summaryrefslogtreecommitdiffstats
path: root/SunSpider/tests/v8-deltablue.js
diff options
context:
space:
mode:
Diffstat (limited to 'SunSpider/tests/v8-deltablue.js')
-rw-r--r--SunSpider/tests/v8-deltablue.js877
1 files changed, 0 insertions, 877 deletions
diff --git a/SunSpider/tests/v8-deltablue.js b/SunSpider/tests/v8-deltablue.js
deleted file mode 100644
index 0391a3b..0000000
--- a/SunSpider/tests/v8-deltablue.js
+++ /dev/null
@@ -1,877 +0,0 @@
-// Copyright 2008 Google Inc. All Rights Reserved.
-// Copyright 1996 John Maloney and Mario Wolczko.
-
-// This program is free software; you can redistribute it and/or modify
-// it under the terms of the GNU General Public License as published by
-// the Free Software Foundation; either version 2 of the License, or
-// (at your option) any later version.
-//
-// This program is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU General Public License
-// along with this program; if not, write to the Free Software
-// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-
-
-// This implementation of the DeltaBlue benchmark is derived
-// from the Smalltalk implementation by John Maloney and Mario
-// Wolczko. Some parts have been translated directly, whereas
-// others have been modified more aggresively to make it feel
-// more like a JavaScript program.
-
-/**
- * A JavaScript implementation of the DeltaBlue constrain-solving
- * algorithm, as described in:
- *
- * "The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver"
- * Bjorn N. Freeman-Benson and John Maloney
- * January 1990 Communications of the ACM,
- * also available as University of Washington TR 89-08-06.
- *
- * Beware: this benchmark is written in a grotesque style where
- * the constraint model is built by side-effects from constructors.
- * I've kept it this way to avoid deviating too much from the original
- * implementation.
- */
-
-
-/* --- O b j e c t M o d e l --- */
-
-Object.prototype.inherits = function (shuper) {
- function Inheriter() { }
- Inheriter.prototype = shuper.prototype;
- this.prototype = new Inheriter();
- this.superConstructor = shuper;
-}
-
-function OrderedCollection() {
- this.elms = new Array();
-}
-
-OrderedCollection.prototype.add = function (elm) {
- this.elms.push(elm);
-}
-
-OrderedCollection.prototype.at = function (index) {
- return this.elms[index];
-}
-
-OrderedCollection.prototype.size = function () {
- return this.elms.length;
-}
-
-OrderedCollection.prototype.removeFirst = function () {
- return this.elms.pop();
-}
-
-OrderedCollection.prototype.remove = function (elm) {
- var index = 0, skipped = 0;
- for (var i = 0; i < this.elms.length; i++) {
- var value = this.elms[i];
- if (value != elm) {
- this.elms[index] = value;
- index++;
- } else {
- skipped++;
- }
- }
- for (var i = 0; i < skipped; i++)
- this.elms.pop();
-}
-
-/* --- *
- * S t r e n g t h
- * --- */
-
-/**
- * Strengths are used to measure the relative importance of constraints.
- * New strengths may be inserted in the strength hierarchy without
- * disrupting current constraints. Strengths cannot be created outside
- * this class, so pointer comparison can be used for value comparison.
- */
-function Strength(strengthValue, name) {
- this.strengthValue = strengthValue;
- this.name = name;
-}
-
-Strength.stronger = function (s1, s2) {
- return s1.strengthValue < s2.strengthValue;
-}
-
-Strength.weaker = function (s1, s2) {
- return s1.strengthValue > s2.strengthValue;
-}
-
-Strength.weakestOf = function (s1, s2) {
- return this.weaker(s1, s2) ? s1 : s2;
-}
-
-Strength.strongest = function (s1, s2) {
- return this.stronger(s1, s2) ? s1 : s2;
-}
-
-Strength.prototype.nextWeaker = function () {
- switch (this.strengthValue) {
- case 0: return Strength.WEAKEST;
- case 1: return Strength.WEAK_DEFAULT;
- case 2: return Strength.NORMAL;
- case 3: return Strength.STRONG_DEFAULT;
- case 4: return Strength.PREFERRED;
- case 5: return Strength.REQUIRED;
- }
-}
-
-// Strength constants.
-Strength.REQUIRED = new Strength(0, "required");
-Strength.STONG_PREFERRED = new Strength(1, "strongPreferred");
-Strength.PREFERRED = new Strength(2, "preferred");
-Strength.STRONG_DEFAULT = new Strength(3, "strongDefault");
-Strength.NORMAL = new Strength(4, "normal");
-Strength.WEAK_DEFAULT = new Strength(5, "weakDefault");
-Strength.WEAKEST = new Strength(6, "weakest");
-
-/* --- *
- * C o n s t r a i n t
- * --- */
-
-/**
- * An abstract class representing a system-maintainable relationship
- * (or "constraint") between a set of variables. A constraint supplies
- * a strength instance variable; concrete subclasses provide a means
- * of storing the constrained variables and other information required
- * to represent a constraint.
- */
-function Constraint(strength) {
- this.strength = strength;
-}
-
-/**
- * Activate this constraint and attempt to satisfy it.
- */
-Constraint.prototype.addConstraint = function () {
- this.addToGraph();
- planner.incrementalAdd(this);
-}
-
-/**
- * Attempt to find a way to enforce this constraint. If successful,
- * record the solution, perhaps modifying the current dataflow
- * graph. Answer the constraint that this constraint overrides, if
- * there is one, or nil, if there isn't.
- * Assume: I am not already satisfied.
- */
-Constraint.prototype.satisfy = function (mark) {
- this.chooseMethod(mark);
- if (!this.isSatisfied()) {
- if (this.strength == Strength.REQUIRED)
- alert("Could not satisfy a required constraint!");
- return null;
- }
- this.markInputs(mark);
- var out = this.output();
- var overridden = out.determinedBy;
- if (overridden != null) overridden.markUnsatisfied();
- out.determinedBy = this;
- if (!planner.addPropagate(this, mark))
- alert("Cycle encountered");
- out.mark = mark;
- return overridden;
-}
-
-Constraint.prototype.destroyConstraint = function () {
- if (this.isSatisfied()) planner.incrementalRemove(this);
- else this.removeFromGraph();
-}
-
-/**
- * Normal constraints are not input constraints. An input constraint
- * is one that depends on external state, such as the mouse, the
- * keybord, a clock, or some arbitraty piece of imperative code.
- */
-Constraint.prototype.isInput = function () {
- return false;
-}
-
-/* --- *
- * U n a r y C o n s t r a i n t
- * --- */
-
-/**
- * Abstract superclass for constraints having a single possible output
- * variable.
- */
-function UnaryConstraint(v, strength) {
- UnaryConstraint.superConstructor.call(this, strength);
- this.myOutput = v;
- this.satisfied = false;
- this.addConstraint();
-}
-
-UnaryConstraint.inherits(Constraint);
-
-/**
- * Adds this constraint to the constraint graph
- */
-UnaryConstraint.prototype.addToGraph = function () {
- this.myOutput.addConstraint(this);
- this.satisfied = false;
-}
-
-/**
- * Decides if this constraint can be satisfied and records that
- * decision.
- */
-UnaryConstraint.prototype.chooseMethod = function (mark) {
- this.satisfied = (this.myOutput.mark != mark)
- && Strength.stronger(this.strength, this.myOutput.walkStrength);
-}
-
-/**
- * Returns true if this constraint is satisfied in the current solution.
- */
-UnaryConstraint.prototype.isSatisfied = function () {
- return this.satisfied;
-}
-
-UnaryConstraint.prototype.markInputs = function (mark) {
- // has no inputs
-}
-
-/**
- * Returns the current output variable.
- */
-UnaryConstraint.prototype.output = function () {
- return this.myOutput;
-}
-
-/**
- * Calculate the walkabout strength, the stay flag, and, if it is
- * 'stay', the value for the current output of this constraint. Assume
- * this constraint is satisfied.
- */
-UnaryConstraint.prototype.recalculate = function () {
- this.myOutput.walkStrength = this.strength;
- this.myOutput.stay = !this.isInput();
- if (this.myOutput.stay) this.execute(); // Stay optimization
-}
-
-/**
- * Records that this constraint is unsatisfied
- */
-UnaryConstraint.prototype.markUnsatisfied = function () {
- this.satisfied = false;
-}
-
-UnaryConstraint.prototype.inputsKnown = function () {
- return true;
-}
-
-UnaryConstraint.prototype.removeFromGraph = function () {
- if (this.myOutput != null) this.myOutput.removeConstraint(this);
- this.satisfied = false;
-}
-
-/* --- *
- * S t a y C o n s t r a i n t
- * --- */
-
-/**
- * Variables that should, with some level of preference, stay the same.
- * Planners may exploit the fact that instances, if satisfied, will not
- * change their output during plan execution. This is called "stay
- * optimization".
- */
-function StayConstraint(v, str) {
- StayConstraint.superConstructor.call(this, v, str);
-}
-
-StayConstraint.inherits(UnaryConstraint);
-
-StayConstraint.prototype.execute = function () {
- // Stay constraints do nothing
-}
-
-/* --- *
- * E d i t C o n s t r a i n t
- * --- */
-
-/**
- * A unary input constraint used to mark a variable that the client
- * wishes to change.
- */
-function EditConstraint(v, str) {
- EditConstraint.superConstructor.call(this, v, str);
-}
-
-EditConstraint.inherits(UnaryConstraint);
-
-/**
- * Edits indicate that a variable is to be changed by imperative code.
- */
-EditConstraint.prototype.isInput = function () {
- return true;
-}
-
-EditConstraint.prototype.execute = function () {
- // Edit constraints do nothing
-}
-
-/* --- *
- * B i n a r y C o n s t r a i n t
- * --- */
-
-var Direction = new Object();
-Direction.NONE = 0;
-Direction.FORWARD = 1;
-Direction.BACKWARD = -1;
-
-/**
- * Abstract superclass for constraints having two possible output
- * variables.
- */
-function BinaryConstraint(var1, var2, strength) {
- BinaryConstraint.superConstructor.call(this, strength);
- this.v1 = var1;
- this.v2 = var2;
- this.direction = Direction.NONE;
- this.addConstraint();
-}
-
-BinaryConstraint.inherits(Constraint);
-
-/**
- * Decides if this constratint can be satisfied and which way it
- * should flow based on the relative strength of the variables related,
- * and record that decision.
- */
-BinaryConstraint.prototype.chooseMethod = function (mark) {
- if (this.v1.mark == mark) {
- this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v2.walkStrength))
- ? Direction.FORWARD
- : Direction.NONE;
- }
- if (this.v2.mark == mark) {
- this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v1.walkStrength))
- ? Direction.BACKWARD
- : Direction.NONE;
- }
- if (Strength.weaker(this.v1.walkStrength, this.v2.walkStrength)) {
- this.direction = Strength.stronger(this.strength, this.v1.walkStrength)
- ? Direction.BACKWARD
- : Direction.NONE;
- } else {
- this.direction = Strength.stronger(this.strength, this.v2.walkStrength)
- ? Direction.FORWARD
- : Direction.BACKWARD
- }
-}
-
-/**
- * Add this constraint to the constraint graph
- */
-BinaryConstraint.prototype.addToGraph = function () {
- this.v1.addConstraint(this);
- this.v2.addConstraint(this);
- this.direction = Direction.NONE;
-}
-
-/**
- * Answer true if this constraint is satisfied in the current solution.
- */
-BinaryConstraint.prototype.isSatisfied = function () {
- return this.direction != Direction.NONE;
-}
-
-/**
- * Mark the input variable with the given mark.
- */
-BinaryConstraint.prototype.markInputs = function (mark) {
- this.input().mark = mark;
-}
-
-/**
- * Returns the current input variable
- */
-BinaryConstraint.prototype.input = function () {
- return (this.direction == Direction.FORWARD) ? this.v1 : this.v2;
-}
-
-/**
- * Returns the current output variable
- */
-BinaryConstraint.prototype.output = function () {
- return (this.direction == Direction.FORWARD) ? this.v2 : this.v1;
-}
-
-/**
- * Calculate the walkabout strength, the stay flag, and, if it is
- * 'stay', the value for the current output of this
- * constraint. Assume this constraint is satisfied.
- */
-BinaryConstraint.prototype.recalculate = function () {
- var ihn = this.input(), out = this.output();
- out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength);
- out.stay = ihn.stay;
- if (out.stay) this.execute();
-}
-
-/**
- * Record the fact that this constraint is unsatisfied.
- */
-BinaryConstraint.prototype.markUnsatisfied = function () {
- this.direction = Direction.NONE;
-}
-
-BinaryConstraint.prototype.inputsKnown = function (mark) {
- var i = this.input();
- return i.mark == mark || i.stay || i.determinedBy == null;
-}
-
-BinaryConstraint.prototype.removeFromGraph = function () {
- if (this.v1 != null) this.v1.removeConstraint(this);
- if (this.v2 != null) this.v2.removeConstraint(this);
- this.direction = Direction.NONE;
-}
-
-/* --- *
- * S c a l e C o n s t r a i n t
- * --- */
-
-/**
- * Relates two variables by the linear scaling relationship: "v2 =
- * (v1 * scale) + offset". Either v1 or v2 may be changed to maintain
- * this relationship but the scale factor and offset are considered
- * read-only.
- */
-function ScaleConstraint(src, scale, offset, dest, strength) {
- this.direction = Direction.NONE;
- this.scale = scale;
- this.offset = offset;
- ScaleConstraint.superConstructor.call(this, src, dest, strength);
-}
-
-ScaleConstraint.inherits(BinaryConstraint);
-
-/**
- * Adds this constraint to the constraint graph.
- */
-ScaleConstraint.prototype.addToGraph = function () {
- ScaleConstraint.superConstructor.prototype.addToGraph.call(this);
- this.scale.addConstraint(this);
- this.offset.addConstraint(this);
-}
-
-ScaleConstraint.prototype.removeFromGraph = function () {
- ScaleConstraint.superConstructor.prototype.removeFromGraph.call(this);
- if (this.scale != null) this.scale.removeConstraint(this);
- if (this.offset != null) this.offset.removeConstraint(this);
-}
-
-ScaleConstraint.prototype.markInputs = function (mark) {
- ScaleConstraint.superConstructor.prototype.markInputs.call(this, mark);
- this.scale.mark = this.offset.mark = mark;
-}
-
-/**
- * Enforce this constraint. Assume that it is satisfied.
- */
-ScaleConstraint.prototype.execute = function () {
- if (this.direction == Direction.FORWARD) {
- this.v2.value = this.v1.value * this.scale.value + this.offset.value;
- } else {
- this.v1.value = (this.v2.value - this.offset.value) / this.scale.value;
- }
-}
-
-/**
- * Calculate the walkabout strength, the stay flag, and, if it is
- * 'stay', the value for the current output of this constraint. Assume
- * this constraint is satisfied.
- */
-ScaleConstraint.prototype.recalculate = function () {
- var ihn = this.input(), out = this.output();
- out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength);
- out.stay = ihn.stay && this.scale.stay && this.offset.stay;
- if (out.stay) this.execute();
-}
-
-/* --- *
- * E q u a l i t y C o n s t r a i n t
- * --- */
-
-/**
- * Constrains two variables to have the same value.
- */
-function EqualityConstraint(var1, var2, strength) {
- EqualityConstraint.superConstructor.call(this, var1, var2, strength);
-}
-
-EqualityConstraint.inherits(BinaryConstraint);
-
-/**
- * Enforce this constraint. Assume that it is satisfied.
- */
-EqualityConstraint.prototype.execute = function () {
- this.output().value = this.input().value;
-}
-
-/* --- *
- * V a r i a b l e
- * --- */
-
-/**
- * A constrained variable. In addition to its value, it maintain the
- * structure of the constraint graph, the current dataflow graph, and
- * various parameters of interest to the DeltaBlue incremental
- * constraint solver.
- **/
-function Variable(name, initialValue) {
- this.value = initialValue || 0;
- this.constraints = new OrderedCollection();
- this.determinedBy = null;
- this.mark = 0;
- this.walkStrength = Strength.WEAKEST;
- this.stay = true;
- this.name = name;
-}
-
-/**
- * Add the given constraint to the set of all constraints that refer
- * this variable.
- */
-Variable.prototype.addConstraint = function (c) {
- this.constraints.add(c);
-}
-
-/**
- * Removes all traces of c from this variable.
- */
-Variable.prototype.removeConstraint = function (c) {
- this.constraints.remove(c);
- if (this.determinedBy == c) this.determinedBy = null;
-}
-
-/* --- *
- * P l a n n e r
- * --- */
-
-/**
- * The DeltaBlue planner
- */
-function Planner() {
- this.currentMark = 0;
-}
-
-/**
- * Attempt to satisfy the given constraint and, if successful,
- * incrementally update the dataflow graph. Details: If satifying
- * the constraint is successful, it may override a weaker constraint
- * on its output. The algorithm attempts to resatisfy that
- * constraint using some other method. This process is repeated
- * until either a) it reaches a variable that was not previously
- * determined by any constraint or b) it reaches a constraint that
- * is too weak to be satisfied using any of its methods. The
- * variables of constraints that have been processed are marked with
- * a unique mark value so that we know where we've been. This allows
- * the algorithm to avoid getting into an infinite loop even if the
- * constraint graph has an inadvertent cycle.
- */
-Planner.prototype.incrementalAdd = function (c) {
- var mark = this.newMark();
- var overridden = c.satisfy(mark);
- while (overridden != null)
- overridden = overridden.satisfy(mark);
-}
-
-/**
- * Entry point for retracting a constraint. Remove the given
- * constraint and incrementally update the dataflow graph.
- * Details: Retracting the given constraint may allow some currently
- * unsatisfiable downstream constraint to be satisfied. We therefore collect
- * a list of unsatisfied downstream constraints and attempt to
- * satisfy each one in turn. This list is traversed by constraint
- * strength, strongest first, as a heuristic for avoiding
- * unnecessarily adding and then overriding weak constraints.
- * Assume: c is satisfied.
- */
-Planner.prototype.incrementalRemove = function (c) {
- var out = c.output();
- c.markUnsatisfied();
- c.removeFromGraph();
- var unsatisfied = this.removePropagateFrom(out);
- var strength = Strength.REQUIRED;
- do {
- for (var i = 0; i < unsatisfied.size(); i++) {
- var u = unsatisfied.at(i);
- if (u.strength == strength)
- this.incrementalAdd(u);
- }
- strength = strength.nextWeaker();
- } while (strength != Strength.WEAKEST);
-}
-
-/**
- * Select a previously unused mark value.
- */
-Planner.prototype.newMark = function () {
- return ++this.currentMark;
-}
-
-/**
- * Extract a plan for resatisfaction starting from the given source
- * constraints, usually a set of input constraints. This method
- * assumes that stay optimization is desired; the plan will contain
- * only constraints whose output variables are not stay. Constraints
- * that do no computation, such as stay and edit constraints, are
- * not included in the plan.
- * Details: The outputs of a constraint are marked when it is added
- * to the plan under construction. A constraint may be appended to
- * the plan when all its input variables are known. A variable is
- * known if either a) the variable is marked (indicating that has
- * been computed by a constraint appearing earlier in the plan), b)
- * the variable is 'stay' (i.e. it is a constant at plan execution
- * time), or c) the variable is not determined by any
- * constraint. The last provision is for past states of history
- * variables, which are not stay but which are also not computed by
- * any constraint.
- * Assume: sources are all satisfied.
- */
-Planner.prototype.makePlan = function (sources) {
- var mark = this.newMark();
- var plan = new Plan();
- var todo = sources;
- while (todo.size() > 0) {
- var c = todo.removeFirst();
- if (c.output().mark != mark && c.inputsKnown(mark)) {
- plan.addConstraint(c);
- c.output().mark = mark;
- this.addConstraintsConsumingTo(c.output(), todo);
- }
- }
- return plan;
-}
-
-/**
- * Extract a plan for resatisfying starting from the output of the
- * given constraints, usually a set of input constraints.
- */
-Planner.prototype.extractPlanFromConstraints = function (constraints) {
- var sources = new OrderedCollection();
- for (var i = 0; i < constraints.size(); i++) {
- var c = constraints.at(i);
- if (c.isInput() && c.isSatisfied())
- // not in plan already and eligible for inclusion
- sources.add(c);
- }
- return this.makePlan(sources);
-}
-
-/**
- * Recompute the walkabout strengths and stay flags of all variables
- * downstream of the given constraint and recompute the actual
- * values of all variables whose stay flag is true. If a cycle is
- * detected, remove the given constraint and answer
- * false. Otherwise, answer true.
- * Details: Cycles are detected when a marked variable is
- * encountered downstream of the given constraint. The sender is
- * assumed to have marked the inputs of the given constraint with
- * the given mark. Thus, encountering a marked node downstream of
- * the output constraint means that there is a path from the
- * constraint's output to one of its inputs.
- */
-Planner.prototype.addPropagate = function (c, mark) {
- var todo = new OrderedCollection();
- todo.add(c);
- while (todo.size() > 0) {
- var d = todo.removeFirst();
- if (d.output().mark == mark) {
- this.incrementalRemove(c);
- return false;
- }
- d.recalculate();
- this.addConstraintsConsumingTo(d.output(), todo);
- }
- return true;
-}
-
-
-/**
- * Update the walkabout strengths and stay flags of all variables
- * downstream of the given constraint. Answer a collection of
- * unsatisfied constraints sorted in order of decreasing strength.
- */
-Planner.prototype.removePropagateFrom = function (out) {
- out.determinedBy = null;
- out.walkStrength = Strength.WEAKEST;
- out.stay = true;
- var unsatisfied = new OrderedCollection();
- var todo = new OrderedCollection();
- todo.add(out);
- while (todo.size() > 0) {
- var v = todo.removeFirst();
- for (var i = 0; i < v.constraints.size(); i++) {
- var c = v.constraints.at(i);
- if (!c.isSatisfied())
- unsatisfied.add(c);
- }
- var determining = v.determinedBy;
- for (var i = 0; i < v.constraints.size(); i++) {
- var next = v.constraints.at(i);
- if (next != determining && next.isSatisfied()) {
- next.recalculate();
- todo.add(next.output());
- }
- }
- }
- return unsatisfied;
-}
-
-Planner.prototype.addConstraintsConsumingTo = function (v, coll) {
- var determining = v.determinedBy;
- var cc = v.constraints;
- for (var i = 0; i < cc.size(); i++) {
- var c = cc.at(i);
- if (c != determining && c.isSatisfied())
- coll.add(c);
- }
-}
-
-/* --- *
- * P l a n
- * --- */
-
-/**
- * A Plan is an ordered list of constraints to be executed in sequence
- * to resatisfy all currently satisfiable constraints in the face of
- * one or more changing inputs.
- */
-function Plan() {
- this.v = new OrderedCollection();
-}
-
-Plan.prototype.addConstraint = function (c) {
- this.v.add(c);
-}
-
-Plan.prototype.size = function () {
- return this.v.size();
-}
-
-Plan.prototype.constraintAt = function (index) {
- return this.v.at(index);
-}
-
-Plan.prototype.execute = function () {
- for (var i = 0; i < this.size(); i++) {
- var c = this.constraintAt(i);
- c.execute();
- }
-}
-
-/* --- *
- * M a i n
- * --- */
-
-/**
- * This is the standard DeltaBlue benchmark. A long chain of equality
- * constraints is constructed with a stay constraint on one end. An
- * edit constraint is then added to the opposite end and the time is
- * measured for adding and removing this constraint, and extracting
- * and executing a constraint satisfaction plan. There are two cases.
- * In case 1, the added constraint is stronger than the stay
- * constraint and values must propagate down the entire length of the
- * chain. In case 2, the added constraint is weaker than the stay
- * constraint so it cannot be accomodated. The cost in this case is,
- * of course, very low. Typical situations lie somewhere between these
- * two extremes.
- */
-function chainTest(n) {
- planner = new Planner();
- var prev = null, first = null, last = null;
-
- // Build chain of n equality constraints
- for (var i = 0; i <= n; i++) {
- var name = "v" + i;
- var v = new Variable(name);
- if (prev != null)
- new EqualityConstraint(prev, v, Strength.REQUIRED);
- if (i == 0) first = v;
- if (i == n) last = v;
- prev = v;
- }
-
- new StayConstraint(last, Strength.STRONG_DEFAULT);
- var edit = new EditConstraint(first, Strength.PREFERRED);
- var edits = new OrderedCollection();
- edits.add(edit);
- var plan = planner.extractPlanFromConstraints(edits);
- for (var i = 0; i < 100; i++) {
- first.value = i;
- plan.execute();
- if (last.value != i)
- alert("Chain test failed.");
- }
-}
-
-/**
- * This test constructs a two sets of variables related to each
- * other by a simple linear transformation (scale and offset). The
- * time is measured to change a variable on either side of the
- * mapping and to change the scale and offset factors.
- */
-function projectionTest(n) {
- planner = new Planner();
- var scale = new Variable("scale", 10);
- var offset = new Variable("offset", 1000);
- var src = null, dst = null;
-
- var dests = new OrderedCollection();
- for (var i = 0; i < n; i++) {
- src = new Variable("src" + i, i);
- dst = new Variable("dst" + i, i);
- dests.add(dst);
- new StayConstraint(src, Strength.NORMAL);
- new ScaleConstraint(src, scale, offset, dst, Strength.REQUIRED);
- }
-
- change(src, 17);
- if (dst.value != 1170) alert("Projection 1 failed");
- change(dst, 1050);
- if (src.value != 5) alert("Projection 2 failed");
- change(scale, 5);
- for (var i = 0; i < n - 1; i++) {
- if (dests.at(i).value != i * 5 + 1000)
- alert("Projection 3 failed");
- }
- change(offset, 2000);
- for (var i = 0; i < n - 1; i++) {
- if (dests.at(i).value != i * 5 + 2000)
- alert("Projection 4 failed");
- }
-}
-
-function change(v, newValue) {
- var edit = new EditConstraint(v, Strength.PREFERRED);
- var edits = new OrderedCollection();
- edits.add(edit);
- var plan = planner.extractPlanFromConstraints(edits);
- for (var i = 0; i < 10; i++) {
- v.value = newValue;
- plan.execute();
- }
- edit.destroyConstraint();
-}
-
-// Global variable holding the current planner.
-var planner = null;
-
-function deltaBlue() {
- chainTest(100);
- projectionTest(100);
-}
-
-for (var i = 0; i < 155; ++i)
- deltaBlue();