diff options
Diffstat (limited to 'SunSpider/tests/v8-v5/v8-crypto.js')
-rw-r--r-- | SunSpider/tests/v8-v5/v8-crypto.js | 1695 |
1 files changed, 0 insertions, 1695 deletions
diff --git a/SunSpider/tests/v8-v5/v8-crypto.js b/SunSpider/tests/v8-v5/v8-crypto.js deleted file mode 100644 index 98e171d..0000000 --- a/SunSpider/tests/v8-v5/v8-crypto.js +++ /dev/null @@ -1,1695 +0,0 @@ -/* - * Copyright (c) 2003-2005 Tom Wu - * All Rights Reserved. - * - * Permission is hereby granted, free of charge, to any person obtaining - * a copy of this software and associated documentation files (the - * "Software"), to deal in the Software without restriction, including - * without limitation the rights to use, copy, modify, merge, publish, - * distribute, sublicense, and/or sell copies of the Software, and to - * permit persons to whom the Software is furnished to do so, subject to - * the following conditions: - * - * The above copyright notice and this permission notice shall be - * included in all copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, - * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY - * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. - * - * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, - * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER - * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF - * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT - * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. - * - * In addition, the following condition applies: - * - * All redistributions must retain an intact copy of this copyright notice - * and disclaimer. - */ - -// Basic JavaScript BN library - subset useful for RSA encryption. - -// Bits per digit -var dbits; -var BI_DB; -var BI_DM; -var BI_DV; - -var BI_FP; -var BI_FV; -var BI_F1; -var BI_F2; - -// JavaScript engine analysis -var canary = 0xdeadbeefcafe; -var j_lm = ((canary&0xffffff)==0xefcafe); - -// (public) Constructor -function BigInteger(a,b,c) { - this.array = new Array(); - if(a != null) - if("number" == typeof a) this.fromNumber(a,b,c); - else if(b == null && "string" != typeof a) this.fromString(a,256); - else this.fromString(a,b); -} - -// return new, unset BigInteger -function nbi() { return new BigInteger(null); } - -// am: Compute w_j += (x*this_i), propagate carries, -// c is initial carry, returns final carry. -// c < 3*dvalue, x < 2*dvalue, this_i < dvalue -// We need to select the fastest one that works in this environment. - -// am1: use a single mult and divide to get the high bits, -// max digit bits should be 26 because -// max internal value = 2*dvalue^2-2*dvalue (< 2^53) -function am1(i,x,w,j,c,n) { - var this_array = this.array; - var w_array = w.array; - while(--n >= 0) { - var v = x*this_array[i++]+w_array[j]+c; - c = Math.floor(v/0x4000000); - w_array[j++] = v&0x3ffffff; - } - return c; -} - -// am2 avoids a big mult-and-extract completely. -// Max digit bits should be <= 30 because we do bitwise ops -// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) -function am2(i,x,w,j,c,n) { - var this_array = this.array; - var w_array = w.array; - var xl = x&0x7fff, xh = x>>15; - while(--n >= 0) { - var l = this_array[i]&0x7fff; - var h = this_array[i++]>>15; - var m = xh*l+h*xl; - l = xl*l+((m&0x7fff)<<15)+w_array[j]+(c&0x3fffffff); - c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); - w_array[j++] = l&0x3fffffff; - } - return c; -} - -// Alternately, set max digit bits to 28 since some -// browsers slow down when dealing with 32-bit numbers. -function am3(i,x,w,j,c,n) { - var this_array = this.array; - var w_array = w.array; - - var xl = x&0x3fff, xh = x>>14; - while(--n >= 0) { - var l = this_array[i]&0x3fff; - var h = this_array[i++]>>14; - var m = xh*l+h*xl; - l = xl*l+((m&0x3fff)<<14)+w_array[j]+c; - c = (l>>28)+(m>>14)+xh*h; - w_array[j++] = l&0xfffffff; - } - return c; -} - -// This is tailored to VMs with 2-bit tagging. It makes sure -// that all the computations stay within the 29 bits available. -function am4(i,x,w,j,c,n) { - var this_array = this.array; - var w_array = w.array; - - var xl = x&0x1fff, xh = x>>13; - while(--n >= 0) { - var l = this_array[i]&0x1fff; - var h = this_array[i++]>>13; - var m = xh*l+h*xl; - l = xl*l+((m&0x1fff)<<13)+w_array[j]+c; - c = (l>>26)+(m>>13)+xh*h; - w_array[j++] = l&0x3ffffff; - } - return c; -} - -// am3/28 is best for SM, Rhino, but am4/26 is best for v8. -// Kestrel (Opera 9.5) gets its best result with am4/26. -// IE7 does 9% better with am3/28 than with am4/26. -// Firefox (SM) gets 10% faster with am3/28 than with am4/26. - -setupEngine = function(fn, bits) { - BigInteger.prototype.am = fn; - dbits = bits; - - BI_DB = dbits; - BI_DM = ((1<<dbits)-1); - BI_DV = (1<<dbits); - - BI_FP = 52; - BI_FV = Math.pow(2,BI_FP); - BI_F1 = BI_FP-dbits; - BI_F2 = 2*dbits-BI_FP; -} - - -// Digit conversions -var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; -var BI_RC = new Array(); -var rr,vv; -rr = "0".charCodeAt(0); -for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; -rr = "a".charCodeAt(0); -for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; -rr = "A".charCodeAt(0); -for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; - -function int2char(n) { return BI_RM.charAt(n); } -function intAt(s,i) { - var c = BI_RC[s.charCodeAt(i)]; - return (c==null)?-1:c; -} - -// (protected) copy this to r -function bnpCopyTo(r) { - var this_array = this.array; - var r_array = r.array; - - for(var i = this.t-1; i >= 0; --i) r_array[i] = this_array[i]; - r.t = this.t; - r.s = this.s; -} - -// (protected) set from integer value x, -DV <= x < DV -function bnpFromInt(x) { - var this_array = this.array; - this.t = 1; - this.s = (x<0)?-1:0; - if(x > 0) this_array[0] = x; - else if(x < -1) this_array[0] = x+DV; - else this.t = 0; -} - -// return bigint initialized to value -function nbv(i) { var r = nbi(); r.fromInt(i); return r; } - -// (protected) set from string and radix -function bnpFromString(s,b) { - var this_array = this.array; - var k; - if(b == 16) k = 4; - else if(b == 8) k = 3; - else if(b == 256) k = 8; // byte array - else if(b == 2) k = 1; - else if(b == 32) k = 5; - else if(b == 4) k = 2; - else { this.fromRadix(s,b); return; } - this.t = 0; - this.s = 0; - var i = s.length, mi = false, sh = 0; - while(--i >= 0) { - var x = (k==8)?s[i]&0xff:intAt(s,i); - if(x < 0) { - if(s.charAt(i) == "-") mi = true; - continue; - } - mi = false; - if(sh == 0) - this_array[this.t++] = x; - else if(sh+k > BI_DB) { - this_array[this.t-1] |= (x&((1<<(BI_DB-sh))-1))<<sh; - this_array[this.t++] = (x>>(BI_DB-sh)); - } - else - this_array[this.t-1] |= x<<sh; - sh += k; - if(sh >= BI_DB) sh -= BI_DB; - } - if(k == 8 && (s[0]&0x80) != 0) { - this.s = -1; - if(sh > 0) this_array[this.t-1] |= ((1<<(BI_DB-sh))-1)<<sh; - } - this.clamp(); - if(mi) BigInteger.ZERO.subTo(this,this); -} - -// (protected) clamp off excess high words -function bnpClamp() { - var this_array = this.array; - var c = this.s&BI_DM; - while(this.t > 0 && this_array[this.t-1] == c) --this.t; -} - -// (public) return string representation in given radix -function bnToString(b) { - var this_array = this.array; - if(this.s < 0) return "-"+this.negate().toString(b); - var k; - if(b == 16) k = 4; - else if(b == 8) k = 3; - else if(b == 2) k = 1; - else if(b == 32) k = 5; - else if(b == 4) k = 2; - else return this.toRadix(b); - var km = (1<<k)-1, d, m = false, r = "", i = this.t; - var p = BI_DB-(i*BI_DB)%k; - if(i-- > 0) { - if(p < BI_DB && (d = this_array[i]>>p) > 0) { m = true; r = int2char(d); } - while(i >= 0) { - if(p < k) { - d = (this_array[i]&((1<<p)-1))<<(k-p); - d |= this_array[--i]>>(p+=BI_DB-k); - } - else { - d = (this_array[i]>>(p-=k))&km; - if(p <= 0) { p += BI_DB; --i; } - } - if(d > 0) m = true; - if(m) r += int2char(d); - } - } - return m?r:"0"; -} - -// (public) -this -function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } - -// (public) |this| -function bnAbs() { return (this.s<0)?this.negate():this; } - -// (public) return + if this > a, - if this < a, 0 if equal -function bnCompareTo(a) { - var this_array = this.array; - var a_array = a.array; - - var r = this.s-a.s; - if(r != 0) return r; - var i = this.t; - r = i-a.t; - if(r != 0) return r; - while(--i >= 0) if((r=this_array[i]-a_array[i]) != 0) return r; - return 0; -} - -// returns bit length of the integer x -function nbits(x) { - var r = 1, t; - if((t=x>>>16) != 0) { x = t; r += 16; } - if((t=x>>8) != 0) { x = t; r += 8; } - if((t=x>>4) != 0) { x = t; r += 4; } - if((t=x>>2) != 0) { x = t; r += 2; } - if((t=x>>1) != 0) { x = t; r += 1; } - return r; -} - -// (public) return the number of bits in "this" -function bnBitLength() { - var this_array = this.array; - if(this.t <= 0) return 0; - return BI_DB*(this.t-1)+nbits(this_array[this.t-1]^(this.s&BI_DM)); -} - -// (protected) r = this << n*DB -function bnpDLShiftTo(n,r) { - var this_array = this.array; - var r_array = r.array; - var i; - for(i = this.t-1; i >= 0; --i) r_array[i+n] = this_array[i]; - for(i = n-1; i >= 0; --i) r_array[i] = 0; - r.t = this.t+n; - r.s = this.s; -} - -// (protected) r = this >> n*DB -function bnpDRShiftTo(n,r) { - var this_array = this.array; - var r_array = r.array; - for(var i = n; i < this.t; ++i) r_array[i-n] = this_array[i]; - r.t = Math.max(this.t-n,0); - r.s = this.s; -} - -// (protected) r = this << n -function bnpLShiftTo(n,r) { - var this_array = this.array; - var r_array = r.array; - var bs = n%BI_DB; - var cbs = BI_DB-bs; - var bm = (1<<cbs)-1; - var ds = Math.floor(n/BI_DB), c = (this.s<<bs)&BI_DM, i; - for(i = this.t-1; i >= 0; --i) { - r_array[i+ds+1] = (this_array[i]>>cbs)|c; - c = (this_array[i]&bm)<<bs; - } - for(i = ds-1; i >= 0; --i) r_array[i] = 0; - r_array[ds] = c; - r.t = this.t+ds+1; - r.s = this.s; - r.clamp(); -} - -// (protected) r = this >> n -function bnpRShiftTo(n,r) { - var this_array = this.array; - var r_array = r.array; - r.s = this.s; - var ds = Math.floor(n/BI_DB); - if(ds >= this.t) { r.t = 0; return; } - var bs = n%BI_DB; - var cbs = BI_DB-bs; - var bm = (1<<bs)-1; - r_array[0] = this_array[ds]>>bs; - for(var i = ds+1; i < this.t; ++i) { - r_array[i-ds-1] |= (this_array[i]&bm)<<cbs; - r_array[i-ds] = this_array[i]>>bs; - } - if(bs > 0) r_array[this.t-ds-1] |= (this.s&bm)<<cbs; - r.t = this.t-ds; - r.clamp(); -} - -// (protected) r = this - a -function bnpSubTo(a,r) { - var this_array = this.array; - var r_array = r.array; - var a_array = a.array; - var i = 0, c = 0, m = Math.min(a.t,this.t); - while(i < m) { - c += this_array[i]-a_array[i]; - r_array[i++] = c&BI_DM; - c >>= BI_DB; - } - if(a.t < this.t) { - c -= a.s; - while(i < this.t) { - c += this_array[i]; - r_array[i++] = c&BI_DM; - c >>= BI_DB; - } - c += this.s; - } - else { - c += this.s; - while(i < a.t) { - c -= a_array[i]; - r_array[i++] = c&BI_DM; - c >>= BI_DB; - } - c -= a.s; - } - r.s = (c<0)?-1:0; - if(c < -1) r_array[i++] = BI_DV+c; - else if(c > 0) r_array[i++] = c; - r.t = i; - r.clamp(); -} - -// (protected) r = this * a, r != this,a (HAC 14.12) -// "this" should be the larger one if appropriate. -function bnpMultiplyTo(a,r) { - var this_array = this.array; - var r_array = r.array; - var x = this.abs(), y = a.abs(); - var y_array = y.array; - - var i = x.t; - r.t = i+y.t; - while(--i >= 0) r_array[i] = 0; - for(i = 0; i < y.t; ++i) r_array[i+x.t] = x.am(0,y_array[i],r,i,0,x.t); - r.s = 0; - r.clamp(); - if(this.s != a.s) BigInteger.ZERO.subTo(r,r); -} - -// (protected) r = this^2, r != this (HAC 14.16) -function bnpSquareTo(r) { - var x = this.abs(); - var x_array = x.array; - var r_array = r.array; - - var i = r.t = 2*x.t; - while(--i >= 0) r_array[i] = 0; - for(i = 0; i < x.t-1; ++i) { - var c = x.am(i,x_array[i],r,2*i,0,1); - if((r_array[i+x.t]+=x.am(i+1,2*x_array[i],r,2*i+1,c,x.t-i-1)) >= BI_DV) { - r_array[i+x.t] -= BI_DV; - r_array[i+x.t+1] = 1; - } - } - if(r.t > 0) r_array[r.t-1] += x.am(i,x_array[i],r,2*i,0,1); - r.s = 0; - r.clamp(); -} - -// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) -// r != q, this != m. q or r may be null. -function bnpDivRemTo(m,q,r) { - var pm = m.abs(); - if(pm.t <= 0) return; - var pt = this.abs(); - if(pt.t < pm.t) { - if(q != null) q.fromInt(0); - if(r != null) this.copyTo(r); - return; - } - if(r == null) r = nbi(); - var y = nbi(), ts = this.s, ms = m.s; - var pm_array = pm.array; - var nsh = BI_DB-nbits(pm_array[pm.t-1]); // normalize modulus - if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } - else { pm.copyTo(y); pt.copyTo(r); } - var ys = y.t; - - var y_array = y.array; - var y0 = y_array[ys-1]; - if(y0 == 0) return; - var yt = y0*(1<<BI_F1)+((ys>1)?y_array[ys-2]>>BI_F2:0); - var d1 = BI_FV/yt, d2 = (1<<BI_F1)/yt, e = 1<<BI_F2; - var i = r.t, j = i-ys, t = (q==null)?nbi():q; - y.dlShiftTo(j,t); - - var r_array = r.array; - if(r.compareTo(t) >= 0) { - r_array[r.t++] = 1; - r.subTo(t,r); - } - BigInteger.ONE.dlShiftTo(ys,t); - t.subTo(y,y); // "negative" y so we can replace sub with am later - while(y.t < ys) y_array[y.t++] = 0; - while(--j >= 0) { - // Estimate quotient digit - var qd = (r_array[--i]==y0)?BI_DM:Math.floor(r_array[i]*d1+(r_array[i-1]+e)*d2); - if((r_array[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out - y.dlShiftTo(j,t); - r.subTo(t,r); - while(r_array[i] < --qd) r.subTo(t,r); - } - } - if(q != null) { - r.drShiftTo(ys,q); - if(ts != ms) BigInteger.ZERO.subTo(q,q); - } - r.t = ys; - r.clamp(); - if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder - if(ts < 0) BigInteger.ZERO.subTo(r,r); -} - -// (public) this mod a -function bnMod(a) { - var r = nbi(); - this.abs().divRemTo(a,null,r); - if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); - return r; -} - -// Modular reduction using "classic" algorithm -function Classic(m) { this.m = m; } -function cConvert(x) { - if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); - else return x; -} -function cRevert(x) { return x; } -function cReduce(x) { x.divRemTo(this.m,null,x); } -function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } -function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } - -Classic.prototype.convert = cConvert; -Classic.prototype.revert = cRevert; -Classic.prototype.reduce = cReduce; -Classic.prototype.mulTo = cMulTo; -Classic.prototype.sqrTo = cSqrTo; - -// (protected) return "-1/this % 2^DB"; useful for Mont. reduction -// justification: -// xy == 1 (mod m) -// xy = 1+km -// xy(2-xy) = (1+km)(1-km) -// x[y(2-xy)] = 1-k^2m^2 -// x[y(2-xy)] == 1 (mod m^2) -// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 -// should reduce x and y(2-xy) by m^2 at each step to keep size bounded. -// JS multiply "overflows" differently from C/C++, so care is needed here. -function bnpInvDigit() { - var this_array = this.array; - if(this.t < 1) return 0; - var x = this_array[0]; - if((x&1) == 0) return 0; - var y = x&3; // y == 1/x mod 2^2 - y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 - y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 - y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 - // last step - calculate inverse mod DV directly; - // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints - y = (y*(2-x*y%BI_DV))%BI_DV; // y == 1/x mod 2^dbits - // we really want the negative inverse, and -DV < y < DV - return (y>0)?BI_DV-y:-y; -} - -// Montgomery reduction -function Montgomery(m) { - this.m = m; - this.mp = m.invDigit(); - this.mpl = this.mp&0x7fff; - this.mph = this.mp>>15; - this.um = (1<<(BI_DB-15))-1; - this.mt2 = 2*m.t; -} - -// xR mod m -function montConvert(x) { - var r = nbi(); - x.abs().dlShiftTo(this.m.t,r); - r.divRemTo(this.m,null,r); - if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); - return r; -} - -// x/R mod m -function montRevert(x) { - var r = nbi(); - x.copyTo(r); - this.reduce(r); - return r; -} - -// x = x/R mod m (HAC 14.32) -function montReduce(x) { - var x_array = x.array; - while(x.t <= this.mt2) // pad x so am has enough room later - x_array[x.t++] = 0; - for(var i = 0; i < this.m.t; ++i) { - // faster way of calculating u0 = x[i]*mp mod DV - var j = x_array[i]&0x7fff; - var u0 = (j*this.mpl+(((j*this.mph+(x_array[i]>>15)*this.mpl)&this.um)<<15))&BI_DM; - // use am to combine the multiply-shift-add into one call - j = i+this.m.t; - x_array[j] += this.m.am(0,u0,x,i,0,this.m.t); - // propagate carry - while(x_array[j] >= BI_DV) { x_array[j] -= BI_DV; x_array[++j]++; } - } - x.clamp(); - x.drShiftTo(this.m.t,x); - if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); -} - -// r = "x^2/R mod m"; x != r -function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } - -// r = "xy/R mod m"; x,y != r -function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } - -Montgomery.prototype.convert = montConvert; -Montgomery.prototype.revert = montRevert; -Montgomery.prototype.reduce = montReduce; -Montgomery.prototype.mulTo = montMulTo; -Montgomery.prototype.sqrTo = montSqrTo; - -// (protected) true iff this is even -function bnpIsEven() { - var this_array = this.array; - return ((this.t>0)?(this_array[0]&1):this.s) == 0; -} - -// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) -function bnpExp(e,z) { - if(e > 0xffffffff || e < 1) return BigInteger.ONE; - var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; - g.copyTo(r); - while(--i >= 0) { - z.sqrTo(r,r2); - if((e&(1<<i)) > 0) z.mulTo(r2,g,r); - else { var t = r; r = r2; r2 = t; } - } - return z.revert(r); -} - -// (public) this^e % m, 0 <= e < 2^32 -function bnModPowInt(e,m) { - var z; - if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); - return this.exp(e,z); -} - -// protected -BigInteger.prototype.copyTo = bnpCopyTo; -BigInteger.prototype.fromInt = bnpFromInt; -BigInteger.prototype.fromString = bnpFromString; -BigInteger.prototype.clamp = bnpClamp; -BigInteger.prototype.dlShiftTo = bnpDLShiftTo; -BigInteger.prototype.drShiftTo = bnpDRShiftTo; -BigInteger.prototype.lShiftTo = bnpLShiftTo; -BigInteger.prototype.rShiftTo = bnpRShiftTo; -BigInteger.prototype.subTo = bnpSubTo; -BigInteger.prototype.multiplyTo = bnpMultiplyTo; -BigInteger.prototype.squareTo = bnpSquareTo; -BigInteger.prototype.divRemTo = bnpDivRemTo; -BigInteger.prototype.invDigit = bnpInvDigit; -BigInteger.prototype.isEven = bnpIsEven; -BigInteger.prototype.exp = bnpExp; - -// public -BigInteger.prototype.toString = bnToString; -BigInteger.prototype.negate = bnNegate; -BigInteger.prototype.abs = bnAbs; -BigInteger.prototype.compareTo = bnCompareTo; -BigInteger.prototype.bitLength = bnBitLength; -BigInteger.prototype.mod = bnMod; -BigInteger.prototype.modPowInt = bnModPowInt; - -// "constants" -BigInteger.ZERO = nbv(0); -BigInteger.ONE = nbv(1); -// Copyright (c) 2005 Tom Wu -// All Rights Reserved. -// See "LICENSE" for details. - -// Extended JavaScript BN functions, required for RSA private ops. - -// (public) -function bnClone() { var r = nbi(); this.copyTo(r); return r; } - -// (public) return value as integer -function bnIntValue() { - var this_array = this.array; - if(this.s < 0) { - if(this.t == 1) return this_array[0]-BI_DV; - else if(this.t == 0) return -1; - } - else if(this.t == 1) return this_array[0]; - else if(this.t == 0) return 0; - // assumes 16 < DB < 32 - return ((this_array[1]&((1<<(32-BI_DB))-1))<<BI_DB)|this_array[0]; -} - -// (public) return value as byte -function bnByteValue() { - var this_array = this.array; - return (this.t==0)?this.s:(this_array[0]<<24)>>24; -} - -// (public) return value as short (assumes DB>=16) -function bnShortValue() { - var this_array = this.array; - return (this.t==0)?this.s:(this_array[0]<<16)>>16; -} - -// (protected) return x s.t. r^x < DV -function bnpChunkSize(r) { return Math.floor(Math.LN2*BI_DB/Math.log(r)); } - -// (public) 0 if this == 0, 1 if this > 0 -function bnSigNum() { - var this_array = this.array; - if(this.s < 0) return -1; - else if(this.t <= 0 || (this.t == 1 && this_array[0] <= 0)) return 0; - else return 1; -} - -// (protected) convert to radix string -function bnpToRadix(b) { - if(b == null) b = 10; - if(this.signum() == 0 || b < 2 || b > 36) return "0"; - var cs = this.chunkSize(b); - var a = Math.pow(b,cs); - var d = nbv(a), y = nbi(), z = nbi(), r = ""; - this.divRemTo(d,y,z); - while(y.signum() > 0) { - r = (a+z.intValue()).toString(b).substr(1) + r; - y.divRemTo(d,y,z); - } - return z.intValue().toString(b) + r; -} - -// (protected) convert from radix string -function bnpFromRadix(s,b) { - this.fromInt(0); - if(b == null) b = 10; - var cs = this.chunkSize(b); - var d = Math.pow(b,cs), mi = false, j = 0, w = 0; - for(var i = 0; i < s.length; ++i) { - var x = intAt(s,i); - if(x < 0) { - if(s.charAt(i) == "-" && this.signum() == 0) mi = true; - continue; - } - w = b*w+x; - if(++j >= cs) { - this.dMultiply(d); - this.dAddOffset(w,0); - j = 0; - w = 0; - } - } - if(j > 0) { - this.dMultiply(Math.pow(b,j)); - this.dAddOffset(w,0); - } - if(mi) BigInteger.ZERO.subTo(this,this); -} - -// (protected) alternate constructor -function bnpFromNumber(a,b,c) { - if("number" == typeof b) { - // new BigInteger(int,int,RNG) - if(a < 2) this.fromInt(1); - else { - this.fromNumber(a,c); - if(!this.testBit(a-1)) // force MSB set - this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); - if(this.isEven()) this.dAddOffset(1,0); // force odd - while(!this.isProbablePrime(b)) { - this.dAddOffset(2,0); - if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); - } - } - } - else { - // new BigInteger(int,RNG) - var x = new Array(), t = a&7; - x.length = (a>>3)+1; - b.nextBytes(x); - if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0; - this.fromString(x,256); - } -} - -// (public) convert to bigendian byte array -function bnToByteArray() { - var this_array = this.array; - var i = this.t, r = new Array(); - r[0] = this.s; - var p = BI_DB-(i*BI_DB)%8, d, k = 0; - if(i-- > 0) { - if(p < BI_DB && (d = this_array[i]>>p) != (this.s&BI_DM)>>p) - r[k++] = d|(this.s<<(BI_DB-p)); - while(i >= 0) { - if(p < 8) { - d = (this_array[i]&((1<<p)-1))<<(8-p); - d |= this_array[--i]>>(p+=BI_DB-8); - } - else { - d = (this_array[i]>>(p-=8))&0xff; - if(p <= 0) { p += BI_DB; --i; } - } - if((d&0x80) != 0) d |= -256; - if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; - if(k > 0 || d != this.s) r[k++] = d; - } - } - return r; -} - -function bnEquals(a) { return(this.compareTo(a)==0); } -function bnMin(a) { return(this.compareTo(a)<0)?this:a; } -function bnMax(a) { return(this.compareTo(a)>0)?this:a; } - -// (protected) r = this op a (bitwise) -function bnpBitwiseTo(a,op,r) { - var this_array = this.array; - var a_array = a.array; - var r_array = r.array; - var i, f, m = Math.min(a.t,this.t); - for(i = 0; i < m; ++i) r_array[i] = op(this_array[i],a_array[i]); - if(a.t < this.t) { - f = a.s&BI_DM; - for(i = m; i < this.t; ++i) r_array[i] = op(this_array[i],f); - r.t = this.t; - } - else { - f = this.s&BI_DM; - for(i = m; i < a.t; ++i) r_array[i] = op(f,a_array[i]); - r.t = a.t; - } - r.s = op(this.s,a.s); - r.clamp(); -} - -// (public) this & a -function op_and(x,y) { return x&y; } -function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } - -// (public) this | a -function op_or(x,y) { return x|y; } -function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } - -// (public) this ^ a -function op_xor(x,y) { return x^y; } -function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } - -// (public) this & ~a -function op_andnot(x,y) { return x&~y; } -function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } - -// (public) ~this -function bnNot() { - var this_array = this.array; - var r = nbi(); - var r_array = r.array; - - for(var i = 0; i < this.t; ++i) r_array[i] = BI_DM&~this_array[i]; - r.t = this.t; - r.s = ~this.s; - return r; -} - -// (public) this << n -function bnShiftLeft(n) { - var r = nbi(); - if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); - return r; -} - -// (public) this >> n -function bnShiftRight(n) { - var r = nbi(); - if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); - return r; -} - -// return index of lowest 1-bit in x, x < 2^31 -function lbit(x) { - if(x == 0) return -1; - var r = 0; - if((x&0xffff) == 0) { x >>= 16; r += 16; } - if((x&0xff) == 0) { x >>= 8; r += 8; } - if((x&0xf) == 0) { x >>= 4; r += 4; } - if((x&3) == 0) { x >>= 2; r += 2; } - if((x&1) == 0) ++r; - return r; -} - -// (public) returns index of lowest 1-bit (or -1 if none) -function bnGetLowestSetBit() { - var this_array = this.array; - for(var i = 0; i < this.t; ++i) - if(this_array[i] != 0) return i*BI_DB+lbit(this_array[i]); - if(this.s < 0) return this.t*BI_DB; - return -1; -} - -// return number of 1 bits in x -function cbit(x) { - var r = 0; - while(x != 0) { x &= x-1; ++r; } - return r; -} - -// (public) return number of set bits -function bnBitCount() { - var r = 0, x = this.s&BI_DM; - for(var i = 0; i < this.t; ++i) r += cbit(this_array[i]^x); - return r; -} - -// (public) true iff nth bit is set -function bnTestBit(n) { - var this_array = this.array; - var j = Math.floor(n/BI_DB); - if(j >= this.t) return(this.s!=0); - return((this_array[j]&(1<<(n%BI_DB)))!=0); -} - -// (protected) this op (1<<n) -function bnpChangeBit(n,op) { - var r = BigInteger.ONE.shiftLeft(n); - this.bitwiseTo(r,op,r); - return r; -} - -// (public) this | (1<<n) -function bnSetBit(n) { return this.changeBit(n,op_or); } - -// (public) this & ~(1<<n) -function bnClearBit(n) { return this.changeBit(n,op_andnot); } - -// (public) this ^ (1<<n) -function bnFlipBit(n) { return this.changeBit(n,op_xor); } - -// (protected) r = this + a -function bnpAddTo(a,r) { - var this_array = this.array; - var a_array = a.array; - var r_array = r.array; - var i = 0, c = 0, m = Math.min(a.t,this.t); - while(i < m) { - c += this_array[i]+a_array[i]; - r_array[i++] = c&BI_DM; - c >>= BI_DB; - } - if(a.t < this.t) { - c += a.s; - while(i < this.t) { - c += this_array[i]; - r_array[i++] = c&BI_DM; - c >>= BI_DB; - } - c += this.s; - } - else { - c += this.s; - while(i < a.t) { - c += a_array[i]; - r_array[i++] = c&BI_DM; - c >>= BI_DB; - } - c += a.s; - } - r.s = (c<0)?-1:0; - if(c > 0) r_array[i++] = c; - else if(c < -1) r_array[i++] = BI_DV+c; - r.t = i; - r.clamp(); -} - -// (public) this + a -function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } - -// (public) this - a -function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } - -// (public) this * a -function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } - -// (public) this / a -function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } - -// (public) this % a -function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } - -// (public) [this/a,this%a] -function bnDivideAndRemainder(a) { - var q = nbi(), r = nbi(); - this.divRemTo(a,q,r); - return new Array(q,r); -} - -// (protected) this *= n, this >= 0, 1 < n < DV -function bnpDMultiply(n) { - var this_array = this.array; - this_array[this.t] = this.am(0,n-1,this,0,0,this.t); - ++this.t; - this.clamp(); -} - -// (protected) this += n << w words, this >= 0 -function bnpDAddOffset(n,w) { - var this_array = this.array; - while(this.t <= w) this_array[this.t++] = 0; - this_array[w] += n; - while(this_array[w] >= BI_DV) { - this_array[w] -= BI_DV; - if(++w >= this.t) this_array[this.t++] = 0; - ++this_array[w]; - } -} - -// A "null" reducer -function NullExp() {} -function nNop(x) { return x; } -function nMulTo(x,y,r) { x.multiplyTo(y,r); } -function nSqrTo(x,r) { x.squareTo(r); } - -NullExp.prototype.convert = nNop; -NullExp.prototype.revert = nNop; -NullExp.prototype.mulTo = nMulTo; -NullExp.prototype.sqrTo = nSqrTo; - -// (public) this^e -function bnPow(e) { return this.exp(e,new NullExp()); } - -// (protected) r = lower n words of "this * a", a.t <= n -// "this" should be the larger one if appropriate. -function bnpMultiplyLowerTo(a,n,r) { - var r_array = r.array; - var a_array = a.array; - var i = Math.min(this.t+a.t,n); - r.s = 0; // assumes a,this >= 0 - r.t = i; - while(i > 0) r_array[--i] = 0; - var j; - for(j = r.t-this.t; i < j; ++i) r_array[i+this.t] = this.am(0,a_array[i],r,i,0,this.t); - for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a_array[i],r,i,0,n-i); - r.clamp(); -} - -// (protected) r = "this * a" without lower n words, n > 0 -// "this" should be the larger one if appropriate. -function bnpMultiplyUpperTo(a,n,r) { - var r_array = r.array; - var a_array = a.array; - --n; - var i = r.t = this.t+a.t-n; - r.s = 0; // assumes a,this >= 0 - while(--i >= 0) r_array[i] = 0; - for(i = Math.max(n-this.t,0); i < a.t; ++i) - r_array[this.t+i-n] = this.am(n-i,a_array[i],r,0,0,this.t+i-n); - r.clamp(); - r.drShiftTo(1,r); -} - -// Barrett modular reduction -function Barrett(m) { - // setup Barrett - this.r2 = nbi(); - this.q3 = nbi(); - BigInteger.ONE.dlShiftTo(2*m.t,this.r2); - this.mu = this.r2.divide(m); - this.m = m; -} - -function barrettConvert(x) { - if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); - else if(x.compareTo(this.m) < 0) return x; - else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } -} - -function barrettRevert(x) { return x; } - -// x = x mod m (HAC 14.42) -function barrettReduce(x) { - x.drShiftTo(this.m.t-1,this.r2); - if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } - this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); - this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); - while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); - x.subTo(this.r2,x); - while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); -} - -// r = x^2 mod m; x != r -function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } - -// r = x*y mod m; x,y != r -function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } - -Barrett.prototype.convert = barrettConvert; -Barrett.prototype.revert = barrettRevert; -Barrett.prototype.reduce = barrettReduce; -Barrett.prototype.mulTo = barrettMulTo; -Barrett.prototype.sqrTo = barrettSqrTo; - -// (public) this^e % m (HAC 14.85) -function bnModPow(e,m) { - var e_array = e.array; - var i = e.bitLength(), k, r = nbv(1), z; - if(i <= 0) return r; - else if(i < 18) k = 1; - else if(i < 48) k = 3; - else if(i < 144) k = 4; - else if(i < 768) k = 5; - else k = 6; - if(i < 8) - z = new Classic(m); - else if(m.isEven()) - z = new Barrett(m); - else - z = new Montgomery(m); - - // precomputation - var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1; - g[1] = z.convert(this); - if(k > 1) { - var g2 = nbi(); - z.sqrTo(g[1],g2); - while(n <= km) { - g[n] = nbi(); - z.mulTo(g2,g[n-2],g[n]); - n += 2; - } - } - - var j = e.t-1, w, is1 = true, r2 = nbi(), t; - i = nbits(e_array[j])-1; - while(j >= 0) { - if(i >= k1) w = (e_array[j]>>(i-k1))&km; - else { - w = (e_array[j]&((1<<(i+1))-1))<<(k1-i); - if(j > 0) w |= e_array[j-1]>>(BI_DB+i-k1); - } - - n = k; - while((w&1) == 0) { w >>= 1; --n; } - if((i -= n) < 0) { i += BI_DB; --j; } - if(is1) { // ret == 1, don't bother squaring or multiplying it - g[w].copyTo(r); - is1 = false; - } - else { - while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } - if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } - z.mulTo(r2,g[w],r); - } - - while(j >= 0 && (e_array[j]&(1<<i)) == 0) { - z.sqrTo(r,r2); t = r; r = r2; r2 = t; - if(--i < 0) { i = BI_DB-1; --j; } - } - } - return z.revert(r); -} - -// (public) gcd(this,a) (HAC 14.54) -function bnGCD(a) { - var x = (this.s<0)?this.negate():this.clone(); - var y = (a.s<0)?a.negate():a.clone(); - if(x.compareTo(y) < 0) { var t = x; x = y; y = t; } - var i = x.getLowestSetBit(), g = y.getLowestSetBit(); - if(g < 0) return x; - if(i < g) g = i; - if(g > 0) { - x.rShiftTo(g,x); - y.rShiftTo(g,y); - } - while(x.signum() > 0) { - if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); - if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); - if(x.compareTo(y) >= 0) { - x.subTo(y,x); - x.rShiftTo(1,x); - } - else { - y.subTo(x,y); - y.rShiftTo(1,y); - } - } - if(g > 0) y.lShiftTo(g,y); - return y; -} - -// (protected) this % n, n < 2^26 -function bnpModInt(n) { - var this_array = this.array; - if(n <= 0) return 0; - var d = BI_DV%n, r = (this.s<0)?n-1:0; - if(this.t > 0) - if(d == 0) r = this_array[0]%n; - else for(var i = this.t-1; i >= 0; --i) r = (d*r+this_array[i])%n; - return r; -} - -// (public) 1/this % m (HAC 14.61) -function bnModInverse(m) { - var ac = m.isEven(); - if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; - var u = m.clone(), v = this.clone(); - var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); - while(u.signum() != 0) { - while(u.isEven()) { - u.rShiftTo(1,u); - if(ac) { - if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } - a.rShiftTo(1,a); - } - else if(!b.isEven()) b.subTo(m,b); - b.rShiftTo(1,b); - } - while(v.isEven()) { - v.rShiftTo(1,v); - if(ac) { - if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } - c.rShiftTo(1,c); - } - else if(!d.isEven()) d.subTo(m,d); - d.rShiftTo(1,d); - } - if(u.compareTo(v) >= 0) { - u.subTo(v,u); - if(ac) a.subTo(c,a); - b.subTo(d,b); - } - else { - v.subTo(u,v); - if(ac) c.subTo(a,c); - d.subTo(b,d); - } - } - if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; - if(d.compareTo(m) >= 0) return d.subtract(m); - if(d.signum() < 0) d.addTo(m,d); else return d; - if(d.signum() < 0) return d.add(m); else return d; -} - -var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509]; -var lplim = (1<<26)/lowprimes[lowprimes.length-1]; - -// (public) test primality with certainty >= 1-.5^t -function bnIsProbablePrime(t) { - var i, x = this.abs(); - var x_array = x.array; - if(x.t == 1 && x_array[0] <= lowprimes[lowprimes.length-1]) { - for(i = 0; i < lowprimes.length; ++i) - if(x_array[0] == lowprimes[i]) return true; - return false; - } - if(x.isEven()) return false; - i = 1; - while(i < lowprimes.length) { - var m = lowprimes[i], j = i+1; - while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; - m = x.modInt(m); - while(i < j) if(m%lowprimes[i++] == 0) return false; - } - return x.millerRabin(t); -} - -// (protected) true if probably prime (HAC 4.24, Miller-Rabin) -function bnpMillerRabin(t) { - var n1 = this.subtract(BigInteger.ONE); - var k = n1.getLowestSetBit(); - if(k <= 0) return false; - var r = n1.shiftRight(k); - t = (t+1)>>1; - if(t > lowprimes.length) t = lowprimes.length; - var a = nbi(); - for(var i = 0; i < t; ++i) { - a.fromInt(lowprimes[i]); - var y = a.modPow(r,this); - if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { - var j = 1; - while(j++ < k && y.compareTo(n1) != 0) { - y = y.modPowInt(2,this); - if(y.compareTo(BigInteger.ONE) == 0) return false; - } - if(y.compareTo(n1) != 0) return false; - } - } - return true; -} - -// protected -BigInteger.prototype.chunkSize = bnpChunkSize; -BigInteger.prototype.toRadix = bnpToRadix; -BigInteger.prototype.fromRadix = bnpFromRadix; -BigInteger.prototype.fromNumber = bnpFromNumber; -BigInteger.prototype.bitwiseTo = bnpBitwiseTo; -BigInteger.prototype.changeBit = bnpChangeBit; -BigInteger.prototype.addTo = bnpAddTo; -BigInteger.prototype.dMultiply = bnpDMultiply; -BigInteger.prototype.dAddOffset = bnpDAddOffset; -BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; -BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; -BigInteger.prototype.modInt = bnpModInt; -BigInteger.prototype.millerRabin = bnpMillerRabin; - -// public -BigInteger.prototype.clone = bnClone; -BigInteger.prototype.intValue = bnIntValue; -BigInteger.prototype.byteValue = bnByteValue; -BigInteger.prototype.shortValue = bnShortValue; -BigInteger.prototype.signum = bnSigNum; -BigInteger.prototype.toByteArray = bnToByteArray; -BigInteger.prototype.equals = bnEquals; -BigInteger.prototype.min = bnMin; -BigInteger.prototype.max = bnMax; -BigInteger.prototype.and = bnAnd; -BigInteger.prototype.or = bnOr; -BigInteger.prototype.xor = bnXor; -BigInteger.prototype.andNot = bnAndNot; -BigInteger.prototype.not = bnNot; -BigInteger.prototype.shiftLeft = bnShiftLeft; -BigInteger.prototype.shiftRight = bnShiftRight; -BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; -BigInteger.prototype.bitCount = bnBitCount; -BigInteger.prototype.testBit = bnTestBit; -BigInteger.prototype.setBit = bnSetBit; -BigInteger.prototype.clearBit = bnClearBit; -BigInteger.prototype.flipBit = bnFlipBit; -BigInteger.prototype.add = bnAdd; -BigInteger.prototype.subtract = bnSubtract; -BigInteger.prototype.multiply = bnMultiply; -BigInteger.prototype.divide = bnDivide; -BigInteger.prototype.remainder = bnRemainder; -BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; -BigInteger.prototype.modPow = bnModPow; -BigInteger.prototype.modInverse = bnModInverse; -BigInteger.prototype.pow = bnPow; -BigInteger.prototype.gcd = bnGCD; -BigInteger.prototype.isProbablePrime = bnIsProbablePrime; - -// BigInteger interfaces not implemented in jsbn: - -// BigInteger(int signum, byte[] magnitude) -// double doubleValue() -// float floatValue() -// int hashCode() -// long longValue() -// static BigInteger valueOf(long val) -// prng4.js - uses Arcfour as a PRNG - -function Arcfour() { - this.i = 0; - this.j = 0; - this.S = new Array(); -} - -// Initialize arcfour context from key, an array of ints, each from [0..255] -function ARC4init(key) { - var i, j, t; - for(i = 0; i < 256; ++i) - this.S[i] = i; - j = 0; - for(i = 0; i < 256; ++i) { - j = (j + this.S[i] + key[i % key.length]) & 255; - t = this.S[i]; - this.S[i] = this.S[j]; - this.S[j] = t; - } - this.i = 0; - this.j = 0; -} - -function ARC4next() { - var t; - this.i = (this.i + 1) & 255; - this.j = (this.j + this.S[this.i]) & 255; - t = this.S[this.i]; - this.S[this.i] = this.S[this.j]; - this.S[this.j] = t; - return this.S[(t + this.S[this.i]) & 255]; -} - -Arcfour.prototype.init = ARC4init; -Arcfour.prototype.next = ARC4next; - -// Plug in your RNG constructor here -function prng_newstate() { - return new Arcfour(); -} - -// Pool size must be a multiple of 4 and greater than 32. -// An array of bytes the size of the pool will be passed to init() -var rng_psize = 256; -// Random number generator - requires a PRNG backend, e.g. prng4.js - -// For best results, put code like -// <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'> -// in your main HTML document. - -var rng_state; -var rng_pool; -var rng_pptr; - -// Mix in a 32-bit integer into the pool -function rng_seed_int(x) { - rng_pool[rng_pptr++] ^= x & 255; - rng_pool[rng_pptr++] ^= (x >> 8) & 255; - rng_pool[rng_pptr++] ^= (x >> 16) & 255; - rng_pool[rng_pptr++] ^= (x >> 24) & 255; - if(rng_pptr >= rng_psize) rng_pptr -= rng_psize; -} - -// Mix in the current time (w/milliseconds) into the pool -function rng_seed_time() { - // Use pre-computed date to avoid making the benchmark - // results dependent on the current date. - rng_seed_int(1122926989487); -} - -// Initialize the pool with junk if needed. -if(rng_pool == null) { - rng_pool = new Array(); - rng_pptr = 0; - var t; - while(rng_pptr < rng_psize) { // extract some randomness from Math.random() - t = Math.floor(65536 * Math.random()); - rng_pool[rng_pptr++] = t >>> 8; - rng_pool[rng_pptr++] = t & 255; - } - rng_pptr = 0; - rng_seed_time(); - //rng_seed_int(window.screenX); - //rng_seed_int(window.screenY); -} - -function rng_get_byte() { - if(rng_state == null) { - rng_seed_time(); - rng_state = prng_newstate(); - rng_state.init(rng_pool); - for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) - rng_pool[rng_pptr] = 0; - rng_pptr = 0; - //rng_pool = null; - } - // TODO: allow reseeding after first request - return rng_state.next(); -} - -function rng_get_bytes(ba) { - var i; - for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte(); -} - -function SecureRandom() {} - -SecureRandom.prototype.nextBytes = rng_get_bytes; -// Depends on jsbn.js and rng.js - -// convert a (hex) string to a bignum object -function parseBigInt(str,r) { - return new BigInteger(str,r); -} - -function linebrk(s,n) { - var ret = ""; - var i = 0; - while(i + n < s.length) { - ret += s.substring(i,i+n) + "\n"; - i += n; - } - return ret + s.substring(i,s.length); -} - -function byte2Hex(b) { - if(b < 0x10) - return "0" + b.toString(16); - else - return b.toString(16); -} - -// PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint -function pkcs1pad2(s,n) { - if(n < s.length + 11) { - alert("Message too long for RSA"); - return null; - } - var ba = new Array(); - var i = s.length - 1; - while(i >= 0 && n > 0) ba[--n] = s.charCodeAt(i--); - ba[--n] = 0; - var rng = new SecureRandom(); - var x = new Array(); - while(n > 2) { // random non-zero pad - x[0] = 0; - while(x[0] == 0) rng.nextBytes(x); - ba[--n] = x[0]; - } - ba[--n] = 2; - ba[--n] = 0; - return new BigInteger(ba); -} - -// "empty" RSA key constructor -function RSAKey() { - this.n = null; - this.e = 0; - this.d = null; - this.p = null; - this.q = null; - this.dmp1 = null; - this.dmq1 = null; - this.coeff = null; -} - -// Set the public key fields N and e from hex strings -function RSASetPublic(N,E) { - if(N != null && E != null && N.length > 0 && E.length > 0) { - this.n = parseBigInt(N,16); - this.e = parseInt(E,16); - } - else - alert("Invalid RSA public key"); -} - -// Perform raw public operation on "x": return x^e (mod n) -function RSADoPublic(x) { - return x.modPowInt(this.e, this.n); -} - -// Return the PKCS#1 RSA encryption of "text" as an even-length hex string -function RSAEncrypt(text) { - var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3); - if(m == null) return null; - var c = this.doPublic(m); - if(c == null) return null; - var h = c.toString(16); - if((h.length & 1) == 0) return h; else return "0" + h; -} - -// Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string -//function RSAEncryptB64(text) { -// var h = this.encrypt(text); -// if(h) return hex2b64(h); else return null; -//} - -// protected -RSAKey.prototype.doPublic = RSADoPublic; - -// public -RSAKey.prototype.setPublic = RSASetPublic; -RSAKey.prototype.encrypt = RSAEncrypt; -//RSAKey.prototype.encrypt_b64 = RSAEncryptB64; -// Depends on rsa.js and jsbn2.js - -// Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext -function pkcs1unpad2(d,n) { - var b = d.toByteArray(); - var i = 0; - while(i < b.length && b[i] == 0) ++i; - if(b.length-i != n-1 || b[i] != 2) - return null; - ++i; - while(b[i] != 0) - if(++i >= b.length) return null; - var ret = ""; - while(++i < b.length) - ret += String.fromCharCode(b[i]); - return ret; -} - -// Set the private key fields N, e, and d from hex strings -function RSASetPrivate(N,E,D) { - if(N != null && E != null && N.length > 0 && E.length > 0) { - this.n = parseBigInt(N,16); - this.e = parseInt(E,16); - this.d = parseBigInt(D,16); - } - else - alert("Invalid RSA private key"); -} - -// Set the private key fields N, e, d and CRT params from hex strings -function RSASetPrivateEx(N,E,D,P,Q,DP,DQ,C) { - if(N != null && E != null && N.length > 0 && E.length > 0) { - this.n = parseBigInt(N,16); - this.e = parseInt(E,16); - this.d = parseBigInt(D,16); - this.p = parseBigInt(P,16); - this.q = parseBigInt(Q,16); - this.dmp1 = parseBigInt(DP,16); - this.dmq1 = parseBigInt(DQ,16); - this.coeff = parseBigInt(C,16); - } - else - alert("Invalid RSA private key"); -} - -// Generate a new random private key B bits long, using public expt E -function RSAGenerate(B,E) { - var rng = new SecureRandom(); - var qs = B>>1; - this.e = parseInt(E,16); - var ee = new BigInteger(E,16); - for(;;) { - for(;;) { - this.p = new BigInteger(B-qs,1,rng); - if(this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) break; - } - for(;;) { - this.q = new BigInteger(qs,1,rng); - if(this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) break; - } - if(this.p.compareTo(this.q) <= 0) { - var t = this.p; - this.p = this.q; - this.q = t; - } - var p1 = this.p.subtract(BigInteger.ONE); - var q1 = this.q.subtract(BigInteger.ONE); - var phi = p1.multiply(q1); - if(phi.gcd(ee).compareTo(BigInteger.ONE) == 0) { - this.n = this.p.multiply(this.q); - this.d = ee.modInverse(phi); - this.dmp1 = this.d.mod(p1); - this.dmq1 = this.d.mod(q1); - this.coeff = this.q.modInverse(this.p); - break; - } - } -} - -// Perform raw private operation on "x": return x^d (mod n) -function RSADoPrivate(x) { - if(this.p == null || this.q == null) - return x.modPow(this.d, this.n); - - // TODO: re-calculate any missing CRT params - var xp = x.mod(this.p).modPow(this.dmp1, this.p); - var xq = x.mod(this.q).modPow(this.dmq1, this.q); - - while(xp.compareTo(xq) < 0) - xp = xp.add(this.p); - return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq); -} - -// Return the PKCS#1 RSA decryption of "ctext". -// "ctext" is an even-length hex string and the output is a plain string. -function RSADecrypt(ctext) { - var c = parseBigInt(ctext, 16); - var m = this.doPrivate(c); - if(m == null) return null; - return pkcs1unpad2(m, (this.n.bitLength()+7)>>3); -} - -// Return the PKCS#1 RSA decryption of "ctext". -// "ctext" is a Base64-encoded string and the output is a plain string. -//function RSAB64Decrypt(ctext) { -// var h = b64tohex(ctext); -// if(h) return this.decrypt(h); else return null; -//} - -// protected -RSAKey.prototype.doPrivate = RSADoPrivate; - -// public -RSAKey.prototype.setPrivate = RSASetPrivate; -RSAKey.prototype.setPrivateEx = RSASetPrivateEx; -RSAKey.prototype.generate = RSAGenerate; -RSAKey.prototype.decrypt = RSADecrypt; -//RSAKey.prototype.b64_decrypt = RSAB64Decrypt; - - -nValue="a5261939975948bb7a58dffe5ff54e65f0498f9175f5a09288810b8975871e99af3b5dd94057b0fc07535f5f97444504fa35169d461d0d30cf0192e307727c065168c788771c561a9400fb49175e9e6aa4e23fe11af69e9412dd23b0cb6684c4c2429bce139e848ab26d0829073351f4acd36074eafd036a5eb83359d2a698d3"; -eValue="10001"; -dValue="8e9912f6d3645894e8d38cb58c0db81ff516cf4c7e5a14c7f1eddb1459d2cded4d8d293fc97aee6aefb861859c8b6a3d1dfe710463e1f9ddc72048c09751971c4a580aa51eb523357a3cc48d31cfad1d4a165066ed92d4748fb6571211da5cb14bc11b6e2df7c1a559e6d5ac1cd5c94703a22891464fba23d0d965086277a161"; -pValue="d090ce58a92c75233a6486cb0a9209bf3583b64f540c76f5294bb97d285eed33aec220bde14b2417951178ac152ceab6da7090905b478195498b352048f15e7d"; -qValue="cab575dc652bb66df15a0359609d51d1db184750c00c6698b90ef3465c99655103edbf0d54c56aec0ce3c4d22592338092a126a0cc49f65a4a30d222b411e58f"; -dmp1Value="1a24bca8e273df2f0e47c199bbf678604e7df7215480c77c8db39f49b000ce2cf7500038acfff5433b7d582a01f1826e6f4d42e1c57f5e1fef7b12aabc59fd25"; -dmq1Value="3d06982efbbe47339e1f6d36b1216b8a741d410b0c662f54f7118b27b9a4ec9d914337eb39841d8666f3034408cf94f5b62f11c402fc994fe15a05493150d9fd"; -coeffValue="3a3e731acd8960b7ff9eb81a7ff93bd1cfa74cbd56987db58b4594fb09c09084db1734c8143f98b602b981aaa9243ca28deb69b5b280ee8dcee0fd2625e53250"; - -setupEngine(am3, 28); - -var TEXT = "The quick brown fox jumped over the extremely lazy frog! " + - "Now is the time for all good men to come to the party."; -var encrypted; - -function encrypt() { - var RSA = new RSAKey(); - RSA.setPublic(nValue, eValue); - RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value, coeffValue); - encrypted = RSA.encrypt(TEXT); -} - -function decrypt() { - var RSA = new RSAKey(); - RSA.setPublic(nValue, eValue); - RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value, coeffValue); - var decrypted = RSA.decrypt(encrypted); - if (decrypted != TEXT) { - throw new Error("Crypto operation failed"); - } -} - -for (var i = 0; i < 8; ++i) { - encrypt(); - decrypt(); -} |