summaryrefslogtreecommitdiffstats
path: root/Source/JavaScriptCore/tests/mozilla/ecma/Expressions/11.5.3.js
diff options
context:
space:
mode:
Diffstat (limited to 'Source/JavaScriptCore/tests/mozilla/ecma/Expressions/11.5.3.js')
-rw-r--r--Source/JavaScriptCore/tests/mozilla/ecma/Expressions/11.5.3.js160
1 files changed, 160 insertions, 0 deletions
diff --git a/Source/JavaScriptCore/tests/mozilla/ecma/Expressions/11.5.3.js b/Source/JavaScriptCore/tests/mozilla/ecma/Expressions/11.5.3.js
new file mode 100644
index 0000000..8b9722c
--- /dev/null
+++ b/Source/JavaScriptCore/tests/mozilla/ecma/Expressions/11.5.3.js
@@ -0,0 +1,160 @@
+/* The contents of this file are subject to the Netscape Public
+ * License Version 1.1 (the "License"); you may not use this file
+ * except in compliance with the License. You may obtain a copy of
+ * the License at http://www.mozilla.org/NPL/
+ *
+ * Software distributed under the License is distributed on an "AS
+ * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
+ * implied. See the License for the specific language governing
+ * rights and limitations under the License.
+ *
+ * The Original Code is Mozilla Communicator client code, released March
+ * 31, 1998.
+ *
+ * The Initial Developer of the Original Code is Netscape Communications
+ * Corporation. Portions created by Netscape are
+ * Copyright (C) 1998 Netscape Communications Corporation. All
+ * Rights Reserved.
+ *
+ * Contributor(s):
+ *
+ */
+/**
+ File Name: 11.5.3.js
+ ECMA Section: 11.5.3 Applying the % operator
+ Description:
+
+ The binary % operator is said to yield the remainder of its operands from
+ an implied division; the left operand is the dividend and the right operand
+ is the divisor. In C and C++, the remainder operator accepts only integral
+ operands, but in ECMAScript, it also accepts floating-point operands.
+
+ The result of a floating-point remainder operation as computed by the %
+ operator is not the same as the "remainder" operation defined by IEEE 754.
+ The IEEE 754 "remainder" operation computes the remainder from a rounding
+ division, not a truncating division, and so its behavior is not analogous
+ to that of the usual integer remainder operator. Instead the ECMAScript
+ language defines % on floating-point operations to behave in a manner
+ analogous to that of the Java integer remainder operator; this may be
+ compared with the C library function fmod.
+
+ The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:
+
+ If either operand is NaN, the result is NaN.
+ The sign of the result equals the sign of the dividend.
+ If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
+ If the dividend is finite and the divisor is an infinity, the result equals the dividend.
+ If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
+ In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
+ from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
+ is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
+ possible without exceeding the magnitude of the true mathematical quotient of n and d.
+
+ Author: christine@netscape.com
+ Date: 12 november 1997
+*/
+ var SECTION = "11.5.3";
+ var VERSION = "ECMA_1";
+ startTest();
+ var testcases = getTestCases();
+ var BUGNUMBER="111202";
+
+ writeHeaderToLog( SECTION + " Applying the % operator");
+ test();
+
+function test() {
+ for ( tc=0; tc < testcases.length; tc++ ) {
+ testcases[tc].passed = writeTestCaseResult(
+ testcases[tc].expect,
+ testcases[tc].actual,
+ testcases[tc].description +" = "+
+ testcases[tc].actual );
+
+ testcases[tc].reason += ( testcases[tc].passed ) ? "" : "wrong value ";
+ }
+ stopTest();
+ return ( testcases );
+}
+function getTestCases() {
+ var array = new Array();
+ var item = 0;
+
+ // if either operand is NaN, the result is NaN.
+
+ array[item++] = new TestCase( SECTION, "Number.NaN % Number.NaN", Number.NaN, Number.NaN % Number.NaN );
+ array[item++] = new TestCase( SECTION, "Number.NaN % 1", Number.NaN, Number.NaN % 1 );
+ array[item++] = new TestCase( SECTION, "1 % Number.NaN", Number.NaN, 1 % Number.NaN );
+
+ array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NaN", Number.NaN, Number.POSITIVE_INFINITY % Number.NaN );
+ array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NaN", Number.NaN, Number.NEGATIVE_INFINITY % Number.NaN );
+
+ // If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
+ // dividend is an infinity
+
+ array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY );
+ array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY );
+ array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY );
+ array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY );
+
+ array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % 0", Number.NaN, Number.POSITIVE_INFINITY % 0 );
+ array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 0", Number.NaN, Number.NEGATIVE_INFINITY % 0 );
+ array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % -0", Number.NaN, Number.POSITIVE_INFINITY % -0 );
+ array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -0", Number.NaN, Number.NEGATIVE_INFINITY % -0 );
+
+ array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 1 ", Number.NaN, Number.NEGATIVE_INFINITY % 1 );
+ array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -1 ", Number.NaN, Number.NEGATIVE_INFINITY % -1 );
+ array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % 1 ", Number.NaN, Number.POSITIVE_INFINITY % 1 );
+ array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % -1 ", Number.NaN, Number.POSITIVE_INFINITY % -1 );
+
+ array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % Number.MAX_VALUE );
+ array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % -Number.MAX_VALUE );
+ array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % Number.MAX_VALUE );
+ array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % -Number.MAX_VALUE );
+
+ // divisor is 0
+ array[item++] = new TestCase( SECTION, "0 % -0", Number.NaN, 0 % -0 );
+ array[item++] = new TestCase( SECTION, "-0 % 0", Number.NaN, -0 % 0 );
+ array[item++] = new TestCase( SECTION, "-0 % -0", Number.NaN, -0 % -0 );
+ array[item++] = new TestCase( SECTION, "0 % 0", Number.NaN, 0 % 0 );
+
+ array[item++] = new TestCase( SECTION, "1 % 0", Number.NaN, 1%0 );
+ array[item++] = new TestCase( SECTION, "1 % -0", Number.NaN, 1%-0 );
+ array[item++] = new TestCase( SECTION, "-1 % 0", Number.NaN, -1%0 );
+ array[item++] = new TestCase( SECTION, "-1 % -0", Number.NaN, -1%-0 );
+
+ array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % 0", Number.NaN, Number.MAX_VALUE%0 );
+ array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % -0", Number.NaN, Number.MAX_VALUE%-0 );
+ array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % 0", Number.NaN, -Number.MAX_VALUE%0 );
+ array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % -0", Number.NaN, -Number.MAX_VALUE%-0 );
+
+ // If the dividend is finite and the divisor is an infinity, the result equals the dividend.
+
+ array[item++] = new TestCase( SECTION, "1 % Number.NEGATIVE_INFINITY", 1, 1 % Number.NEGATIVE_INFINITY );
+ array[item++] = new TestCase( SECTION, "1 % Number.POSITIVE_INFINITY", 1, 1 % Number.POSITIVE_INFINITY );
+ array[item++] = new TestCase( SECTION, "-1 % Number.POSITIVE_INFINITY", -1, -1 % Number.POSITIVE_INFINITY );
+ array[item++] = new TestCase( SECTION, "-1 % Number.NEGATIVE_INFINITY", -1, -1 % Number.NEGATIVE_INFINITY );
+
+ array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % Number.NEGATIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
+ array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % Number.POSITIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.POSITIVE_INFINITY );
+ array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % Number.POSITIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.POSITIVE_INFINITY );
+ array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % Number.NEGATIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
+
+ array[item++] = new TestCase( SECTION, "0 % Number.POSITIVE_INFINITY", 0, 0 % Number.POSITIVE_INFINITY );
+ array[item++] = new TestCase( SECTION, "0 % Number.NEGATIVE_INFINITY", 0, 0 % Number.NEGATIVE_INFINITY );
+ array[item++] = new TestCase( SECTION, "-0 % Number.POSITIVE_INFINITY", -0, -0 % Number.POSITIVE_INFINITY );
+ array[item++] = new TestCase( SECTION, "-0 % Number.NEGATIVE_INFINITY", -0, -0 % Number.NEGATIVE_INFINITY );
+
+ // If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
+
+ array[item++] = new TestCase( SECTION, "0 % 1", 0, 0 % 1 );
+ array[item++] = new TestCase( SECTION, "0 % -1", -0, 0 % -1 );
+ array[item++] = new TestCase( SECTION, "-0 % 1", -0, -0 % 1 );
+ array[item++] = new TestCase( SECTION, "-0 % -1", 0, -0 % -1 );
+
+// In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
+// from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
+// is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
+// possible without exceeding the magnitude of the true mathematical quotient of n and d.
+
+ return ( array );
+}