summaryrefslogtreecommitdiffstats
path: root/V8Binding/v8/src/spaces.cc
diff options
context:
space:
mode:
Diffstat (limited to 'V8Binding/v8/src/spaces.cc')
-rw-r--r--V8Binding/v8/src/spaces.cc2789
1 files changed, 0 insertions, 2789 deletions
diff --git a/V8Binding/v8/src/spaces.cc b/V8Binding/v8/src/spaces.cc
deleted file mode 100644
index 43abaa4..0000000
--- a/V8Binding/v8/src/spaces.cc
+++ /dev/null
@@ -1,2789 +0,0 @@
-// Copyright 2006-2008 the V8 project authors. All rights reserved.
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following
-// disclaimer in the documentation and/or other materials provided
-// with the distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived
-// from this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#include "v8.h"
-
-#include "macro-assembler.h"
-#include "mark-compact.h"
-#include "platform.h"
-
-namespace v8 {
-namespace internal {
-
-// For contiguous spaces, top should be in the space (or at the end) and limit
-// should be the end of the space.
-#define ASSERT_SEMISPACE_ALLOCATION_INFO(info, space) \
- ASSERT((space).low() <= (info).top \
- && (info).top <= (space).high() \
- && (info).limit == (space).high())
-
-
-// ----------------------------------------------------------------------------
-// HeapObjectIterator
-
-HeapObjectIterator::HeapObjectIterator(PagedSpace* space) {
- Initialize(space->bottom(), space->top(), NULL);
-}
-
-
-HeapObjectIterator::HeapObjectIterator(PagedSpace* space,
- HeapObjectCallback size_func) {
- Initialize(space->bottom(), space->top(), size_func);
-}
-
-
-HeapObjectIterator::HeapObjectIterator(PagedSpace* space, Address start) {
- Initialize(start, space->top(), NULL);
-}
-
-
-HeapObjectIterator::HeapObjectIterator(PagedSpace* space, Address start,
- HeapObjectCallback size_func) {
- Initialize(start, space->top(), size_func);
-}
-
-
-void HeapObjectIterator::Initialize(Address cur, Address end,
- HeapObjectCallback size_f) {
- cur_addr_ = cur;
- end_addr_ = end;
- end_page_ = Page::FromAllocationTop(end);
- size_func_ = size_f;
- Page* p = Page::FromAllocationTop(cur_addr_);
- cur_limit_ = (p == end_page_) ? end_addr_ : p->AllocationTop();
-
-#ifdef DEBUG
- Verify();
-#endif
-}
-
-
-bool HeapObjectIterator::HasNextInNextPage() {
- if (cur_addr_ == end_addr_) return false;
-
- Page* cur_page = Page::FromAllocationTop(cur_addr_);
- cur_page = cur_page->next_page();
- ASSERT(cur_page->is_valid());
-
- cur_addr_ = cur_page->ObjectAreaStart();
- cur_limit_ = (cur_page == end_page_) ? end_addr_ : cur_page->AllocationTop();
-
- ASSERT(cur_addr_ < cur_limit_);
-#ifdef DEBUG
- Verify();
-#endif
- return true;
-}
-
-
-#ifdef DEBUG
-void HeapObjectIterator::Verify() {
- Page* p = Page::FromAllocationTop(cur_addr_);
- ASSERT(p == Page::FromAllocationTop(cur_limit_));
- ASSERT(p->Offset(cur_addr_) <= p->Offset(cur_limit_));
-}
-#endif
-
-
-// -----------------------------------------------------------------------------
-// PageIterator
-
-PageIterator::PageIterator(PagedSpace* space, Mode mode) : space_(space) {
- prev_page_ = NULL;
- switch (mode) {
- case PAGES_IN_USE:
- stop_page_ = space->AllocationTopPage();
- break;
- case PAGES_USED_BY_MC:
- stop_page_ = space->MCRelocationTopPage();
- break;
- case ALL_PAGES:
-#ifdef DEBUG
- // Verify that the cached last page in the space is actually the
- // last page.
- for (Page* p = space->first_page_; p->is_valid(); p = p->next_page()) {
- if (!p->next_page()->is_valid()) {
- ASSERT(space->last_page_ == p);
- }
- }
-#endif
- stop_page_ = space->last_page_;
- break;
- }
-}
-
-
-// -----------------------------------------------------------------------------
-// Page
-
-#ifdef DEBUG
-Page::RSetState Page::rset_state_ = Page::IN_USE;
-#endif
-
-// -----------------------------------------------------------------------------
-// CodeRange
-
-List<CodeRange::FreeBlock> CodeRange::free_list_(0);
-List<CodeRange::FreeBlock> CodeRange::allocation_list_(0);
-int CodeRange::current_allocation_block_index_ = 0;
-VirtualMemory* CodeRange::code_range_ = NULL;
-
-
-bool CodeRange::Setup(const size_t requested) {
- ASSERT(code_range_ == NULL);
-
- code_range_ = new VirtualMemory(requested);
- CHECK(code_range_ != NULL);
- if (!code_range_->IsReserved()) {
- delete code_range_;
- code_range_ = NULL;
- return false;
- }
-
- // We are sure that we have mapped a block of requested addresses.
- ASSERT(code_range_->size() == requested);
- LOG(NewEvent("CodeRange", code_range_->address(), requested));
- allocation_list_.Add(FreeBlock(code_range_->address(), code_range_->size()));
- current_allocation_block_index_ = 0;
- return true;
-}
-
-
-int CodeRange::CompareFreeBlockAddress(const FreeBlock* left,
- const FreeBlock* right) {
- // The entire point of CodeRange is that the difference between two
- // addresses in the range can be represented as a signed 32-bit int,
- // so the cast is semantically correct.
- return static_cast<int>(left->start - right->start);
-}
-
-
-void CodeRange::GetNextAllocationBlock(size_t requested) {
- for (current_allocation_block_index_++;
- current_allocation_block_index_ < allocation_list_.length();
- current_allocation_block_index_++) {
- if (requested <= allocation_list_[current_allocation_block_index_].size) {
- return; // Found a large enough allocation block.
- }
- }
-
- // Sort and merge the free blocks on the free list and the allocation list.
- free_list_.AddAll(allocation_list_);
- allocation_list_.Clear();
- free_list_.Sort(&CompareFreeBlockAddress);
- for (int i = 0; i < free_list_.length();) {
- FreeBlock merged = free_list_[i];
- i++;
- // Add adjacent free blocks to the current merged block.
- while (i < free_list_.length() &&
- free_list_[i].start == merged.start + merged.size) {
- merged.size += free_list_[i].size;
- i++;
- }
- if (merged.size > 0) {
- allocation_list_.Add(merged);
- }
- }
- free_list_.Clear();
-
- for (current_allocation_block_index_ = 0;
- current_allocation_block_index_ < allocation_list_.length();
- current_allocation_block_index_++) {
- if (requested <= allocation_list_[current_allocation_block_index_].size) {
- return; // Found a large enough allocation block.
- }
- }
-
- // Code range is full or too fragmented.
- V8::FatalProcessOutOfMemory("CodeRange::GetNextAllocationBlock");
-}
-
-
-
-void* CodeRange::AllocateRawMemory(const size_t requested, size_t* allocated) {
- ASSERT(current_allocation_block_index_ < allocation_list_.length());
- if (requested > allocation_list_[current_allocation_block_index_].size) {
- // Find an allocation block large enough. This function call may
- // call V8::FatalProcessOutOfMemory if it cannot find a large enough block.
- GetNextAllocationBlock(requested);
- }
- // Commit the requested memory at the start of the current allocation block.
- *allocated = RoundUp(requested, Page::kPageSize);
- FreeBlock current = allocation_list_[current_allocation_block_index_];
- if (*allocated >= current.size - Page::kPageSize) {
- // Don't leave a small free block, useless for a large object or chunk.
- *allocated = current.size;
- }
- ASSERT(*allocated <= current.size);
- if (!code_range_->Commit(current.start, *allocated, true)) {
- *allocated = 0;
- return NULL;
- }
- allocation_list_[current_allocation_block_index_].start += *allocated;
- allocation_list_[current_allocation_block_index_].size -= *allocated;
- if (*allocated == current.size) {
- GetNextAllocationBlock(0); // This block is used up, get the next one.
- }
- return current.start;
-}
-
-
-void CodeRange::FreeRawMemory(void* address, size_t length) {
- free_list_.Add(FreeBlock(address, length));
- code_range_->Uncommit(address, length);
-}
-
-
-void CodeRange::TearDown() {
- delete code_range_; // Frees all memory in the virtual memory range.
- code_range_ = NULL;
- free_list_.Free();
- allocation_list_.Free();
-}
-
-
-// -----------------------------------------------------------------------------
-// MemoryAllocator
-//
-int MemoryAllocator::capacity_ = 0;
-int MemoryAllocator::size_ = 0;
-
-VirtualMemory* MemoryAllocator::initial_chunk_ = NULL;
-
-// 270 is an estimate based on the static default heap size of a pair of 256K
-// semispaces and a 64M old generation.
-const int kEstimatedNumberOfChunks = 270;
-List<MemoryAllocator::ChunkInfo> MemoryAllocator::chunks_(
- kEstimatedNumberOfChunks);
-List<int> MemoryAllocator::free_chunk_ids_(kEstimatedNumberOfChunks);
-int MemoryAllocator::max_nof_chunks_ = 0;
-int MemoryAllocator::top_ = 0;
-
-
-void MemoryAllocator::Push(int free_chunk_id) {
- ASSERT(max_nof_chunks_ > 0);
- ASSERT(top_ < max_nof_chunks_);
- free_chunk_ids_[top_++] = free_chunk_id;
-}
-
-
-int MemoryAllocator::Pop() {
- ASSERT(top_ > 0);
- return free_chunk_ids_[--top_];
-}
-
-
-bool MemoryAllocator::Setup(int capacity) {
- capacity_ = RoundUp(capacity, Page::kPageSize);
-
- // Over-estimate the size of chunks_ array. It assumes the expansion of old
- // space is always in the unit of a chunk (kChunkSize) except the last
- // expansion.
- //
- // Due to alignment, allocated space might be one page less than required
- // number (kPagesPerChunk) of pages for old spaces.
- //
- // Reserve two chunk ids for semispaces, one for map space, one for old
- // space, and one for code space.
- max_nof_chunks_ = (capacity_ / (kChunkSize - Page::kPageSize)) + 5;
- if (max_nof_chunks_ > kMaxNofChunks) return false;
-
- size_ = 0;
- ChunkInfo info; // uninitialized element.
- for (int i = max_nof_chunks_ - 1; i >= 0; i--) {
- chunks_.Add(info);
- free_chunk_ids_.Add(i);
- }
- top_ = max_nof_chunks_;
- return true;
-}
-
-
-void MemoryAllocator::TearDown() {
- for (int i = 0; i < max_nof_chunks_; i++) {
- if (chunks_[i].address() != NULL) DeleteChunk(i);
- }
- chunks_.Clear();
- free_chunk_ids_.Clear();
-
- if (initial_chunk_ != NULL) {
- LOG(DeleteEvent("InitialChunk", initial_chunk_->address()));
- delete initial_chunk_;
- initial_chunk_ = NULL;
- }
-
- ASSERT(top_ == max_nof_chunks_); // all chunks are free
- top_ = 0;
- capacity_ = 0;
- size_ = 0;
- max_nof_chunks_ = 0;
-}
-
-
-void* MemoryAllocator::AllocateRawMemory(const size_t requested,
- size_t* allocated,
- Executability executable) {
- if (size_ + static_cast<int>(requested) > capacity_) return NULL;
- void* mem;
- if (executable == EXECUTABLE && CodeRange::exists()) {
- mem = CodeRange::AllocateRawMemory(requested, allocated);
- } else {
- mem = OS::Allocate(requested, allocated, (executable == EXECUTABLE));
- }
- int alloced = *allocated;
- size_ += alloced;
- Counters::memory_allocated.Increment(alloced);
- return mem;
-}
-
-
-void MemoryAllocator::FreeRawMemory(void* mem, size_t length) {
- if (CodeRange::contains(static_cast<Address>(mem))) {
- CodeRange::FreeRawMemory(mem, length);
- } else {
- OS::Free(mem, length);
- }
- Counters::memory_allocated.Decrement(length);
- size_ -= length;
- ASSERT(size_ >= 0);
-}
-
-
-void* MemoryAllocator::ReserveInitialChunk(const size_t requested) {
- ASSERT(initial_chunk_ == NULL);
-
- initial_chunk_ = new VirtualMemory(requested);
- CHECK(initial_chunk_ != NULL);
- if (!initial_chunk_->IsReserved()) {
- delete initial_chunk_;
- initial_chunk_ = NULL;
- return NULL;
- }
-
- // We are sure that we have mapped a block of requested addresses.
- ASSERT(initial_chunk_->size() == requested);
- LOG(NewEvent("InitialChunk", initial_chunk_->address(), requested));
- size_ += requested;
- return initial_chunk_->address();
-}
-
-
-static int PagesInChunk(Address start, size_t size) {
- // The first page starts on the first page-aligned address from start onward
- // and the last page ends on the last page-aligned address before
- // start+size. Page::kPageSize is a power of two so we can divide by
- // shifting.
- return (RoundDown(start + size, Page::kPageSize)
- - RoundUp(start, Page::kPageSize)) >> Page::kPageSizeBits;
-}
-
-
-Page* MemoryAllocator::AllocatePages(int requested_pages, int* allocated_pages,
- PagedSpace* owner) {
- if (requested_pages <= 0) return Page::FromAddress(NULL);
- size_t chunk_size = requested_pages * Page::kPageSize;
-
- // There is not enough space to guarantee the desired number pages can be
- // allocated.
- if (size_ + static_cast<int>(chunk_size) > capacity_) {
- // Request as many pages as we can.
- chunk_size = capacity_ - size_;
- requested_pages = chunk_size >> Page::kPageSizeBits;
-
- if (requested_pages <= 0) return Page::FromAddress(NULL);
- }
- void* chunk = AllocateRawMemory(chunk_size, &chunk_size, owner->executable());
- if (chunk == NULL) return Page::FromAddress(NULL);
- LOG(NewEvent("PagedChunk", chunk, chunk_size));
-
- *allocated_pages = PagesInChunk(static_cast<Address>(chunk), chunk_size);
- if (*allocated_pages == 0) {
- FreeRawMemory(chunk, chunk_size);
- LOG(DeleteEvent("PagedChunk", chunk));
- return Page::FromAddress(NULL);
- }
-
- int chunk_id = Pop();
- chunks_[chunk_id].init(static_cast<Address>(chunk), chunk_size, owner);
-
- return InitializePagesInChunk(chunk_id, *allocated_pages, owner);
-}
-
-
-Page* MemoryAllocator::CommitPages(Address start, size_t size,
- PagedSpace* owner, int* num_pages) {
- ASSERT(start != NULL);
- *num_pages = PagesInChunk(start, size);
- ASSERT(*num_pages > 0);
- ASSERT(initial_chunk_ != NULL);
- ASSERT(InInitialChunk(start));
- ASSERT(InInitialChunk(start + size - 1));
- if (!initial_chunk_->Commit(start, size, owner->executable() == EXECUTABLE)) {
- return Page::FromAddress(NULL);
- }
- Counters::memory_allocated.Increment(size);
-
- // So long as we correctly overestimated the number of chunks we should not
- // run out of chunk ids.
- CHECK(!OutOfChunkIds());
- int chunk_id = Pop();
- chunks_[chunk_id].init(start, size, owner);
- return InitializePagesInChunk(chunk_id, *num_pages, owner);
-}
-
-
-bool MemoryAllocator::CommitBlock(Address start,
- size_t size,
- Executability executable) {
- ASSERT(start != NULL);
- ASSERT(size > 0);
- ASSERT(initial_chunk_ != NULL);
- ASSERT(InInitialChunk(start));
- ASSERT(InInitialChunk(start + size - 1));
-
- if (!initial_chunk_->Commit(start, size, executable)) return false;
- Counters::memory_allocated.Increment(size);
- return true;
-}
-
-bool MemoryAllocator::UncommitBlock(Address start, size_t size) {
- ASSERT(start != NULL);
- ASSERT(size > 0);
- ASSERT(initial_chunk_ != NULL);
- ASSERT(InInitialChunk(start));
- ASSERT(InInitialChunk(start + size - 1));
-
- if (!initial_chunk_->Uncommit(start, size)) return false;
- Counters::memory_allocated.Decrement(size);
- return true;
-}
-
-Page* MemoryAllocator::InitializePagesInChunk(int chunk_id, int pages_in_chunk,
- PagedSpace* owner) {
- ASSERT(IsValidChunk(chunk_id));
- ASSERT(pages_in_chunk > 0);
-
- Address chunk_start = chunks_[chunk_id].address();
-
- Address low = RoundUp(chunk_start, Page::kPageSize);
-
-#ifdef DEBUG
- size_t chunk_size = chunks_[chunk_id].size();
- Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize);
- ASSERT(pages_in_chunk <=
- ((OffsetFrom(high) - OffsetFrom(low)) / Page::kPageSize));
-#endif
-
- Address page_addr = low;
- for (int i = 0; i < pages_in_chunk; i++) {
- Page* p = Page::FromAddress(page_addr);
- p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id;
- p->is_normal_page = 1;
- page_addr += Page::kPageSize;
- }
-
- // Set the next page of the last page to 0.
- Page* last_page = Page::FromAddress(page_addr - Page::kPageSize);
- last_page->opaque_header = OffsetFrom(0) | chunk_id;
-
- return Page::FromAddress(low);
-}
-
-
-Page* MemoryAllocator::FreePages(Page* p) {
- if (!p->is_valid()) return p;
-
- // Find the first page in the same chunk as 'p'
- Page* first_page = FindFirstPageInSameChunk(p);
- Page* page_to_return = Page::FromAddress(NULL);
-
- if (p != first_page) {
- // Find the last page in the same chunk as 'prev'.
- Page* last_page = FindLastPageInSameChunk(p);
- first_page = GetNextPage(last_page); // first page in next chunk
-
- // set the next_page of last_page to NULL
- SetNextPage(last_page, Page::FromAddress(NULL));
- page_to_return = p; // return 'p' when exiting
- }
-
- while (first_page->is_valid()) {
- int chunk_id = GetChunkId(first_page);
- ASSERT(IsValidChunk(chunk_id));
-
- // Find the first page of the next chunk before deleting this chunk.
- first_page = GetNextPage(FindLastPageInSameChunk(first_page));
-
- // Free the current chunk.
- DeleteChunk(chunk_id);
- }
-
- return page_to_return;
-}
-
-
-void MemoryAllocator::DeleteChunk(int chunk_id) {
- ASSERT(IsValidChunk(chunk_id));
-
- ChunkInfo& c = chunks_[chunk_id];
-
- // We cannot free a chunk contained in the initial chunk because it was not
- // allocated with AllocateRawMemory. Instead we uncommit the virtual
- // memory.
- if (InInitialChunk(c.address())) {
- // TODO(1240712): VirtualMemory::Uncommit has a return value which
- // is ignored here.
- initial_chunk_->Uncommit(c.address(), c.size());
- Counters::memory_allocated.Decrement(c.size());
- } else {
- LOG(DeleteEvent("PagedChunk", c.address()));
- FreeRawMemory(c.address(), c.size());
- }
- c.init(NULL, 0, NULL);
- Push(chunk_id);
-}
-
-
-Page* MemoryAllocator::FindFirstPageInSameChunk(Page* p) {
- int chunk_id = GetChunkId(p);
- ASSERT(IsValidChunk(chunk_id));
-
- Address low = RoundUp(chunks_[chunk_id].address(), Page::kPageSize);
- return Page::FromAddress(low);
-}
-
-
-Page* MemoryAllocator::FindLastPageInSameChunk(Page* p) {
- int chunk_id = GetChunkId(p);
- ASSERT(IsValidChunk(chunk_id));
-
- Address chunk_start = chunks_[chunk_id].address();
- size_t chunk_size = chunks_[chunk_id].size();
-
- Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize);
- ASSERT(chunk_start <= p->address() && p->address() < high);
-
- return Page::FromAddress(high - Page::kPageSize);
-}
-
-
-#ifdef DEBUG
-void MemoryAllocator::ReportStatistics() {
- float pct = static_cast<float>(capacity_ - size_) / capacity_;
- PrintF(" capacity: %d, used: %d, available: %%%d\n\n",
- capacity_, size_, static_cast<int>(pct*100));
-}
-#endif
-
-
-// -----------------------------------------------------------------------------
-// PagedSpace implementation
-
-PagedSpace::PagedSpace(int max_capacity,
- AllocationSpace id,
- Executability executable)
- : Space(id, executable) {
- max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize)
- * Page::kObjectAreaSize;
- accounting_stats_.Clear();
-
- allocation_info_.top = NULL;
- allocation_info_.limit = NULL;
-
- mc_forwarding_info_.top = NULL;
- mc_forwarding_info_.limit = NULL;
-}
-
-
-bool PagedSpace::Setup(Address start, size_t size) {
- if (HasBeenSetup()) return false;
-
- int num_pages = 0;
- // Try to use the virtual memory range passed to us. If it is too small to
- // contain at least one page, ignore it and allocate instead.
- int pages_in_chunk = PagesInChunk(start, size);
- if (pages_in_chunk > 0) {
- first_page_ = MemoryAllocator::CommitPages(RoundUp(start, Page::kPageSize),
- Page::kPageSize * pages_in_chunk,
- this, &num_pages);
- } else {
- int requested_pages = Min(MemoryAllocator::kPagesPerChunk,
- max_capacity_ / Page::kObjectAreaSize);
- first_page_ =
- MemoryAllocator::AllocatePages(requested_pages, &num_pages, this);
- if (!first_page_->is_valid()) return false;
- }
-
- // We are sure that the first page is valid and that we have at least one
- // page.
- ASSERT(first_page_->is_valid());
- ASSERT(num_pages > 0);
- accounting_stats_.ExpandSpace(num_pages * Page::kObjectAreaSize);
- ASSERT(Capacity() <= max_capacity_);
-
- // Sequentially initialize remembered sets in the newly allocated
- // pages and cache the current last page in the space.
- for (Page* p = first_page_; p->is_valid(); p = p->next_page()) {
- p->ClearRSet();
- last_page_ = p;
- }
-
- // Use first_page_ for allocation.
- SetAllocationInfo(&allocation_info_, first_page_);
-
- return true;
-}
-
-
-bool PagedSpace::HasBeenSetup() {
- return (Capacity() > 0);
-}
-
-
-void PagedSpace::TearDown() {
- first_page_ = MemoryAllocator::FreePages(first_page_);
- ASSERT(!first_page_->is_valid());
-
- accounting_stats_.Clear();
-}
-
-
-#ifdef ENABLE_HEAP_PROTECTION
-
-void PagedSpace::Protect() {
- Page* page = first_page_;
- while (page->is_valid()) {
- MemoryAllocator::ProtectChunkFromPage(page);
- page = MemoryAllocator::FindLastPageInSameChunk(page)->next_page();
- }
-}
-
-
-void PagedSpace::Unprotect() {
- Page* page = first_page_;
- while (page->is_valid()) {
- MemoryAllocator::UnprotectChunkFromPage(page);
- page = MemoryAllocator::FindLastPageInSameChunk(page)->next_page();
- }
-}
-
-#endif
-
-
-void PagedSpace::ClearRSet() {
- PageIterator it(this, PageIterator::ALL_PAGES);
- while (it.has_next()) {
- it.next()->ClearRSet();
- }
-}
-
-
-Object* PagedSpace::FindObject(Address addr) {
- // Note: this function can only be called before or after mark-compact GC
- // because it accesses map pointers.
- ASSERT(!MarkCompactCollector::in_use());
-
- if (!Contains(addr)) return Failure::Exception();
-
- Page* p = Page::FromAddress(addr);
- ASSERT(IsUsed(p));
- Address cur = p->ObjectAreaStart();
- Address end = p->AllocationTop();
- while (cur < end) {
- HeapObject* obj = HeapObject::FromAddress(cur);
- Address next = cur + obj->Size();
- if ((cur <= addr) && (addr < next)) return obj;
- cur = next;
- }
-
- UNREACHABLE();
- return Failure::Exception();
-}
-
-
-bool PagedSpace::IsUsed(Page* page) {
- PageIterator it(this, PageIterator::PAGES_IN_USE);
- while (it.has_next()) {
- if (page == it.next()) return true;
- }
- return false;
-}
-
-
-void PagedSpace::SetAllocationInfo(AllocationInfo* alloc_info, Page* p) {
- alloc_info->top = p->ObjectAreaStart();
- alloc_info->limit = p->ObjectAreaEnd();
- ASSERT(alloc_info->VerifyPagedAllocation());
-}
-
-
-void PagedSpace::MCResetRelocationInfo() {
- // Set page indexes.
- int i = 0;
- PageIterator it(this, PageIterator::ALL_PAGES);
- while (it.has_next()) {
- Page* p = it.next();
- p->mc_page_index = i++;
- }
-
- // Set mc_forwarding_info_ to the first page in the space.
- SetAllocationInfo(&mc_forwarding_info_, first_page_);
- // All the bytes in the space are 'available'. We will rediscover
- // allocated and wasted bytes during GC.
- accounting_stats_.Reset();
-}
-
-
-int PagedSpace::MCSpaceOffsetForAddress(Address addr) {
-#ifdef DEBUG
- // The Contains function considers the address at the beginning of a
- // page in the page, MCSpaceOffsetForAddress considers it is in the
- // previous page.
- if (Page::IsAlignedToPageSize(addr)) {
- ASSERT(Contains(addr - kPointerSize));
- } else {
- ASSERT(Contains(addr));
- }
-#endif
-
- // If addr is at the end of a page, it belongs to previous page
- Page* p = Page::IsAlignedToPageSize(addr)
- ? Page::FromAllocationTop(addr)
- : Page::FromAddress(addr);
- int index = p->mc_page_index;
- return (index * Page::kPageSize) + p->Offset(addr);
-}
-
-
-// Slow case for reallocating and promoting objects during a compacting
-// collection. This function is not space-specific.
-HeapObject* PagedSpace::SlowMCAllocateRaw(int size_in_bytes) {
- Page* current_page = TopPageOf(mc_forwarding_info_);
- if (!current_page->next_page()->is_valid()) {
- if (!Expand(current_page)) {
- return NULL;
- }
- }
-
- // There are surely more pages in the space now.
- ASSERT(current_page->next_page()->is_valid());
- // We do not add the top of page block for current page to the space's
- // free list---the block may contain live objects so we cannot write
- // bookkeeping information to it. Instead, we will recover top of page
- // blocks when we move objects to their new locations.
- //
- // We do however write the allocation pointer to the page. The encoding
- // of forwarding addresses is as an offset in terms of live bytes, so we
- // need quick access to the allocation top of each page to decode
- // forwarding addresses.
- current_page->mc_relocation_top = mc_forwarding_info_.top;
- SetAllocationInfo(&mc_forwarding_info_, current_page->next_page());
- return AllocateLinearly(&mc_forwarding_info_, size_in_bytes);
-}
-
-
-bool PagedSpace::Expand(Page* last_page) {
- ASSERT(max_capacity_ % Page::kObjectAreaSize == 0);
- ASSERT(Capacity() % Page::kObjectAreaSize == 0);
-
- if (Capacity() == max_capacity_) return false;
-
- ASSERT(Capacity() < max_capacity_);
- // Last page must be valid and its next page is invalid.
- ASSERT(last_page->is_valid() && !last_page->next_page()->is_valid());
-
- int available_pages = (max_capacity_ - Capacity()) / Page::kObjectAreaSize;
- if (available_pages <= 0) return false;
-
- int desired_pages = Min(available_pages, MemoryAllocator::kPagesPerChunk);
- Page* p = MemoryAllocator::AllocatePages(desired_pages, &desired_pages, this);
- if (!p->is_valid()) return false;
-
- accounting_stats_.ExpandSpace(desired_pages * Page::kObjectAreaSize);
- ASSERT(Capacity() <= max_capacity_);
-
- MemoryAllocator::SetNextPage(last_page, p);
-
- // Sequentially clear remembered set of new pages and and cache the
- // new last page in the space.
- while (p->is_valid()) {
- p->ClearRSet();
- last_page_ = p;
- p = p->next_page();
- }
-
- return true;
-}
-
-
-#ifdef DEBUG
-int PagedSpace::CountTotalPages() {
- int count = 0;
- for (Page* p = first_page_; p->is_valid(); p = p->next_page()) {
- count++;
- }
- return count;
-}
-#endif
-
-
-void PagedSpace::Shrink() {
- // Release half of free pages.
- Page* top_page = AllocationTopPage();
- ASSERT(top_page->is_valid());
-
- // Count the number of pages we would like to free.
- int pages_to_free = 0;
- for (Page* p = top_page->next_page(); p->is_valid(); p = p->next_page()) {
- pages_to_free++;
- }
-
- // Free pages after top_page.
- Page* p = MemoryAllocator::FreePages(top_page->next_page());
- MemoryAllocator::SetNextPage(top_page, p);
-
- // Find out how many pages we failed to free and update last_page_.
- // Please note pages can only be freed in whole chunks.
- last_page_ = top_page;
- for (Page* p = top_page->next_page(); p->is_valid(); p = p->next_page()) {
- pages_to_free--;
- last_page_ = p;
- }
-
- accounting_stats_.ShrinkSpace(pages_to_free * Page::kObjectAreaSize);
- ASSERT(Capacity() == CountTotalPages() * Page::kObjectAreaSize);
-}
-
-
-bool PagedSpace::EnsureCapacity(int capacity) {
- if (Capacity() >= capacity) return true;
-
- // Start from the allocation top and loop to the last page in the space.
- Page* last_page = AllocationTopPage();
- Page* next_page = last_page->next_page();
- while (next_page->is_valid()) {
- last_page = MemoryAllocator::FindLastPageInSameChunk(next_page);
- next_page = last_page->next_page();
- }
-
- // Expand the space until it has the required capacity or expansion fails.
- do {
- if (!Expand(last_page)) return false;
- ASSERT(last_page->next_page()->is_valid());
- last_page =
- MemoryAllocator::FindLastPageInSameChunk(last_page->next_page());
- } while (Capacity() < capacity);
-
- return true;
-}
-
-
-#ifdef DEBUG
-void PagedSpace::Print() { }
-#endif
-
-
-#ifdef DEBUG
-// We do not assume that the PageIterator works, because it depends on the
-// invariants we are checking during verification.
-void PagedSpace::Verify(ObjectVisitor* visitor) {
- // The allocation pointer should be valid, and it should be in a page in the
- // space.
- ASSERT(allocation_info_.VerifyPagedAllocation());
- Page* top_page = Page::FromAllocationTop(allocation_info_.top);
- ASSERT(MemoryAllocator::IsPageInSpace(top_page, this));
-
- // Loop over all the pages.
- bool above_allocation_top = false;
- Page* current_page = first_page_;
- while (current_page->is_valid()) {
- if (above_allocation_top) {
- // We don't care what's above the allocation top.
- } else {
- // Unless this is the last page in the space containing allocated
- // objects, the allocation top should be at a constant offset from the
- // object area end.
- Address top = current_page->AllocationTop();
- if (current_page == top_page) {
- ASSERT(top == allocation_info_.top);
- // The next page will be above the allocation top.
- above_allocation_top = true;
- } else {
- ASSERT(top == current_page->ObjectAreaEnd() - page_extra_);
- }
-
- // It should be packed with objects from the bottom to the top.
- Address current = current_page->ObjectAreaStart();
- while (current < top) {
- HeapObject* object = HeapObject::FromAddress(current);
-
- // The first word should be a map, and we expect all map pointers to
- // be in map space.
- Map* map = object->map();
- ASSERT(map->IsMap());
- ASSERT(Heap::map_space()->Contains(map));
-
- // Perform space-specific object verification.
- VerifyObject(object);
-
- // The object itself should look OK.
- object->Verify();
-
- // All the interior pointers should be contained in the heap and
- // have their remembered set bits set if required as determined
- // by the visitor.
- int size = object->Size();
- object->IterateBody(map->instance_type(), size, visitor);
-
- current += size;
- }
-
- // The allocation pointer should not be in the middle of an object.
- ASSERT(current == top);
- }
-
- current_page = current_page->next_page();
- }
-}
-#endif
-
-
-// -----------------------------------------------------------------------------
-// NewSpace implementation
-
-
-bool NewSpace::Setup(Address start, int size) {
- // Setup new space based on the preallocated memory block defined by
- // start and size. The provided space is divided into two semi-spaces.
- // To support fast containment testing in the new space, the size of
- // this chunk must be a power of two and it must be aligned to its size.
- int initial_semispace_capacity = Heap::InitialSemiSpaceSize();
- int maximum_semispace_capacity = Heap::SemiSpaceSize();
-
- ASSERT(initial_semispace_capacity <= maximum_semispace_capacity);
- ASSERT(IsPowerOf2(maximum_semispace_capacity));
-
- // Allocate and setup the histogram arrays if necessary.
-#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
- allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
- promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
-
-#define SET_NAME(name) allocated_histogram_[name].set_name(#name); \
- promoted_histogram_[name].set_name(#name);
- INSTANCE_TYPE_LIST(SET_NAME)
-#undef SET_NAME
-#endif
-
- ASSERT(size == 2 * maximum_semispace_capacity);
- ASSERT(IsAddressAligned(start, size, 0));
-
- if (!to_space_.Setup(start,
- initial_semispace_capacity,
- maximum_semispace_capacity)) {
- return false;
- }
- if (!from_space_.Setup(start + maximum_semispace_capacity,
- initial_semispace_capacity,
- maximum_semispace_capacity)) {
- return false;
- }
-
- start_ = start;
- address_mask_ = ~(size - 1);
- object_mask_ = address_mask_ | kHeapObjectTag;
- object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag;
-
- allocation_info_.top = to_space_.low();
- allocation_info_.limit = to_space_.high();
- mc_forwarding_info_.top = NULL;
- mc_forwarding_info_.limit = NULL;
-
- ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
- return true;
-}
-
-
-void NewSpace::TearDown() {
-#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
- if (allocated_histogram_) {
- DeleteArray(allocated_histogram_);
- allocated_histogram_ = NULL;
- }
- if (promoted_histogram_) {
- DeleteArray(promoted_histogram_);
- promoted_histogram_ = NULL;
- }
-#endif
-
- start_ = NULL;
- allocation_info_.top = NULL;
- allocation_info_.limit = NULL;
- mc_forwarding_info_.top = NULL;
- mc_forwarding_info_.limit = NULL;
-
- to_space_.TearDown();
- from_space_.TearDown();
-}
-
-
-#ifdef ENABLE_HEAP_PROTECTION
-
-void NewSpace::Protect() {
- MemoryAllocator::Protect(ToSpaceLow(), Capacity());
- MemoryAllocator::Protect(FromSpaceLow(), Capacity());
-}
-
-
-void NewSpace::Unprotect() {
- MemoryAllocator::Unprotect(ToSpaceLow(), Capacity(),
- to_space_.executable());
- MemoryAllocator::Unprotect(FromSpaceLow(), Capacity(),
- from_space_.executable());
-}
-
-#endif
-
-
-void NewSpace::Flip() {
- SemiSpace tmp = from_space_;
- from_space_ = to_space_;
- to_space_ = tmp;
-}
-
-
-void NewSpace::Grow() {
- ASSERT(Capacity() < MaximumCapacity());
- if (to_space_.Grow()) {
- // Only grow from space if we managed to grow to space.
- if (!from_space_.Grow()) {
- // If we managed to grow to space but couldn't grow from space,
- // attempt to shrink to space.
- if (!to_space_.ShrinkTo(from_space_.Capacity())) {
- // We are in an inconsistent state because we could not
- // commit/uncommit memory from new space.
- V8::FatalProcessOutOfMemory("Failed to grow new space.");
- }
- }
- }
- allocation_info_.limit = to_space_.high();
- ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
-}
-
-
-void NewSpace::Shrink() {
- int new_capacity = Max(InitialCapacity(), 2 * Size());
- int rounded_new_capacity = RoundUp(new_capacity, OS::AllocateAlignment());
- if (rounded_new_capacity < Capacity() &&
- to_space_.ShrinkTo(rounded_new_capacity)) {
- // Only shrink from space if we managed to shrink to space.
- if (!from_space_.ShrinkTo(rounded_new_capacity)) {
- // If we managed to shrink to space but couldn't shrink from
- // space, attempt to grow to space again.
- if (!to_space_.GrowTo(from_space_.Capacity())) {
- // We are in an inconsistent state because we could not
- // commit/uncommit memory from new space.
- V8::FatalProcessOutOfMemory("Failed to shrink new space.");
- }
- }
- }
- allocation_info_.limit = to_space_.high();
- ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
-}
-
-
-void NewSpace::ResetAllocationInfo() {
- allocation_info_.top = to_space_.low();
- allocation_info_.limit = to_space_.high();
- ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
-}
-
-
-void NewSpace::MCResetRelocationInfo() {
- mc_forwarding_info_.top = from_space_.low();
- mc_forwarding_info_.limit = from_space_.high();
- ASSERT_SEMISPACE_ALLOCATION_INFO(mc_forwarding_info_, from_space_);
-}
-
-
-void NewSpace::MCCommitRelocationInfo() {
- // Assumes that the spaces have been flipped so that mc_forwarding_info_ is
- // valid allocation info for the to space.
- allocation_info_.top = mc_forwarding_info_.top;
- allocation_info_.limit = to_space_.high();
- ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
-}
-
-
-#ifdef DEBUG
-// We do not use the SemispaceIterator because verification doesn't assume
-// that it works (it depends on the invariants we are checking).
-void NewSpace::Verify() {
- // The allocation pointer should be in the space or at the very end.
- ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
-
- // There should be objects packed in from the low address up to the
- // allocation pointer.
- Address current = to_space_.low();
- while (current < top()) {
- HeapObject* object = HeapObject::FromAddress(current);
-
- // The first word should be a map, and we expect all map pointers to
- // be in map space.
- Map* map = object->map();
- ASSERT(map->IsMap());
- ASSERT(Heap::map_space()->Contains(map));
-
- // The object should not be code or a map.
- ASSERT(!object->IsMap());
- ASSERT(!object->IsCode());
-
- // The object itself should look OK.
- object->Verify();
-
- // All the interior pointers should be contained in the heap.
- VerifyPointersVisitor visitor;
- int size = object->Size();
- object->IterateBody(map->instance_type(), size, &visitor);
-
- current += size;
- }
-
- // The allocation pointer should not be in the middle of an object.
- ASSERT(current == top());
-}
-#endif
-
-
-bool SemiSpace::Commit() {
- ASSERT(!is_committed());
- if (!MemoryAllocator::CommitBlock(start_, capacity_, executable())) {
- return false;
- }
- committed_ = true;
- return true;
-}
-
-
-bool SemiSpace::Uncommit() {
- ASSERT(is_committed());
- if (!MemoryAllocator::UncommitBlock(start_, capacity_)) {
- return false;
- }
- committed_ = false;
- return true;
-}
-
-
-// -----------------------------------------------------------------------------
-// SemiSpace implementation
-
-bool SemiSpace::Setup(Address start,
- int initial_capacity,
- int maximum_capacity) {
- // Creates a space in the young generation. The constructor does not
- // allocate memory from the OS. A SemiSpace is given a contiguous chunk of
- // memory of size 'capacity' when set up, and does not grow or shrink
- // otherwise. In the mark-compact collector, the memory region of the from
- // space is used as the marking stack. It requires contiguous memory
- // addresses.
- initial_capacity_ = initial_capacity;
- capacity_ = initial_capacity;
- maximum_capacity_ = maximum_capacity;
- committed_ = false;
-
- start_ = start;
- address_mask_ = ~(maximum_capacity - 1);
- object_mask_ = address_mask_ | kHeapObjectTag;
- object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag;
- age_mark_ = start_;
-
- return Commit();
-}
-
-
-void SemiSpace::TearDown() {
- start_ = NULL;
- capacity_ = 0;
-}
-
-
-bool SemiSpace::Grow() {
- // Double the semispace size but only up to maximum capacity.
- int maximum_extra = maximum_capacity_ - capacity_;
- int extra = Min(RoundUp(capacity_, OS::AllocateAlignment()),
- maximum_extra);
- if (!MemoryAllocator::CommitBlock(high(), extra, executable())) {
- return false;
- }
- capacity_ += extra;
- return true;
-}
-
-
-bool SemiSpace::GrowTo(int new_capacity) {
- ASSERT(new_capacity <= maximum_capacity_);
- ASSERT(new_capacity > capacity_);
- size_t delta = new_capacity - capacity_;
- ASSERT(IsAligned(delta, OS::AllocateAlignment()));
- if (!MemoryAllocator::CommitBlock(high(), delta, executable())) {
- return false;
- }
- capacity_ = new_capacity;
- return true;
-}
-
-
-bool SemiSpace::ShrinkTo(int new_capacity) {
- ASSERT(new_capacity >= initial_capacity_);
- ASSERT(new_capacity < capacity_);
- size_t delta = capacity_ - new_capacity;
- ASSERT(IsAligned(delta, OS::AllocateAlignment()));
- if (!MemoryAllocator::UncommitBlock(high() - delta, delta)) {
- return false;
- }
- capacity_ = new_capacity;
- return true;
-}
-
-
-#ifdef DEBUG
-void SemiSpace::Print() { }
-
-
-void SemiSpace::Verify() { }
-#endif
-
-
-// -----------------------------------------------------------------------------
-// SemiSpaceIterator implementation.
-SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) {
- Initialize(space, space->bottom(), space->top(), NULL);
-}
-
-
-SemiSpaceIterator::SemiSpaceIterator(NewSpace* space,
- HeapObjectCallback size_func) {
- Initialize(space, space->bottom(), space->top(), size_func);
-}
-
-
-SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, Address start) {
- Initialize(space, start, space->top(), NULL);
-}
-
-
-void SemiSpaceIterator::Initialize(NewSpace* space, Address start,
- Address end,
- HeapObjectCallback size_func) {
- ASSERT(space->ToSpaceContains(start));
- ASSERT(space->ToSpaceLow() <= end
- && end <= space->ToSpaceHigh());
- space_ = &space->to_space_;
- current_ = start;
- limit_ = end;
- size_func_ = size_func;
-}
-
-
-#ifdef DEBUG
-// A static array of histogram info for each type.
-static HistogramInfo heap_histograms[LAST_TYPE+1];
-static JSObject::SpillInformation js_spill_information;
-
-// heap_histograms is shared, always clear it before using it.
-static void ClearHistograms() {
- // We reset the name each time, though it hasn't changed.
-#define DEF_TYPE_NAME(name) heap_histograms[name].set_name(#name);
- INSTANCE_TYPE_LIST(DEF_TYPE_NAME)
-#undef DEF_TYPE_NAME
-
-#define CLEAR_HISTOGRAM(name) heap_histograms[name].clear();
- INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM)
-#undef CLEAR_HISTOGRAM
-
- js_spill_information.Clear();
-}
-
-
-static int code_kind_statistics[Code::NUMBER_OF_KINDS];
-
-
-static void ClearCodeKindStatistics() {
- for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
- code_kind_statistics[i] = 0;
- }
-}
-
-
-static void ReportCodeKindStatistics() {
- const char* table[Code::NUMBER_OF_KINDS];
-
-#define CASE(name) \
- case Code::name: table[Code::name] = #name; \
- break
-
- for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
- switch (static_cast<Code::Kind>(i)) {
- CASE(FUNCTION);
- CASE(STUB);
- CASE(BUILTIN);
- CASE(LOAD_IC);
- CASE(KEYED_LOAD_IC);
- CASE(STORE_IC);
- CASE(KEYED_STORE_IC);
- CASE(CALL_IC);
- }
- }
-
-#undef CASE
-
- PrintF("\n Code kind histograms: \n");
- for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
- if (code_kind_statistics[i] > 0) {
- PrintF(" %-20s: %10d bytes\n", table[i], code_kind_statistics[i]);
- }
- }
- PrintF("\n");
-}
-
-
-static int CollectHistogramInfo(HeapObject* obj) {
- InstanceType type = obj->map()->instance_type();
- ASSERT(0 <= type && type <= LAST_TYPE);
- ASSERT(heap_histograms[type].name() != NULL);
- heap_histograms[type].increment_number(1);
- heap_histograms[type].increment_bytes(obj->Size());
-
- if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) {
- JSObject::cast(obj)->IncrementSpillStatistics(&js_spill_information);
- }
-
- return obj->Size();
-}
-
-
-static void ReportHistogram(bool print_spill) {
- PrintF("\n Object Histogram:\n");
- for (int i = 0; i <= LAST_TYPE; i++) {
- if (heap_histograms[i].number() > 0) {
- PrintF(" %-33s%10d (%10d bytes)\n",
- heap_histograms[i].name(),
- heap_histograms[i].number(),
- heap_histograms[i].bytes());
- }
- }
- PrintF("\n");
-
- // Summarize string types.
- int string_number = 0;
- int string_bytes = 0;
-#define INCREMENT(type, size, name, camel_name) \
- string_number += heap_histograms[type].number(); \
- string_bytes += heap_histograms[type].bytes();
- STRING_TYPE_LIST(INCREMENT)
-#undef INCREMENT
- if (string_number > 0) {
- PrintF(" %-33s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number,
- string_bytes);
- }
-
- if (FLAG_collect_heap_spill_statistics && print_spill) {
- js_spill_information.Print();
- }
-}
-#endif // DEBUG
-
-
-// Support for statistics gathering for --heap-stats and --log-gc.
-#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
-void NewSpace::ClearHistograms() {
- for (int i = 0; i <= LAST_TYPE; i++) {
- allocated_histogram_[i].clear();
- promoted_histogram_[i].clear();
- }
-}
-
-// Because the copying collector does not touch garbage objects, we iterate
-// the new space before a collection to get a histogram of allocated objects.
-// This only happens (1) when compiled with DEBUG and the --heap-stats flag is
-// set, or when compiled with ENABLE_LOGGING_AND_PROFILING and the --log-gc
-// flag is set.
-void NewSpace::CollectStatistics() {
- ClearHistograms();
- SemiSpaceIterator it(this);
- while (it.has_next()) RecordAllocation(it.next());
-}
-
-
-#ifdef ENABLE_LOGGING_AND_PROFILING
-static void DoReportStatistics(HistogramInfo* info, const char* description) {
- LOG(HeapSampleBeginEvent("NewSpace", description));
- // Lump all the string types together.
- int string_number = 0;
- int string_bytes = 0;
-#define INCREMENT(type, size, name, camel_name) \
- string_number += info[type].number(); \
- string_bytes += info[type].bytes();
- STRING_TYPE_LIST(INCREMENT)
-#undef INCREMENT
- if (string_number > 0) {
- LOG(HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes));
- }
-
- // Then do the other types.
- for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) {
- if (info[i].number() > 0) {
- LOG(HeapSampleItemEvent(info[i].name(), info[i].number(),
- info[i].bytes()));
- }
- }
- LOG(HeapSampleEndEvent("NewSpace", description));
-}
-#endif // ENABLE_LOGGING_AND_PROFILING
-
-
-void NewSpace::ReportStatistics() {
-#ifdef DEBUG
- if (FLAG_heap_stats) {
- float pct = static_cast<float>(Available()) / Capacity();
- PrintF(" capacity: %d, available: %d, %%%d\n",
- Capacity(), Available(), static_cast<int>(pct*100));
- PrintF("\n Object Histogram:\n");
- for (int i = 0; i <= LAST_TYPE; i++) {
- if (allocated_histogram_[i].number() > 0) {
- PrintF(" %-33s%10d (%10d bytes)\n",
- allocated_histogram_[i].name(),
- allocated_histogram_[i].number(),
- allocated_histogram_[i].bytes());
- }
- }
- PrintF("\n");
- }
-#endif // DEBUG
-
-#ifdef ENABLE_LOGGING_AND_PROFILING
- if (FLAG_log_gc) {
- DoReportStatistics(allocated_histogram_, "allocated");
- DoReportStatistics(promoted_histogram_, "promoted");
- }
-#endif // ENABLE_LOGGING_AND_PROFILING
-}
-
-
-void NewSpace::RecordAllocation(HeapObject* obj) {
- InstanceType type = obj->map()->instance_type();
- ASSERT(0 <= type && type <= LAST_TYPE);
- allocated_histogram_[type].increment_number(1);
- allocated_histogram_[type].increment_bytes(obj->Size());
-}
-
-
-void NewSpace::RecordPromotion(HeapObject* obj) {
- InstanceType type = obj->map()->instance_type();
- ASSERT(0 <= type && type <= LAST_TYPE);
- promoted_histogram_[type].increment_number(1);
- promoted_histogram_[type].increment_bytes(obj->Size());
-}
-#endif // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
-
-
-// -----------------------------------------------------------------------------
-// Free lists for old object spaces implementation
-
-void FreeListNode::set_size(int size_in_bytes) {
- ASSERT(size_in_bytes > 0);
- ASSERT(IsAligned(size_in_bytes, kPointerSize));
-
- // We write a map and possibly size information to the block. If the block
- // is big enough to be a ByteArray with at least one extra word (the next
- // pointer), we set its map to be the byte array map and its size to an
- // appropriate array length for the desired size from HeapObject::Size().
- // If the block is too small (eg, one or two words), to hold both a size
- // field and a next pointer, we give it a filler map that gives it the
- // correct size.
- if (size_in_bytes > ByteArray::kAlignedSize) {
- set_map(Heap::raw_unchecked_byte_array_map());
- ByteArray::cast(this)->set_length(ByteArray::LengthFor(size_in_bytes));
- } else if (size_in_bytes == kPointerSize) {
- set_map(Heap::raw_unchecked_one_pointer_filler_map());
- } else if (size_in_bytes == 2 * kPointerSize) {
- set_map(Heap::raw_unchecked_two_pointer_filler_map());
- } else {
- UNREACHABLE();
- }
- ASSERT(Size() == size_in_bytes);
-}
-
-
-Address FreeListNode::next() {
- ASSERT(map() == Heap::raw_unchecked_byte_array_map() ||
- map() == Heap::raw_unchecked_two_pointer_filler_map());
- if (map() == Heap::raw_unchecked_byte_array_map()) {
- ASSERT(Size() >= kNextOffset + kPointerSize);
- return Memory::Address_at(address() + kNextOffset);
- } else {
- return Memory::Address_at(address() + kPointerSize);
- }
-}
-
-
-void FreeListNode::set_next(Address next) {
- ASSERT(map() == Heap::raw_unchecked_byte_array_map() ||
- map() == Heap::raw_unchecked_two_pointer_filler_map());
- if (map() == Heap::raw_unchecked_byte_array_map()) {
- ASSERT(Size() >= kNextOffset + kPointerSize);
- Memory::Address_at(address() + kNextOffset) = next;
- } else {
- Memory::Address_at(address() + kPointerSize) = next;
- }
-}
-
-
-OldSpaceFreeList::OldSpaceFreeList(AllocationSpace owner) : owner_(owner) {
- Reset();
-}
-
-
-void OldSpaceFreeList::Reset() {
- available_ = 0;
- for (int i = 0; i < kFreeListsLength; i++) {
- free_[i].head_node_ = NULL;
- }
- needs_rebuild_ = false;
- finger_ = kHead;
- free_[kHead].next_size_ = kEnd;
-}
-
-
-void OldSpaceFreeList::RebuildSizeList() {
- ASSERT(needs_rebuild_);
- int cur = kHead;
- for (int i = cur + 1; i < kFreeListsLength; i++) {
- if (free_[i].head_node_ != NULL) {
- free_[cur].next_size_ = i;
- cur = i;
- }
- }
- free_[cur].next_size_ = kEnd;
- needs_rebuild_ = false;
-}
-
-
-int OldSpaceFreeList::Free(Address start, int size_in_bytes) {
-#ifdef DEBUG
- for (int i = 0; i < size_in_bytes; i += kPointerSize) {
- Memory::Address_at(start + i) = kZapValue;
- }
-#endif
- FreeListNode* node = FreeListNode::FromAddress(start);
- node->set_size(size_in_bytes);
-
- // We don't use the freelists in compacting mode. This makes it more like a
- // GC that only has mark-sweep-compact and doesn't have a mark-sweep
- // collector.
- if (FLAG_always_compact) {
- return size_in_bytes;
- }
-
- // Early return to drop too-small blocks on the floor (one or two word
- // blocks cannot hold a map pointer, a size field, and a pointer to the
- // next block in the free list).
- if (size_in_bytes < kMinBlockSize) {
- return size_in_bytes;
- }
-
- // Insert other blocks at the head of an exact free list.
- int index = size_in_bytes >> kPointerSizeLog2;
- node->set_next(free_[index].head_node_);
- free_[index].head_node_ = node->address();
- available_ += size_in_bytes;
- needs_rebuild_ = true;
- return 0;
-}
-
-
-Object* OldSpaceFreeList::Allocate(int size_in_bytes, int* wasted_bytes) {
- ASSERT(0 < size_in_bytes);
- ASSERT(size_in_bytes <= kMaxBlockSize);
- ASSERT(IsAligned(size_in_bytes, kPointerSize));
-
- if (needs_rebuild_) RebuildSizeList();
- int index = size_in_bytes >> kPointerSizeLog2;
- // Check for a perfect fit.
- if (free_[index].head_node_ != NULL) {
- FreeListNode* node = FreeListNode::FromAddress(free_[index].head_node_);
- // If this was the last block of its size, remove the size.
- if ((free_[index].head_node_ = node->next()) == NULL) RemoveSize(index);
- available_ -= size_in_bytes;
- *wasted_bytes = 0;
- ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
- return node;
- }
- // Search the size list for the best fit.
- int prev = finger_ < index ? finger_ : kHead;
- int cur = FindSize(index, &prev);
- ASSERT(index < cur);
- if (cur == kEnd) {
- // No large enough size in list.
- *wasted_bytes = 0;
- return Failure::RetryAfterGC(size_in_bytes, owner_);
- }
- ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
- int rem = cur - index;
- int rem_bytes = rem << kPointerSizeLog2;
- FreeListNode* cur_node = FreeListNode::FromAddress(free_[cur].head_node_);
- ASSERT(cur_node->Size() == (cur << kPointerSizeLog2));
- FreeListNode* rem_node = FreeListNode::FromAddress(free_[cur].head_node_ +
- size_in_bytes);
- // Distinguish the cases prev < rem < cur and rem <= prev < cur
- // to avoid many redundant tests and calls to Insert/RemoveSize.
- if (prev < rem) {
- // Simple case: insert rem between prev and cur.
- finger_ = prev;
- free_[prev].next_size_ = rem;
- // If this was the last block of size cur, remove the size.
- if ((free_[cur].head_node_ = cur_node->next()) == NULL) {
- free_[rem].next_size_ = free_[cur].next_size_;
- } else {
- free_[rem].next_size_ = cur;
- }
- // Add the remainder block.
- rem_node->set_size(rem_bytes);
- rem_node->set_next(free_[rem].head_node_);
- free_[rem].head_node_ = rem_node->address();
- } else {
- // If this was the last block of size cur, remove the size.
- if ((free_[cur].head_node_ = cur_node->next()) == NULL) {
- finger_ = prev;
- free_[prev].next_size_ = free_[cur].next_size_;
- }
- if (rem_bytes < kMinBlockSize) {
- // Too-small remainder is wasted.
- rem_node->set_size(rem_bytes);
- available_ -= size_in_bytes + rem_bytes;
- *wasted_bytes = rem_bytes;
- return cur_node;
- }
- // Add the remainder block and, if needed, insert its size.
- rem_node->set_size(rem_bytes);
- rem_node->set_next(free_[rem].head_node_);
- free_[rem].head_node_ = rem_node->address();
- if (rem_node->next() == NULL) InsertSize(rem);
- }
- available_ -= size_in_bytes;
- *wasted_bytes = 0;
- return cur_node;
-}
-
-
-#ifdef DEBUG
-bool OldSpaceFreeList::Contains(FreeListNode* node) {
- for (int i = 0; i < kFreeListsLength; i++) {
- Address cur_addr = free_[i].head_node_;
- while (cur_addr != NULL) {
- FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr);
- if (cur_node == node) return true;
- cur_addr = cur_node->next();
- }
- }
- return false;
-}
-#endif
-
-
-FixedSizeFreeList::FixedSizeFreeList(AllocationSpace owner, int object_size)
- : owner_(owner), object_size_(object_size) {
- Reset();
-}
-
-
-void FixedSizeFreeList::Reset() {
- available_ = 0;
- head_ = NULL;
-}
-
-
-void FixedSizeFreeList::Free(Address start) {
-#ifdef DEBUG
- for (int i = 0; i < object_size_; i += kPointerSize) {
- Memory::Address_at(start + i) = kZapValue;
- }
-#endif
- ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
- FreeListNode* node = FreeListNode::FromAddress(start);
- node->set_size(object_size_);
- node->set_next(head_);
- head_ = node->address();
- available_ += object_size_;
-}
-
-
-Object* FixedSizeFreeList::Allocate() {
- if (head_ == NULL) {
- return Failure::RetryAfterGC(object_size_, owner_);
- }
-
- ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
- FreeListNode* node = FreeListNode::FromAddress(head_);
- head_ = node->next();
- available_ -= object_size_;
- return node;
-}
-
-
-// -----------------------------------------------------------------------------
-// OldSpace implementation
-
-void OldSpace::PrepareForMarkCompact(bool will_compact) {
- if (will_compact) {
- // Reset relocation info. During a compacting collection, everything in
- // the space is considered 'available' and we will rediscover live data
- // and waste during the collection.
- MCResetRelocationInfo();
- ASSERT(Available() == Capacity());
- } else {
- // During a non-compacting collection, everything below the linear
- // allocation pointer is considered allocated (everything above is
- // available) and we will rediscover available and wasted bytes during
- // the collection.
- accounting_stats_.AllocateBytes(free_list_.available());
- accounting_stats_.FillWastedBytes(Waste());
- }
-
- // Clear the free list before a full GC---it will be rebuilt afterward.
- free_list_.Reset();
-}
-
-
-void OldSpace::MCCommitRelocationInfo() {
- // Update fast allocation info.
- allocation_info_.top = mc_forwarding_info_.top;
- allocation_info_.limit = mc_forwarding_info_.limit;
- ASSERT(allocation_info_.VerifyPagedAllocation());
-
- // The space is compacted and we haven't yet built free lists or
- // wasted any space.
- ASSERT(Waste() == 0);
- ASSERT(AvailableFree() == 0);
-
- // Build the free list for the space.
- int computed_size = 0;
- PageIterator it(this, PageIterator::PAGES_USED_BY_MC);
- while (it.has_next()) {
- Page* p = it.next();
- // Space below the relocation pointer is allocated.
- computed_size += p->mc_relocation_top - p->ObjectAreaStart();
- if (it.has_next()) {
- // Free the space at the top of the page. We cannot use
- // p->mc_relocation_top after the call to Free (because Free will clear
- // remembered set bits).
- int extra_size = p->ObjectAreaEnd() - p->mc_relocation_top;
- if (extra_size > 0) {
- int wasted_bytes = free_list_.Free(p->mc_relocation_top, extra_size);
- // The bytes we have just "freed" to add to the free list were
- // already accounted as available.
- accounting_stats_.WasteBytes(wasted_bytes);
- }
- }
- }
-
- // Make sure the computed size - based on the used portion of the pages in
- // use - matches the size obtained while computing forwarding addresses.
- ASSERT(computed_size == Size());
-}
-
-
-// Slow case for normal allocation. Try in order: (1) allocate in the next
-// page in the space, (2) allocate off the space's free list, (3) expand the
-// space, (4) fail.
-HeapObject* OldSpace::SlowAllocateRaw(int size_in_bytes) {
- // Linear allocation in this space has failed. If there is another page
- // in the space, move to that page and allocate there. This allocation
- // should succeed (size_in_bytes should not be greater than a page's
- // object area size).
- Page* current_page = TopPageOf(allocation_info_);
- if (current_page->next_page()->is_valid()) {
- return AllocateInNextPage(current_page, size_in_bytes);
- }
-
- // There is no next page in this space. Try free list allocation.
- int wasted_bytes;
- Object* result = free_list_.Allocate(size_in_bytes, &wasted_bytes);
- accounting_stats_.WasteBytes(wasted_bytes);
- if (!result->IsFailure()) {
- accounting_stats_.AllocateBytes(size_in_bytes);
- return HeapObject::cast(result);
- }
-
- // Free list allocation failed and there is no next page. Fail if we have
- // hit the old generation size limit that should cause a garbage
- // collection.
- if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) {
- return NULL;
- }
-
- // Try to expand the space and allocate in the new next page.
- ASSERT(!current_page->next_page()->is_valid());
- if (Expand(current_page)) {
- return AllocateInNextPage(current_page, size_in_bytes);
- }
-
- // Finally, fail.
- return NULL;
-}
-
-
-// Add the block at the top of the page to the space's free list, set the
-// allocation info to the next page (assumed to be one), and allocate
-// linearly there.
-HeapObject* OldSpace::AllocateInNextPage(Page* current_page,
- int size_in_bytes) {
- ASSERT(current_page->next_page()->is_valid());
- // Add the block at the top of this page to the free list.
- int free_size = current_page->ObjectAreaEnd() - allocation_info_.top;
- if (free_size > 0) {
- int wasted_bytes = free_list_.Free(allocation_info_.top, free_size);
- accounting_stats_.WasteBytes(wasted_bytes);
- }
- SetAllocationInfo(&allocation_info_, current_page->next_page());
- return AllocateLinearly(&allocation_info_, size_in_bytes);
-}
-
-
-#ifdef DEBUG
-struct CommentStatistic {
- const char* comment;
- int size;
- int count;
- void Clear() {
- comment = NULL;
- size = 0;
- count = 0;
- }
-};
-
-
-// must be small, since an iteration is used for lookup
-const int kMaxComments = 64;
-static CommentStatistic comments_statistics[kMaxComments+1];
-
-
-void PagedSpace::ReportCodeStatistics() {
- ReportCodeKindStatistics();
- PrintF("Code comment statistics (\" [ comment-txt : size/ "
- "count (average)\"):\n");
- for (int i = 0; i <= kMaxComments; i++) {
- const CommentStatistic& cs = comments_statistics[i];
- if (cs.size > 0) {
- PrintF(" %-30s: %10d/%6d (%d)\n", cs.comment, cs.size, cs.count,
- cs.size/cs.count);
- }
- }
- PrintF("\n");
-}
-
-
-void PagedSpace::ResetCodeStatistics() {
- ClearCodeKindStatistics();
- for (int i = 0; i < kMaxComments; i++) comments_statistics[i].Clear();
- comments_statistics[kMaxComments].comment = "Unknown";
- comments_statistics[kMaxComments].size = 0;
- comments_statistics[kMaxComments].count = 0;
-}
-
-
-// Adds comment to 'comment_statistics' table. Performance OK sa long as
-// 'kMaxComments' is small
-static void EnterComment(const char* comment, int delta) {
- // Do not count empty comments
- if (delta <= 0) return;
- CommentStatistic* cs = &comments_statistics[kMaxComments];
- // Search for a free or matching entry in 'comments_statistics': 'cs'
- // points to result.
- for (int i = 0; i < kMaxComments; i++) {
- if (comments_statistics[i].comment == NULL) {
- cs = &comments_statistics[i];
- cs->comment = comment;
- break;
- } else if (strcmp(comments_statistics[i].comment, comment) == 0) {
- cs = &comments_statistics[i];
- break;
- }
- }
- // Update entry for 'comment'
- cs->size += delta;
- cs->count += 1;
-}
-
-
-// Call for each nested comment start (start marked with '[ xxx', end marked
-// with ']'. RelocIterator 'it' must point to a comment reloc info.
-static void CollectCommentStatistics(RelocIterator* it) {
- ASSERT(!it->done());
- ASSERT(it->rinfo()->rmode() == RelocInfo::COMMENT);
- const char* tmp = reinterpret_cast<const char*>(it->rinfo()->data());
- if (tmp[0] != '[') {
- // Not a nested comment; skip
- return;
- }
-
- // Search for end of nested comment or a new nested comment
- const char* const comment_txt =
- reinterpret_cast<const char*>(it->rinfo()->data());
- const byte* prev_pc = it->rinfo()->pc();
- int flat_delta = 0;
- it->next();
- while (true) {
- // All nested comments must be terminated properly, and therefore exit
- // from loop.
- ASSERT(!it->done());
- if (it->rinfo()->rmode() == RelocInfo::COMMENT) {
- const char* const txt =
- reinterpret_cast<const char*>(it->rinfo()->data());
- flat_delta += it->rinfo()->pc() - prev_pc;
- if (txt[0] == ']') break; // End of nested comment
- // A new comment
- CollectCommentStatistics(it);
- // Skip code that was covered with previous comment
- prev_pc = it->rinfo()->pc();
- }
- it->next();
- }
- EnterComment(comment_txt, flat_delta);
-}
-
-
-// Collects code size statistics:
-// - by code kind
-// - by code comment
-void PagedSpace::CollectCodeStatistics() {
- HeapObjectIterator obj_it(this);
- while (obj_it.has_next()) {
- HeapObject* obj = obj_it.next();
- if (obj->IsCode()) {
- Code* code = Code::cast(obj);
- code_kind_statistics[code->kind()] += code->Size();
- RelocIterator it(code);
- int delta = 0;
- const byte* prev_pc = code->instruction_start();
- while (!it.done()) {
- if (it.rinfo()->rmode() == RelocInfo::COMMENT) {
- delta += it.rinfo()->pc() - prev_pc;
- CollectCommentStatistics(&it);
- prev_pc = it.rinfo()->pc();
- }
- it.next();
- }
-
- ASSERT(code->instruction_start() <= prev_pc &&
- prev_pc <= code->relocation_start());
- delta += code->relocation_start() - prev_pc;
- EnterComment("NoComment", delta);
- }
- }
-}
-
-
-void OldSpace::ReportStatistics() {
- int pct = Available() * 100 / Capacity();
- PrintF(" capacity: %d, waste: %d, available: %d, %%%d\n",
- Capacity(), Waste(), Available(), pct);
-
- // Report remembered set statistics.
- int rset_marked_pointers = 0;
- int rset_marked_arrays = 0;
- int rset_marked_array_elements = 0;
- int cross_gen_pointers = 0;
- int cross_gen_array_elements = 0;
-
- PageIterator page_it(this, PageIterator::PAGES_IN_USE);
- while (page_it.has_next()) {
- Page* p = page_it.next();
-
- for (Address rset_addr = p->RSetStart();
- rset_addr < p->RSetEnd();
- rset_addr += kIntSize) {
- int rset = Memory::int_at(rset_addr);
- if (rset != 0) {
- // Bits were set
- int intoff = rset_addr - p->address() - Page::kRSetOffset;
- int bitoff = 0;
- for (; bitoff < kBitsPerInt; ++bitoff) {
- if ((rset & (1 << bitoff)) != 0) {
- int bitpos = intoff*kBitsPerByte + bitoff;
- Address slot = p->OffsetToAddress(bitpos << kObjectAlignmentBits);
- Object** obj = reinterpret_cast<Object**>(slot);
- if (*obj == Heap::raw_unchecked_fixed_array_map()) {
- rset_marked_arrays++;
- FixedArray* fa = FixedArray::cast(HeapObject::FromAddress(slot));
-
- rset_marked_array_elements += fa->length();
- // Manually inline FixedArray::IterateBody
- Address elm_start = slot + FixedArray::kHeaderSize;
- Address elm_stop = elm_start + fa->length() * kPointerSize;
- for (Address elm_addr = elm_start;
- elm_addr < elm_stop; elm_addr += kPointerSize) {
- // Filter non-heap-object pointers
- Object** elm_p = reinterpret_cast<Object**>(elm_addr);
- if (Heap::InNewSpace(*elm_p))
- cross_gen_array_elements++;
- }
- } else {
- rset_marked_pointers++;
- if (Heap::InNewSpace(*obj))
- cross_gen_pointers++;
- }
- }
- }
- }
- }
- }
-
- pct = rset_marked_pointers == 0 ?
- 0 : cross_gen_pointers * 100 / rset_marked_pointers;
- PrintF(" rset-marked pointers %d, to-new-space %d (%%%d)\n",
- rset_marked_pointers, cross_gen_pointers, pct);
- PrintF(" rset_marked arrays %d, ", rset_marked_arrays);
- PrintF(" elements %d, ", rset_marked_array_elements);
- pct = rset_marked_array_elements == 0 ? 0
- : cross_gen_array_elements * 100 / rset_marked_array_elements;
- PrintF(" pointers to new space %d (%%%d)\n", cross_gen_array_elements, pct);
- PrintF(" total rset-marked bits %d\n",
- (rset_marked_pointers + rset_marked_arrays));
- pct = (rset_marked_pointers + rset_marked_array_elements) == 0 ? 0
- : (cross_gen_pointers + cross_gen_array_elements) * 100 /
- (rset_marked_pointers + rset_marked_array_elements);
- PrintF(" total rset pointers %d, true cross generation ones %d (%%%d)\n",
- (rset_marked_pointers + rset_marked_array_elements),
- (cross_gen_pointers + cross_gen_array_elements),
- pct);
-
- ClearHistograms();
- HeapObjectIterator obj_it(this);
- while (obj_it.has_next()) { CollectHistogramInfo(obj_it.next()); }
- ReportHistogram(true);
-}
-
-
-// Dump the range of remembered set words between [start, end) corresponding
-// to the pointers starting at object_p. The allocation_top is an object
-// pointer which should not be read past. This is important for large object
-// pages, where some bits in the remembered set range do not correspond to
-// allocated addresses.
-static void PrintRSetRange(Address start, Address end, Object** object_p,
- Address allocation_top) {
- Address rset_address = start;
-
- // If the range starts on on odd numbered word (eg, for large object extra
- // remembered set ranges), print some spaces.
- if ((reinterpret_cast<uintptr_t>(start) / kIntSize) % 2 == 1) {
- PrintF(" ");
- }
-
- // Loop over all the words in the range.
- while (rset_address < end) {
- uint32_t rset_word = Memory::uint32_at(rset_address);
- int bit_position = 0;
-
- // Loop over all the bits in the word.
- while (bit_position < kBitsPerInt) {
- if (object_p == reinterpret_cast<Object**>(allocation_top)) {
- // Print a bar at the allocation pointer.
- PrintF("|");
- } else if (object_p > reinterpret_cast<Object**>(allocation_top)) {
- // Do not dereference object_p past the allocation pointer.
- PrintF("#");
- } else if ((rset_word & (1 << bit_position)) == 0) {
- // Print a dot for zero bits.
- PrintF(".");
- } else if (Heap::InNewSpace(*object_p)) {
- // Print an X for one bits for pointers to new space.
- PrintF("X");
- } else {
- // Print a circle for one bits for pointers to old space.
- PrintF("o");
- }
-
- // Print a space after every 8th bit except the last.
- if (bit_position % 8 == 7 && bit_position != (kBitsPerInt - 1)) {
- PrintF(" ");
- }
-
- // Advance to next bit.
- bit_position++;
- object_p++;
- }
-
- // Print a newline after every odd numbered word, otherwise a space.
- if ((reinterpret_cast<uintptr_t>(rset_address) / kIntSize) % 2 == 1) {
- PrintF("\n");
- } else {
- PrintF(" ");
- }
-
- // Advance to next remembered set word.
- rset_address += kIntSize;
- }
-}
-
-
-void PagedSpace::DoPrintRSet(const char* space_name) {
- PageIterator it(this, PageIterator::PAGES_IN_USE);
- while (it.has_next()) {
- Page* p = it.next();
- PrintF("%s page 0x%x:\n", space_name, p);
- PrintRSetRange(p->RSetStart(), p->RSetEnd(),
- reinterpret_cast<Object**>(p->ObjectAreaStart()),
- p->AllocationTop());
- PrintF("\n");
- }
-}
-
-
-void OldSpace::PrintRSet() { DoPrintRSet("old"); }
-#endif
-
-// -----------------------------------------------------------------------------
-// FixedSpace implementation
-
-void FixedSpace::PrepareForMarkCompact(bool will_compact) {
- if (will_compact) {
- // Reset relocation info.
- MCResetRelocationInfo();
-
- // During a compacting collection, everything in the space is considered
- // 'available' (set by the call to MCResetRelocationInfo) and we will
- // rediscover live and wasted bytes during the collection.
- ASSERT(Available() == Capacity());
- } else {
- // During a non-compacting collection, everything below the linear
- // allocation pointer except wasted top-of-page blocks is considered
- // allocated and we will rediscover available bytes during the
- // collection.
- accounting_stats_.AllocateBytes(free_list_.available());
- }
-
- // Clear the free list before a full GC---it will be rebuilt afterward.
- free_list_.Reset();
-}
-
-
-void FixedSpace::MCCommitRelocationInfo() {
- // Update fast allocation info.
- allocation_info_.top = mc_forwarding_info_.top;
- allocation_info_.limit = mc_forwarding_info_.limit;
- ASSERT(allocation_info_.VerifyPagedAllocation());
-
- // The space is compacted and we haven't yet wasted any space.
- ASSERT(Waste() == 0);
-
- // Update allocation_top of each page in use and compute waste.
- int computed_size = 0;
- PageIterator it(this, PageIterator::PAGES_USED_BY_MC);
- while (it.has_next()) {
- Page* page = it.next();
- Address page_top = page->AllocationTop();
- computed_size += page_top - page->ObjectAreaStart();
- if (it.has_next()) {
- accounting_stats_.WasteBytes(page->ObjectAreaEnd() - page_top);
- }
- }
-
- // Make sure the computed size - based on the used portion of the
- // pages in use - matches the size we adjust during allocation.
- ASSERT(computed_size == Size());
-}
-
-
-// Slow case for normal allocation. Try in order: (1) allocate in the next
-// page in the space, (2) allocate off the space's free list, (3) expand the
-// space, (4) fail.
-HeapObject* FixedSpace::SlowAllocateRaw(int size_in_bytes) {
- ASSERT_EQ(object_size_in_bytes_, size_in_bytes);
- // Linear allocation in this space has failed. If there is another page
- // in the space, move to that page and allocate there. This allocation
- // should succeed.
- Page* current_page = TopPageOf(allocation_info_);
- if (current_page->next_page()->is_valid()) {
- return AllocateInNextPage(current_page, size_in_bytes);
- }
-
- // There is no next page in this space. Try free list allocation.
- // The fixed space free list implicitly assumes that all free blocks
- // are of the fixed size.
- if (size_in_bytes == object_size_in_bytes_) {
- Object* result = free_list_.Allocate();
- if (!result->IsFailure()) {
- accounting_stats_.AllocateBytes(size_in_bytes);
- return HeapObject::cast(result);
- }
- }
-
- // Free list allocation failed and there is no next page. Fail if we have
- // hit the old generation size limit that should cause a garbage
- // collection.
- if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) {
- return NULL;
- }
-
- // Try to expand the space and allocate in the new next page.
- ASSERT(!current_page->next_page()->is_valid());
- if (Expand(current_page)) {
- return AllocateInNextPage(current_page, size_in_bytes);
- }
-
- // Finally, fail.
- return NULL;
-}
-
-
-// Move to the next page (there is assumed to be one) and allocate there.
-// The top of page block is always wasted, because it is too small to hold a
-// map.
-HeapObject* FixedSpace::AllocateInNextPage(Page* current_page,
- int size_in_bytes) {
- ASSERT(current_page->next_page()->is_valid());
- ASSERT(current_page->ObjectAreaEnd() - allocation_info_.top == page_extra_);
- ASSERT_EQ(object_size_in_bytes_, size_in_bytes);
- accounting_stats_.WasteBytes(page_extra_);
- SetAllocationInfo(&allocation_info_, current_page->next_page());
- return AllocateLinearly(&allocation_info_, size_in_bytes);
-}
-
-
-#ifdef DEBUG
-void FixedSpace::ReportStatistics() {
- int pct = Available() * 100 / Capacity();
- PrintF(" capacity: %d, waste: %d, available: %d, %%%d\n",
- Capacity(), Waste(), Available(), pct);
-
- // Report remembered set statistics.
- int rset_marked_pointers = 0;
- int cross_gen_pointers = 0;
-
- PageIterator page_it(this, PageIterator::PAGES_IN_USE);
- while (page_it.has_next()) {
- Page* p = page_it.next();
-
- for (Address rset_addr = p->RSetStart();
- rset_addr < p->RSetEnd();
- rset_addr += kIntSize) {
- int rset = Memory::int_at(rset_addr);
- if (rset != 0) {
- // Bits were set
- int intoff = rset_addr - p->address() - Page::kRSetOffset;
- int bitoff = 0;
- for (; bitoff < kBitsPerInt; ++bitoff) {
- if ((rset & (1 << bitoff)) != 0) {
- int bitpos = intoff*kBitsPerByte + bitoff;
- Address slot = p->OffsetToAddress(bitpos << kObjectAlignmentBits);
- Object** obj = reinterpret_cast<Object**>(slot);
- rset_marked_pointers++;
- if (Heap::InNewSpace(*obj))
- cross_gen_pointers++;
- }
- }
- }
- }
- }
-
- pct = rset_marked_pointers == 0 ?
- 0 : cross_gen_pointers * 100 / rset_marked_pointers;
- PrintF(" rset-marked pointers %d, to-new-space %d (%%%d)\n",
- rset_marked_pointers, cross_gen_pointers, pct);
-
- ClearHistograms();
- HeapObjectIterator obj_it(this);
- while (obj_it.has_next()) { CollectHistogramInfo(obj_it.next()); }
- ReportHistogram(false);
-}
-
-
-void FixedSpace::PrintRSet() { DoPrintRSet(name_); }
-#endif
-
-
-// -----------------------------------------------------------------------------
-// MapSpace implementation
-
-void MapSpace::PrepareForMarkCompact(bool will_compact) {
- // Call prepare of the super class.
- FixedSpace::PrepareForMarkCompact(will_compact);
-
- if (will_compact) {
- // Initialize map index entry.
- int page_count = 0;
- PageIterator it(this, PageIterator::ALL_PAGES);
- while (it.has_next()) {
- ASSERT_MAP_PAGE_INDEX(page_count);
-
- Page* p = it.next();
- ASSERT(p->mc_page_index == page_count);
-
- page_addresses_[page_count++] = p->address();
- }
- }
-}
-
-
-#ifdef DEBUG
-void MapSpace::VerifyObject(HeapObject* object) {
- // The object should be a map or a free-list node.
- ASSERT(object->IsMap() || object->IsByteArray());
-}
-#endif
-
-
-// -----------------------------------------------------------------------------
-// GlobalPropertyCellSpace implementation
-
-#ifdef DEBUG
-void CellSpace::VerifyObject(HeapObject* object) {
- // The object should be a global object property cell or a free-list node.
- ASSERT(object->IsJSGlobalPropertyCell() ||
- object->map() == Heap::two_pointer_filler_map());
-}
-#endif
-
-
-// -----------------------------------------------------------------------------
-// LargeObjectIterator
-
-LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) {
- current_ = space->first_chunk_;
- size_func_ = NULL;
-}
-
-
-LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space,
- HeapObjectCallback size_func) {
- current_ = space->first_chunk_;
- size_func_ = size_func;
-}
-
-
-HeapObject* LargeObjectIterator::next() {
- ASSERT(has_next());
- HeapObject* object = current_->GetObject();
- current_ = current_->next();
- return object;
-}
-
-
-// -----------------------------------------------------------------------------
-// LargeObjectChunk
-
-LargeObjectChunk* LargeObjectChunk::New(int size_in_bytes,
- size_t* chunk_size,
- Executability executable) {
- size_t requested = ChunkSizeFor(size_in_bytes);
- void* mem = MemoryAllocator::AllocateRawMemory(requested,
- chunk_size,
- executable);
- if (mem == NULL) return NULL;
- LOG(NewEvent("LargeObjectChunk", mem, *chunk_size));
- if (*chunk_size < requested) {
- MemoryAllocator::FreeRawMemory(mem, *chunk_size);
- LOG(DeleteEvent("LargeObjectChunk", mem));
- return NULL;
- }
- return reinterpret_cast<LargeObjectChunk*>(mem);
-}
-
-
-int LargeObjectChunk::ChunkSizeFor(int size_in_bytes) {
- int os_alignment = OS::AllocateAlignment();
- if (os_alignment < Page::kPageSize)
- size_in_bytes += (Page::kPageSize - os_alignment);
- return size_in_bytes + Page::kObjectStartOffset;
-}
-
-// -----------------------------------------------------------------------------
-// LargeObjectSpace
-
-LargeObjectSpace::LargeObjectSpace(AllocationSpace id)
- : Space(id, NOT_EXECUTABLE), // Managed on a per-allocation basis
- first_chunk_(NULL),
- size_(0),
- page_count_(0) {}
-
-
-bool LargeObjectSpace::Setup() {
- first_chunk_ = NULL;
- size_ = 0;
- page_count_ = 0;
- return true;
-}
-
-
-void LargeObjectSpace::TearDown() {
- while (first_chunk_ != NULL) {
- LargeObjectChunk* chunk = first_chunk_;
- first_chunk_ = first_chunk_->next();
- LOG(DeleteEvent("LargeObjectChunk", chunk->address()));
- MemoryAllocator::FreeRawMemory(chunk->address(), chunk->size());
- }
-
- size_ = 0;
- page_count_ = 0;
-}
-
-
-#ifdef ENABLE_HEAP_PROTECTION
-
-void LargeObjectSpace::Protect() {
- LargeObjectChunk* chunk = first_chunk_;
- while (chunk != NULL) {
- MemoryAllocator::Protect(chunk->address(), chunk->size());
- chunk = chunk->next();
- }
-}
-
-
-void LargeObjectSpace::Unprotect() {
- LargeObjectChunk* chunk = first_chunk_;
- while (chunk != NULL) {
- bool is_code = chunk->GetObject()->IsCode();
- MemoryAllocator::Unprotect(chunk->address(), chunk->size(),
- is_code ? EXECUTABLE : NOT_EXECUTABLE);
- chunk = chunk->next();
- }
-}
-
-#endif
-
-
-Object* LargeObjectSpace::AllocateRawInternal(int requested_size,
- int object_size,
- Executability executable) {
- ASSERT(0 < object_size && object_size <= requested_size);
-
- // Check if we want to force a GC before growing the old space further.
- // If so, fail the allocation.
- if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) {
- return Failure::RetryAfterGC(requested_size, identity());
- }
-
- size_t chunk_size;
- LargeObjectChunk* chunk =
- LargeObjectChunk::New(requested_size, &chunk_size, executable);
- if (chunk == NULL) {
- return Failure::RetryAfterGC(requested_size, identity());
- }
-
- size_ += chunk_size;
- page_count_++;
- chunk->set_next(first_chunk_);
- chunk->set_size(chunk_size);
- first_chunk_ = chunk;
-
- // Set the object address and size in the page header and clear its
- // remembered set.
- Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize));
- Address object_address = page->ObjectAreaStart();
- // Clear the low order bit of the second word in the page to flag it as a
- // large object page. If the chunk_size happened to be written there, its
- // low order bit should already be clear.
- ASSERT((chunk_size & 0x1) == 0);
- page->is_normal_page &= ~0x1;
- page->ClearRSet();
- int extra_bytes = requested_size - object_size;
- if (extra_bytes > 0) {
- // The extra memory for the remembered set should be cleared.
- memset(object_address + object_size, 0, extra_bytes);
- }
-
- return HeapObject::FromAddress(object_address);
-}
-
-
-Object* LargeObjectSpace::AllocateRawCode(int size_in_bytes) {
- ASSERT(0 < size_in_bytes);
- return AllocateRawInternal(size_in_bytes,
- size_in_bytes,
- EXECUTABLE);
-}
-
-
-Object* LargeObjectSpace::AllocateRawFixedArray(int size_in_bytes) {
- ASSERT(0 < size_in_bytes);
- int extra_rset_bytes = ExtraRSetBytesFor(size_in_bytes);
- return AllocateRawInternal(size_in_bytes + extra_rset_bytes,
- size_in_bytes,
- NOT_EXECUTABLE);
-}
-
-
-Object* LargeObjectSpace::AllocateRaw(int size_in_bytes) {
- ASSERT(0 < size_in_bytes);
- return AllocateRawInternal(size_in_bytes,
- size_in_bytes,
- NOT_EXECUTABLE);
-}
-
-
-// GC support
-Object* LargeObjectSpace::FindObject(Address a) {
- for (LargeObjectChunk* chunk = first_chunk_;
- chunk != NULL;
- chunk = chunk->next()) {
- Address chunk_address = chunk->address();
- if (chunk_address <= a && a < chunk_address + chunk->size()) {
- return chunk->GetObject();
- }
- }
- return Failure::Exception();
-}
-
-
-void LargeObjectSpace::ClearRSet() {
- ASSERT(Page::is_rset_in_use());
-
- LargeObjectIterator it(this);
- while (it.has_next()) {
- HeapObject* object = it.next();
- // We only have code, sequential strings, or fixed arrays in large
- // object space, and only fixed arrays need remembered set support.
- if (object->IsFixedArray()) {
- // Clear the normal remembered set region of the page;
- Page* page = Page::FromAddress(object->address());
- page->ClearRSet();
-
- // Clear the extra remembered set.
- int size = object->Size();
- int extra_rset_bytes = ExtraRSetBytesFor(size);
- memset(object->address() + size, 0, extra_rset_bytes);
- }
- }
-}
-
-
-void LargeObjectSpace::IterateRSet(ObjectSlotCallback copy_object_func) {
- ASSERT(Page::is_rset_in_use());
-
- static void* lo_rset_histogram = StatsTable::CreateHistogram(
- "V8.RSetLO",
- 0,
- // Keeping this histogram's buckets the same as the paged space histogram.
- Page::kObjectAreaSize / kPointerSize,
- 30);
-
- LargeObjectIterator it(this);
- while (it.has_next()) {
- // We only have code, sequential strings, or fixed arrays in large
- // object space, and only fixed arrays can possibly contain pointers to
- // the young generation.
- HeapObject* object = it.next();
- if (object->IsFixedArray()) {
- // Iterate the normal page remembered set range.
- Page* page = Page::FromAddress(object->address());
- Address object_end = object->address() + object->Size();
- int count = Heap::IterateRSetRange(page->ObjectAreaStart(),
- Min(page->ObjectAreaEnd(), object_end),
- page->RSetStart(),
- copy_object_func);
-
- // Iterate the extra array elements.
- if (object_end > page->ObjectAreaEnd()) {
- count += Heap::IterateRSetRange(page->ObjectAreaEnd(), object_end,
- object_end, copy_object_func);
- }
- if (lo_rset_histogram != NULL) {
- StatsTable::AddHistogramSample(lo_rset_histogram, count);
- }
- }
- }
-}
-
-
-void LargeObjectSpace::FreeUnmarkedObjects() {
- LargeObjectChunk* previous = NULL;
- LargeObjectChunk* current = first_chunk_;
- while (current != NULL) {
- HeapObject* object = current->GetObject();
- if (object->IsMarked()) {
- object->ClearMark();
- MarkCompactCollector::tracer()->decrement_marked_count();
- previous = current;
- current = current->next();
- } else {
- Address chunk_address = current->address();
- size_t chunk_size = current->size();
-
- // Cut the chunk out from the chunk list.
- current = current->next();
- if (previous == NULL) {
- first_chunk_ = current;
- } else {
- previous->set_next(current);
- }
-
- // Free the chunk.
- if (object->IsCode()) {
- LOG(CodeDeleteEvent(object->address()));
- }
- size_ -= chunk_size;
- page_count_--;
- MemoryAllocator::FreeRawMemory(chunk_address, chunk_size);
- LOG(DeleteEvent("LargeObjectChunk", chunk_address));
- }
- }
-}
-
-
-bool LargeObjectSpace::Contains(HeapObject* object) {
- Address address = object->address();
- Page* page = Page::FromAddress(address);
-
- SLOW_ASSERT(!page->IsLargeObjectPage()
- || !FindObject(address)->IsFailure());
-
- return page->IsLargeObjectPage();
-}
-
-
-#ifdef DEBUG
-// We do not assume that the large object iterator works, because it depends
-// on the invariants we are checking during verification.
-void LargeObjectSpace::Verify() {
- for (LargeObjectChunk* chunk = first_chunk_;
- chunk != NULL;
- chunk = chunk->next()) {
- // Each chunk contains an object that starts at the large object page's
- // object area start.
- HeapObject* object = chunk->GetObject();
- Page* page = Page::FromAddress(object->address());
- ASSERT(object->address() == page->ObjectAreaStart());
-
- // The first word should be a map, and we expect all map pointers to be
- // in map space.
- Map* map = object->map();
- ASSERT(map->IsMap());
- ASSERT(Heap::map_space()->Contains(map));
-
- // We have only code, sequential strings, external strings
- // (sequential strings that have been morphed into external
- // strings), fixed arrays, and byte arrays in large object space.
- ASSERT(object->IsCode() || object->IsSeqString() ||
- object->IsExternalString() || object->IsFixedArray() ||
- object->IsByteArray());
-
- // The object itself should look OK.
- object->Verify();
-
- // Byte arrays and strings don't have interior pointers.
- if (object->IsCode()) {
- VerifyPointersVisitor code_visitor;
- object->IterateBody(map->instance_type(),
- object->Size(),
- &code_visitor);
- } else if (object->IsFixedArray()) {
- // We loop over fixed arrays ourselves, rather then using the visitor,
- // because the visitor doesn't support the start/offset iteration
- // needed for IsRSetSet.
- FixedArray* array = FixedArray::cast(object);
- for (int j = 0; j < array->length(); j++) {
- Object* element = array->get(j);
- if (element->IsHeapObject()) {
- HeapObject* element_object = HeapObject::cast(element);
- ASSERT(Heap::Contains(element_object));
- ASSERT(element_object->map()->IsMap());
- if (Heap::InNewSpace(element_object)) {
- ASSERT(Page::IsRSetSet(object->address(),
- FixedArray::kHeaderSize + j * kPointerSize));
- }
- }
- }
- }
- }
-}
-
-
-void LargeObjectSpace::Print() {
- LargeObjectIterator it(this);
- while (it.has_next()) {
- it.next()->Print();
- }
-}
-
-
-void LargeObjectSpace::ReportStatistics() {
- PrintF(" size: %d\n", size_);
- int num_objects = 0;
- ClearHistograms();
- LargeObjectIterator it(this);
- while (it.has_next()) {
- num_objects++;
- CollectHistogramInfo(it.next());
- }
-
- PrintF(" number of objects %d\n", num_objects);
- if (num_objects > 0) ReportHistogram(false);
-}
-
-
-void LargeObjectSpace::CollectCodeStatistics() {
- LargeObjectIterator obj_it(this);
- while (obj_it.has_next()) {
- HeapObject* obj = obj_it.next();
- if (obj->IsCode()) {
- Code* code = Code::cast(obj);
- code_kind_statistics[code->kind()] += code->Size();
- }
- }
-}
-
-
-void LargeObjectSpace::PrintRSet() {
- LargeObjectIterator it(this);
- while (it.has_next()) {
- HeapObject* object = it.next();
- if (object->IsFixedArray()) {
- Page* page = Page::FromAddress(object->address());
-
- Address allocation_top = object->address() + object->Size();
- PrintF("large page 0x%x:\n", page);
- PrintRSetRange(page->RSetStart(), page->RSetEnd(),
- reinterpret_cast<Object**>(object->address()),
- allocation_top);
- int extra_array_bytes = object->Size() - Page::kObjectAreaSize;
- int extra_rset_bits = RoundUp(extra_array_bytes / kPointerSize,
- kBitsPerInt);
- PrintF("------------------------------------------------------------"
- "-----------\n");
- PrintRSetRange(allocation_top,
- allocation_top + extra_rset_bits / kBitsPerByte,
- reinterpret_cast<Object**>(object->address()
- + Page::kObjectAreaSize),
- allocation_top);
- PrintF("\n");
- }
- }
-}
-#endif // DEBUG
-
-} } // namespace v8::internal