summaryrefslogtreecommitdiffstats
path: root/V8Binding/v8/src/arm/codegen-arm.cc
diff options
context:
space:
mode:
Diffstat (limited to 'V8Binding/v8/src/arm/codegen-arm.cc')
-rw-r--r--V8Binding/v8/src/arm/codegen-arm.cc5199
1 files changed, 5199 insertions, 0 deletions
diff --git a/V8Binding/v8/src/arm/codegen-arm.cc b/V8Binding/v8/src/arm/codegen-arm.cc
new file mode 100644
index 0000000..7428d3b
--- /dev/null
+++ b/V8Binding/v8/src/arm/codegen-arm.cc
@@ -0,0 +1,5199 @@
+// Copyright 2006-2009 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "v8.h"
+
+#include "bootstrapper.h"
+#include "codegen-inl.h"
+#include "debug.h"
+#include "parser.h"
+#include "register-allocator-inl.h"
+#include "runtime.h"
+#include "scopes.h"
+
+
+namespace v8 {
+namespace internal {
+
+#define __ ACCESS_MASM(masm_)
+
+// -------------------------------------------------------------------------
+// Platform-specific DeferredCode functions.
+
+void DeferredCode::SaveRegisters() {
+ for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
+ int action = registers_[i];
+ if (action == kPush) {
+ __ push(RegisterAllocator::ToRegister(i));
+ } else if (action != kIgnore && (action & kSyncedFlag) == 0) {
+ __ str(RegisterAllocator::ToRegister(i), MemOperand(fp, action));
+ }
+ }
+}
+
+
+void DeferredCode::RestoreRegisters() {
+ // Restore registers in reverse order due to the stack.
+ for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) {
+ int action = registers_[i];
+ if (action == kPush) {
+ __ pop(RegisterAllocator::ToRegister(i));
+ } else if (action != kIgnore) {
+ action &= ~kSyncedFlag;
+ __ ldr(RegisterAllocator::ToRegister(i), MemOperand(fp, action));
+ }
+ }
+}
+
+
+// -------------------------------------------------------------------------
+// CodeGenState implementation.
+
+CodeGenState::CodeGenState(CodeGenerator* owner)
+ : owner_(owner),
+ typeof_state_(NOT_INSIDE_TYPEOF),
+ true_target_(NULL),
+ false_target_(NULL),
+ previous_(NULL) {
+ owner_->set_state(this);
+}
+
+
+CodeGenState::CodeGenState(CodeGenerator* owner,
+ TypeofState typeof_state,
+ JumpTarget* true_target,
+ JumpTarget* false_target)
+ : owner_(owner),
+ typeof_state_(typeof_state),
+ true_target_(true_target),
+ false_target_(false_target),
+ previous_(owner->state()) {
+ owner_->set_state(this);
+}
+
+
+CodeGenState::~CodeGenState() {
+ ASSERT(owner_->state() == this);
+ owner_->set_state(previous_);
+}
+
+
+// -------------------------------------------------------------------------
+// CodeGenerator implementation
+
+CodeGenerator::CodeGenerator(int buffer_size, Handle<Script> script,
+ bool is_eval)
+ : is_eval_(is_eval),
+ script_(script),
+ deferred_(8),
+ masm_(new MacroAssembler(NULL, buffer_size)),
+ scope_(NULL),
+ frame_(NULL),
+ allocator_(NULL),
+ cc_reg_(al),
+ state_(NULL),
+ function_return_is_shadowed_(false),
+ in_spilled_code_(false) {
+}
+
+
+// Calling conventions:
+// fp: caller's frame pointer
+// sp: stack pointer
+// r1: called JS function
+// cp: callee's context
+
+void CodeGenerator::GenCode(FunctionLiteral* fun) {
+ ZoneList<Statement*>* body = fun->body();
+
+ // Initialize state.
+ ASSERT(scope_ == NULL);
+ scope_ = fun->scope();
+ ASSERT(allocator_ == NULL);
+ RegisterAllocator register_allocator(this);
+ allocator_ = &register_allocator;
+ ASSERT(frame_ == NULL);
+ frame_ = new VirtualFrame();
+ cc_reg_ = al;
+ set_in_spilled_code(false);
+ {
+ CodeGenState state(this);
+
+ // Entry:
+ // Stack: receiver, arguments
+ // lr: return address
+ // fp: caller's frame pointer
+ // sp: stack pointer
+ // r1: called JS function
+ // cp: callee's context
+ allocator_->Initialize();
+ frame_->Enter();
+ // tos: code slot
+#ifdef DEBUG
+ if (strlen(FLAG_stop_at) > 0 &&
+ fun->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
+ frame_->SpillAll();
+ __ stop("stop-at");
+ }
+#endif
+
+ // Allocate space for locals and initialize them.
+ frame_->AllocateStackSlots();
+ // Initialize the function return target after the locals are set
+ // up, because it needs the expected frame height from the frame.
+ function_return_.set_direction(JumpTarget::BIDIRECTIONAL);
+ function_return_is_shadowed_ = false;
+
+ VirtualFrame::SpilledScope spilled_scope;
+ if (scope_->num_heap_slots() > 0) {
+ // Allocate local context.
+ // Get outer context and create a new context based on it.
+ __ ldr(r0, frame_->Function());
+ frame_->EmitPush(r0);
+ frame_->CallRuntime(Runtime::kNewContext, 1); // r0 holds the result
+
+#ifdef DEBUG
+ JumpTarget verified_true;
+ __ cmp(r0, Operand(cp));
+ verified_true.Branch(eq);
+ __ stop("NewContext: r0 is expected to be the same as cp");
+ verified_true.Bind();
+#endif
+ // Update context local.
+ __ str(cp, frame_->Context());
+ }
+
+ // TODO(1241774): Improve this code:
+ // 1) only needed if we have a context
+ // 2) no need to recompute context ptr every single time
+ // 3) don't copy parameter operand code from SlotOperand!
+ {
+ Comment cmnt2(masm_, "[ copy context parameters into .context");
+
+ // Note that iteration order is relevant here! If we have the same
+ // parameter twice (e.g., function (x, y, x)), and that parameter
+ // needs to be copied into the context, it must be the last argument
+ // passed to the parameter that needs to be copied. This is a rare
+ // case so we don't check for it, instead we rely on the copying
+ // order: such a parameter is copied repeatedly into the same
+ // context location and thus the last value is what is seen inside
+ // the function.
+ for (int i = 0; i < scope_->num_parameters(); i++) {
+ Variable* par = scope_->parameter(i);
+ Slot* slot = par->slot();
+ if (slot != NULL && slot->type() == Slot::CONTEXT) {
+ ASSERT(!scope_->is_global_scope()); // no parameters in global scope
+ __ ldr(r1, frame_->ParameterAt(i));
+ // Loads r2 with context; used below in RecordWrite.
+ __ str(r1, SlotOperand(slot, r2));
+ // Load the offset into r3.
+ int slot_offset =
+ FixedArray::kHeaderSize + slot->index() * kPointerSize;
+ __ mov(r3, Operand(slot_offset));
+ __ RecordWrite(r2, r3, r1);
+ }
+ }
+ }
+
+ // Store the arguments object. This must happen after context
+ // initialization because the arguments object may be stored in the
+ // context.
+ if (scope_->arguments() != NULL) {
+ ASSERT(scope_->arguments_shadow() != NULL);
+ Comment cmnt(masm_, "[ allocate arguments object");
+ { Reference shadow_ref(this, scope_->arguments_shadow());
+ { Reference arguments_ref(this, scope_->arguments());
+ ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
+ __ ldr(r2, frame_->Function());
+ // The receiver is below the arguments, the return address,
+ // and the frame pointer on the stack.
+ const int kReceiverDisplacement = 2 + scope_->num_parameters();
+ __ add(r1, fp, Operand(kReceiverDisplacement * kPointerSize));
+ __ mov(r0, Operand(Smi::FromInt(scope_->num_parameters())));
+ frame_->Adjust(3);
+ __ stm(db_w, sp, r0.bit() | r1.bit() | r2.bit());
+ frame_->CallStub(&stub, 3);
+ frame_->EmitPush(r0);
+ arguments_ref.SetValue(NOT_CONST_INIT);
+ }
+ shadow_ref.SetValue(NOT_CONST_INIT);
+ }
+ frame_->Drop(); // Value is no longer needed.
+ }
+
+ // Generate code to 'execute' declarations and initialize functions
+ // (source elements). In case of an illegal redeclaration we need to
+ // handle that instead of processing the declarations.
+ if (scope_->HasIllegalRedeclaration()) {
+ Comment cmnt(masm_, "[ illegal redeclarations");
+ scope_->VisitIllegalRedeclaration(this);
+ } else {
+ Comment cmnt(masm_, "[ declarations");
+ ProcessDeclarations(scope_->declarations());
+ // Bail out if a stack-overflow exception occurred when processing
+ // declarations.
+ if (HasStackOverflow()) return;
+ }
+
+ if (FLAG_trace) {
+ frame_->CallRuntime(Runtime::kTraceEnter, 0);
+ // Ignore the return value.
+ }
+ CheckStack();
+
+ // Compile the body of the function in a vanilla state. Don't
+ // bother compiling all the code if the scope has an illegal
+ // redeclaration.
+ if (!scope_->HasIllegalRedeclaration()) {
+ Comment cmnt(masm_, "[ function body");
+#ifdef DEBUG
+ bool is_builtin = Bootstrapper::IsActive();
+ bool should_trace =
+ is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls;
+ if (should_trace) {
+ frame_->CallRuntime(Runtime::kDebugTrace, 0);
+ // Ignore the return value.
+ }
+#endif
+ VisitStatementsAndSpill(body);
+ }
+ }
+
+ // Generate the return sequence if necessary.
+ if (frame_ != NULL || function_return_.is_linked()) {
+ // exit
+ // r0: result
+ // sp: stack pointer
+ // fp: frame pointer
+ // pp: parameter pointer
+ // cp: callee's context
+ __ mov(r0, Operand(Factory::undefined_value()));
+
+ function_return_.Bind();
+ if (FLAG_trace) {
+ // Push the return value on the stack as the parameter.
+ // Runtime::TraceExit returns the parameter as it is.
+ frame_->EmitPush(r0);
+ frame_->CallRuntime(Runtime::kTraceExit, 1);
+ }
+
+ // Tear down the frame which will restore the caller's frame pointer and
+ // the link register.
+ frame_->Exit();
+
+ __ add(sp, sp, Operand((scope_->num_parameters() + 1) * kPointerSize));
+ __ Jump(lr);
+ }
+
+ // Code generation state must be reset.
+ ASSERT(!has_cc());
+ ASSERT(state_ == NULL);
+ ASSERT(!function_return_is_shadowed_);
+ function_return_.Unuse();
+ DeleteFrame();
+
+ // Process any deferred code using the register allocator.
+ if (!HasStackOverflow()) {
+ ProcessDeferred();
+ }
+
+ allocator_ = NULL;
+ scope_ = NULL;
+}
+
+
+MemOperand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
+ // Currently, this assertion will fail if we try to assign to
+ // a constant variable that is constant because it is read-only
+ // (such as the variable referring to a named function expression).
+ // We need to implement assignments to read-only variables.
+ // Ideally, we should do this during AST generation (by converting
+ // such assignments into expression statements); however, in general
+ // we may not be able to make the decision until past AST generation,
+ // that is when the entire program is known.
+ ASSERT(slot != NULL);
+ int index = slot->index();
+ switch (slot->type()) {
+ case Slot::PARAMETER:
+ return frame_->ParameterAt(index);
+
+ case Slot::LOCAL:
+ return frame_->LocalAt(index);
+
+ case Slot::CONTEXT: {
+ // Follow the context chain if necessary.
+ ASSERT(!tmp.is(cp)); // do not overwrite context register
+ Register context = cp;
+ int chain_length = scope()->ContextChainLength(slot->var()->scope());
+ for (int i = 0; i < chain_length; i++) {
+ // Load the closure.
+ // (All contexts, even 'with' contexts, have a closure,
+ // and it is the same for all contexts inside a function.
+ // There is no need to go to the function context first.)
+ __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
+ // Load the function context (which is the incoming, outer context).
+ __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
+ context = tmp;
+ }
+ // We may have a 'with' context now. Get the function context.
+ // (In fact this mov may never be the needed, since the scope analysis
+ // may not permit a direct context access in this case and thus we are
+ // always at a function context. However it is safe to dereference be-
+ // cause the function context of a function context is itself. Before
+ // deleting this mov we should try to create a counter-example first,
+ // though...)
+ __ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
+ return ContextOperand(tmp, index);
+ }
+
+ default:
+ UNREACHABLE();
+ return MemOperand(r0, 0);
+ }
+}
+
+
+MemOperand CodeGenerator::ContextSlotOperandCheckExtensions(
+ Slot* slot,
+ Register tmp,
+ Register tmp2,
+ JumpTarget* slow) {
+ ASSERT(slot->type() == Slot::CONTEXT);
+ Register context = cp;
+
+ for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) {
+ if (s->num_heap_slots() > 0) {
+ if (s->calls_eval()) {
+ // Check that extension is NULL.
+ __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX));
+ __ tst(tmp2, tmp2);
+ slow->Branch(ne);
+ }
+ __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
+ __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
+ context = tmp;
+ }
+ }
+ // Check that last extension is NULL.
+ __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX));
+ __ tst(tmp2, tmp2);
+ slow->Branch(ne);
+ __ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
+ return ContextOperand(tmp, slot->index());
+}
+
+
+void CodeGenerator::LoadConditionAndSpill(Expression* expression,
+ TypeofState typeof_state,
+ JumpTarget* true_target,
+ JumpTarget* false_target,
+ bool force_control) {
+ ASSERT(in_spilled_code());
+ set_in_spilled_code(false);
+ LoadCondition(expression, typeof_state, true_target, false_target,
+ force_control);
+ if (frame_ != NULL) {
+ frame_->SpillAll();
+ }
+ set_in_spilled_code(true);
+}
+
+
+// Loads a value on TOS. If it is a boolean value, the result may have been
+// (partially) translated into branches, or it may have set the condition
+// code register. If force_cc is set, the value is forced to set the
+// condition code register and no value is pushed. If the condition code
+// register was set, has_cc() is true and cc_reg_ contains the condition to
+// test for 'true'.
+void CodeGenerator::LoadCondition(Expression* x,
+ TypeofState typeof_state,
+ JumpTarget* true_target,
+ JumpTarget* false_target,
+ bool force_cc) {
+ ASSERT(!in_spilled_code());
+ ASSERT(!has_cc());
+ int original_height = frame_->height();
+
+ { CodeGenState new_state(this, typeof_state, true_target, false_target);
+ Visit(x);
+
+ // If we hit a stack overflow, we may not have actually visited
+ // the expression. In that case, we ensure that we have a
+ // valid-looking frame state because we will continue to generate
+ // code as we unwind the C++ stack.
+ //
+ // It's possible to have both a stack overflow and a valid frame
+ // state (eg, a subexpression overflowed, visiting it returned
+ // with a dummied frame state, and visiting this expression
+ // returned with a normal-looking state).
+ if (HasStackOverflow() &&
+ has_valid_frame() &&
+ !has_cc() &&
+ frame_->height() == original_height) {
+ true_target->Jump();
+ }
+ }
+ if (force_cc && frame_ != NULL && !has_cc()) {
+ // Convert the TOS value to a boolean in the condition code register.
+ ToBoolean(true_target, false_target);
+ }
+ ASSERT(!force_cc || !has_valid_frame() || has_cc());
+ ASSERT(!has_valid_frame() ||
+ (has_cc() && frame_->height() == original_height) ||
+ (!has_cc() && frame_->height() == original_height + 1));
+}
+
+
+void CodeGenerator::LoadAndSpill(Expression* expression,
+ TypeofState typeof_state) {
+ ASSERT(in_spilled_code());
+ set_in_spilled_code(false);
+ Load(expression, typeof_state);
+ frame_->SpillAll();
+ set_in_spilled_code(true);
+}
+
+
+void CodeGenerator::Load(Expression* x, TypeofState typeof_state) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ ASSERT(!in_spilled_code());
+ JumpTarget true_target;
+ JumpTarget false_target;
+ LoadCondition(x, typeof_state, &true_target, &false_target, false);
+
+ if (has_cc()) {
+ // Convert cc_reg_ into a boolean value.
+ JumpTarget loaded;
+ JumpTarget materialize_true;
+ materialize_true.Branch(cc_reg_);
+ __ mov(r0, Operand(Factory::false_value()));
+ frame_->EmitPush(r0);
+ loaded.Jump();
+ materialize_true.Bind();
+ __ mov(r0, Operand(Factory::true_value()));
+ frame_->EmitPush(r0);
+ loaded.Bind();
+ cc_reg_ = al;
+ }
+
+ if (true_target.is_linked() || false_target.is_linked()) {
+ // We have at least one condition value that has been "translated"
+ // into a branch, thus it needs to be loaded explicitly.
+ JumpTarget loaded;
+ if (frame_ != NULL) {
+ loaded.Jump(); // Don't lose the current TOS.
+ }
+ bool both = true_target.is_linked() && false_target.is_linked();
+ // Load "true" if necessary.
+ if (true_target.is_linked()) {
+ true_target.Bind();
+ __ mov(r0, Operand(Factory::true_value()));
+ frame_->EmitPush(r0);
+ }
+ // If both "true" and "false" need to be loaded jump across the code for
+ // "false".
+ if (both) {
+ loaded.Jump();
+ }
+ // Load "false" if necessary.
+ if (false_target.is_linked()) {
+ false_target.Bind();
+ __ mov(r0, Operand(Factory::false_value()));
+ frame_->EmitPush(r0);
+ }
+ // A value is loaded on all paths reaching this point.
+ loaded.Bind();
+ }
+ ASSERT(has_valid_frame());
+ ASSERT(!has_cc());
+ ASSERT(frame_->height() == original_height + 1);
+}
+
+
+void CodeGenerator::LoadGlobal() {
+ VirtualFrame::SpilledScope spilled_scope;
+ __ ldr(r0, GlobalObject());
+ frame_->EmitPush(r0);
+}
+
+
+void CodeGenerator::LoadGlobalReceiver(Register scratch) {
+ VirtualFrame::SpilledScope spilled_scope;
+ __ ldr(scratch, ContextOperand(cp, Context::GLOBAL_INDEX));
+ __ ldr(scratch,
+ FieldMemOperand(scratch, GlobalObject::kGlobalReceiverOffset));
+ frame_->EmitPush(scratch);
+}
+
+
+// TODO(1241834): Get rid of this function in favor of just using Load, now
+// that we have the INSIDE_TYPEOF typeof state. => Need to handle global
+// variables w/o reference errors elsewhere.
+void CodeGenerator::LoadTypeofExpression(Expression* x) {
+ VirtualFrame::SpilledScope spilled_scope;
+ Variable* variable = x->AsVariableProxy()->AsVariable();
+ if (variable != NULL && !variable->is_this() && variable->is_global()) {
+ // NOTE: This is somewhat nasty. We force the compiler to load
+ // the variable as if through '<global>.<variable>' to make sure we
+ // do not get reference errors.
+ Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX);
+ Literal key(variable->name());
+ // TODO(1241834): Fetch the position from the variable instead of using
+ // no position.
+ Property property(&global, &key, RelocInfo::kNoPosition);
+ LoadAndSpill(&property);
+ } else {
+ LoadAndSpill(x, INSIDE_TYPEOF);
+ }
+}
+
+
+Reference::Reference(CodeGenerator* cgen, Expression* expression)
+ : cgen_(cgen), expression_(expression), type_(ILLEGAL) {
+ cgen->LoadReference(this);
+}
+
+
+Reference::~Reference() {
+ cgen_->UnloadReference(this);
+}
+
+
+void CodeGenerator::LoadReference(Reference* ref) {
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ LoadReference");
+ Expression* e = ref->expression();
+ Property* property = e->AsProperty();
+ Variable* var = e->AsVariableProxy()->AsVariable();
+
+ if (property != NULL) {
+ // The expression is either a property or a variable proxy that rewrites
+ // to a property.
+ LoadAndSpill(property->obj());
+ // We use a named reference if the key is a literal symbol, unless it is
+ // a string that can be legally parsed as an integer. This is because
+ // otherwise we will not get into the slow case code that handles [] on
+ // String objects.
+ Literal* literal = property->key()->AsLiteral();
+ uint32_t dummy;
+ if (literal != NULL &&
+ literal->handle()->IsSymbol() &&
+ !String::cast(*(literal->handle()))->AsArrayIndex(&dummy)) {
+ ref->set_type(Reference::NAMED);
+ } else {
+ LoadAndSpill(property->key());
+ ref->set_type(Reference::KEYED);
+ }
+ } else if (var != NULL) {
+ // The expression is a variable proxy that does not rewrite to a
+ // property. Global variables are treated as named property references.
+ if (var->is_global()) {
+ LoadGlobal();
+ ref->set_type(Reference::NAMED);
+ } else {
+ ASSERT(var->slot() != NULL);
+ ref->set_type(Reference::SLOT);
+ }
+ } else {
+ // Anything else is a runtime error.
+ LoadAndSpill(e);
+ frame_->CallRuntime(Runtime::kThrowReferenceError, 1);
+ }
+}
+
+
+void CodeGenerator::UnloadReference(Reference* ref) {
+ VirtualFrame::SpilledScope spilled_scope;
+ // Pop a reference from the stack while preserving TOS.
+ Comment cmnt(masm_, "[ UnloadReference");
+ int size = ref->size();
+ if (size > 0) {
+ frame_->EmitPop(r0);
+ frame_->Drop(size);
+ frame_->EmitPush(r0);
+ }
+}
+
+
+// ECMA-262, section 9.2, page 30: ToBoolean(). Convert the given
+// register to a boolean in the condition code register. The code
+// may jump to 'false_target' in case the register converts to 'false'.
+void CodeGenerator::ToBoolean(JumpTarget* true_target,
+ JumpTarget* false_target) {
+ VirtualFrame::SpilledScope spilled_scope;
+ // Note: The generated code snippet does not change stack variables.
+ // Only the condition code should be set.
+ frame_->EmitPop(r0);
+
+ // Fast case checks
+
+ // Check if the value is 'false'.
+ __ cmp(r0, Operand(Factory::false_value()));
+ false_target->Branch(eq);
+
+ // Check if the value is 'true'.
+ __ cmp(r0, Operand(Factory::true_value()));
+ true_target->Branch(eq);
+
+ // Check if the value is 'undefined'.
+ __ cmp(r0, Operand(Factory::undefined_value()));
+ false_target->Branch(eq);
+
+ // Check if the value is a smi.
+ __ cmp(r0, Operand(Smi::FromInt(0)));
+ false_target->Branch(eq);
+ __ tst(r0, Operand(kSmiTagMask));
+ true_target->Branch(eq);
+
+ // Slow case: call the runtime.
+ frame_->EmitPush(r0);
+ frame_->CallRuntime(Runtime::kToBool, 1);
+ // Convert the result (r0) to a condition code.
+ __ cmp(r0, Operand(Factory::false_value()));
+
+ cc_reg_ = ne;
+}
+
+
+class GenericBinaryOpStub : public CodeStub {
+ public:
+ GenericBinaryOpStub(Token::Value op,
+ OverwriteMode mode)
+ : op_(op), mode_(mode) { }
+
+ private:
+ Token::Value op_;
+ OverwriteMode mode_;
+
+ // Minor key encoding in 16 bits.
+ class ModeBits: public BitField<OverwriteMode, 0, 2> {};
+ class OpBits: public BitField<Token::Value, 2, 14> {};
+
+ Major MajorKey() { return GenericBinaryOp; }
+ int MinorKey() {
+ // Encode the parameters in a unique 16 bit value.
+ return OpBits::encode(op_)
+ | ModeBits::encode(mode_);
+ }
+
+ void Generate(MacroAssembler* masm);
+
+ const char* GetName() {
+ switch (op_) {
+ case Token::ADD: return "GenericBinaryOpStub_ADD";
+ case Token::SUB: return "GenericBinaryOpStub_SUB";
+ case Token::MUL: return "GenericBinaryOpStub_MUL";
+ case Token::DIV: return "GenericBinaryOpStub_DIV";
+ case Token::BIT_OR: return "GenericBinaryOpStub_BIT_OR";
+ case Token::BIT_AND: return "GenericBinaryOpStub_BIT_AND";
+ case Token::BIT_XOR: return "GenericBinaryOpStub_BIT_XOR";
+ case Token::SAR: return "GenericBinaryOpStub_SAR";
+ case Token::SHL: return "GenericBinaryOpStub_SHL";
+ case Token::SHR: return "GenericBinaryOpStub_SHR";
+ default: return "GenericBinaryOpStub";
+ }
+ }
+
+#ifdef DEBUG
+ void Print() { PrintF("GenericBinaryOpStub (%s)\n", Token::String(op_)); }
+#endif
+};
+
+
+void CodeGenerator::GenericBinaryOperation(Token::Value op,
+ OverwriteMode overwrite_mode) {
+ VirtualFrame::SpilledScope spilled_scope;
+ // sp[0] : y
+ // sp[1] : x
+ // result : r0
+
+ // Stub is entered with a call: 'return address' is in lr.
+ switch (op) {
+ case Token::ADD: // fall through.
+ case Token::SUB: // fall through.
+ case Token::MUL:
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SHL:
+ case Token::SHR:
+ case Token::SAR: {
+ frame_->EmitPop(r0); // r0 : y
+ frame_->EmitPop(r1); // r1 : x
+ GenericBinaryOpStub stub(op, overwrite_mode);
+ frame_->CallStub(&stub, 0);
+ break;
+ }
+
+ case Token::DIV: {
+ Result arg_count = allocator_->Allocate(r0);
+ ASSERT(arg_count.is_valid());
+ __ mov(arg_count.reg(), Operand(1));
+ frame_->InvokeBuiltin(Builtins::DIV, CALL_JS, &arg_count, 2);
+ break;
+ }
+
+ case Token::MOD: {
+ Result arg_count = allocator_->Allocate(r0);
+ ASSERT(arg_count.is_valid());
+ __ mov(arg_count.reg(), Operand(1));
+ frame_->InvokeBuiltin(Builtins::MOD, CALL_JS, &arg_count, 2);
+ break;
+ }
+
+ case Token::COMMA:
+ frame_->EmitPop(r0);
+ // simply discard left value
+ frame_->Drop();
+ break;
+
+ default:
+ // Other cases should have been handled before this point.
+ UNREACHABLE();
+ break;
+ }
+}
+
+
+class DeferredInlineSmiOperation: public DeferredCode {
+ public:
+ DeferredInlineSmiOperation(Token::Value op,
+ int value,
+ bool reversed,
+ OverwriteMode overwrite_mode)
+ : op_(op),
+ value_(value),
+ reversed_(reversed),
+ overwrite_mode_(overwrite_mode) {
+ set_comment("[ DeferredInlinedSmiOperation");
+ }
+
+ virtual void Generate();
+
+ private:
+ Token::Value op_;
+ int value_;
+ bool reversed_;
+ OverwriteMode overwrite_mode_;
+};
+
+
+void DeferredInlineSmiOperation::Generate() {
+ switch (op_) {
+ case Token::ADD: {
+ // Revert optimistic add.
+ if (reversed_) {
+ __ sub(r0, r0, Operand(Smi::FromInt(value_)));
+ __ mov(r1, Operand(Smi::FromInt(value_)));
+ } else {
+ __ sub(r1, r0, Operand(Smi::FromInt(value_)));
+ __ mov(r0, Operand(Smi::FromInt(value_)));
+ }
+ break;
+ }
+
+ case Token::SUB: {
+ // Revert optimistic sub.
+ if (reversed_) {
+ __ rsb(r0, r0, Operand(Smi::FromInt(value_)));
+ __ mov(r1, Operand(Smi::FromInt(value_)));
+ } else {
+ __ add(r1, r0, Operand(Smi::FromInt(value_)));
+ __ mov(r0, Operand(Smi::FromInt(value_)));
+ }
+ break;
+ }
+
+ case Token::BIT_OR:
+ case Token::BIT_XOR:
+ case Token::BIT_AND: {
+ if (reversed_) {
+ __ mov(r1, Operand(Smi::FromInt(value_)));
+ } else {
+ __ mov(r1, Operand(r0));
+ __ mov(r0, Operand(Smi::FromInt(value_)));
+ }
+ break;
+ }
+
+ case Token::SHL:
+ case Token::SHR:
+ case Token::SAR: {
+ if (!reversed_) {
+ __ mov(r1, Operand(r0));
+ __ mov(r0, Operand(Smi::FromInt(value_)));
+ } else {
+ UNREACHABLE(); // Should have been handled in SmiOperation.
+ }
+ break;
+ }
+
+ default:
+ // Other cases should have been handled before this point.
+ UNREACHABLE();
+ break;
+ }
+
+ GenericBinaryOpStub stub(op_, overwrite_mode_);
+ __ CallStub(&stub);
+}
+
+
+void CodeGenerator::SmiOperation(Token::Value op,
+ Handle<Object> value,
+ bool reversed,
+ OverwriteMode mode) {
+ VirtualFrame::SpilledScope spilled_scope;
+ // NOTE: This is an attempt to inline (a bit) more of the code for
+ // some possible smi operations (like + and -) when (at least) one
+ // of the operands is a literal smi. With this optimization, the
+ // performance of the system is increased by ~15%, and the generated
+ // code size is increased by ~1% (measured on a combination of
+ // different benchmarks).
+
+ // sp[0] : operand
+
+ int int_value = Smi::cast(*value)->value();
+
+ JumpTarget exit;
+ frame_->EmitPop(r0);
+
+ switch (op) {
+ case Token::ADD: {
+ DeferredCode* deferred =
+ new DeferredInlineSmiOperation(op, int_value, reversed, mode);
+
+ __ add(r0, r0, Operand(value), SetCC);
+ deferred->Branch(vs);
+ __ tst(r0, Operand(kSmiTagMask));
+ deferred->Branch(ne);
+ deferred->BindExit();
+ break;
+ }
+
+ case Token::SUB: {
+ DeferredCode* deferred =
+ new DeferredInlineSmiOperation(op, int_value, reversed, mode);
+
+ if (reversed) {
+ __ rsb(r0, r0, Operand(value), SetCC);
+ } else {
+ __ sub(r0, r0, Operand(value), SetCC);
+ }
+ deferred->Branch(vs);
+ __ tst(r0, Operand(kSmiTagMask));
+ deferred->Branch(ne);
+ deferred->BindExit();
+ break;
+ }
+
+ case Token::BIT_OR:
+ case Token::BIT_XOR:
+ case Token::BIT_AND: {
+ DeferredCode* deferred =
+ new DeferredInlineSmiOperation(op, int_value, reversed, mode);
+ __ tst(r0, Operand(kSmiTagMask));
+ deferred->Branch(ne);
+ switch (op) {
+ case Token::BIT_OR: __ orr(r0, r0, Operand(value)); break;
+ case Token::BIT_XOR: __ eor(r0, r0, Operand(value)); break;
+ case Token::BIT_AND: __ and_(r0, r0, Operand(value)); break;
+ default: UNREACHABLE();
+ }
+ deferred->BindExit();
+ break;
+ }
+
+ case Token::SHL:
+ case Token::SHR:
+ case Token::SAR: {
+ if (reversed) {
+ __ mov(ip, Operand(value));
+ frame_->EmitPush(ip);
+ frame_->EmitPush(r0);
+ GenericBinaryOperation(op, mode);
+
+ } else {
+ int shift_value = int_value & 0x1f; // least significant 5 bits
+ DeferredCode* deferred =
+ new DeferredInlineSmiOperation(op, shift_value, false, mode);
+ __ tst(r0, Operand(kSmiTagMask));
+ deferred->Branch(ne);
+ __ mov(r2, Operand(r0, ASR, kSmiTagSize)); // remove tags
+ switch (op) {
+ case Token::SHL: {
+ __ mov(r2, Operand(r2, LSL, shift_value));
+ // check that the *unsigned* result fits in a smi
+ __ add(r3, r2, Operand(0x40000000), SetCC);
+ deferred->Branch(mi);
+ break;
+ }
+ case Token::SHR: {
+ // LSR by immediate 0 means shifting 32 bits.
+ if (shift_value != 0) {
+ __ mov(r2, Operand(r2, LSR, shift_value));
+ }
+ // check that the *unsigned* result fits in a smi
+ // neither of the two high-order bits can be set:
+ // - 0x80000000: high bit would be lost when smi tagging
+ // - 0x40000000: this number would convert to negative when
+ // smi tagging these two cases can only happen with shifts
+ // by 0 or 1 when handed a valid smi
+ __ and_(r3, r2, Operand(0xc0000000), SetCC);
+ deferred->Branch(ne);
+ break;
+ }
+ case Token::SAR: {
+ if (shift_value != 0) {
+ // ASR by immediate 0 means shifting 32 bits.
+ __ mov(r2, Operand(r2, ASR, shift_value));
+ }
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ __ mov(r0, Operand(r2, LSL, kSmiTagSize));
+ deferred->BindExit();
+ }
+ break;
+ }
+
+ default:
+ if (!reversed) {
+ frame_->EmitPush(r0);
+ __ mov(r0, Operand(value));
+ frame_->EmitPush(r0);
+ } else {
+ __ mov(ip, Operand(value));
+ frame_->EmitPush(ip);
+ frame_->EmitPush(r0);
+ }
+ GenericBinaryOperation(op, mode);
+ break;
+ }
+
+ exit.Bind();
+}
+
+
+void CodeGenerator::Comparison(Condition cc, bool strict) {
+ VirtualFrame::SpilledScope spilled_scope;
+ // sp[0] : y
+ // sp[1] : x
+ // result : cc register
+
+ // Strict only makes sense for equality comparisons.
+ ASSERT(!strict || cc == eq);
+
+ JumpTarget exit;
+ JumpTarget smi;
+ // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order.
+ if (cc == gt || cc == le) {
+ cc = ReverseCondition(cc);
+ frame_->EmitPop(r1);
+ frame_->EmitPop(r0);
+ } else {
+ frame_->EmitPop(r0);
+ frame_->EmitPop(r1);
+ }
+ __ orr(r2, r0, Operand(r1));
+ __ tst(r2, Operand(kSmiTagMask));
+ smi.Branch(eq);
+
+ // Perform non-smi comparison by runtime call.
+ frame_->EmitPush(r1);
+
+ // Figure out which native to call and setup the arguments.
+ Builtins::JavaScript native;
+ int arg_count = 1;
+ if (cc == eq) {
+ native = strict ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
+ } else {
+ native = Builtins::COMPARE;
+ int ncr; // NaN compare result
+ if (cc == lt || cc == le) {
+ ncr = GREATER;
+ } else {
+ ASSERT(cc == gt || cc == ge); // remaining cases
+ ncr = LESS;
+ }
+ frame_->EmitPush(r0);
+ arg_count++;
+ __ mov(r0, Operand(Smi::FromInt(ncr)));
+ }
+
+ // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
+ // tagged as a small integer.
+ frame_->EmitPush(r0);
+ Result arg_count_register = allocator_->Allocate(r0);
+ ASSERT(arg_count_register.is_valid());
+ __ mov(arg_count_register.reg(), Operand(arg_count));
+ Result result = frame_->InvokeBuiltin(native,
+ CALL_JS,
+ &arg_count_register,
+ arg_count + 1);
+ __ cmp(result.reg(), Operand(0));
+ result.Unuse();
+ exit.Jump();
+
+ // test smi equality by pointer comparison.
+ smi.Bind();
+ __ cmp(r1, Operand(r0));
+
+ exit.Bind();
+ cc_reg_ = cc;
+}
+
+
+class CallFunctionStub: public CodeStub {
+ public:
+ CallFunctionStub(int argc, InLoopFlag in_loop)
+ : argc_(argc), in_loop_(in_loop) {}
+
+ void Generate(MacroAssembler* masm);
+
+ private:
+ int argc_;
+ InLoopFlag in_loop_;
+
+#if defined(DEBUG)
+ void Print() { PrintF("CallFunctionStub (argc %d)\n", argc_); }
+#endif // defined(DEBUG)
+
+ Major MajorKey() { return CallFunction; }
+ int MinorKey() { return argc_; }
+ InLoopFlag InLoop() { return in_loop_; }
+};
+
+
+// Call the function on the stack with the given arguments.
+void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
+ int position) {
+ VirtualFrame::SpilledScope spilled_scope;
+ // Push the arguments ("left-to-right") on the stack.
+ int arg_count = args->length();
+ for (int i = 0; i < arg_count; i++) {
+ LoadAndSpill(args->at(i));
+ }
+
+ // Record the position for debugging purposes.
+ CodeForSourcePosition(position);
+
+ // Use the shared code stub to call the function.
+ InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
+ CallFunctionStub call_function(arg_count, in_loop);
+ frame_->CallStub(&call_function, arg_count + 1);
+
+ // Restore context and pop function from the stack.
+ __ ldr(cp, frame_->Context());
+ frame_->Drop(); // discard the TOS
+}
+
+
+void CodeGenerator::Branch(bool if_true, JumpTarget* target) {
+ VirtualFrame::SpilledScope spilled_scope;
+ ASSERT(has_cc());
+ Condition cc = if_true ? cc_reg_ : NegateCondition(cc_reg_);
+ target->Branch(cc);
+ cc_reg_ = al;
+}
+
+
+void CodeGenerator::CheckStack() {
+ VirtualFrame::SpilledScope spilled_scope;
+ if (FLAG_check_stack) {
+ Comment cmnt(masm_, "[ check stack");
+ StackCheckStub stub;
+ frame_->CallStub(&stub, 0);
+ }
+}
+
+
+void CodeGenerator::VisitAndSpill(Statement* statement) {
+ ASSERT(in_spilled_code());
+ set_in_spilled_code(false);
+ Visit(statement);
+ if (frame_ != NULL) {
+ frame_->SpillAll();
+ }
+ set_in_spilled_code(true);
+}
+
+
+void CodeGenerator::VisitStatementsAndSpill(ZoneList<Statement*>* statements) {
+ ASSERT(in_spilled_code());
+ set_in_spilled_code(false);
+ VisitStatements(statements);
+ if (frame_ != NULL) {
+ frame_->SpillAll();
+ }
+ set_in_spilled_code(true);
+}
+
+
+void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ for (int i = 0; frame_ != NULL && i < statements->length(); i++) {
+ VisitAndSpill(statements->at(i));
+ }
+ ASSERT(!has_valid_frame() || frame_->height() == original_height);
+}
+
+
+void CodeGenerator::VisitBlock(Block* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ Block");
+ CodeForStatementPosition(node);
+ node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
+ VisitStatementsAndSpill(node->statements());
+ if (node->break_target()->is_linked()) {
+ node->break_target()->Bind();
+ }
+ node->break_target()->Unuse();
+ ASSERT(!has_valid_frame() || frame_->height() == original_height);
+}
+
+
+void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
+ VirtualFrame::SpilledScope spilled_scope;
+ __ mov(r0, Operand(pairs));
+ frame_->EmitPush(r0);
+ frame_->EmitPush(cp);
+ __ mov(r0, Operand(Smi::FromInt(is_eval() ? 1 : 0)));
+ frame_->EmitPush(r0);
+ frame_->CallRuntime(Runtime::kDeclareGlobals, 3);
+ // The result is discarded.
+}
+
+
+void CodeGenerator::VisitDeclaration(Declaration* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ Declaration");
+ CodeForStatementPosition(node);
+ Variable* var = node->proxy()->var();
+ ASSERT(var != NULL); // must have been resolved
+ Slot* slot = var->slot();
+
+ // If it was not possible to allocate the variable at compile time,
+ // we need to "declare" it at runtime to make sure it actually
+ // exists in the local context.
+ if (slot != NULL && slot->type() == Slot::LOOKUP) {
+ // Variables with a "LOOKUP" slot were introduced as non-locals
+ // during variable resolution and must have mode DYNAMIC.
+ ASSERT(var->is_dynamic());
+ // For now, just do a runtime call.
+ frame_->EmitPush(cp);
+ __ mov(r0, Operand(var->name()));
+ frame_->EmitPush(r0);
+ // Declaration nodes are always declared in only two modes.
+ ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST);
+ PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY;
+ __ mov(r0, Operand(Smi::FromInt(attr)));
+ frame_->EmitPush(r0);
+ // Push initial value, if any.
+ // Note: For variables we must not push an initial value (such as
+ // 'undefined') because we may have a (legal) redeclaration and we
+ // must not destroy the current value.
+ if (node->mode() == Variable::CONST) {
+ __ mov(r0, Operand(Factory::the_hole_value()));
+ frame_->EmitPush(r0);
+ } else if (node->fun() != NULL) {
+ LoadAndSpill(node->fun());
+ } else {
+ __ mov(r0, Operand(0)); // no initial value!
+ frame_->EmitPush(r0);
+ }
+ frame_->CallRuntime(Runtime::kDeclareContextSlot, 4);
+ // Ignore the return value (declarations are statements).
+ ASSERT(frame_->height() == original_height);
+ return;
+ }
+
+ ASSERT(!var->is_global());
+
+ // If we have a function or a constant, we need to initialize the variable.
+ Expression* val = NULL;
+ if (node->mode() == Variable::CONST) {
+ val = new Literal(Factory::the_hole_value());
+ } else {
+ val = node->fun(); // NULL if we don't have a function
+ }
+
+ if (val != NULL) {
+ {
+ // Set initial value.
+ Reference target(this, node->proxy());
+ LoadAndSpill(val);
+ target.SetValue(NOT_CONST_INIT);
+ // The reference is removed from the stack (preserving TOS) when
+ // it goes out of scope.
+ }
+ // Get rid of the assigned value (declarations are statements).
+ frame_->Drop();
+ }
+ ASSERT(frame_->height() == original_height);
+}
+
+
+void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ ExpressionStatement");
+ CodeForStatementPosition(node);
+ Expression* expression = node->expression();
+ expression->MarkAsStatement();
+ LoadAndSpill(expression);
+ frame_->Drop();
+ ASSERT(frame_->height() == original_height);
+}
+
+
+void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "// EmptyStatement");
+ CodeForStatementPosition(node);
+ // nothing to do
+ ASSERT(frame_->height() == original_height);
+}
+
+
+void CodeGenerator::VisitIfStatement(IfStatement* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ IfStatement");
+ // Generate different code depending on which parts of the if statement
+ // are present or not.
+ bool has_then_stm = node->HasThenStatement();
+ bool has_else_stm = node->HasElseStatement();
+
+ CodeForStatementPosition(node);
+
+ JumpTarget exit;
+ if (has_then_stm && has_else_stm) {
+ Comment cmnt(masm_, "[ IfThenElse");
+ JumpTarget then;
+ JumpTarget else_;
+ // if (cond)
+ LoadConditionAndSpill(node->condition(), NOT_INSIDE_TYPEOF,
+ &then, &else_, true);
+ if (frame_ != NULL) {
+ Branch(false, &else_);
+ }
+ // then
+ if (frame_ != NULL || then.is_linked()) {
+ then.Bind();
+ VisitAndSpill(node->then_statement());
+ }
+ if (frame_ != NULL) {
+ exit.Jump();
+ }
+ // else
+ if (else_.is_linked()) {
+ else_.Bind();
+ VisitAndSpill(node->else_statement());
+ }
+
+ } else if (has_then_stm) {
+ Comment cmnt(masm_, "[ IfThen");
+ ASSERT(!has_else_stm);
+ JumpTarget then;
+ // if (cond)
+ LoadConditionAndSpill(node->condition(), NOT_INSIDE_TYPEOF,
+ &then, &exit, true);
+ if (frame_ != NULL) {
+ Branch(false, &exit);
+ }
+ // then
+ if (frame_ != NULL || then.is_linked()) {
+ then.Bind();
+ VisitAndSpill(node->then_statement());
+ }
+
+ } else if (has_else_stm) {
+ Comment cmnt(masm_, "[ IfElse");
+ ASSERT(!has_then_stm);
+ JumpTarget else_;
+ // if (!cond)
+ LoadConditionAndSpill(node->condition(), NOT_INSIDE_TYPEOF,
+ &exit, &else_, true);
+ if (frame_ != NULL) {
+ Branch(true, &exit);
+ }
+ // else
+ if (frame_ != NULL || else_.is_linked()) {
+ else_.Bind();
+ VisitAndSpill(node->else_statement());
+ }
+
+ } else {
+ Comment cmnt(masm_, "[ If");
+ ASSERT(!has_then_stm && !has_else_stm);
+ // if (cond)
+ LoadConditionAndSpill(node->condition(), NOT_INSIDE_TYPEOF,
+ &exit, &exit, false);
+ if (frame_ != NULL) {
+ if (has_cc()) {
+ cc_reg_ = al;
+ } else {
+ frame_->Drop();
+ }
+ }
+ }
+
+ // end
+ if (exit.is_linked()) {
+ exit.Bind();
+ }
+ ASSERT(!has_valid_frame() || frame_->height() == original_height);
+}
+
+
+void CodeGenerator::VisitContinueStatement(ContinueStatement* node) {
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ ContinueStatement");
+ CodeForStatementPosition(node);
+ node->target()->continue_target()->Jump();
+}
+
+
+void CodeGenerator::VisitBreakStatement(BreakStatement* node) {
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ BreakStatement");
+ CodeForStatementPosition(node);
+ node->target()->break_target()->Jump();
+}
+
+
+void CodeGenerator::VisitReturnStatement(ReturnStatement* node) {
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ ReturnStatement");
+
+ if (function_return_is_shadowed_) {
+ CodeForStatementPosition(node);
+ LoadAndSpill(node->expression());
+ frame_->EmitPop(r0);
+ function_return_.Jump();
+ } else {
+ // Load the returned value.
+ CodeForStatementPosition(node);
+ LoadAndSpill(node->expression());
+
+ // Pop the result from the frame and prepare the frame for
+ // returning thus making it easier to merge.
+ frame_->EmitPop(r0);
+ frame_->PrepareForReturn();
+
+ function_return_.Jump();
+ }
+}
+
+
+void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ WithEnterStatement");
+ CodeForStatementPosition(node);
+ LoadAndSpill(node->expression());
+ if (node->is_catch_block()) {
+ frame_->CallRuntime(Runtime::kPushCatchContext, 1);
+ } else {
+ frame_->CallRuntime(Runtime::kPushContext, 1);
+ }
+#ifdef DEBUG
+ JumpTarget verified_true;
+ __ cmp(r0, Operand(cp));
+ verified_true.Branch(eq);
+ __ stop("PushContext: r0 is expected to be the same as cp");
+ verified_true.Bind();
+#endif
+ // Update context local.
+ __ str(cp, frame_->Context());
+ ASSERT(frame_->height() == original_height);
+}
+
+
+void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ WithExitStatement");
+ CodeForStatementPosition(node);
+ // Pop context.
+ __ ldr(cp, ContextOperand(cp, Context::PREVIOUS_INDEX));
+ // Update context local.
+ __ str(cp, frame_->Context());
+ ASSERT(frame_->height() == original_height);
+}
+
+
+int CodeGenerator::FastCaseSwitchMaxOverheadFactor() {
+ return kFastSwitchMaxOverheadFactor;
+}
+
+int CodeGenerator::FastCaseSwitchMinCaseCount() {
+ return kFastSwitchMinCaseCount;
+}
+
+
+void CodeGenerator::GenerateFastCaseSwitchJumpTable(
+ SwitchStatement* node,
+ int min_index,
+ int range,
+ Label* default_label,
+ Vector<Label*> case_targets,
+ Vector<Label> case_labels) {
+ VirtualFrame::SpilledScope spilled_scope;
+ JumpTarget setup_default;
+ JumpTarget is_smi;
+
+ // A non-null default label pointer indicates a default case among
+ // the case labels. Otherwise we use the break target as a
+ // "default" for failure to hit the jump table.
+ JumpTarget* default_target =
+ (default_label == NULL) ? node->break_target() : &setup_default;
+
+ ASSERT(kSmiTag == 0 && kSmiTagSize <= 2);
+ frame_->EmitPop(r0);
+
+ // Test for a Smi value in a HeapNumber.
+ __ tst(r0, Operand(kSmiTagMask));
+ is_smi.Branch(eq);
+ __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
+ __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
+ __ cmp(r1, Operand(HEAP_NUMBER_TYPE));
+ default_target->Branch(ne);
+ frame_->EmitPush(r0);
+ frame_->CallRuntime(Runtime::kNumberToSmi, 1);
+ is_smi.Bind();
+
+ if (min_index != 0) {
+ // Small positive numbers can be immediate operands.
+ if (min_index < 0) {
+ // If min_index is Smi::kMinValue, -min_index is not a Smi.
+ if (Smi::IsValid(-min_index)) {
+ __ add(r0, r0, Operand(Smi::FromInt(-min_index)));
+ } else {
+ __ add(r0, r0, Operand(Smi::FromInt(-min_index - 1)));
+ __ add(r0, r0, Operand(Smi::FromInt(1)));
+ }
+ } else {
+ __ sub(r0, r0, Operand(Smi::FromInt(min_index)));
+ }
+ }
+ __ tst(r0, Operand(0x80000000 | kSmiTagMask));
+ default_target->Branch(ne);
+ __ cmp(r0, Operand(Smi::FromInt(range)));
+ default_target->Branch(ge);
+ VirtualFrame* start_frame = new VirtualFrame(frame_);
+ __ SmiJumpTable(r0, case_targets);
+
+ GenerateFastCaseSwitchCases(node, case_labels, start_frame);
+
+ // If there was a default case among the case labels, we need to
+ // emit code to jump to it from the default target used for failure
+ // to hit the jump table.
+ if (default_label != NULL) {
+ if (has_valid_frame()) {
+ node->break_target()->Jump();
+ }
+ setup_default.Bind();
+ frame_->MergeTo(start_frame);
+ __ b(default_label);
+ DeleteFrame();
+ }
+ if (node->break_target()->is_linked()) {
+ node->break_target()->Bind();
+ }
+}
+
+
+void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ SwitchStatement");
+ CodeForStatementPosition(node);
+ node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
+
+ LoadAndSpill(node->tag());
+ if (TryGenerateFastCaseSwitchStatement(node)) {
+ ASSERT(!has_valid_frame() || frame_->height() == original_height);
+ return;
+ }
+
+ JumpTarget next_test;
+ JumpTarget fall_through;
+ JumpTarget default_entry;
+ JumpTarget default_exit(JumpTarget::BIDIRECTIONAL);
+ ZoneList<CaseClause*>* cases = node->cases();
+ int length = cases->length();
+ CaseClause* default_clause = NULL;
+
+ for (int i = 0; i < length; i++) {
+ CaseClause* clause = cases->at(i);
+ if (clause->is_default()) {
+ // Remember the default clause and compile it at the end.
+ default_clause = clause;
+ continue;
+ }
+
+ Comment cmnt(masm_, "[ Case clause");
+ // Compile the test.
+ next_test.Bind();
+ next_test.Unuse();
+ // Duplicate TOS.
+ __ ldr(r0, frame_->Top());
+ frame_->EmitPush(r0);
+ LoadAndSpill(clause->label());
+ Comparison(eq, true);
+ Branch(false, &next_test);
+
+ // Before entering the body from the test, remove the switch value from
+ // the stack.
+ frame_->Drop();
+
+ // Label the body so that fall through is enabled.
+ if (i > 0 && cases->at(i - 1)->is_default()) {
+ default_exit.Bind();
+ } else {
+ fall_through.Bind();
+ fall_through.Unuse();
+ }
+ VisitStatementsAndSpill(clause->statements());
+
+ // If control flow can fall through from the body, jump to the next body
+ // or the end of the statement.
+ if (frame_ != NULL) {
+ if (i < length - 1 && cases->at(i + 1)->is_default()) {
+ default_entry.Jump();
+ } else {
+ fall_through.Jump();
+ }
+ }
+ }
+
+ // The final "test" removes the switch value.
+ next_test.Bind();
+ frame_->Drop();
+
+ // If there is a default clause, compile it.
+ if (default_clause != NULL) {
+ Comment cmnt(masm_, "[ Default clause");
+ default_entry.Bind();
+ VisitStatementsAndSpill(default_clause->statements());
+ // If control flow can fall out of the default and there is a case after
+ // it, jup to that case's body.
+ if (frame_ != NULL && default_exit.is_bound()) {
+ default_exit.Jump();
+ }
+ }
+
+ if (fall_through.is_linked()) {
+ fall_through.Bind();
+ }
+
+ if (node->break_target()->is_linked()) {
+ node->break_target()->Bind();
+ }
+ node->break_target()->Unuse();
+ ASSERT(!has_valid_frame() || frame_->height() == original_height);
+}
+
+
+void CodeGenerator::VisitLoopStatement(LoopStatement* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ LoopStatement");
+ CodeForStatementPosition(node);
+ node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
+
+ // Simple condition analysis. ALWAYS_TRUE and ALWAYS_FALSE represent a
+ // known result for the test expression, with no side effects.
+ enum { ALWAYS_TRUE, ALWAYS_FALSE, DONT_KNOW } info = DONT_KNOW;
+ if (node->cond() == NULL) {
+ ASSERT(node->type() == LoopStatement::FOR_LOOP);
+ info = ALWAYS_TRUE;
+ } else {
+ Literal* lit = node->cond()->AsLiteral();
+ if (lit != NULL) {
+ if (lit->IsTrue()) {
+ info = ALWAYS_TRUE;
+ } else if (lit->IsFalse()) {
+ info = ALWAYS_FALSE;
+ }
+ }
+ }
+
+ switch (node->type()) {
+ case LoopStatement::DO_LOOP: {
+ JumpTarget body(JumpTarget::BIDIRECTIONAL);
+
+ // Label the top of the loop for the backward CFG edge. If the test
+ // is always true we can use the continue target, and if the test is
+ // always false there is no need.
+ if (info == ALWAYS_TRUE) {
+ node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
+ node->continue_target()->Bind();
+ } else if (info == ALWAYS_FALSE) {
+ node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
+ } else {
+ ASSERT(info == DONT_KNOW);
+ node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
+ body.Bind();
+ }
+
+ CheckStack(); // TODO(1222600): ignore if body contains calls.
+ VisitAndSpill(node->body());
+
+ // Compile the test.
+ if (info == ALWAYS_TRUE) {
+ if (has_valid_frame()) {
+ // If control can fall off the end of the body, jump back to the
+ // top.
+ node->continue_target()->Jump();
+ }
+ } else if (info == ALWAYS_FALSE) {
+ // If we have a continue in the body, we only have to bind its jump
+ // target.
+ if (node->continue_target()->is_linked()) {
+ node->continue_target()->Bind();
+ }
+ } else {
+ ASSERT(info == DONT_KNOW);
+ // We have to compile the test expression if it can be reached by
+ // control flow falling out of the body or via continue.
+ if (node->continue_target()->is_linked()) {
+ node->continue_target()->Bind();
+ }
+ if (has_valid_frame()) {
+ LoadConditionAndSpill(node->cond(), NOT_INSIDE_TYPEOF,
+ &body, node->break_target(), true);
+ if (has_valid_frame()) {
+ // A invalid frame here indicates that control did not
+ // fall out of the test expression.
+ Branch(true, &body);
+ }
+ }
+ }
+ break;
+ }
+
+ case LoopStatement::WHILE_LOOP: {
+ // If the test is never true and has no side effects there is no need
+ // to compile the test or body.
+ if (info == ALWAYS_FALSE) break;
+
+ // Label the top of the loop with the continue target for the backward
+ // CFG edge.
+ node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
+ node->continue_target()->Bind();
+
+ if (info == DONT_KNOW) {
+ JumpTarget body;
+ LoadConditionAndSpill(node->cond(), NOT_INSIDE_TYPEOF,
+ &body, node->break_target(), true);
+ if (has_valid_frame()) {
+ // A NULL frame indicates that control did not fall out of the
+ // test expression.
+ Branch(false, node->break_target());
+ }
+ if (has_valid_frame() || body.is_linked()) {
+ body.Bind();
+ }
+ }
+
+ if (has_valid_frame()) {
+ CheckStack(); // TODO(1222600): ignore if body contains calls.
+ VisitAndSpill(node->body());
+
+ // If control flow can fall out of the body, jump back to the top.
+ if (has_valid_frame()) {
+ node->continue_target()->Jump();
+ }
+ }
+ break;
+ }
+
+ case LoopStatement::FOR_LOOP: {
+ JumpTarget loop(JumpTarget::BIDIRECTIONAL);
+
+ if (node->init() != NULL) {
+ VisitAndSpill(node->init());
+ }
+
+ // There is no need to compile the test or body.
+ if (info == ALWAYS_FALSE) break;
+
+ // If there is no update statement, label the top of the loop with the
+ // continue target, otherwise with the loop target.
+ if (node->next() == NULL) {
+ node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
+ node->continue_target()->Bind();
+ } else {
+ node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
+ loop.Bind();
+ }
+
+ // If the test is always true, there is no need to compile it.
+ if (info == DONT_KNOW) {
+ JumpTarget body;
+ LoadConditionAndSpill(node->cond(), NOT_INSIDE_TYPEOF,
+ &body, node->break_target(), true);
+ if (has_valid_frame()) {
+ Branch(false, node->break_target());
+ }
+ if (has_valid_frame() || body.is_linked()) {
+ body.Bind();
+ }
+ }
+
+ if (has_valid_frame()) {
+ CheckStack(); // TODO(1222600): ignore if body contains calls.
+ VisitAndSpill(node->body());
+
+ if (node->next() == NULL) {
+ // If there is no update statement and control flow can fall out
+ // of the loop, jump directly to the continue label.
+ if (has_valid_frame()) {
+ node->continue_target()->Jump();
+ }
+ } else {
+ // If there is an update statement and control flow can reach it
+ // via falling out of the body of the loop or continuing, we
+ // compile the update statement.
+ if (node->continue_target()->is_linked()) {
+ node->continue_target()->Bind();
+ }
+ if (has_valid_frame()) {
+ // Record source position of the statement as this code which is
+ // after the code for the body actually belongs to the loop
+ // statement and not the body.
+ CodeForStatementPosition(node);
+ VisitAndSpill(node->next());
+ loop.Jump();
+ }
+ }
+ }
+ break;
+ }
+ }
+
+ if (node->break_target()->is_linked()) {
+ node->break_target()->Bind();
+ }
+ node->continue_target()->Unuse();
+ node->break_target()->Unuse();
+ ASSERT(!has_valid_frame() || frame_->height() == original_height);
+}
+
+
+void CodeGenerator::VisitForInStatement(ForInStatement* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ ASSERT(!in_spilled_code());
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ ForInStatement");
+ CodeForStatementPosition(node);
+
+ JumpTarget primitive;
+ JumpTarget jsobject;
+ JumpTarget fixed_array;
+ JumpTarget entry(JumpTarget::BIDIRECTIONAL);
+ JumpTarget end_del_check;
+ JumpTarget exit;
+
+ // Get the object to enumerate over (converted to JSObject).
+ LoadAndSpill(node->enumerable());
+
+ // Both SpiderMonkey and kjs ignore null and undefined in contrast
+ // to the specification. 12.6.4 mandates a call to ToObject.
+ frame_->EmitPop(r0);
+ __ cmp(r0, Operand(Factory::undefined_value()));
+ exit.Branch(eq);
+ __ cmp(r0, Operand(Factory::null_value()));
+ exit.Branch(eq);
+
+ // Stack layout in body:
+ // [iteration counter (Smi)]
+ // [length of array]
+ // [FixedArray]
+ // [Map or 0]
+ // [Object]
+
+ // Check if enumerable is already a JSObject
+ __ tst(r0, Operand(kSmiTagMask));
+ primitive.Branch(eq);
+ __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
+ __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
+ __ cmp(r1, Operand(FIRST_JS_OBJECT_TYPE));
+ jsobject.Branch(hs);
+
+ primitive.Bind();
+ frame_->EmitPush(r0);
+ Result arg_count = allocator_->Allocate(r0);
+ ASSERT(arg_count.is_valid());
+ __ mov(arg_count.reg(), Operand(0));
+ frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS, &arg_count, 1);
+
+ jsobject.Bind();
+ // Get the set of properties (as a FixedArray or Map).
+ frame_->EmitPush(r0); // duplicate the object being enumerated
+ frame_->EmitPush(r0);
+ frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1);
+
+ // If we got a Map, we can do a fast modification check.
+ // Otherwise, we got a FixedArray, and we have to do a slow check.
+ __ mov(r2, Operand(r0));
+ __ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset));
+ __ cmp(r1, Operand(Factory::meta_map()));
+ fixed_array.Branch(ne);
+
+ // Get enum cache
+ __ mov(r1, Operand(r0));
+ __ ldr(r1, FieldMemOperand(r1, Map::kInstanceDescriptorsOffset));
+ __ ldr(r1, FieldMemOperand(r1, DescriptorArray::kEnumerationIndexOffset));
+ __ ldr(r2,
+ FieldMemOperand(r1, DescriptorArray::kEnumCacheBridgeCacheOffset));
+
+ frame_->EmitPush(r0); // map
+ frame_->EmitPush(r2); // enum cache bridge cache
+ __ ldr(r0, FieldMemOperand(r2, FixedArray::kLengthOffset));
+ __ mov(r0, Operand(r0, LSL, kSmiTagSize));
+ frame_->EmitPush(r0);
+ __ mov(r0, Operand(Smi::FromInt(0)));
+ frame_->EmitPush(r0);
+ entry.Jump();
+
+ fixed_array.Bind();
+ __ mov(r1, Operand(Smi::FromInt(0)));
+ frame_->EmitPush(r1); // insert 0 in place of Map
+ frame_->EmitPush(r0);
+
+ // Push the length of the array and the initial index onto the stack.
+ __ ldr(r0, FieldMemOperand(r0, FixedArray::kLengthOffset));
+ __ mov(r0, Operand(r0, LSL, kSmiTagSize));
+ frame_->EmitPush(r0);
+ __ mov(r0, Operand(Smi::FromInt(0))); // init index
+ frame_->EmitPush(r0);
+
+ // Condition.
+ entry.Bind();
+ // sp[0] : index
+ // sp[1] : array/enum cache length
+ // sp[2] : array or enum cache
+ // sp[3] : 0 or map
+ // sp[4] : enumerable
+ // Grab the current frame's height for the break and continue
+ // targets only after all the state is pushed on the frame.
+ node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
+ node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
+
+ __ ldr(r0, frame_->ElementAt(0)); // load the current count
+ __ ldr(r1, frame_->ElementAt(1)); // load the length
+ __ cmp(r0, Operand(r1)); // compare to the array length
+ node->break_target()->Branch(hs);
+
+ __ ldr(r0, frame_->ElementAt(0));
+
+ // Get the i'th entry of the array.
+ __ ldr(r2, frame_->ElementAt(2));
+ __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ ldr(r3, MemOperand(r2, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
+
+ // Get Map or 0.
+ __ ldr(r2, frame_->ElementAt(3));
+ // Check if this (still) matches the map of the enumerable.
+ // If not, we have to filter the key.
+ __ ldr(r1, frame_->ElementAt(4));
+ __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
+ __ cmp(r1, Operand(r2));
+ end_del_check.Branch(eq);
+
+ // Convert the entry to a string (or null if it isn't a property anymore).
+ __ ldr(r0, frame_->ElementAt(4)); // push enumerable
+ frame_->EmitPush(r0);
+ frame_->EmitPush(r3); // push entry
+ Result arg_count_register = allocator_->Allocate(r0);
+ ASSERT(arg_count_register.is_valid());
+ __ mov(arg_count_register.reg(), Operand(1));
+ Result result = frame_->InvokeBuiltin(Builtins::FILTER_KEY,
+ CALL_JS,
+ &arg_count_register,
+ 2);
+ __ mov(r3, Operand(result.reg()));
+ result.Unuse();
+
+ // If the property has been removed while iterating, we just skip it.
+ __ cmp(r3, Operand(Factory::null_value()));
+ node->continue_target()->Branch(eq);
+
+ end_del_check.Bind();
+ // Store the entry in the 'each' expression and take another spin in the
+ // loop. r3: i'th entry of the enum cache (or string there of)
+ frame_->EmitPush(r3); // push entry
+ { Reference each(this, node->each());
+ if (!each.is_illegal()) {
+ if (each.size() > 0) {
+ __ ldr(r0, frame_->ElementAt(each.size()));
+ frame_->EmitPush(r0);
+ }
+ // If the reference was to a slot we rely on the convenient property
+ // that it doesn't matter whether a value (eg, r3 pushed above) is
+ // right on top of or right underneath a zero-sized reference.
+ each.SetValue(NOT_CONST_INIT);
+ if (each.size() > 0) {
+ // It's safe to pop the value lying on top of the reference before
+ // unloading the reference itself (which preserves the top of stack,
+ // ie, now the topmost value of the non-zero sized reference), since
+ // we will discard the top of stack after unloading the reference
+ // anyway.
+ frame_->EmitPop(r0);
+ }
+ }
+ }
+ // Discard the i'th entry pushed above or else the remainder of the
+ // reference, whichever is currently on top of the stack.
+ frame_->Drop();
+
+ // Body.
+ CheckStack(); // TODO(1222600): ignore if body contains calls.
+ VisitAndSpill(node->body());
+
+ // Next. Reestablish a spilled frame in case we are coming here via
+ // a continue in the body.
+ node->continue_target()->Bind();
+ frame_->SpillAll();
+ frame_->EmitPop(r0);
+ __ add(r0, r0, Operand(Smi::FromInt(1)));
+ frame_->EmitPush(r0);
+ entry.Jump();
+
+ // Cleanup. No need to spill because VirtualFrame::Drop is safe for
+ // any frame.
+ node->break_target()->Bind();
+ frame_->Drop(5);
+
+ // Exit.
+ exit.Bind();
+ node->continue_target()->Unuse();
+ node->break_target()->Unuse();
+ ASSERT(frame_->height() == original_height);
+}
+
+
+void CodeGenerator::VisitTryCatch(TryCatch* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ TryCatch");
+ CodeForStatementPosition(node);
+
+ JumpTarget try_block;
+ JumpTarget exit;
+
+ try_block.Call();
+ // --- Catch block ---
+ frame_->EmitPush(r0);
+
+ // Store the caught exception in the catch variable.
+ { Reference ref(this, node->catch_var());
+ ASSERT(ref.is_slot());
+ // Here we make use of the convenient property that it doesn't matter
+ // whether a value is immediately on top of or underneath a zero-sized
+ // reference.
+ ref.SetValue(NOT_CONST_INIT);
+ }
+
+ // Remove the exception from the stack.
+ frame_->Drop();
+
+ VisitStatementsAndSpill(node->catch_block()->statements());
+ if (frame_ != NULL) {
+ exit.Jump();
+ }
+
+
+ // --- Try block ---
+ try_block.Bind();
+
+ frame_->PushTryHandler(TRY_CATCH_HANDLER);
+ int handler_height = frame_->height();
+
+ // Shadow the labels for all escapes from the try block, including
+ // returns. During shadowing, the original label is hidden as the
+ // LabelShadow and operations on the original actually affect the
+ // shadowing label.
+ //
+ // We should probably try to unify the escaping labels and the return
+ // label.
+ int nof_escapes = node->escaping_targets()->length();
+ List<ShadowTarget*> shadows(1 + nof_escapes);
+
+ // Add the shadow target for the function return.
+ static const int kReturnShadowIndex = 0;
+ shadows.Add(new ShadowTarget(&function_return_));
+ bool function_return_was_shadowed = function_return_is_shadowed_;
+ function_return_is_shadowed_ = true;
+ ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
+
+ // Add the remaining shadow targets.
+ for (int i = 0; i < nof_escapes; i++) {
+ shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
+ }
+
+ // Generate code for the statements in the try block.
+ VisitStatementsAndSpill(node->try_block()->statements());
+
+ // Stop the introduced shadowing and count the number of required unlinks.
+ // After shadowing stops, the original labels are unshadowed and the
+ // LabelShadows represent the formerly shadowing labels.
+ bool has_unlinks = false;
+ for (int i = 0; i < shadows.length(); i++) {
+ shadows[i]->StopShadowing();
+ has_unlinks = has_unlinks || shadows[i]->is_linked();
+ }
+ function_return_is_shadowed_ = function_return_was_shadowed;
+
+ // Get an external reference to the handler address.
+ ExternalReference handler_address(Top::k_handler_address);
+
+ // The next handler address is at kNextIndex in the stack.
+ const int kNextIndex = StackHandlerConstants::kNextOffset / kPointerSize;
+ // If we can fall off the end of the try block, unlink from try chain.
+ if (has_valid_frame()) {
+ __ ldr(r1, frame_->ElementAt(kNextIndex));
+ __ mov(r3, Operand(handler_address));
+ __ str(r1, MemOperand(r3));
+ frame_->Drop(StackHandlerConstants::kSize / kPointerSize);
+ if (has_unlinks) {
+ exit.Jump();
+ }
+ }
+
+ // Generate unlink code for the (formerly) shadowing labels that have been
+ // jumped to. Deallocate each shadow target.
+ for (int i = 0; i < shadows.length(); i++) {
+ if (shadows[i]->is_linked()) {
+ // Unlink from try chain;
+ shadows[i]->Bind();
+ // Because we can be jumping here (to spilled code) from unspilled
+ // code, we need to reestablish a spilled frame at this block.
+ frame_->SpillAll();
+
+ // Reload sp from the top handler, because some statements that we
+ // break from (eg, for...in) may have left stuff on the stack.
+ __ mov(r3, Operand(handler_address));
+ __ ldr(sp, MemOperand(r3));
+ // The stack pointer was restored to just below the code slot
+ // (the topmost slot) in the handler.
+ frame_->Forget(frame_->height() - handler_height + 1);
+
+ // kNextIndex is off by one because the code slot has already
+ // been dropped.
+ __ ldr(r1, frame_->ElementAt(kNextIndex - 1));
+ __ str(r1, MemOperand(r3));
+ // The code slot has already been dropped from the handler.
+ frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
+
+ if (!function_return_is_shadowed_ && i == kReturnShadowIndex) {
+ frame_->PrepareForReturn();
+ }
+ shadows[i]->other_target()->Jump();
+ }
+ }
+
+ exit.Bind();
+ ASSERT(!has_valid_frame() || frame_->height() == original_height);
+}
+
+
+void CodeGenerator::VisitTryFinally(TryFinally* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ TryFinally");
+ CodeForStatementPosition(node);
+
+ // State: Used to keep track of reason for entering the finally
+ // block. Should probably be extended to hold information for
+ // break/continue from within the try block.
+ enum { FALLING, THROWING, JUMPING };
+
+ JumpTarget try_block;
+ JumpTarget finally_block;
+
+ try_block.Call();
+
+ frame_->EmitPush(r0); // save exception object on the stack
+ // In case of thrown exceptions, this is where we continue.
+ __ mov(r2, Operand(Smi::FromInt(THROWING)));
+ finally_block.Jump();
+
+ // --- Try block ---
+ try_block.Bind();
+
+ frame_->PushTryHandler(TRY_FINALLY_HANDLER);
+ int handler_height = frame_->height();
+
+ // Shadow the labels for all escapes from the try block, including
+ // returns. Shadowing hides the original label as the LabelShadow and
+ // operations on the original actually affect the shadowing label.
+ //
+ // We should probably try to unify the escaping labels and the return
+ // label.
+ int nof_escapes = node->escaping_targets()->length();
+ List<ShadowTarget*> shadows(1 + nof_escapes);
+
+ // Add the shadow target for the function return.
+ static const int kReturnShadowIndex = 0;
+ shadows.Add(new ShadowTarget(&function_return_));
+ bool function_return_was_shadowed = function_return_is_shadowed_;
+ function_return_is_shadowed_ = true;
+ ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
+
+ // Add the remaining shadow targets.
+ for (int i = 0; i < nof_escapes; i++) {
+ shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
+ }
+
+ // Generate code for the statements in the try block.
+ VisitStatementsAndSpill(node->try_block()->statements());
+
+ // Stop the introduced shadowing and count the number of required unlinks.
+ // After shadowing stops, the original labels are unshadowed and the
+ // LabelShadows represent the formerly shadowing labels.
+ int nof_unlinks = 0;
+ for (int i = 0; i < shadows.length(); i++) {
+ shadows[i]->StopShadowing();
+ if (shadows[i]->is_linked()) nof_unlinks++;
+ }
+ function_return_is_shadowed_ = function_return_was_shadowed;
+
+ // Get an external reference to the handler address.
+ ExternalReference handler_address(Top::k_handler_address);
+
+ // The next handler address is at kNextIndex in the stack.
+ const int kNextIndex = StackHandlerConstants::kNextOffset / kPointerSize;
+ // If we can fall off the end of the try block, unlink from the try
+ // chain and set the state on the frame to FALLING.
+ if (has_valid_frame()) {
+ __ ldr(r1, frame_->ElementAt(kNextIndex));
+ __ mov(r3, Operand(handler_address));
+ __ str(r1, MemOperand(r3));
+ frame_->Drop(StackHandlerConstants::kSize / kPointerSize);
+
+ // Fake a top of stack value (unneeded when FALLING) and set the
+ // state in r2, then jump around the unlink blocks if any.
+ __ mov(r0, Operand(Factory::undefined_value()));
+ frame_->EmitPush(r0);
+ __ mov(r2, Operand(Smi::FromInt(FALLING)));
+ if (nof_unlinks > 0) {
+ finally_block.Jump();
+ }
+ }
+
+ // Generate code to unlink and set the state for the (formerly)
+ // shadowing targets that have been jumped to.
+ for (int i = 0; i < shadows.length(); i++) {
+ if (shadows[i]->is_linked()) {
+ // If we have come from the shadowed return, the return value is
+ // in (a non-refcounted reference to) r0. We must preserve it
+ // until it is pushed.
+ //
+ // Because we can be jumping here (to spilled code) from
+ // unspilled code, we need to reestablish a spilled frame at
+ // this block.
+ shadows[i]->Bind();
+ frame_->SpillAll();
+
+ // Reload sp from the top handler, because some statements that
+ // we break from (eg, for...in) may have left stuff on the
+ // stack.
+ __ mov(r3, Operand(handler_address));
+ __ ldr(sp, MemOperand(r3));
+ // The stack pointer was restored to the address slot in the handler.
+ ASSERT(StackHandlerConstants::kNextOffset == 1 * kPointerSize);
+ frame_->Forget(frame_->height() - handler_height + 1);
+
+ // Unlink this handler and drop it from the frame. The next
+ // handler address is now on top of the frame.
+ frame_->EmitPop(r1);
+ __ str(r1, MemOperand(r3));
+ // The top (code) and the second (handler) slot have both been
+ // dropped already.
+ frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 2);
+
+ if (i == kReturnShadowIndex) {
+ // If this label shadowed the function return, materialize the
+ // return value on the stack.
+ frame_->EmitPush(r0);
+ } else {
+ // Fake TOS for targets that shadowed breaks and continues.
+ __ mov(r0, Operand(Factory::undefined_value()));
+ frame_->EmitPush(r0);
+ }
+ __ mov(r2, Operand(Smi::FromInt(JUMPING + i)));
+ if (--nof_unlinks > 0) {
+ // If this is not the last unlink block, jump around the next.
+ finally_block.Jump();
+ }
+ }
+ }
+
+ // --- Finally block ---
+ finally_block.Bind();
+
+ // Push the state on the stack.
+ frame_->EmitPush(r2);
+
+ // We keep two elements on the stack - the (possibly faked) result
+ // and the state - while evaluating the finally block.
+ //
+ // Generate code for the statements in the finally block.
+ VisitStatementsAndSpill(node->finally_block()->statements());
+
+ if (has_valid_frame()) {
+ // Restore state and return value or faked TOS.
+ frame_->EmitPop(r2);
+ frame_->EmitPop(r0);
+ }
+
+ // Generate code to jump to the right destination for all used
+ // formerly shadowing targets. Deallocate each shadow target.
+ for (int i = 0; i < shadows.length(); i++) {
+ if (has_valid_frame() && shadows[i]->is_bound()) {
+ JumpTarget* original = shadows[i]->other_target();
+ __ cmp(r2, Operand(Smi::FromInt(JUMPING + i)));
+ if (!function_return_is_shadowed_ && i == kReturnShadowIndex) {
+ JumpTarget skip;
+ skip.Branch(ne);
+ frame_->PrepareForReturn();
+ original->Jump();
+ skip.Bind();
+ } else {
+ original->Branch(eq);
+ }
+ }
+ }
+
+ if (has_valid_frame()) {
+ // Check if we need to rethrow the exception.
+ JumpTarget exit;
+ __ cmp(r2, Operand(Smi::FromInt(THROWING)));
+ exit.Branch(ne);
+
+ // Rethrow exception.
+ frame_->EmitPush(r0);
+ frame_->CallRuntime(Runtime::kReThrow, 1);
+
+ // Done.
+ exit.Bind();
+ }
+ ASSERT(!has_valid_frame() || frame_->height() == original_height);
+}
+
+
+void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ DebuggerStatament");
+ CodeForStatementPosition(node);
+#ifdef ENABLE_DEBUGGER_SUPPORT
+ frame_->CallRuntime(Runtime::kDebugBreak, 0);
+#endif
+ // Ignore the return value.
+ ASSERT(frame_->height() == original_height);
+}
+
+
+void CodeGenerator::InstantiateBoilerplate(Handle<JSFunction> boilerplate) {
+ VirtualFrame::SpilledScope spilled_scope;
+ ASSERT(boilerplate->IsBoilerplate());
+
+ // Push the boilerplate on the stack.
+ __ mov(r0, Operand(boilerplate));
+ frame_->EmitPush(r0);
+
+ // Create a new closure.
+ frame_->EmitPush(cp);
+ frame_->CallRuntime(Runtime::kNewClosure, 2);
+ frame_->EmitPush(r0);
+}
+
+
+void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ FunctionLiteral");
+
+ // Build the function boilerplate and instantiate it.
+ Handle<JSFunction> boilerplate = BuildBoilerplate(node);
+ // Check for stack-overflow exception.
+ if (HasStackOverflow()) {
+ ASSERT(frame_->height() == original_height);
+ return;
+ }
+ InstantiateBoilerplate(boilerplate);
+ ASSERT(frame_->height() == original_height + 1);
+}
+
+
+void CodeGenerator::VisitFunctionBoilerplateLiteral(
+ FunctionBoilerplateLiteral* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ FunctionBoilerplateLiteral");
+ InstantiateBoilerplate(node->boilerplate());
+ ASSERT(frame_->height() == original_height + 1);
+}
+
+
+void CodeGenerator::VisitConditional(Conditional* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ Conditional");
+ JumpTarget then;
+ JumpTarget else_;
+ JumpTarget exit;
+ LoadConditionAndSpill(node->condition(), NOT_INSIDE_TYPEOF,
+ &then, &else_, true);
+ Branch(false, &else_);
+ then.Bind();
+ LoadAndSpill(node->then_expression(), typeof_state());
+ exit.Jump();
+ else_.Bind();
+ LoadAndSpill(node->else_expression(), typeof_state());
+ exit.Bind();
+ ASSERT(frame_->height() == original_height + 1);
+}
+
+
+void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
+ VirtualFrame::SpilledScope spilled_scope;
+ if (slot->type() == Slot::LOOKUP) {
+ ASSERT(slot->var()->is_dynamic());
+
+ JumpTarget slow;
+ JumpTarget done;
+
+ // Generate fast-case code for variables that might be shadowed by
+ // eval-introduced variables. Eval is used a lot without
+ // introducing variables. In those cases, we do not want to
+ // perform a runtime call for all variables in the scope
+ // containing the eval.
+ if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
+ LoadFromGlobalSlotCheckExtensions(slot, typeof_state, r1, r2, &slow);
+ // If there was no control flow to slow, we can exit early.
+ if (!slow.is_linked()) {
+ frame_->EmitPush(r0);
+ return;
+ }
+
+ done.Jump();
+
+ } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
+ Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot();
+ // Only generate the fast case for locals that rewrite to slots.
+ // This rules out argument loads.
+ if (potential_slot != NULL) {
+ __ ldr(r0,
+ ContextSlotOperandCheckExtensions(potential_slot,
+ r1,
+ r2,
+ &slow));
+ if (potential_slot->var()->mode() == Variable::CONST) {
+ __ cmp(r0, Operand(Factory::the_hole_value()));
+ __ mov(r0, Operand(Factory::undefined_value()), LeaveCC, eq);
+ }
+ // There is always control flow to slow from
+ // ContextSlotOperandCheckExtensions so we have to jump around
+ // it.
+ done.Jump();
+ }
+ }
+
+ slow.Bind();
+ frame_->EmitPush(cp);
+ __ mov(r0, Operand(slot->var()->name()));
+ frame_->EmitPush(r0);
+
+ if (typeof_state == INSIDE_TYPEOF) {
+ frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
+ } else {
+ frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
+ }
+
+ done.Bind();
+ frame_->EmitPush(r0);
+
+ } else {
+ // Note: We would like to keep the assert below, but it fires because of
+ // some nasty code in LoadTypeofExpression() which should be removed...
+ // ASSERT(!slot->var()->is_dynamic());
+
+ // Special handling for locals allocated in registers.
+ __ ldr(r0, SlotOperand(slot, r2));
+ frame_->EmitPush(r0);
+ if (slot->var()->mode() == Variable::CONST) {
+ // Const slots may contain 'the hole' value (the constant hasn't been
+ // initialized yet) which needs to be converted into the 'undefined'
+ // value.
+ Comment cmnt(masm_, "[ Unhole const");
+ frame_->EmitPop(r0);
+ __ cmp(r0, Operand(Factory::the_hole_value()));
+ __ mov(r0, Operand(Factory::undefined_value()), LeaveCC, eq);
+ frame_->EmitPush(r0);
+ }
+ }
+}
+
+
+void CodeGenerator::LoadFromGlobalSlotCheckExtensions(Slot* slot,
+ TypeofState typeof_state,
+ Register tmp,
+ Register tmp2,
+ JumpTarget* slow) {
+ // Check that no extension objects have been created by calls to
+ // eval from the current scope to the global scope.
+ Register context = cp;
+ Scope* s = scope();
+ while (s != NULL) {
+ if (s->num_heap_slots() > 0) {
+ if (s->calls_eval()) {
+ // Check that extension is NULL.
+ __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX));
+ __ tst(tmp2, tmp2);
+ slow->Branch(ne);
+ }
+ // Load next context in chain.
+ __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
+ __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
+ context = tmp;
+ }
+ // If no outer scope calls eval, we do not need to check more
+ // context extensions.
+ if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break;
+ s = s->outer_scope();
+ }
+
+ if (s->is_eval_scope()) {
+ Label next, fast;
+ if (!context.is(tmp)) {
+ __ mov(tmp, Operand(context));
+ }
+ __ bind(&next);
+ // Terminate at global context.
+ __ ldr(tmp2, FieldMemOperand(tmp, HeapObject::kMapOffset));
+ __ cmp(tmp2, Operand(Factory::global_context_map()));
+ __ b(eq, &fast);
+ // Check that extension is NULL.
+ __ ldr(tmp2, ContextOperand(tmp, Context::EXTENSION_INDEX));
+ __ tst(tmp2, tmp2);
+ slow->Branch(ne);
+ // Load next context in chain.
+ __ ldr(tmp, ContextOperand(tmp, Context::CLOSURE_INDEX));
+ __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
+ __ b(&next);
+ __ bind(&fast);
+ }
+
+ // All extension objects were empty and it is safe to use a global
+ // load IC call.
+ Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
+ // Load the global object.
+ LoadGlobal();
+ // Setup the name register.
+ Result name = allocator_->Allocate(r2);
+ ASSERT(name.is_valid()); // We are in spilled code.
+ __ mov(name.reg(), Operand(slot->var()->name()));
+ // Call IC stub.
+ if (typeof_state == INSIDE_TYPEOF) {
+ frame_->CallCodeObject(ic, RelocInfo::CODE_TARGET, &name, 0);
+ } else {
+ frame_->CallCodeObject(ic, RelocInfo::CODE_TARGET_CONTEXT, &name, 0);
+ }
+
+ // Drop the global object. The result is in r0.
+ frame_->Drop();
+}
+
+
+void CodeGenerator::VisitSlot(Slot* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ Slot");
+ LoadFromSlot(node, typeof_state());
+ ASSERT(frame_->height() == original_height + 1);
+}
+
+
+void CodeGenerator::VisitVariableProxy(VariableProxy* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ VariableProxy");
+
+ Variable* var = node->var();
+ Expression* expr = var->rewrite();
+ if (expr != NULL) {
+ Visit(expr);
+ } else {
+ ASSERT(var->is_global());
+ Reference ref(this, node);
+ ref.GetValueAndSpill(typeof_state());
+ }
+ ASSERT(frame_->height() == original_height + 1);
+}
+
+
+void CodeGenerator::VisitLiteral(Literal* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ Literal");
+ __ mov(r0, Operand(node->handle()));
+ frame_->EmitPush(r0);
+ ASSERT(frame_->height() == original_height + 1);
+}
+
+
+void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ RexExp Literal");
+
+ // Retrieve the literal array and check the allocated entry.
+
+ // Load the function of this activation.
+ __ ldr(r1, frame_->Function());
+
+ // Load the literals array of the function.
+ __ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset));
+
+ // Load the literal at the ast saved index.
+ int literal_offset =
+ FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
+ __ ldr(r2, FieldMemOperand(r1, literal_offset));
+
+ JumpTarget done;
+ __ cmp(r2, Operand(Factory::undefined_value()));
+ done.Branch(ne);
+
+ // If the entry is undefined we call the runtime system to computed
+ // the literal.
+ frame_->EmitPush(r1); // literal array (0)
+ __ mov(r0, Operand(Smi::FromInt(node->literal_index())));
+ frame_->EmitPush(r0); // literal index (1)
+ __ mov(r0, Operand(node->pattern())); // RegExp pattern (2)
+ frame_->EmitPush(r0);
+ __ mov(r0, Operand(node->flags())); // RegExp flags (3)
+ frame_->EmitPush(r0);
+ frame_->CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
+ __ mov(r2, Operand(r0));
+
+ done.Bind();
+ // Push the literal.
+ frame_->EmitPush(r2);
+ ASSERT(frame_->height() == original_height + 1);
+}
+
+
+// This deferred code stub will be used for creating the boilerplate
+// by calling Runtime_CreateObjectLiteralBoilerplate.
+// Each created boilerplate is stored in the JSFunction and they are
+// therefore context dependent.
+class DeferredObjectLiteral: public DeferredCode {
+ public:
+ explicit DeferredObjectLiteral(ObjectLiteral* node) : node_(node) {
+ set_comment("[ DeferredObjectLiteral");
+ }
+
+ virtual void Generate();
+
+ private:
+ ObjectLiteral* node_;
+};
+
+
+void DeferredObjectLiteral::Generate() {
+ // Argument is passed in r1.
+
+ // If the entry is undefined we call the runtime system to compute
+ // the literal.
+ // Literal array (0).
+ __ push(r1);
+ // Literal index (1).
+ __ mov(r0, Operand(Smi::FromInt(node_->literal_index())));
+ __ push(r0);
+ // Constant properties (2).
+ __ mov(r0, Operand(node_->constant_properties()));
+ __ push(r0);
+ __ CallRuntime(Runtime::kCreateObjectLiteralBoilerplate, 3);
+ __ mov(r2, Operand(r0));
+ // Result is returned in r2.
+}
+
+
+void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ ObjectLiteral");
+
+ DeferredObjectLiteral* deferred = new DeferredObjectLiteral(node);
+
+ // Retrieve the literal array and check the allocated entry.
+
+ // Load the function of this activation.
+ __ ldr(r1, frame_->Function());
+
+ // Load the literals array of the function.
+ __ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset));
+
+ // Load the literal at the ast saved index.
+ int literal_offset =
+ FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
+ __ ldr(r2, FieldMemOperand(r1, literal_offset));
+
+ // Check whether we need to materialize the object literal boilerplate.
+ // If so, jump to the deferred code.
+ __ cmp(r2, Operand(Factory::undefined_value()));
+ deferred->Branch(eq);
+ deferred->BindExit();
+
+ // Push the object literal boilerplate.
+ frame_->EmitPush(r2);
+
+ // Clone the boilerplate object.
+ Runtime::FunctionId clone_function_id = Runtime::kCloneLiteralBoilerplate;
+ if (node->depth() == 1) {
+ clone_function_id = Runtime::kCloneShallowLiteralBoilerplate;
+ }
+ frame_->CallRuntime(clone_function_id, 1);
+ frame_->EmitPush(r0); // save the result
+ // r0: cloned object literal
+
+ for (int i = 0; i < node->properties()->length(); i++) {
+ ObjectLiteral::Property* property = node->properties()->at(i);
+ Literal* key = property->key();
+ Expression* value = property->value();
+ switch (property->kind()) {
+ case ObjectLiteral::Property::CONSTANT:
+ break;
+ case ObjectLiteral::Property::MATERIALIZED_LITERAL:
+ if (CompileTimeValue::IsCompileTimeValue(property->value())) break;
+ // else fall through
+ case ObjectLiteral::Property::COMPUTED: // fall through
+ case ObjectLiteral::Property::PROTOTYPE: {
+ frame_->EmitPush(r0); // dup the result
+ LoadAndSpill(key);
+ LoadAndSpill(value);
+ frame_->CallRuntime(Runtime::kSetProperty, 3);
+ // restore r0
+ __ ldr(r0, frame_->Top());
+ break;
+ }
+ case ObjectLiteral::Property::SETTER: {
+ frame_->EmitPush(r0);
+ LoadAndSpill(key);
+ __ mov(r0, Operand(Smi::FromInt(1)));
+ frame_->EmitPush(r0);
+ LoadAndSpill(value);
+ frame_->CallRuntime(Runtime::kDefineAccessor, 4);
+ __ ldr(r0, frame_->Top());
+ break;
+ }
+ case ObjectLiteral::Property::GETTER: {
+ frame_->EmitPush(r0);
+ LoadAndSpill(key);
+ __ mov(r0, Operand(Smi::FromInt(0)));
+ frame_->EmitPush(r0);
+ LoadAndSpill(value);
+ frame_->CallRuntime(Runtime::kDefineAccessor, 4);
+ __ ldr(r0, frame_->Top());
+ break;
+ }
+ }
+ }
+ ASSERT(frame_->height() == original_height + 1);
+}
+
+
+// This deferred code stub will be used for creating the boilerplate
+// by calling Runtime_CreateArrayLiteralBoilerplate.
+// Each created boilerplate is stored in the JSFunction and they are
+// therefore context dependent.
+class DeferredArrayLiteral: public DeferredCode {
+ public:
+ explicit DeferredArrayLiteral(ArrayLiteral* node) : node_(node) {
+ set_comment("[ DeferredArrayLiteral");
+ }
+
+ virtual void Generate();
+
+ private:
+ ArrayLiteral* node_;
+};
+
+
+void DeferredArrayLiteral::Generate() {
+ // Argument is passed in r1.
+
+ // If the entry is undefined we call the runtime system to computed
+ // the literal.
+ // Literal array (0).
+ __ push(r1);
+ // Literal index (1).
+ __ mov(r0, Operand(Smi::FromInt(node_->literal_index())));
+ __ push(r0);
+ // Constant properties (2).
+ __ mov(r0, Operand(node_->literals()));
+ __ push(r0);
+ __ CallRuntime(Runtime::kCreateArrayLiteralBoilerplate, 3);
+ __ mov(r2, Operand(r0));
+ // Result is returned in r2.
+}
+
+
+void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ ArrayLiteral");
+
+ DeferredArrayLiteral* deferred = new DeferredArrayLiteral(node);
+
+ // Retrieve the literal array and check the allocated entry.
+
+ // Load the function of this activation.
+ __ ldr(r1, frame_->Function());
+
+ // Load the literals array of the function.
+ __ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset));
+
+ // Load the literal at the ast saved index.
+ int literal_offset =
+ FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
+ __ ldr(r2, FieldMemOperand(r1, literal_offset));
+
+ // Check whether we need to materialize the object literal boilerplate.
+ // If so, jump to the deferred code.
+ __ cmp(r2, Operand(Factory::undefined_value()));
+ deferred->Branch(eq);
+ deferred->BindExit();
+
+ // Push the object literal boilerplate.
+ frame_->EmitPush(r2);
+
+ // Clone the boilerplate object.
+ Runtime::FunctionId clone_function_id = Runtime::kCloneLiteralBoilerplate;
+ if (node->depth() == 1) {
+ clone_function_id = Runtime::kCloneShallowLiteralBoilerplate;
+ }
+ frame_->CallRuntime(clone_function_id, 1);
+ frame_->EmitPush(r0); // save the result
+ // r0: cloned object literal
+
+ // Generate code to set the elements in the array that are not
+ // literals.
+ for (int i = 0; i < node->values()->length(); i++) {
+ Expression* value = node->values()->at(i);
+
+ // If value is a literal the property value is already set in the
+ // boilerplate object.
+ if (value->AsLiteral() != NULL) continue;
+ // If value is a materialized literal the property value is already set
+ // in the boilerplate object if it is simple.
+ if (CompileTimeValue::IsCompileTimeValue(value)) continue;
+
+ // The property must be set by generated code.
+ LoadAndSpill(value);
+ frame_->EmitPop(r0);
+
+ // Fetch the object literal.
+ __ ldr(r1, frame_->Top());
+ // Get the elements array.
+ __ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset));
+
+ // Write to the indexed properties array.
+ int offset = i * kPointerSize + Array::kHeaderSize;
+ __ str(r0, FieldMemOperand(r1, offset));
+
+ // Update the write barrier for the array address.
+ __ mov(r3, Operand(offset));
+ __ RecordWrite(r1, r3, r2);
+ }
+ ASSERT(frame_->height() == original_height + 1);
+}
+
+
+void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ ASSERT(!in_spilled_code());
+ VirtualFrame::SpilledScope spilled_scope;
+ // Call runtime routine to allocate the catch extension object and
+ // assign the exception value to the catch variable.
+ Comment cmnt(masm_, "[ CatchExtensionObject");
+ LoadAndSpill(node->key());
+ LoadAndSpill(node->value());
+ Result result =
+ frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2);
+ frame_->EmitPush(result.reg());
+ ASSERT(frame_->height() == original_height + 1);
+}
+
+
+void CodeGenerator::VisitAssignment(Assignment* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ Assignment");
+ CodeForStatementPosition(node);
+
+ { Reference target(this, node->target());
+ if (target.is_illegal()) {
+ // Fool the virtual frame into thinking that we left the assignment's
+ // value on the frame.
+ __ mov(r0, Operand(Smi::FromInt(0)));
+ frame_->EmitPush(r0);
+ ASSERT(frame_->height() == original_height + 1);
+ return;
+ }
+
+ if (node->op() == Token::ASSIGN ||
+ node->op() == Token::INIT_VAR ||
+ node->op() == Token::INIT_CONST) {
+ LoadAndSpill(node->value());
+
+ } else {
+ // +=, *= and similar binary assignments.
+ // Get the old value of the lhs.
+ target.GetValueAndSpill(NOT_INSIDE_TYPEOF);
+ Literal* literal = node->value()->AsLiteral();
+ bool overwrite =
+ (node->value()->AsBinaryOperation() != NULL &&
+ node->value()->AsBinaryOperation()->ResultOverwriteAllowed());
+ if (literal != NULL && literal->handle()->IsSmi()) {
+ SmiOperation(node->binary_op(),
+ literal->handle(),
+ false,
+ overwrite ? OVERWRITE_RIGHT : NO_OVERWRITE);
+ frame_->EmitPush(r0);
+
+ } else {
+ LoadAndSpill(node->value());
+ GenericBinaryOperation(node->binary_op(),
+ overwrite ? OVERWRITE_RIGHT : NO_OVERWRITE);
+ frame_->EmitPush(r0);
+ }
+ }
+
+ Variable* var = node->target()->AsVariableProxy()->AsVariable();
+ if (var != NULL &&
+ (var->mode() == Variable::CONST) &&
+ node->op() != Token::INIT_VAR && node->op() != Token::INIT_CONST) {
+ // Assignment ignored - leave the value on the stack.
+
+ } else {
+ CodeForSourcePosition(node->position());
+ if (node->op() == Token::INIT_CONST) {
+ // Dynamic constant initializations must use the function context
+ // and initialize the actual constant declared. Dynamic variable
+ // initializations are simply assignments and use SetValue.
+ target.SetValue(CONST_INIT);
+ } else {
+ target.SetValue(NOT_CONST_INIT);
+ }
+ }
+ }
+ ASSERT(frame_->height() == original_height + 1);
+}
+
+
+void CodeGenerator::VisitThrow(Throw* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ Throw");
+
+ LoadAndSpill(node->exception());
+ CodeForSourcePosition(node->position());
+ frame_->CallRuntime(Runtime::kThrow, 1);
+ frame_->EmitPush(r0);
+ ASSERT(frame_->height() == original_height + 1);
+}
+
+
+void CodeGenerator::VisitProperty(Property* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ Property");
+
+ { Reference property(this, node);
+ property.GetValueAndSpill(typeof_state());
+ }
+ ASSERT(frame_->height() == original_height + 1);
+}
+
+
+void CodeGenerator::VisitCall(Call* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ Call");
+
+ ZoneList<Expression*>* args = node->arguments();
+
+ CodeForStatementPosition(node);
+ // Standard function call.
+
+ // Check if the function is a variable or a property.
+ Expression* function = node->expression();
+ Variable* var = function->AsVariableProxy()->AsVariable();
+ Property* property = function->AsProperty();
+
+ // ------------------------------------------------------------------------
+ // Fast-case: Use inline caching.
+ // ---
+ // According to ECMA-262, section 11.2.3, page 44, the function to call
+ // must be resolved after the arguments have been evaluated. The IC code
+ // automatically handles this by loading the arguments before the function
+ // is resolved in cache misses (this also holds for megamorphic calls).
+ // ------------------------------------------------------------------------
+
+ if (var != NULL && !var->is_this() && var->is_global()) {
+ // ----------------------------------
+ // JavaScript example: 'foo(1, 2, 3)' // foo is global
+ // ----------------------------------
+
+ // Push the name of the function and the receiver onto the stack.
+ __ mov(r0, Operand(var->name()));
+ frame_->EmitPush(r0);
+
+ // Pass the global object as the receiver and let the IC stub
+ // patch the stack to use the global proxy as 'this' in the
+ // invoked function.
+ LoadGlobal();
+
+ // Load the arguments.
+ int arg_count = args->length();
+ for (int i = 0; i < arg_count; i++) {
+ LoadAndSpill(args->at(i));
+ }
+
+ // Setup the receiver register and call the IC initialization code.
+ InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
+ Handle<Code> stub = ComputeCallInitialize(arg_count, in_loop);
+ CodeForSourcePosition(node->position());
+ frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET_CONTEXT,
+ arg_count + 1);
+ __ ldr(cp, frame_->Context());
+ // Remove the function from the stack.
+ frame_->Drop();
+ frame_->EmitPush(r0);
+
+ } else if (var != NULL && var->slot() != NULL &&
+ var->slot()->type() == Slot::LOOKUP) {
+ // ----------------------------------
+ // JavaScript example: 'with (obj) foo(1, 2, 3)' // foo is in obj
+ // ----------------------------------
+
+ // Load the function
+ frame_->EmitPush(cp);
+ __ mov(r0, Operand(var->name()));
+ frame_->EmitPush(r0);
+ frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
+ // r0: slot value; r1: receiver
+
+ // Load the receiver.
+ frame_->EmitPush(r0); // function
+ frame_->EmitPush(r1); // receiver
+
+ // Call the function.
+ CallWithArguments(args, node->position());
+ frame_->EmitPush(r0);
+
+ } else if (property != NULL) {
+ // Check if the key is a literal string.
+ Literal* literal = property->key()->AsLiteral();
+
+ if (literal != NULL && literal->handle()->IsSymbol()) {
+ // ------------------------------------------------------------------
+ // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)'
+ // ------------------------------------------------------------------
+
+ // Push the name of the function and the receiver onto the stack.
+ __ mov(r0, Operand(literal->handle()));
+ frame_->EmitPush(r0);
+ LoadAndSpill(property->obj());
+
+ // Load the arguments.
+ int arg_count = args->length();
+ for (int i = 0; i < arg_count; i++) {
+ LoadAndSpill(args->at(i));
+ }
+
+ // Set the receiver register and call the IC initialization code.
+ InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
+ Handle<Code> stub = ComputeCallInitialize(arg_count, in_loop);
+ CodeForSourcePosition(node->position());
+ frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1);
+ __ ldr(cp, frame_->Context());
+
+ // Remove the function from the stack.
+ frame_->Drop();
+
+ frame_->EmitPush(r0); // push after get rid of function from the stack
+
+ } else {
+ // -------------------------------------------
+ // JavaScript example: 'array[index](1, 2, 3)'
+ // -------------------------------------------
+
+ // Load the function to call from the property through a reference.
+ Reference ref(this, property);
+ ref.GetValueAndSpill(NOT_INSIDE_TYPEOF); // receiver
+
+ // Pass receiver to called function.
+ if (property->is_synthetic()) {
+ LoadGlobalReceiver(r0);
+ } else {
+ __ ldr(r0, frame_->ElementAt(ref.size()));
+ frame_->EmitPush(r0);
+ }
+
+ // Call the function.
+ CallWithArguments(args, node->position());
+ frame_->EmitPush(r0);
+ }
+
+ } else {
+ // ----------------------------------
+ // JavaScript example: 'foo(1, 2, 3)' // foo is not global
+ // ----------------------------------
+
+ // Load the function.
+ LoadAndSpill(function);
+
+ // Pass the global proxy as the receiver.
+ LoadGlobalReceiver(r0);
+
+ // Call the function.
+ CallWithArguments(args, node->position());
+ frame_->EmitPush(r0);
+ }
+ ASSERT(frame_->height() == original_height + 1);
+}
+
+
+void CodeGenerator::VisitCallEval(CallEval* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ CallEval");
+
+ // In a call to eval, we first call %ResolvePossiblyDirectEval to resolve
+ // the function we need to call and the receiver of the call.
+ // Then we call the resolved function using the given arguments.
+
+ ZoneList<Expression*>* args = node->arguments();
+ Expression* function = node->expression();
+
+ CodeForStatementPosition(node);
+
+ // Prepare stack for call to resolved function.
+ LoadAndSpill(function);
+ __ mov(r2, Operand(Factory::undefined_value()));
+ frame_->EmitPush(r2); // Slot for receiver
+ int arg_count = args->length();
+ for (int i = 0; i < arg_count; i++) {
+ LoadAndSpill(args->at(i));
+ }
+
+ // Prepare stack for call to ResolvePossiblyDirectEval.
+ __ ldr(r1, MemOperand(sp, arg_count * kPointerSize + kPointerSize));
+ frame_->EmitPush(r1);
+ if (arg_count > 0) {
+ __ ldr(r1, MemOperand(sp, arg_count * kPointerSize));
+ frame_->EmitPush(r1);
+ } else {
+ frame_->EmitPush(r2);
+ }
+
+ // Resolve the call.
+ frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 2);
+
+ // Touch up stack with the right values for the function and the receiver.
+ __ ldr(r1, FieldMemOperand(r0, FixedArray::kHeaderSize));
+ __ str(r1, MemOperand(sp, (arg_count + 1) * kPointerSize));
+ __ ldr(r1, FieldMemOperand(r0, FixedArray::kHeaderSize + kPointerSize));
+ __ str(r1, MemOperand(sp, arg_count * kPointerSize));
+
+ // Call the function.
+ CodeForSourcePosition(node->position());
+
+ InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
+ CallFunctionStub call_function(arg_count, in_loop);
+ frame_->CallStub(&call_function, arg_count + 1);
+
+ __ ldr(cp, frame_->Context());
+ // Remove the function from the stack.
+ frame_->Drop();
+ frame_->EmitPush(r0);
+ ASSERT(frame_->height() == original_height + 1);
+}
+
+
+void CodeGenerator::VisitCallNew(CallNew* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ CallNew");
+ CodeForStatementPosition(node);
+
+ // According to ECMA-262, section 11.2.2, page 44, the function
+ // expression in new calls must be evaluated before the
+ // arguments. This is different from ordinary calls, where the
+ // actual function to call is resolved after the arguments have been
+ // evaluated.
+
+ // Compute function to call and use the global object as the
+ // receiver. There is no need to use the global proxy here because
+ // it will always be replaced with a newly allocated object.
+ LoadAndSpill(node->expression());
+ LoadGlobal();
+
+ // Push the arguments ("left-to-right") on the stack.
+ ZoneList<Expression*>* args = node->arguments();
+ int arg_count = args->length();
+ for (int i = 0; i < arg_count; i++) {
+ LoadAndSpill(args->at(i));
+ }
+
+ // r0: the number of arguments.
+ Result num_args = allocator_->Allocate(r0);
+ ASSERT(num_args.is_valid());
+ __ mov(num_args.reg(), Operand(arg_count));
+
+ // Load the function into r1 as per calling convention.
+ Result function = allocator_->Allocate(r1);
+ ASSERT(function.is_valid());
+ __ ldr(function.reg(), frame_->ElementAt(arg_count + 1));
+
+ // Call the construct call builtin that handles allocation and
+ // constructor invocation.
+ CodeForSourcePosition(node->position());
+ Handle<Code> ic(Builtins::builtin(Builtins::JSConstructCall));
+ Result result = frame_->CallCodeObject(ic,
+ RelocInfo::CONSTRUCT_CALL,
+ &num_args,
+ &function,
+ arg_count + 1);
+
+ // Discard old TOS value and push r0 on the stack (same as Pop(), push(r0)).
+ __ str(r0, frame_->Top());
+ ASSERT(frame_->height() == original_height + 1);
+}
+
+
+void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
+ VirtualFrame::SpilledScope spilled_scope;
+ ASSERT(args->length() == 1);
+ JumpTarget leave;
+ LoadAndSpill(args->at(0));
+ frame_->EmitPop(r0); // r0 contains object.
+ // if (object->IsSmi()) return the object.
+ __ tst(r0, Operand(kSmiTagMask));
+ leave.Branch(eq);
+ // It is a heap object - get map.
+ __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
+ __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
+ // if (!object->IsJSValue()) return the object.
+ __ cmp(r1, Operand(JS_VALUE_TYPE));
+ leave.Branch(ne);
+ // Load the value.
+ __ ldr(r0, FieldMemOperand(r0, JSValue::kValueOffset));
+ leave.Bind();
+ frame_->EmitPush(r0);
+}
+
+
+void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
+ VirtualFrame::SpilledScope spilled_scope;
+ ASSERT(args->length() == 2);
+ JumpTarget leave;
+ LoadAndSpill(args->at(0)); // Load the object.
+ LoadAndSpill(args->at(1)); // Load the value.
+ frame_->EmitPop(r0); // r0 contains value
+ frame_->EmitPop(r1); // r1 contains object
+ // if (object->IsSmi()) return object.
+ __ tst(r1, Operand(kSmiTagMask));
+ leave.Branch(eq);
+ // It is a heap object - get map.
+ __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
+ __ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
+ // if (!object->IsJSValue()) return object.
+ __ cmp(r2, Operand(JS_VALUE_TYPE));
+ leave.Branch(ne);
+ // Store the value.
+ __ str(r0, FieldMemOperand(r1, JSValue::kValueOffset));
+ // Update the write barrier.
+ __ mov(r2, Operand(JSValue::kValueOffset - kHeapObjectTag));
+ __ RecordWrite(r1, r2, r3);
+ // Leave.
+ leave.Bind();
+ frame_->EmitPush(r0);
+}
+
+
+void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
+ VirtualFrame::SpilledScope spilled_scope;
+ ASSERT(args->length() == 1);
+ LoadAndSpill(args->at(0));
+ frame_->EmitPop(r0);
+ __ tst(r0, Operand(kSmiTagMask));
+ cc_reg_ = eq;
+}
+
+
+void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) {
+ VirtualFrame::SpilledScope spilled_scope;
+ // See comment in CodeGenerator::GenerateLog in codegen-ia32.cc.
+ ASSERT_EQ(args->length(), 3);
+#ifdef ENABLE_LOGGING_AND_PROFILING
+ if (ShouldGenerateLog(args->at(0))) {
+ LoadAndSpill(args->at(1));
+ LoadAndSpill(args->at(2));
+ __ CallRuntime(Runtime::kLog, 2);
+ }
+#endif
+ __ mov(r0, Operand(Factory::undefined_value()));
+ frame_->EmitPush(r0);
+}
+
+
+void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
+ VirtualFrame::SpilledScope spilled_scope;
+ ASSERT(args->length() == 1);
+ LoadAndSpill(args->at(0));
+ frame_->EmitPop(r0);
+ __ tst(r0, Operand(kSmiTagMask | 0x80000000));
+ cc_reg_ = eq;
+}
+
+
+// This should generate code that performs a charCodeAt() call or returns
+// undefined in order to trigger the slow case, Runtime_StringCharCodeAt.
+// It is not yet implemented on ARM, so it always goes to the slow case.
+void CodeGenerator::GenerateFastCharCodeAt(ZoneList<Expression*>* args) {
+ VirtualFrame::SpilledScope spilled_scope;
+ ASSERT(args->length() == 2);
+ __ mov(r0, Operand(Factory::undefined_value()));
+ frame_->EmitPush(r0);
+}
+
+
+void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
+ VirtualFrame::SpilledScope spilled_scope;
+ ASSERT(args->length() == 1);
+ LoadAndSpill(args->at(0));
+ JumpTarget answer;
+ // We need the CC bits to come out as not_equal in the case where the
+ // object is a smi. This can't be done with the usual test opcode so
+ // we use XOR to get the right CC bits.
+ frame_->EmitPop(r0);
+ __ and_(r1, r0, Operand(kSmiTagMask));
+ __ eor(r1, r1, Operand(kSmiTagMask), SetCC);
+ answer.Branch(ne);
+ // It is a heap object - get the map.
+ __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
+ __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
+ // Check if the object is a JS array or not.
+ __ cmp(r1, Operand(JS_ARRAY_TYPE));
+ answer.Bind();
+ cc_reg_ = eq;
+}
+
+
+void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
+ VirtualFrame::SpilledScope spilled_scope;
+ ASSERT(args->length() == 0);
+
+ // Seed the result with the formal parameters count, which will be used
+ // in case no arguments adaptor frame is found below the current frame.
+ __ mov(r0, Operand(Smi::FromInt(scope_->num_parameters())));
+
+ // Call the shared stub to get to the arguments.length.
+ ArgumentsAccessStub stub(ArgumentsAccessStub::READ_LENGTH);
+ frame_->CallStub(&stub, 0);
+ frame_->EmitPush(r0);
+}
+
+
+void CodeGenerator::GenerateArgumentsAccess(ZoneList<Expression*>* args) {
+ VirtualFrame::SpilledScope spilled_scope;
+ ASSERT(args->length() == 1);
+
+ // Satisfy contract with ArgumentsAccessStub:
+ // Load the key into r1 and the formal parameters count into r0.
+ LoadAndSpill(args->at(0));
+ frame_->EmitPop(r1);
+ __ mov(r0, Operand(Smi::FromInt(scope_->num_parameters())));
+
+ // Call the shared stub to get to arguments[key].
+ ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
+ frame_->CallStub(&stub, 0);
+ frame_->EmitPush(r0);
+}
+
+
+void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) {
+ VirtualFrame::SpilledScope spilled_scope;
+ ASSERT(args->length() == 2);
+
+ // Load the two objects into registers and perform the comparison.
+ LoadAndSpill(args->at(0));
+ LoadAndSpill(args->at(1));
+ frame_->EmitPop(r0);
+ frame_->EmitPop(r1);
+ __ cmp(r0, Operand(r1));
+ cc_reg_ = eq;
+}
+
+
+void CodeGenerator::VisitCallRuntime(CallRuntime* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ if (CheckForInlineRuntimeCall(node)) {
+ ASSERT((has_cc() && frame_->height() == original_height) ||
+ (!has_cc() && frame_->height() == original_height + 1));
+ return;
+ }
+
+ ZoneList<Expression*>* args = node->arguments();
+ Comment cmnt(masm_, "[ CallRuntime");
+ Runtime::Function* function = node->function();
+
+ if (function == NULL) {
+ // Prepare stack for calling JS runtime function.
+ __ mov(r0, Operand(node->name()));
+ frame_->EmitPush(r0);
+ // Push the builtins object found in the current global object.
+ __ ldr(r1, GlobalObject());
+ __ ldr(r0, FieldMemOperand(r1, GlobalObject::kBuiltinsOffset));
+ frame_->EmitPush(r0);
+ }
+
+ // Push the arguments ("left-to-right").
+ int arg_count = args->length();
+ for (int i = 0; i < arg_count; i++) {
+ LoadAndSpill(args->at(i));
+ }
+
+ if (function == NULL) {
+ // Call the JS runtime function.
+ InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
+ Handle<Code> stub = ComputeCallInitialize(arg_count, in_loop);
+ frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1);
+ __ ldr(cp, frame_->Context());
+ frame_->Drop();
+ frame_->EmitPush(r0);
+ } else {
+ // Call the C runtime function.
+ frame_->CallRuntime(function, arg_count);
+ frame_->EmitPush(r0);
+ }
+ ASSERT(frame_->height() == original_height + 1);
+}
+
+
+void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ UnaryOperation");
+
+ Token::Value op = node->op();
+
+ if (op == Token::NOT) {
+ LoadConditionAndSpill(node->expression(),
+ NOT_INSIDE_TYPEOF,
+ false_target(),
+ true_target(),
+ true);
+ cc_reg_ = NegateCondition(cc_reg_);
+
+ } else if (op == Token::DELETE) {
+ Property* property = node->expression()->AsProperty();
+ Variable* variable = node->expression()->AsVariableProxy()->AsVariable();
+ if (property != NULL) {
+ LoadAndSpill(property->obj());
+ LoadAndSpill(property->key());
+ Result arg_count = allocator_->Allocate(r0);
+ ASSERT(arg_count.is_valid());
+ __ mov(arg_count.reg(), Operand(1)); // not counting receiver
+ frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, &arg_count, 2);
+
+ } else if (variable != NULL) {
+ Slot* slot = variable->slot();
+ if (variable->is_global()) {
+ LoadGlobal();
+ __ mov(r0, Operand(variable->name()));
+ frame_->EmitPush(r0);
+ Result arg_count = allocator_->Allocate(r0);
+ ASSERT(arg_count.is_valid());
+ __ mov(arg_count.reg(), Operand(1)); // not counting receiver
+ frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, &arg_count, 2);
+
+ } else if (slot != NULL && slot->type() == Slot::LOOKUP) {
+ // lookup the context holding the named variable
+ frame_->EmitPush(cp);
+ __ mov(r0, Operand(variable->name()));
+ frame_->EmitPush(r0);
+ frame_->CallRuntime(Runtime::kLookupContext, 2);
+ // r0: context
+ frame_->EmitPush(r0);
+ __ mov(r0, Operand(variable->name()));
+ frame_->EmitPush(r0);
+ Result arg_count = allocator_->Allocate(r0);
+ ASSERT(arg_count.is_valid());
+ __ mov(arg_count.reg(), Operand(1)); // not counting receiver
+ frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, &arg_count, 2);
+
+ } else {
+ // Default: Result of deleting non-global, not dynamically
+ // introduced variables is false.
+ __ mov(r0, Operand(Factory::false_value()));
+ }
+
+ } else {
+ // Default: Result of deleting expressions is true.
+ LoadAndSpill(node->expression()); // may have side-effects
+ frame_->Drop();
+ __ mov(r0, Operand(Factory::true_value()));
+ }
+ frame_->EmitPush(r0);
+
+ } else if (op == Token::TYPEOF) {
+ // Special case for loading the typeof expression; see comment on
+ // LoadTypeofExpression().
+ LoadTypeofExpression(node->expression());
+ frame_->CallRuntime(Runtime::kTypeof, 1);
+ frame_->EmitPush(r0); // r0 has result
+
+ } else {
+ LoadAndSpill(node->expression());
+ frame_->EmitPop(r0);
+ switch (op) {
+ case Token::NOT:
+ case Token::DELETE:
+ case Token::TYPEOF:
+ UNREACHABLE(); // handled above
+ break;
+
+ case Token::SUB: {
+ UnarySubStub stub;
+ frame_->CallStub(&stub, 0);
+ break;
+ }
+
+ case Token::BIT_NOT: {
+ // smi check
+ JumpTarget smi_label;
+ JumpTarget continue_label;
+ __ tst(r0, Operand(kSmiTagMask));
+ smi_label.Branch(eq);
+
+ frame_->EmitPush(r0);
+ Result arg_count = allocator_->Allocate(r0);
+ ASSERT(arg_count.is_valid());
+ __ mov(arg_count.reg(), Operand(0)); // not counting receiver
+ frame_->InvokeBuiltin(Builtins::BIT_NOT, CALL_JS, &arg_count, 1);
+
+ continue_label.Jump();
+ smi_label.Bind();
+ __ mvn(r0, Operand(r0));
+ __ bic(r0, r0, Operand(kSmiTagMask)); // bit-clear inverted smi-tag
+ continue_label.Bind();
+ break;
+ }
+
+ case Token::VOID:
+ // since the stack top is cached in r0, popping and then
+ // pushing a value can be done by just writing to r0.
+ __ mov(r0, Operand(Factory::undefined_value()));
+ break;
+
+ case Token::ADD: {
+ // Smi check.
+ JumpTarget continue_label;
+ __ tst(r0, Operand(kSmiTagMask));
+ continue_label.Branch(eq);
+ frame_->EmitPush(r0);
+ Result arg_count = allocator_->Allocate(r0);
+ ASSERT(arg_count.is_valid());
+ __ mov(arg_count.reg(), Operand(0)); // not counting receiver
+ frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, &arg_count, 1);
+ continue_label.Bind();
+ break;
+ }
+ default:
+ UNREACHABLE();
+ }
+ frame_->EmitPush(r0); // r0 has result
+ }
+ ASSERT((has_cc() && frame_->height() == original_height) ||
+ (!has_cc() && frame_->height() == original_height + 1));
+}
+
+
+void CodeGenerator::VisitCountOperation(CountOperation* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ CountOperation");
+
+ bool is_postfix = node->is_postfix();
+ bool is_increment = node->op() == Token::INC;
+
+ Variable* var = node->expression()->AsVariableProxy()->AsVariable();
+ bool is_const = (var != NULL && var->mode() == Variable::CONST);
+
+ // Postfix: Make room for the result.
+ if (is_postfix) {
+ __ mov(r0, Operand(0));
+ frame_->EmitPush(r0);
+ }
+
+ { Reference target(this, node->expression());
+ if (target.is_illegal()) {
+ // Spoof the virtual frame to have the expected height (one higher
+ // than on entry).
+ if (!is_postfix) {
+ __ mov(r0, Operand(Smi::FromInt(0)));
+ frame_->EmitPush(r0);
+ }
+ ASSERT(frame_->height() == original_height + 1);
+ return;
+ }
+ target.GetValueAndSpill(NOT_INSIDE_TYPEOF);
+ frame_->EmitPop(r0);
+
+ JumpTarget slow;
+ JumpTarget exit;
+
+ // Load the value (1) into register r1.
+ __ mov(r1, Operand(Smi::FromInt(1)));
+
+ // Check for smi operand.
+ __ tst(r0, Operand(kSmiTagMask));
+ slow.Branch(ne);
+
+ // Postfix: Store the old value as the result.
+ if (is_postfix) {
+ __ str(r0, frame_->ElementAt(target.size()));
+ }
+
+ // Perform optimistic increment/decrement.
+ if (is_increment) {
+ __ add(r0, r0, Operand(r1), SetCC);
+ } else {
+ __ sub(r0, r0, Operand(r1), SetCC);
+ }
+
+ // If the increment/decrement didn't overflow, we're done.
+ exit.Branch(vc);
+
+ // Revert optimistic increment/decrement.
+ if (is_increment) {
+ __ sub(r0, r0, Operand(r1));
+ } else {
+ __ add(r0, r0, Operand(r1));
+ }
+
+ // Slow case: Convert to number.
+ slow.Bind();
+ {
+ // Convert the operand to a number.
+ frame_->EmitPush(r0);
+ Result arg_count = allocator_->Allocate(r0);
+ ASSERT(arg_count.is_valid());
+ __ mov(arg_count.reg(), Operand(0));
+ frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, &arg_count, 1);
+ }
+ if (is_postfix) {
+ // Postfix: store to result (on the stack).
+ __ str(r0, frame_->ElementAt(target.size()));
+ }
+
+ // Compute the new value.
+ __ mov(r1, Operand(Smi::FromInt(1)));
+ frame_->EmitPush(r0);
+ frame_->EmitPush(r1);
+ if (is_increment) {
+ frame_->CallRuntime(Runtime::kNumberAdd, 2);
+ } else {
+ frame_->CallRuntime(Runtime::kNumberSub, 2);
+ }
+
+ // Store the new value in the target if not const.
+ exit.Bind();
+ frame_->EmitPush(r0);
+ if (!is_const) target.SetValue(NOT_CONST_INIT);
+ }
+
+ // Postfix: Discard the new value and use the old.
+ if (is_postfix) frame_->EmitPop(r0);
+ ASSERT(frame_->height() == original_height + 1);
+}
+
+
+void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ BinaryOperation");
+ Token::Value op = node->op();
+
+ // According to ECMA-262 section 11.11, page 58, the binary logical
+ // operators must yield the result of one of the two expressions
+ // before any ToBoolean() conversions. This means that the value
+ // produced by a && or || operator is not necessarily a boolean.
+
+ // NOTE: If the left hand side produces a materialized value (not in
+ // the CC register), we force the right hand side to do the
+ // same. This is necessary because we may have to branch to the exit
+ // after evaluating the left hand side (due to the shortcut
+ // semantics), but the compiler must (statically) know if the result
+ // of compiling the binary operation is materialized or not.
+
+ if (op == Token::AND) {
+ JumpTarget is_true;
+ LoadConditionAndSpill(node->left(),
+ NOT_INSIDE_TYPEOF,
+ &is_true,
+ false_target(),
+ false);
+ if (has_cc()) {
+ Branch(false, false_target());
+
+ // Evaluate right side expression.
+ is_true.Bind();
+ LoadConditionAndSpill(node->right(),
+ NOT_INSIDE_TYPEOF,
+ true_target(),
+ false_target(),
+ false);
+
+ } else {
+ JumpTarget pop_and_continue;
+ JumpTarget exit;
+
+ __ ldr(r0, frame_->Top()); // dup the stack top
+ frame_->EmitPush(r0);
+ // Avoid popping the result if it converts to 'false' using the
+ // standard ToBoolean() conversion as described in ECMA-262,
+ // section 9.2, page 30.
+ ToBoolean(&pop_and_continue, &exit);
+ Branch(false, &exit);
+
+ // Pop the result of evaluating the first part.
+ pop_and_continue.Bind();
+ frame_->EmitPop(r0);
+
+ // Evaluate right side expression.
+ is_true.Bind();
+ LoadAndSpill(node->right());
+
+ // Exit (always with a materialized value).
+ exit.Bind();
+ }
+
+ } else if (op == Token::OR) {
+ JumpTarget is_false;
+ LoadConditionAndSpill(node->left(),
+ NOT_INSIDE_TYPEOF,
+ true_target(),
+ &is_false,
+ false);
+ if (has_cc()) {
+ Branch(true, true_target());
+
+ // Evaluate right side expression.
+ is_false.Bind();
+ LoadConditionAndSpill(node->right(),
+ NOT_INSIDE_TYPEOF,
+ true_target(),
+ false_target(),
+ false);
+
+ } else {
+ JumpTarget pop_and_continue;
+ JumpTarget exit;
+
+ __ ldr(r0, frame_->Top());
+ frame_->EmitPush(r0);
+ // Avoid popping the result if it converts to 'true' using the
+ // standard ToBoolean() conversion as described in ECMA-262,
+ // section 9.2, page 30.
+ ToBoolean(&exit, &pop_and_continue);
+ Branch(true, &exit);
+
+ // Pop the result of evaluating the first part.
+ pop_and_continue.Bind();
+ frame_->EmitPop(r0);
+
+ // Evaluate right side expression.
+ is_false.Bind();
+ LoadAndSpill(node->right());
+
+ // Exit (always with a materialized value).
+ exit.Bind();
+ }
+
+ } else {
+ // Optimize for the case where (at least) one of the expressions
+ // is a literal small integer.
+ Literal* lliteral = node->left()->AsLiteral();
+ Literal* rliteral = node->right()->AsLiteral();
+ // NOTE: The code below assumes that the slow cases (calls to runtime)
+ // never return a constant/immutable object.
+ bool overwrite_left =
+ (node->left()->AsBinaryOperation() != NULL &&
+ node->left()->AsBinaryOperation()->ResultOverwriteAllowed());
+ bool overwrite_right =
+ (node->right()->AsBinaryOperation() != NULL &&
+ node->right()->AsBinaryOperation()->ResultOverwriteAllowed());
+
+ if (rliteral != NULL && rliteral->handle()->IsSmi()) {
+ LoadAndSpill(node->left());
+ SmiOperation(node->op(),
+ rliteral->handle(),
+ false,
+ overwrite_right ? OVERWRITE_RIGHT : NO_OVERWRITE);
+
+ } else if (lliteral != NULL && lliteral->handle()->IsSmi()) {
+ LoadAndSpill(node->right());
+ SmiOperation(node->op(),
+ lliteral->handle(),
+ true,
+ overwrite_left ? OVERWRITE_LEFT : NO_OVERWRITE);
+
+ } else {
+ OverwriteMode overwrite_mode = NO_OVERWRITE;
+ if (overwrite_left) {
+ overwrite_mode = OVERWRITE_LEFT;
+ } else if (overwrite_right) {
+ overwrite_mode = OVERWRITE_RIGHT;
+ }
+ LoadAndSpill(node->left());
+ LoadAndSpill(node->right());
+ GenericBinaryOperation(node->op(), overwrite_mode);
+ }
+ frame_->EmitPush(r0);
+ }
+ ASSERT((has_cc() && frame_->height() == original_height) ||
+ (!has_cc() && frame_->height() == original_height + 1));
+}
+
+
+void CodeGenerator::VisitThisFunction(ThisFunction* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ __ ldr(r0, frame_->Function());
+ frame_->EmitPush(r0);
+ ASSERT(frame_->height() == original_height + 1);
+}
+
+
+void CodeGenerator::VisitCompareOperation(CompareOperation* node) {
+#ifdef DEBUG
+ int original_height = frame_->height();
+#endif
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ CompareOperation");
+
+ // Get the expressions from the node.
+ Expression* left = node->left();
+ Expression* right = node->right();
+ Token::Value op = node->op();
+
+ // To make null checks efficient, we check if either left or right is the
+ // literal 'null'. If so, we optimize the code by inlining a null check
+ // instead of calling the (very) general runtime routine for checking
+ // equality.
+ if (op == Token::EQ || op == Token::EQ_STRICT) {
+ bool left_is_null =
+ left->AsLiteral() != NULL && left->AsLiteral()->IsNull();
+ bool right_is_null =
+ right->AsLiteral() != NULL && right->AsLiteral()->IsNull();
+ // The 'null' value can only be equal to 'null' or 'undefined'.
+ if (left_is_null || right_is_null) {
+ LoadAndSpill(left_is_null ? right : left);
+ frame_->EmitPop(r0);
+ __ cmp(r0, Operand(Factory::null_value()));
+
+ // The 'null' value is only equal to 'undefined' if using non-strict
+ // comparisons.
+ if (op != Token::EQ_STRICT) {
+ true_target()->Branch(eq);
+
+ __ cmp(r0, Operand(Factory::undefined_value()));
+ true_target()->Branch(eq);
+
+ __ tst(r0, Operand(kSmiTagMask));
+ false_target()->Branch(eq);
+
+ // It can be an undetectable object.
+ __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
+ __ ldrb(r0, FieldMemOperand(r0, Map::kBitFieldOffset));
+ __ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
+ __ cmp(r0, Operand(1 << Map::kIsUndetectable));
+ }
+
+ cc_reg_ = eq;
+ ASSERT(has_cc() && frame_->height() == original_height);
+ return;
+ }
+ }
+
+ // To make typeof testing for natives implemented in JavaScript really
+ // efficient, we generate special code for expressions of the form:
+ // 'typeof <expression> == <string>'.
+ UnaryOperation* operation = left->AsUnaryOperation();
+ if ((op == Token::EQ || op == Token::EQ_STRICT) &&
+ (operation != NULL && operation->op() == Token::TYPEOF) &&
+ (right->AsLiteral() != NULL &&
+ right->AsLiteral()->handle()->IsString())) {
+ Handle<String> check(String::cast(*right->AsLiteral()->handle()));
+
+ // Load the operand, move it to register r1.
+ LoadTypeofExpression(operation->expression());
+ frame_->EmitPop(r1);
+
+ if (check->Equals(Heap::number_symbol())) {
+ __ tst(r1, Operand(kSmiTagMask));
+ true_target()->Branch(eq);
+ __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
+ __ cmp(r1, Operand(Factory::heap_number_map()));
+ cc_reg_ = eq;
+
+ } else if (check->Equals(Heap::string_symbol())) {
+ __ tst(r1, Operand(kSmiTagMask));
+ false_target()->Branch(eq);
+
+ __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
+
+ // It can be an undetectable string object.
+ __ ldrb(r2, FieldMemOperand(r1, Map::kBitFieldOffset));
+ __ and_(r2, r2, Operand(1 << Map::kIsUndetectable));
+ __ cmp(r2, Operand(1 << Map::kIsUndetectable));
+ false_target()->Branch(eq);
+
+ __ ldrb(r2, FieldMemOperand(r1, Map::kInstanceTypeOffset));
+ __ cmp(r2, Operand(FIRST_NONSTRING_TYPE));
+ cc_reg_ = lt;
+
+ } else if (check->Equals(Heap::boolean_symbol())) {
+ __ cmp(r1, Operand(Factory::true_value()));
+ true_target()->Branch(eq);
+ __ cmp(r1, Operand(Factory::false_value()));
+ cc_reg_ = eq;
+
+ } else if (check->Equals(Heap::undefined_symbol())) {
+ __ cmp(r1, Operand(Factory::undefined_value()));
+ true_target()->Branch(eq);
+
+ __ tst(r1, Operand(kSmiTagMask));
+ false_target()->Branch(eq);
+
+ // It can be an undetectable object.
+ __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
+ __ ldrb(r2, FieldMemOperand(r1, Map::kBitFieldOffset));
+ __ and_(r2, r2, Operand(1 << Map::kIsUndetectable));
+ __ cmp(r2, Operand(1 << Map::kIsUndetectable));
+
+ cc_reg_ = eq;
+
+ } else if (check->Equals(Heap::function_symbol())) {
+ __ tst(r1, Operand(kSmiTagMask));
+ false_target()->Branch(eq);
+ __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
+ __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
+ __ cmp(r1, Operand(JS_FUNCTION_TYPE));
+ cc_reg_ = eq;
+
+ } else if (check->Equals(Heap::object_symbol())) {
+ __ tst(r1, Operand(kSmiTagMask));
+ false_target()->Branch(eq);
+
+ __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
+ __ cmp(r1, Operand(Factory::null_value()));
+ true_target()->Branch(eq);
+
+ // It can be an undetectable object.
+ __ ldrb(r1, FieldMemOperand(r2, Map::kBitFieldOffset));
+ __ and_(r1, r1, Operand(1 << Map::kIsUndetectable));
+ __ cmp(r1, Operand(1 << Map::kIsUndetectable));
+ false_target()->Branch(eq);
+
+ __ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
+ __ cmp(r2, Operand(FIRST_JS_OBJECT_TYPE));
+ false_target()->Branch(lt);
+ __ cmp(r2, Operand(LAST_JS_OBJECT_TYPE));
+ cc_reg_ = le;
+
+ } else {
+ // Uncommon case: typeof testing against a string literal that is
+ // never returned from the typeof operator.
+ false_target()->Jump();
+ }
+ ASSERT(!has_valid_frame() ||
+ (has_cc() && frame_->height() == original_height));
+ return;
+ }
+
+ LoadAndSpill(left);
+ LoadAndSpill(right);
+ switch (op) {
+ case Token::EQ:
+ Comparison(eq, false);
+ break;
+
+ case Token::LT:
+ Comparison(lt);
+ break;
+
+ case Token::GT:
+ Comparison(gt);
+ break;
+
+ case Token::LTE:
+ Comparison(le);
+ break;
+
+ case Token::GTE:
+ Comparison(ge);
+ break;
+
+ case Token::EQ_STRICT:
+ Comparison(eq, true);
+ break;
+
+ case Token::IN: {
+ Result arg_count = allocator_->Allocate(r0);
+ ASSERT(arg_count.is_valid());
+ __ mov(arg_count.reg(), Operand(1)); // not counting receiver
+ Result result = frame_->InvokeBuiltin(Builtins::IN,
+ CALL_JS,
+ &arg_count,
+ 2);
+ frame_->EmitPush(result.reg());
+ break;
+ }
+
+ case Token::INSTANCEOF: {
+ Result arg_count = allocator_->Allocate(r0);
+ ASSERT(arg_count.is_valid());
+ __ mov(arg_count.reg(), Operand(1)); // not counting receiver
+ Result result = frame_->InvokeBuiltin(Builtins::INSTANCE_OF,
+ CALL_JS,
+ &arg_count,
+ 2);
+ __ tst(result.reg(), Operand(result.reg()));
+ cc_reg_ = eq;
+ break;
+ }
+
+ default:
+ UNREACHABLE();
+ }
+ ASSERT((has_cc() && frame_->height() == original_height) ||
+ (!has_cc() && frame_->height() == original_height + 1));
+}
+
+
+#ifdef DEBUG
+bool CodeGenerator::HasValidEntryRegisters() { return true; }
+#endif
+
+
+#undef __
+#define __ ACCESS_MASM(masm)
+
+
+Handle<String> Reference::GetName() {
+ ASSERT(type_ == NAMED);
+ Property* property = expression_->AsProperty();
+ if (property == NULL) {
+ // Global variable reference treated as a named property reference.
+ VariableProxy* proxy = expression_->AsVariableProxy();
+ ASSERT(proxy->AsVariable() != NULL);
+ ASSERT(proxy->AsVariable()->is_global());
+ return proxy->name();
+ } else {
+ Literal* raw_name = property->key()->AsLiteral();
+ ASSERT(raw_name != NULL);
+ return Handle<String>(String::cast(*raw_name->handle()));
+ }
+}
+
+
+void Reference::GetValueAndSpill(TypeofState typeof_state) {
+ ASSERT(cgen_->in_spilled_code());
+ cgen_->set_in_spilled_code(false);
+ GetValue(typeof_state);
+ cgen_->frame()->SpillAll();
+ cgen_->set_in_spilled_code(true);
+}
+
+
+void Reference::GetValue(TypeofState typeof_state) {
+ ASSERT(!cgen_->in_spilled_code());
+ ASSERT(cgen_->HasValidEntryRegisters());
+ ASSERT(!is_illegal());
+ ASSERT(!cgen_->has_cc());
+ MacroAssembler* masm = cgen_->masm();
+ Property* property = expression_->AsProperty();
+ if (property != NULL) {
+ cgen_->CodeForSourcePosition(property->position());
+ }
+
+ switch (type_) {
+ case SLOT: {
+ Comment cmnt(masm, "[ Load from Slot");
+ Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
+ ASSERT(slot != NULL);
+ cgen_->LoadFromSlot(slot, typeof_state);
+ break;
+ }
+
+ case NAMED: {
+ // TODO(1241834): Make sure that this it is safe to ignore the
+ // distinction between expressions in a typeof and not in a typeof. If
+ // there is a chance that reference errors can be thrown below, we
+ // must distinguish between the two kinds of loads (typeof expression
+ // loads must not throw a reference error).
+ VirtualFrame* frame = cgen_->frame();
+ Comment cmnt(masm, "[ Load from named Property");
+ Handle<String> name(GetName());
+ Variable* var = expression_->AsVariableProxy()->AsVariable();
+ Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
+ // Setup the name register.
+ Result name_reg = cgen_->allocator()->Allocate(r2);
+ ASSERT(name_reg.is_valid());
+ __ mov(name_reg.reg(), Operand(name));
+ ASSERT(var == NULL || var->is_global());
+ RelocInfo::Mode rmode = (var == NULL)
+ ? RelocInfo::CODE_TARGET
+ : RelocInfo::CODE_TARGET_CONTEXT;
+ Result answer = frame->CallCodeObject(ic, rmode, &name_reg, 0);
+ frame->EmitPush(answer.reg());
+ break;
+ }
+
+ case KEYED: {
+ // TODO(1241834): Make sure that this it is safe to ignore the
+ // distinction between expressions in a typeof and not in a typeof.
+
+ // TODO(181): Implement inlined version of array indexing once
+ // loop nesting is properly tracked on ARM.
+ VirtualFrame* frame = cgen_->frame();
+ Comment cmnt(masm, "[ Load from keyed Property");
+ ASSERT(property != NULL);
+ Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
+ Variable* var = expression_->AsVariableProxy()->AsVariable();
+ ASSERT(var == NULL || var->is_global());
+ RelocInfo::Mode rmode = (var == NULL)
+ ? RelocInfo::CODE_TARGET
+ : RelocInfo::CODE_TARGET_CONTEXT;
+ Result answer = frame->CallCodeObject(ic, rmode, 0);
+ frame->EmitPush(answer.reg());
+ break;
+ }
+
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void Reference::SetValue(InitState init_state) {
+ ASSERT(!is_illegal());
+ ASSERT(!cgen_->has_cc());
+ MacroAssembler* masm = cgen_->masm();
+ VirtualFrame* frame = cgen_->frame();
+ Property* property = expression_->AsProperty();
+ if (property != NULL) {
+ cgen_->CodeForSourcePosition(property->position());
+ }
+
+ switch (type_) {
+ case SLOT: {
+ Comment cmnt(masm, "[ Store to Slot");
+ Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
+ ASSERT(slot != NULL);
+ if (slot->type() == Slot::LOOKUP) {
+ ASSERT(slot->var()->is_dynamic());
+
+ // For now, just do a runtime call.
+ frame->EmitPush(cp);
+ __ mov(r0, Operand(slot->var()->name()));
+ frame->EmitPush(r0);
+
+ if (init_state == CONST_INIT) {
+ // Same as the case for a normal store, but ignores attribute
+ // (e.g. READ_ONLY) of context slot so that we can initialize
+ // const properties (introduced via eval("const foo = (some
+ // expr);")). Also, uses the current function context instead of
+ // the top context.
+ //
+ // Note that we must declare the foo upon entry of eval(), via a
+ // context slot declaration, but we cannot initialize it at the
+ // same time, because the const declaration may be at the end of
+ // the eval code (sigh...) and the const variable may have been
+ // used before (where its value is 'undefined'). Thus, we can only
+ // do the initialization when we actually encounter the expression
+ // and when the expression operands are defined and valid, and
+ // thus we need the split into 2 operations: declaration of the
+ // context slot followed by initialization.
+ frame->CallRuntime(Runtime::kInitializeConstContextSlot, 3);
+ } else {
+ frame->CallRuntime(Runtime::kStoreContextSlot, 3);
+ }
+ // Storing a variable must keep the (new) value on the expression
+ // stack. This is necessary for compiling assignment expressions.
+ frame->EmitPush(r0);
+
+ } else {
+ ASSERT(!slot->var()->is_dynamic());
+
+ JumpTarget exit;
+ if (init_state == CONST_INIT) {
+ ASSERT(slot->var()->mode() == Variable::CONST);
+ // Only the first const initialization must be executed (the slot
+ // still contains 'the hole' value). When the assignment is
+ // executed, the code is identical to a normal store (see below).
+ Comment cmnt(masm, "[ Init const");
+ __ ldr(r2, cgen_->SlotOperand(slot, r2));
+ __ cmp(r2, Operand(Factory::the_hole_value()));
+ exit.Branch(ne);
+ }
+
+ // We must execute the store. Storing a variable must keep the
+ // (new) value on the stack. This is necessary for compiling
+ // assignment expressions.
+ //
+ // Note: We will reach here even with slot->var()->mode() ==
+ // Variable::CONST because of const declarations which will
+ // initialize consts to 'the hole' value and by doing so, end up
+ // calling this code. r2 may be loaded with context; used below in
+ // RecordWrite.
+ frame->EmitPop(r0);
+ __ str(r0, cgen_->SlotOperand(slot, r2));
+ frame->EmitPush(r0);
+ if (slot->type() == Slot::CONTEXT) {
+ // Skip write barrier if the written value is a smi.
+ __ tst(r0, Operand(kSmiTagMask));
+ exit.Branch(eq);
+ // r2 is loaded with context when calling SlotOperand above.
+ int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
+ __ mov(r3, Operand(offset));
+ __ RecordWrite(r2, r3, r1);
+ }
+ // If we definitely did not jump over the assignment, we do not need
+ // to bind the exit label. Doing so can defeat peephole
+ // optimization.
+ if (init_state == CONST_INIT || slot->type() == Slot::CONTEXT) {
+ exit.Bind();
+ }
+ }
+ break;
+ }
+
+ case NAMED: {
+ Comment cmnt(masm, "[ Store to named Property");
+ // Call the appropriate IC code.
+ Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
+ Handle<String> name(GetName());
+
+ Result value = cgen_->allocator()->Allocate(r0);
+ ASSERT(value.is_valid());
+ frame->EmitPop(value.reg());
+
+ // Setup the name register.
+ Result property_name = cgen_->allocator()->Allocate(r2);
+ ASSERT(property_name.is_valid());
+ __ mov(property_name.reg(), Operand(name));
+ Result answer = frame->CallCodeObject(ic,
+ RelocInfo::CODE_TARGET,
+ &value,
+ &property_name,
+ 0);
+ frame->EmitPush(answer.reg());
+ break;
+ }
+
+ case KEYED: {
+ Comment cmnt(masm, "[ Store to keyed Property");
+ Property* property = expression_->AsProperty();
+ ASSERT(property != NULL);
+ cgen_->CodeForSourcePosition(property->position());
+
+ // Call IC code.
+ Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
+ // TODO(1222589): Make the IC grab the values from the stack.
+ Result value = cgen_->allocator()->Allocate(r0);
+ ASSERT(value.is_valid());
+ frame->EmitPop(value.reg()); // value
+ Result result =
+ frame->CallCodeObject(ic, RelocInfo::CODE_TARGET, &value, 0);
+ frame->EmitPush(result.reg());
+ break;
+ }
+
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+static void AllocateHeapNumber(
+ MacroAssembler* masm,
+ Label* need_gc, // Jump here if young space is full.
+ Register result_reg, // The tagged address of the new heap number.
+ Register allocation_top_addr_reg, // A scratch register.
+ Register scratch2) { // Another scratch register.
+ ExternalReference allocation_top =
+ ExternalReference::new_space_allocation_top_address();
+ ExternalReference allocation_limit =
+ ExternalReference::new_space_allocation_limit_address();
+
+ // allocat := the address of the allocation top variable.
+ __ mov(allocation_top_addr_reg, Operand(allocation_top));
+ // result_reg := the old allocation top.
+ __ ldr(result_reg, MemOperand(allocation_top_addr_reg));
+ // scratch2 := the address of the allocation limit.
+ __ mov(scratch2, Operand(allocation_limit));
+ // scratch2 := the allocation limit.
+ __ ldr(scratch2, MemOperand(scratch2));
+ // result_reg := the new allocation top.
+ __ add(result_reg, result_reg, Operand(HeapNumber::kSize));
+ // Compare new new allocation top and limit.
+ __ cmp(result_reg, Operand(scratch2));
+ // Branch if out of space in young generation.
+ __ b(hi, need_gc);
+ // Store new allocation top.
+ __ str(result_reg, MemOperand(allocation_top_addr_reg)); // store new top
+ // Tag and adjust back to start of new object.
+ __ sub(result_reg, result_reg, Operand(HeapNumber::kSize - kHeapObjectTag));
+ // Get heap number map into scratch2.
+ __ mov(scratch2, Operand(Factory::heap_number_map()));
+ // Store heap number map in new object.
+ __ str(scratch2, FieldMemOperand(result_reg, HeapObject::kMapOffset));
+}
+
+
+// We fall into this code if the operands were Smis, but the result was
+// not (eg. overflow). We branch into this code (to the not_smi label) if
+// the operands were not both Smi.
+static void HandleBinaryOpSlowCases(MacroAssembler* masm,
+ Label* not_smi,
+ const Builtins::JavaScript& builtin,
+ Token::Value operation,
+ int swi_number,
+ OverwriteMode mode) {
+ Label slow;
+ __ bind(&slow);
+ __ push(r1);
+ __ push(r0);
+ __ mov(r0, Operand(1)); // Set number of arguments.
+ __ InvokeBuiltin(builtin, JUMP_JS); // Tail call.
+
+ __ bind(not_smi);
+ __ tst(r0, Operand(kSmiTagMask));
+ __ b(eq, &slow); // We can't handle a Smi-double combination yet.
+ __ tst(r1, Operand(kSmiTagMask));
+ __ b(eq, &slow); // We can't handle a Smi-double combination yet.
+ // Get map of r0 into r2.
+ __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
+ // Get type of r0 into r3.
+ __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceTypeOffset));
+ __ cmp(r3, Operand(HEAP_NUMBER_TYPE));
+ __ b(ne, &slow);
+ // Get type of r1 into r3.
+ __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
+ // Check they are both the same map (heap number map).
+ __ cmp(r2, r3);
+ __ b(ne, &slow);
+ // Both are doubles.
+ // Calling convention says that second double is in r2 and r3.
+ __ ldr(r2, FieldMemOperand(r0, HeapNumber::kValueOffset));
+ __ ldr(r3, FieldMemOperand(r0, HeapNumber::kValueOffset + kPointerSize));
+
+ if (mode == NO_OVERWRITE) {
+ // Get address of new heap number into r5.
+ AllocateHeapNumber(masm, &slow, r5, r6, r7);
+ __ push(lr);
+ __ push(r5);
+ } else if (mode == OVERWRITE_LEFT) {
+ __ push(lr);
+ __ push(r1);
+ } else {
+ ASSERT(mode == OVERWRITE_RIGHT);
+ __ push(lr);
+ __ push(r0);
+ }
+ // Calling convention says that first double is in r0 and r1.
+ __ ldr(r0, FieldMemOperand(r1, HeapNumber::kValueOffset));
+ __ ldr(r1, FieldMemOperand(r1, HeapNumber::kValueOffset + kPointerSize));
+ // Call C routine that may not cause GC or other trouble.
+ __ mov(r5, Operand(ExternalReference::double_fp_operation(operation)));
+#if !defined(__arm__)
+ // Notify the simulator that we are calling an add routine in C.
+ __ swi(swi_number);
+#else
+ // Actually call the add routine written in C.
+ __ Call(r5);
+#endif
+ // Store answer in the overwritable heap number.
+ __ pop(r4);
+#if !defined(__ARM_EABI__) && defined(__arm__)
+ // Double returned in fp coprocessor register 0 and 1, encoded as register
+ // cr8. Offsets must be divisible by 4 for coprocessor so we need to
+ // substract the tag from r4.
+ __ sub(r5, r4, Operand(kHeapObjectTag));
+ __ stc(p1, cr8, MemOperand(r5, HeapNumber::kValueOffset));
+#else
+ // Double returned in fp coprocessor register 0 and 1.
+ __ str(r0, FieldMemOperand(r4, HeapNumber::kValueOffset));
+ __ str(r1, FieldMemOperand(r4, HeapNumber::kValueOffset + kPointerSize));
+#endif
+ __ mov(r0, Operand(r4));
+ // And we are done.
+ __ pop(pc);
+}
+
+
+void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
+ // r1 : x
+ // r0 : y
+ // result : r0
+
+ // All ops need to know whether we are dealing with two Smis. Set up r2 to
+ // tell us that.
+ __ orr(r2, r1, Operand(r0)); // r2 = x | y;
+
+ switch (op_) {
+ case Token::ADD: {
+ Label not_smi;
+ // Fast path.
+ ASSERT(kSmiTag == 0); // Adjust code below.
+ __ tst(r2, Operand(kSmiTagMask));
+ __ b(ne, &not_smi);
+ __ add(r0, r1, Operand(r0), SetCC); // Add y optimistically.
+ // Return if no overflow.
+ __ Ret(vc);
+ __ sub(r0, r0, Operand(r1)); // Revert optimistic add.
+
+ HandleBinaryOpSlowCases(masm,
+ &not_smi,
+ Builtins::ADD,
+ Token::ADD,
+ assembler::arm::simulator_fp_add,
+ mode_);
+ break;
+ }
+
+ case Token::SUB: {
+ Label not_smi;
+ // Fast path.
+ ASSERT(kSmiTag == 0); // Adjust code below.
+ __ tst(r2, Operand(kSmiTagMask));
+ __ b(ne, &not_smi);
+ __ sub(r0, r1, Operand(r0), SetCC); // Subtract y optimistically.
+ // Return if no overflow.
+ __ Ret(vc);
+ __ sub(r0, r1, Operand(r0)); // Revert optimistic subtract.
+
+ HandleBinaryOpSlowCases(masm,
+ &not_smi,
+ Builtins::SUB,
+ Token::SUB,
+ assembler::arm::simulator_fp_sub,
+ mode_);
+ break;
+ }
+
+ case Token::MUL: {
+ Label not_smi, slow;
+ ASSERT(kSmiTag == 0); // adjust code below
+ __ tst(r2, Operand(kSmiTagMask));
+ __ b(ne, &not_smi);
+ // Remove tag from one operand (but keep sign), so that result is Smi.
+ __ mov(ip, Operand(r0, ASR, kSmiTagSize));
+ // Do multiplication
+ __ smull(r3, r2, r1, ip); // r3 = lower 32 bits of ip*r1.
+ // Go slow on overflows (overflow bit is not set).
+ __ mov(ip, Operand(r3, ASR, 31));
+ __ cmp(ip, Operand(r2)); // no overflow if higher 33 bits are identical
+ __ b(ne, &slow);
+ // Go slow on zero result to handle -0.
+ __ tst(r3, Operand(r3));
+ __ mov(r0, Operand(r3), LeaveCC, ne);
+ __ Ret(ne);
+ // Slow case.
+ __ bind(&slow);
+
+ HandleBinaryOpSlowCases(masm,
+ &not_smi,
+ Builtins::MUL,
+ Token::MUL,
+ assembler::arm::simulator_fp_mul,
+ mode_);
+ break;
+ }
+
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR: {
+ Label slow;
+ ASSERT(kSmiTag == 0); // adjust code below
+ __ tst(r2, Operand(kSmiTagMask));
+ __ b(ne, &slow);
+ switch (op_) {
+ case Token::BIT_OR: __ orr(r0, r0, Operand(r1)); break;
+ case Token::BIT_AND: __ and_(r0, r0, Operand(r1)); break;
+ case Token::BIT_XOR: __ eor(r0, r0, Operand(r1)); break;
+ default: UNREACHABLE();
+ }
+ __ Ret();
+ __ bind(&slow);
+ __ push(r1); // restore stack
+ __ push(r0);
+ __ mov(r0, Operand(1)); // 1 argument (not counting receiver).
+ switch (op_) {
+ case Token::BIT_OR:
+ __ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS);
+ break;
+ case Token::BIT_AND:
+ __ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS);
+ break;
+ case Token::BIT_XOR:
+ __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS);
+ break;
+ default:
+ UNREACHABLE();
+ }
+ break;
+ }
+
+ case Token::SHL:
+ case Token::SHR:
+ case Token::SAR: {
+ Label slow;
+ ASSERT(kSmiTag == 0); // adjust code below
+ __ tst(r2, Operand(kSmiTagMask));
+ __ b(ne, &slow);
+ // remove tags from operands (but keep sign)
+ __ mov(r3, Operand(r1, ASR, kSmiTagSize)); // x
+ __ mov(r2, Operand(r0, ASR, kSmiTagSize)); // y
+ // use only the 5 least significant bits of the shift count
+ __ and_(r2, r2, Operand(0x1f));
+ // perform operation
+ switch (op_) {
+ case Token::SAR:
+ __ mov(r3, Operand(r3, ASR, r2));
+ // no checks of result necessary
+ break;
+
+ case Token::SHR:
+ __ mov(r3, Operand(r3, LSR, r2));
+ // check that the *unsigned* result fits in a smi
+ // neither of the two high-order bits can be set:
+ // - 0x80000000: high bit would be lost when smi tagging
+ // - 0x40000000: this number would convert to negative when
+ // smi tagging these two cases can only happen with shifts
+ // by 0 or 1 when handed a valid smi
+ __ and_(r2, r3, Operand(0xc0000000), SetCC);
+ __ b(ne, &slow);
+ break;
+
+ case Token::SHL:
+ __ mov(r3, Operand(r3, LSL, r2));
+ // check that the *signed* result fits in a smi
+ __ add(r2, r3, Operand(0x40000000), SetCC);
+ __ b(mi, &slow);
+ break;
+
+ default: UNREACHABLE();
+ }
+ // tag result and store it in r0
+ ASSERT(kSmiTag == 0); // adjust code below
+ __ mov(r0, Operand(r3, LSL, kSmiTagSize));
+ __ Ret();
+ // slow case
+ __ bind(&slow);
+ __ push(r1); // restore stack
+ __ push(r0);
+ __ mov(r0, Operand(1)); // 1 argument (not counting receiver).
+ switch (op_) {
+ case Token::SAR: __ InvokeBuiltin(Builtins::SAR, JUMP_JS); break;
+ case Token::SHR: __ InvokeBuiltin(Builtins::SHR, JUMP_JS); break;
+ case Token::SHL: __ InvokeBuiltin(Builtins::SHL, JUMP_JS); break;
+ default: UNREACHABLE();
+ }
+ break;
+ }
+
+ default: UNREACHABLE();
+ }
+ // This code should be unreachable.
+ __ stop("Unreachable");
+}
+
+
+void StackCheckStub::Generate(MacroAssembler* masm) {
+ Label within_limit;
+ __ mov(ip, Operand(ExternalReference::address_of_stack_guard_limit()));
+ __ ldr(ip, MemOperand(ip));
+ __ cmp(sp, Operand(ip));
+ __ b(hs, &within_limit);
+ // Do tail-call to runtime routine. Runtime routines expect at least one
+ // argument, so give it a Smi.
+ __ mov(r0, Operand(Smi::FromInt(0)));
+ __ push(r0);
+ __ TailCallRuntime(ExternalReference(Runtime::kStackGuard), 1);
+ __ bind(&within_limit);
+
+ __ StubReturn(1);
+}
+
+
+void UnarySubStub::Generate(MacroAssembler* masm) {
+ Label undo;
+ Label slow;
+ Label done;
+
+ // Enter runtime system if the value is not a smi.
+ __ tst(r0, Operand(kSmiTagMask));
+ __ b(ne, &slow);
+
+ // Enter runtime system if the value of the expression is zero
+ // to make sure that we switch between 0 and -0.
+ __ cmp(r0, Operand(0));
+ __ b(eq, &slow);
+
+ // The value of the expression is a smi that is not zero. Try
+ // optimistic subtraction '0 - value'.
+ __ rsb(r1, r0, Operand(0), SetCC);
+ __ b(vs, &slow);
+
+ // If result is a smi we are done.
+ __ tst(r1, Operand(kSmiTagMask));
+ __ mov(r0, Operand(r1), LeaveCC, eq); // conditionally set r0 to result
+ __ b(eq, &done);
+
+ // Enter runtime system.
+ __ bind(&slow);
+ __ push(r0);
+ __ mov(r0, Operand(0)); // set number of arguments
+ __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_JS);
+
+ __ bind(&done);
+ __ StubReturn(1);
+}
+
+
+void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
+ // r0 holds exception
+ ASSERT(StackHandlerConstants::kSize == 6 * kPointerSize); // adjust this code
+ __ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
+ __ ldr(sp, MemOperand(r3));
+ __ pop(r2); // pop next in chain
+ __ str(r2, MemOperand(r3));
+ // restore parameter- and frame-pointer and pop state.
+ __ ldm(ia_w, sp, r3.bit() | pp.bit() | fp.bit());
+ // Before returning we restore the context from the frame pointer if not NULL.
+ // The frame pointer is NULL in the exception handler of a JS entry frame.
+ __ cmp(fp, Operand(0));
+ // Set cp to NULL if fp is NULL.
+ __ mov(cp, Operand(0), LeaveCC, eq);
+ // Restore cp otherwise.
+ __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
+#ifdef DEBUG
+ if (FLAG_debug_code) {
+ __ mov(lr, Operand(pc));
+ }
+#endif
+ __ pop(pc);
+}
+
+
+void CEntryStub::GenerateThrowOutOfMemory(MacroAssembler* masm) {
+ // Fetch top stack handler.
+ __ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
+ __ ldr(r3, MemOperand(r3));
+
+ // Unwind the handlers until the ENTRY handler is found.
+ Label loop, done;
+ __ bind(&loop);
+ // Load the type of the current stack handler.
+ const int kStateOffset = StackHandlerConstants::kAddressDisplacement +
+ StackHandlerConstants::kStateOffset;
+ __ ldr(r2, MemOperand(r3, kStateOffset));
+ __ cmp(r2, Operand(StackHandler::ENTRY));
+ __ b(eq, &done);
+ // Fetch the next handler in the list.
+ const int kNextOffset = StackHandlerConstants::kAddressDisplacement +
+ StackHandlerConstants::kNextOffset;
+ __ ldr(r3, MemOperand(r3, kNextOffset));
+ __ jmp(&loop);
+ __ bind(&done);
+
+ // Set the top handler address to next handler past the current ENTRY handler.
+ __ ldr(r0, MemOperand(r3, kNextOffset));
+ __ mov(r2, Operand(ExternalReference(Top::k_handler_address)));
+ __ str(r0, MemOperand(r2));
+
+ // Set external caught exception to false.
+ __ mov(r0, Operand(false));
+ ExternalReference external_caught(Top::k_external_caught_exception_address);
+ __ mov(r2, Operand(external_caught));
+ __ str(r0, MemOperand(r2));
+
+ // Set pending exception and r0 to out of memory exception.
+ Failure* out_of_memory = Failure::OutOfMemoryException();
+ __ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
+ __ mov(r2, Operand(ExternalReference(Top::k_pending_exception_address)));
+ __ str(r0, MemOperand(r2));
+
+ // Restore the stack to the address of the ENTRY handler
+ __ mov(sp, Operand(r3));
+
+ // Stack layout at this point. See also PushTryHandler
+ // r3, sp -> next handler
+ // state (ENTRY)
+ // pp
+ // fp
+ // lr
+
+ // Discard ENTRY state (r2 is not used), and restore parameter-
+ // and frame-pointer and pop state.
+ __ ldm(ia_w, sp, r2.bit() | r3.bit() | pp.bit() | fp.bit());
+ // Before returning we restore the context from the frame pointer if not NULL.
+ // The frame pointer is NULL in the exception handler of a JS entry frame.
+ __ cmp(fp, Operand(0));
+ // Set cp to NULL if fp is NULL.
+ __ mov(cp, Operand(0), LeaveCC, eq);
+ // Restore cp otherwise.
+ __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
+#ifdef DEBUG
+ if (FLAG_debug_code) {
+ __ mov(lr, Operand(pc));
+ }
+#endif
+ __ pop(pc);
+}
+
+
+void CEntryStub::GenerateCore(MacroAssembler* masm,
+ Label* throw_normal_exception,
+ Label* throw_out_of_memory_exception,
+ StackFrame::Type frame_type,
+ bool do_gc,
+ bool always_allocate) {
+ // r0: result parameter for PerformGC, if any
+ // r4: number of arguments including receiver (C callee-saved)
+ // r5: pointer to builtin function (C callee-saved)
+ // r6: pointer to the first argument (C callee-saved)
+
+ if (do_gc) {
+ // Passing r0.
+ __ Call(FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY);
+ }
+
+ ExternalReference scope_depth =
+ ExternalReference::heap_always_allocate_scope_depth();
+ if (always_allocate) {
+ __ mov(r0, Operand(scope_depth));
+ __ ldr(r1, MemOperand(r0));
+ __ add(r1, r1, Operand(1));
+ __ str(r1, MemOperand(r0));
+ }
+
+ // Call C built-in.
+ // r0 = argc, r1 = argv
+ __ mov(r0, Operand(r4));
+ __ mov(r1, Operand(r6));
+
+ // TODO(1242173): To let the GC traverse the return address of the exit
+ // frames, we need to know where the return address is. Right now,
+ // we push it on the stack to be able to find it again, but we never
+ // restore from it in case of changes, which makes it impossible to
+ // support moving the C entry code stub. This should be fixed, but currently
+ // this is OK because the CEntryStub gets generated so early in the V8 boot
+ // sequence that it is not moving ever.
+ __ add(lr, pc, Operand(4)); // compute return address: (pc + 8) + 4
+ __ push(lr);
+#if !defined(__arm__)
+ // Notify the simulator of the transition to C code.
+ __ swi(assembler::arm::call_rt_r5);
+#else /* !defined(__arm__) */
+ __ Jump(r5);
+#endif /* !defined(__arm__) */
+
+ if (always_allocate) {
+ // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1
+ // though (contain the result).
+ __ mov(r2, Operand(scope_depth));
+ __ ldr(r3, MemOperand(r2));
+ __ sub(r3, r3, Operand(1));
+ __ str(r3, MemOperand(r2));
+ }
+
+ // check for failure result
+ Label failure_returned;
+ ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
+ // Lower 2 bits of r2 are 0 iff r0 has failure tag.
+ __ add(r2, r0, Operand(1));
+ __ tst(r2, Operand(kFailureTagMask));
+ __ b(eq, &failure_returned);
+
+ // Exit C frame and return.
+ // r0:r1: result
+ // sp: stack pointer
+ // fp: frame pointer
+ // pp: caller's parameter pointer pp (restored as C callee-saved)
+ __ LeaveExitFrame(frame_type);
+
+ // check if we should retry or throw exception
+ Label retry;
+ __ bind(&failure_returned);
+ ASSERT(Failure::RETRY_AFTER_GC == 0);
+ __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
+ __ b(eq, &retry);
+
+ Label continue_exception;
+ // If the returned failure is EXCEPTION then promote Top::pending_exception().
+ __ cmp(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
+ __ b(ne, &continue_exception);
+
+ // Retrieve the pending exception and clear the variable.
+ __ mov(ip, Operand(ExternalReference::the_hole_value_location()));
+ __ ldr(r3, MemOperand(ip));
+ __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
+ __ ldr(r0, MemOperand(ip));
+ __ str(r3, MemOperand(ip));
+
+ __ bind(&continue_exception);
+ // Special handling of out of memory exception.
+ Failure* out_of_memory = Failure::OutOfMemoryException();
+ __ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
+ __ b(eq, throw_out_of_memory_exception);
+
+ // Handle normal exception.
+ __ jmp(throw_normal_exception);
+
+ __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying
+}
+
+
+void CEntryStub::GenerateBody(MacroAssembler* masm, bool is_debug_break) {
+ // Called from JavaScript; parameters are on stack as if calling JS function
+ // r0: number of arguments including receiver
+ // r1: pointer to builtin function
+ // fp: frame pointer (restored after C call)
+ // sp: stack pointer (restored as callee's pp after C call)
+ // cp: current context (C callee-saved)
+ // pp: caller's parameter pointer pp (C callee-saved)
+
+ // NOTE: Invocations of builtins may return failure objects
+ // instead of a proper result. The builtin entry handles
+ // this by performing a garbage collection and retrying the
+ // builtin once.
+
+ StackFrame::Type frame_type = is_debug_break
+ ? StackFrame::EXIT_DEBUG
+ : StackFrame::EXIT;
+
+ // Enter the exit frame that transitions from JavaScript to C++.
+ __ EnterExitFrame(frame_type);
+
+ // r4: number of arguments (C callee-saved)
+ // r5: pointer to builtin function (C callee-saved)
+ // r6: pointer to first argument (C callee-saved)
+
+ Label throw_out_of_memory_exception;
+ Label throw_normal_exception;
+
+ // Call into the runtime system. Collect garbage before the call if
+ // running with --gc-greedy set.
+ if (FLAG_gc_greedy) {
+ Failure* failure = Failure::RetryAfterGC(0);
+ __ mov(r0, Operand(reinterpret_cast<intptr_t>(failure)));
+ }
+ GenerateCore(masm, &throw_normal_exception,
+ &throw_out_of_memory_exception,
+ frame_type,
+ FLAG_gc_greedy,
+ false);
+
+ // Do space-specific GC and retry runtime call.
+ GenerateCore(masm,
+ &throw_normal_exception,
+ &throw_out_of_memory_exception,
+ frame_type,
+ true,
+ false);
+
+ // Do full GC and retry runtime call one final time.
+ Failure* failure = Failure::InternalError();
+ __ mov(r0, Operand(reinterpret_cast<int32_t>(failure)));
+ GenerateCore(masm,
+ &throw_normal_exception,
+ &throw_out_of_memory_exception,
+ frame_type,
+ true,
+ true);
+
+ __ bind(&throw_out_of_memory_exception);
+ GenerateThrowOutOfMemory(masm);
+ // control flow for generated will not return.
+
+ __ bind(&throw_normal_exception);
+ GenerateThrowTOS(masm);
+}
+
+
+void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
+ // r0: code entry
+ // r1: function
+ // r2: receiver
+ // r3: argc
+ // [sp+0]: argv
+
+ Label invoke, exit;
+
+ // Called from C, so do not pop argc and args on exit (preserve sp)
+ // No need to save register-passed args
+ // Save callee-saved registers (incl. cp, pp, and fp), sp, and lr
+ __ stm(db_w, sp, kCalleeSaved | lr.bit());
+
+ // Get address of argv, see stm above.
+ // r0: code entry
+ // r1: function
+ // r2: receiver
+ // r3: argc
+ __ add(r4, sp, Operand((kNumCalleeSaved + 1)*kPointerSize));
+ __ ldr(r4, MemOperand(r4)); // argv
+
+ // Push a frame with special values setup to mark it as an entry frame.
+ // r0: code entry
+ // r1: function
+ // r2: receiver
+ // r3: argc
+ // r4: argv
+ int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
+ __ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used.
+ __ mov(r7, Operand(~ArgumentsAdaptorFrame::SENTINEL));
+ __ mov(r6, Operand(Smi::FromInt(marker)));
+ __ mov(r5, Operand(ExternalReference(Top::k_c_entry_fp_address)));
+ __ ldr(r5, MemOperand(r5));
+ __ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() | r8.bit());
+
+ // Setup frame pointer for the frame to be pushed.
+ __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
+
+ // Call a faked try-block that does the invoke.
+ __ bl(&invoke);
+
+ // Caught exception: Store result (exception) in the pending
+ // exception field in the JSEnv and return a failure sentinel.
+ // Coming in here the fp will be invalid because the PushTryHandler below
+ // sets it to 0 to signal the existence of the JSEntry frame.
+ __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
+ __ str(r0, MemOperand(ip));
+ __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
+ __ b(&exit);
+
+ // Invoke: Link this frame into the handler chain.
+ __ bind(&invoke);
+ // Must preserve r0-r4, r5-r7 are available.
+ __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
+ // If an exception not caught by another handler occurs, this handler returns
+ // control to the code after the bl(&invoke) above, which restores all
+ // kCalleeSaved registers (including cp, pp and fp) to their saved values
+ // before returning a failure to C.
+
+ // Clear any pending exceptions.
+ __ mov(ip, Operand(ExternalReference::the_hole_value_location()));
+ __ ldr(r5, MemOperand(ip));
+ __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
+ __ str(r5, MemOperand(ip));
+
+ // Invoke the function by calling through JS entry trampoline builtin.
+ // Notice that we cannot store a reference to the trampoline code directly in
+ // this stub, because runtime stubs are not traversed when doing GC.
+
+ // Expected registers by Builtins::JSEntryTrampoline
+ // r0: code entry
+ // r1: function
+ // r2: receiver
+ // r3: argc
+ // r4: argv
+ if (is_construct) {
+ ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
+ __ mov(ip, Operand(construct_entry));
+ } else {
+ ExternalReference entry(Builtins::JSEntryTrampoline);
+ __ mov(ip, Operand(entry));
+ }
+ __ ldr(ip, MemOperand(ip)); // deref address
+
+ // Branch and link to JSEntryTrampoline. We don't use the double underscore
+ // macro for the add instruction because we don't want the coverage tool
+ // inserting instructions here after we read the pc.
+ __ mov(lr, Operand(pc));
+ masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
+
+ // Unlink this frame from the handler chain. When reading the
+ // address of the next handler, there is no need to use the address
+ // displacement since the current stack pointer (sp) points directly
+ // to the stack handler.
+ __ ldr(r3, MemOperand(sp, StackHandlerConstants::kNextOffset));
+ __ mov(ip, Operand(ExternalReference(Top::k_handler_address)));
+ __ str(r3, MemOperand(ip));
+ // No need to restore registers
+ __ add(sp, sp, Operand(StackHandlerConstants::kSize));
+
+
+ __ bind(&exit); // r0 holds result
+ // Restore the top frame descriptors from the stack.
+ __ pop(r3);
+ __ mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
+ __ str(r3, MemOperand(ip));
+
+ // Reset the stack to the callee saved registers.
+ __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
+
+ // Restore callee-saved registers and return.
+#ifdef DEBUG
+ if (FLAG_debug_code) {
+ __ mov(lr, Operand(pc));
+ }
+#endif
+ __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
+}
+
+
+void ArgumentsAccessStub::GenerateReadLength(MacroAssembler* masm) {
+ // Check if the calling frame is an arguments adaptor frame.
+ Label adaptor;
+ __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
+ __ cmp(r3, Operand(ArgumentsAdaptorFrame::SENTINEL));
+ __ b(eq, &adaptor);
+
+ // Nothing to do: The formal number of parameters has already been
+ // passed in register r0 by calling function. Just return it.
+ __ Jump(lr);
+
+ // Arguments adaptor case: Read the arguments length from the
+ // adaptor frame and return it.
+ __ bind(&adaptor);
+ __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ Jump(lr);
+}
+
+
+void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
+ // The displacement is the offset of the last parameter (if any)
+ // relative to the frame pointer.
+ static const int kDisplacement =
+ StandardFrameConstants::kCallerSPOffset - kPointerSize;
+
+ // Check that the key is a smi.
+ Label slow;
+ __ tst(r1, Operand(kSmiTagMask));
+ __ b(ne, &slow);
+
+ // Check if the calling frame is an arguments adaptor frame.
+ Label adaptor;
+ __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
+ __ cmp(r3, Operand(ArgumentsAdaptorFrame::SENTINEL));
+ __ b(eq, &adaptor);
+
+ // Check index against formal parameters count limit passed in
+ // through register eax. Use unsigned comparison to get negative
+ // check for free.
+ __ cmp(r1, r0);
+ __ b(cs, &slow);
+
+ // Read the argument from the stack and return it.
+ __ sub(r3, r0, r1);
+ __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
+ __ ldr(r0, MemOperand(r3, kDisplacement));
+ __ Jump(lr);
+
+ // Arguments adaptor case: Check index against actual arguments
+ // limit found in the arguments adaptor frame. Use unsigned
+ // comparison to get negative check for free.
+ __ bind(&adaptor);
+ __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ cmp(r1, r0);
+ __ b(cs, &slow);
+
+ // Read the argument from the adaptor frame and return it.
+ __ sub(r3, r0, r1);
+ __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
+ __ ldr(r0, MemOperand(r3, kDisplacement));
+ __ Jump(lr);
+
+ // Slow-case: Handle non-smi or out-of-bounds access to arguments
+ // by calling the runtime system.
+ __ bind(&slow);
+ __ push(r1);
+ __ TailCallRuntime(ExternalReference(Runtime::kGetArgumentsProperty), 1);
+}
+
+
+void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
+ // Check if the calling frame is an arguments adaptor frame.
+ Label runtime;
+ __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
+ __ cmp(r3, Operand(ArgumentsAdaptorFrame::SENTINEL));
+ __ b(ne, &runtime);
+
+ // Patch the arguments.length and the parameters pointer.
+ __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ str(r0, MemOperand(sp, 0 * kPointerSize));
+ __ add(r3, r2, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
+ __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
+ __ str(r3, MemOperand(sp, 1 * kPointerSize));
+
+ // Do the runtime call to allocate the arguments object.
+ __ bind(&runtime);
+ __ TailCallRuntime(ExternalReference(Runtime::kNewArgumentsFast), 3);
+}
+
+
+void CallFunctionStub::Generate(MacroAssembler* masm) {
+ Label slow;
+ // Get the function to call from the stack.
+ // function, receiver [, arguments]
+ __ ldr(r1, MemOperand(sp, (argc_ + 1) * kPointerSize));
+
+ // Check that the function is really a JavaScript function.
+ // r1: pushed function (to be verified)
+ __ tst(r1, Operand(kSmiTagMask));
+ __ b(eq, &slow);
+ // Get the map of the function object.
+ __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
+ __ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
+ __ cmp(r2, Operand(JS_FUNCTION_TYPE));
+ __ b(ne, &slow);
+
+ // Fast-case: Invoke the function now.
+ // r1: pushed function
+ ParameterCount actual(argc_);
+ __ InvokeFunction(r1, actual, JUMP_FUNCTION);
+
+ // Slow-case: Non-function called.
+ __ bind(&slow);
+ __ mov(r0, Operand(argc_)); // Setup the number of arguments.
+ __ mov(r2, Operand(0));
+ __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
+ __ Jump(Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)),
+ RelocInfo::CODE_TARGET);
+}
+
+
+#undef __
+
+} } // namespace v8::internal