocation)
+ return 0;
+#else
+ ASSERT(!!m_allocation);
+#endif
+ void* result;
+
+ // Freed allocations of the common size are not stored back into the main
+ // m_freeList, but are instead stored in a separate vector. If the request
+ // is for a common sized allocation, check this list.
+ if ((size == m_commonSize) && m_commonSizedAllocations.size()) {
+ result = m_commonSizedAllocations.last();
+ m_commonSizedAllocations.removeLast();
+ } else {
+ // Search m_freeList for a suitable sized chunk to allocate memory from.
+ FreeListEntry* entry = m_freeList.search(size, m_freeList.GREATER_EQUAL);
+
+ // This would be bad news.
+ if (!entry) {
+ // Errk! Lets take a last-ditch desperation attempt at defragmentation...
+ coalesceFreeSpace();
+ // Did that free up a large enough chunk?
+ entry = m_freeList.search(size, m_freeList.GREATER_EQUAL);
+ // No?... *BOOM!*
+ if (!entry)
+ CRASH();
+ }
+ ASSERT(entry->size != m_commonSize);
+
+ // Remove the entry from m_freeList. But! -
+ // Each entry in the tree may represent a chain of multiple chunks of the
+ // same size, and we only want to remove one on them. So, if this entry
+ // does have a chain, just remove the first-but-one item from the chain.
+ if (FreeListEntry* next = entry->nextEntry) {
+ // We're going to leave 'entry' in the tree; remove 'next' from its chain.
+ entry->nextEntry = next->nextEntry;
+ next->nextEntry = 0;
+ entry = next;
+ } else
+ m_freeList.remove(entry->size);
+
+ // Whoo!, we have a result!
+ ASSERT(entry->size >= size);
+ result = entry->pointer;
+
+ // If the allocation exactly fits the chunk we found in the,
+ // m_freeList then the FreeListEntry node is no longer needed.
+ if (entry->size == size)
+ delete entry;
+ else {
+ // There is memory left over, and it is not of the common size.
+ // We can reuse the existing FreeListEntry node to add this back
+ // into m_freeList.
+ entry->pointer = (void*)((intptr_t)entry->pointer + size);
+ entry->size -= size;
+ addToFreeList(entry);
+ }
+ }
+
+ // Call reuse to report to the operating system that this memory is in use.
+ ASSERT(isWithinVMPool(result, size));
+ reuse(result, size);
+ return result;
+ }
+
+#ifndef NDEBUG
+ bool isWithinVMPool(void* pointer, size_t size)
+ {
+ return pointer >= m_allocation.base() && (reinterpret_cast<char*>(pointer) + size <= reinterpret_cast<char*>(m_allocation.base()) + m_allocation.size());
+ }
+#endif
+
+ void addToCommittedByteCount(long byteCount)
+ {
+ ASSERT(spinlock.IsHeld());
+ ASSERT(static_cast<long>(committedBytesCount) + byteCount > -1);
+ committedBytesCount += byteCount;
+ }
+
+ // Freed space from the most common sized allocations will be held in this list, ...
+ const size_t m_commonSize;
+ Vector<void*> m_commonSizedAllocations;
+
+ // ... and all other freed allocations are held in m_freeList.
+ SizeSortedFreeTree m_freeList;
+
+ // This is used for housekeeping, to trigger defragmentation of the freed lists.
+ size_t m_countFreedSinceLastCoalesce;
+
+ PageReservation m_allocation;
+};
+
+size_t ExecutableAllocator::committedByteCount()
+{
+ SpinLockHolder lockHolder(&spinlock);
+ return committedBytesCount;
+}
+
+void ExecutableAllocator::intializePageSize()
+{
+ ExecutableAllocator::pageSize = getpagesize();
+}
+
+static FixedVMPoolAllocator* allocator = 0;
+static size_t allocatedCount = 0;
+
+bool ExecutableAllocator::isValid() const
+{
+ SpinLockHolder lock_holder(&spinlock);
+ if (!allocator)
+ allocator = new FixedVMPoolAllocator(JIT_ALLOCATOR_LARGE_ALLOC_SIZE, VM_POOL_SIZE);
+ return allocator->isValid();
+}
+
+bool ExecutableAllocator::underMemoryPressure()
+{
+ // Technically we should take the spin lock here, but we don't care if we get stale data.
+ // This is only really a heuristic anyway.
+ return allocatedCount > (VM_POOL_SIZE / 2);
+}
+
+ExecutablePool::Allocation ExecutablePool::systemAlloc(size_t size)
+{
+ SpinLockHolder lock_holder(&spinlock);
+ ASSERT(allocator);
+ allocatedCount += size;
+ return allocator->alloc(size);
+}
+
+void ExecutablePool::systemRelease(ExecutablePool::Allocation& allocation)
+{
+ SpinLockHolder lock_holder(&spinlock);
+ ASSERT(allocator);
+ allocatedCount -= allocation.size();
+ allocator->free(allocation);
+}
+
+}
+
+
+#endif // HAVE(ASSEMBLER)