summaryrefslogtreecommitdiffstats
path: root/V8Binding/v8/src/x64/virtual-frame-x64.cc
diff options
context:
space:
mode:
Diffstat (limited to 'V8Binding/v8/src/x64/virtual-frame-x64.cc')
-rw-r--r--V8Binding/v8/src/x64/virtual-frame-x64.cc1025
1 files changed, 1025 insertions, 0 deletions
diff --git a/V8Binding/v8/src/x64/virtual-frame-x64.cc b/V8Binding/v8/src/x64/virtual-frame-x64.cc
index 209aa2d..888fdc2 100644
--- a/V8Binding/v8/src/x64/virtual-frame-x64.cc
+++ b/V8Binding/v8/src/x64/virtual-frame-x64.cc
@@ -25,3 +25,1028 @@
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+#include "v8.h"
+
+#include "codegen-inl.h"
+#include "register-allocator-inl.h"
+#include "scopes.h"
+
+namespace v8 {
+namespace internal {
+
+#define __ ACCESS_MASM(masm())
+
+// -------------------------------------------------------------------------
+// VirtualFrame implementation.
+
+// On entry to a function, the virtual frame already contains the receiver,
+// the parameters, and a return address. All frame elements are in memory.
+VirtualFrame::VirtualFrame()
+ : elements_(parameter_count() + local_count() + kPreallocatedElements),
+ stack_pointer_(parameter_count() + 1) { // 0-based index of TOS.
+ for (int i = 0; i <= stack_pointer_; i++) {
+ elements_.Add(FrameElement::MemoryElement());
+ }
+ for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
+ register_locations_[i] = kIllegalIndex;
+ }
+}
+
+
+void VirtualFrame::Enter() {
+ // Registers live on entry to a JS frame:
+ // rsp: stack pointer, points to return address from this function.
+ // rbp: base pointer, points to previous JS, ArgumentsAdaptor, or
+ // Trampoline frame.
+ // rsi: context of this function call.
+ // rdi: pointer to this function object.
+ Comment cmnt(masm(), "[ Enter JS frame");
+
+#ifdef DEBUG
+ // Verify that rdi contains a JS function. The following code
+ // relies on rax being available for use.
+ __ testl(rdi, Immediate(kSmiTagMask));
+ __ Check(not_zero,
+ "VirtualFrame::Enter - rdi is not a function (smi check).");
+ __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rax);
+ __ Check(equal,
+ "VirtualFrame::Enter - rdi is not a function (map check).");
+#endif
+
+ EmitPush(rbp);
+
+ __ movq(rbp, rsp);
+
+ // Store the context in the frame. The context is kept in rsi and a
+ // copy is stored in the frame. The external reference to rsi
+ // remains.
+ EmitPush(rsi);
+
+ // Store the function in the frame. The frame owns the register
+ // reference now (ie, it can keep it in rdi or spill it later).
+ Push(rdi);
+ SyncElementAt(element_count() - 1);
+ cgen()->allocator()->Unuse(rdi);
+}
+
+
+void VirtualFrame::Exit() {
+ Comment cmnt(masm(), "[ Exit JS frame");
+ // Record the location of the JS exit code for patching when setting
+ // break point.
+ __ RecordJSReturn();
+
+ // Avoid using the leave instruction here, because it is too
+ // short. We need the return sequence to be a least the size of a
+ // call instruction to support patching the exit code in the
+ // debugger. See GenerateReturnSequence for the full return sequence.
+ // TODO(X64): A patched call will be very long now. Make sure we
+ // have enough room.
+ __ movq(rsp, rbp);
+ stack_pointer_ = frame_pointer();
+ for (int i = element_count() - 1; i > stack_pointer_; i--) {
+ FrameElement last = elements_.RemoveLast();
+ if (last.is_register()) {
+ Unuse(last.reg());
+ }
+ }
+
+ EmitPop(rbp);
+}
+
+
+void VirtualFrame::AllocateStackSlots() {
+ int count = local_count();
+ if (count > 0) {
+ Comment cmnt(masm(), "[ Allocate space for locals");
+ // The locals are initialized to a constant (the undefined value), but
+ // we sync them with the actual frame to allocate space for spilling
+ // them later. First sync everything above the stack pointer so we can
+ // use pushes to allocate and initialize the locals.
+ SyncRange(stack_pointer_ + 1, element_count() - 1);
+ Handle<Object> undefined = Factory::undefined_value();
+ FrameElement initial_value =
+ FrameElement::ConstantElement(undefined, FrameElement::SYNCED);
+ __ movq(kScratchRegister, undefined, RelocInfo::EMBEDDED_OBJECT);
+ for (int i = 0; i < count; i++) {
+ elements_.Add(initial_value);
+ stack_pointer_++;
+ __ push(kScratchRegister);
+ }
+ }
+}
+
+
+void VirtualFrame::SaveContextRegister() {
+ ASSERT(elements_[context_index()].is_memory());
+ __ movq(Operand(rbp, fp_relative(context_index())), rsi);
+}
+
+
+void VirtualFrame::RestoreContextRegister() {
+ ASSERT(elements_[context_index()].is_memory());
+ __ movq(rsi, Operand(rbp, fp_relative(context_index())));
+}
+
+
+void VirtualFrame::PushReceiverSlotAddress() {
+ Result temp = cgen()->allocator()->Allocate();
+ ASSERT(temp.is_valid());
+ __ lea(temp.reg(), ParameterAt(-1));
+ Push(&temp);
+}
+
+
+void VirtualFrame::EmitPop(Register reg) {
+ ASSERT(stack_pointer_ == element_count() - 1);
+ stack_pointer_--;
+ elements_.RemoveLast();
+ __ pop(reg);
+}
+
+
+void VirtualFrame::EmitPop(const Operand& operand) {
+ ASSERT(stack_pointer_ == element_count() - 1);
+ stack_pointer_--;
+ elements_.RemoveLast();
+ __ pop(operand);
+}
+
+
+void VirtualFrame::EmitPush(Register reg) {
+ ASSERT(stack_pointer_ == element_count() - 1);
+ elements_.Add(FrameElement::MemoryElement());
+ stack_pointer_++;
+ __ push(reg);
+}
+
+
+void VirtualFrame::EmitPush(const Operand& operand) {
+ ASSERT(stack_pointer_ == element_count() - 1);
+ elements_.Add(FrameElement::MemoryElement());
+ stack_pointer_++;
+ __ push(operand);
+}
+
+
+void VirtualFrame::EmitPush(Immediate immediate) {
+ ASSERT(stack_pointer_ == element_count() - 1);
+ elements_.Add(FrameElement::MemoryElement());
+ stack_pointer_++;
+ __ push(immediate);
+}
+
+
+void VirtualFrame::EmitPush(Handle<Object> value) {
+ ASSERT(stack_pointer_ == element_count() - 1);
+ elements_.Add(FrameElement::MemoryElement());
+ stack_pointer_++;
+ __ Push(value);
+}
+
+
+void VirtualFrame::Drop(int count) {
+ ASSERT(height() >= count);
+ int num_virtual_elements = (element_count() - 1) - stack_pointer_;
+
+ // Emit code to lower the stack pointer if necessary.
+ if (num_virtual_elements < count) {
+ int num_dropped = count - num_virtual_elements;
+ stack_pointer_ -= num_dropped;
+ __ addq(rsp, Immediate(num_dropped * kPointerSize));
+ }
+
+ // Discard elements from the virtual frame and free any registers.
+ for (int i = 0; i < count; i++) {
+ FrameElement dropped = elements_.RemoveLast();
+ if (dropped.is_register()) {
+ Unuse(dropped.reg());
+ }
+ }
+}
+
+
+int VirtualFrame::InvalidateFrameSlotAt(int index) {
+ FrameElement original = elements_[index];
+
+ // Is this element the backing store of any copies?
+ int new_backing_index = kIllegalIndex;
+ if (original.is_copied()) {
+ // Verify it is copied, and find first copy.
+ for (int i = index + 1; i < element_count(); i++) {
+ if (elements_[i].is_copy() && elements_[i].index() == index) {
+ new_backing_index = i;
+ break;
+ }
+ }
+ }
+
+ if (new_backing_index == kIllegalIndex) {
+ // No copies found, return kIllegalIndex.
+ if (original.is_register()) {
+ Unuse(original.reg());
+ }
+ elements_[index] = FrameElement::InvalidElement();
+ return kIllegalIndex;
+ }
+
+ // This is the backing store of copies.
+ Register backing_reg;
+ if (original.is_memory()) {
+ Result fresh = cgen()->allocator()->Allocate();
+ ASSERT(fresh.is_valid());
+ Use(fresh.reg(), new_backing_index);
+ backing_reg = fresh.reg();
+ __ movq(backing_reg, Operand(rbp, fp_relative(index)));
+ } else {
+ // The original was in a register.
+ backing_reg = original.reg();
+ set_register_location(backing_reg, new_backing_index);
+ }
+ // Invalidate the element at index.
+ elements_[index] = FrameElement::InvalidElement();
+ // Set the new backing element.
+ if (elements_[new_backing_index].is_synced()) {
+ elements_[new_backing_index] =
+ FrameElement::RegisterElement(backing_reg, FrameElement::SYNCED);
+ } else {
+ elements_[new_backing_index] =
+ FrameElement::RegisterElement(backing_reg, FrameElement::NOT_SYNCED);
+ }
+ // Update the other copies.
+ for (int i = new_backing_index + 1; i < element_count(); i++) {
+ if (elements_[i].is_copy() && elements_[i].index() == index) {
+ elements_[i].set_index(new_backing_index);
+ elements_[new_backing_index].set_copied();
+ }
+ }
+ return new_backing_index;
+}
+
+
+void VirtualFrame::TakeFrameSlotAt(int index) {
+ ASSERT(index >= 0);
+ ASSERT(index <= element_count());
+ FrameElement original = elements_[index];
+ int new_backing_store_index = InvalidateFrameSlotAt(index);
+ if (new_backing_store_index != kIllegalIndex) {
+ elements_.Add(CopyElementAt(new_backing_store_index));
+ return;
+ }
+
+ switch (original.type()) {
+ case FrameElement::MEMORY: {
+ // Emit code to load the original element's data into a register.
+ // Push that register as a FrameElement on top of the frame.
+ Result fresh = cgen()->allocator()->Allocate();
+ ASSERT(fresh.is_valid());
+ FrameElement new_element =
+ FrameElement::RegisterElement(fresh.reg(),
+ FrameElement::NOT_SYNCED);
+ Use(fresh.reg(), element_count());
+ elements_.Add(new_element);
+ __ movq(fresh.reg(), Operand(rbp, fp_relative(index)));
+ break;
+ }
+ case FrameElement::REGISTER:
+ Use(original.reg(), element_count());
+ // Fall through.
+ case FrameElement::CONSTANT:
+ case FrameElement::COPY:
+ original.clear_sync();
+ elements_.Add(original);
+ break;
+ case FrameElement::INVALID:
+ UNREACHABLE();
+ break;
+ }
+}
+
+
+void VirtualFrame::StoreToFrameSlotAt(int index) {
+ // Store the value on top of the frame to the virtual frame slot at
+ // a given index. The value on top of the frame is left in place.
+ // This is a duplicating operation, so it can create copies.
+ ASSERT(index >= 0);
+ ASSERT(index < element_count());
+
+ int top_index = element_count() - 1;
+ FrameElement top = elements_[top_index];
+ FrameElement original = elements_[index];
+ if (top.is_copy() && top.index() == index) return;
+ ASSERT(top.is_valid());
+
+ InvalidateFrameSlotAt(index);
+
+ // InvalidateFrameSlotAt can potentially change any frame element, due
+ // to spilling registers to allocate temporaries in order to preserve
+ // the copy-on-write semantics of aliased elements. Reload top from
+ // the frame.
+ top = elements_[top_index];
+
+ if (top.is_copy()) {
+ // There are two cases based on the relative positions of the
+ // stored-to slot and the backing slot of the top element.
+ int backing_index = top.index();
+ ASSERT(backing_index != index);
+ if (backing_index < index) {
+ // 1. The top element is a copy of a slot below the stored-to
+ // slot. The stored-to slot becomes an unsynced copy of that
+ // same backing slot.
+ elements_[index] = CopyElementAt(backing_index);
+ } else {
+ // 2. The top element is a copy of a slot above the stored-to
+ // slot. The stored-to slot becomes the new (unsynced) backing
+ // slot and both the top element and the element at the former
+ // backing slot become copies of it. The sync state of the top
+ // and former backing elements is preserved.
+ FrameElement backing_element = elements_[backing_index];
+ ASSERT(backing_element.is_memory() || backing_element.is_register());
+ if (backing_element.is_memory()) {
+ // Because sets of copies are canonicalized to be backed by
+ // their lowest frame element, and because memory frame
+ // elements are backed by the corresponding stack address, we
+ // have to move the actual value down in the stack.
+ //
+ // TODO(209): considering allocating the stored-to slot to the
+ // temp register. Alternatively, allow copies to appear in
+ // any order in the frame and lazily move the value down to
+ // the slot.
+ __ movq(kScratchRegister, Operand(rbp, fp_relative(backing_index)));
+ __ movq(Operand(rbp, fp_relative(index)), kScratchRegister);
+ } else {
+ set_register_location(backing_element.reg(), index);
+ if (backing_element.is_synced()) {
+ // If the element is a register, we will not actually move
+ // anything on the stack but only update the virtual frame
+ // element.
+ backing_element.clear_sync();
+ }
+ }
+ elements_[index] = backing_element;
+
+ // The old backing element becomes a copy of the new backing
+ // element.
+ FrameElement new_element = CopyElementAt(index);
+ elements_[backing_index] = new_element;
+ if (backing_element.is_synced()) {
+ elements_[backing_index].set_sync();
+ }
+
+ // All the copies of the old backing element (including the top
+ // element) become copies of the new backing element.
+ for (int i = backing_index + 1; i < element_count(); i++) {
+ if (elements_[i].is_copy() && elements_[i].index() == backing_index) {
+ elements_[i].set_index(index);
+ }
+ }
+ }
+ return;
+ }
+
+ // Move the top element to the stored-to slot and replace it (the
+ // top element) with a copy.
+ elements_[index] = top;
+ if (top.is_memory()) {
+ // TODO(209): consider allocating the stored-to slot to the temp
+ // register. Alternatively, allow copies to appear in any order
+ // in the frame and lazily move the value down to the slot.
+ FrameElement new_top = CopyElementAt(index);
+ new_top.set_sync();
+ elements_[top_index] = new_top;
+
+ // The sync state of the former top element is correct (synced).
+ // Emit code to move the value down in the frame.
+ __ movq(kScratchRegister, Operand(rsp, 0));
+ __ movq(Operand(rbp, fp_relative(index)), kScratchRegister);
+ } else if (top.is_register()) {
+ set_register_location(top.reg(), index);
+ // The stored-to slot has the (unsynced) register reference and
+ // the top element becomes a copy. The sync state of the top is
+ // preserved.
+ FrameElement new_top = CopyElementAt(index);
+ if (top.is_synced()) {
+ new_top.set_sync();
+ elements_[index].clear_sync();
+ }
+ elements_[top_index] = new_top;
+ } else {
+ // The stored-to slot holds the same value as the top but
+ // unsynced. (We do not have copies of constants yet.)
+ ASSERT(top.is_constant());
+ elements_[index].clear_sync();
+ }
+}
+
+
+void VirtualFrame::MakeMergable() {
+ for (int i = 0; i < element_count(); i++) {
+ FrameElement element = elements_[i];
+
+ if (element.is_constant() || element.is_copy()) {
+ if (element.is_synced()) {
+ // Just spill.
+ elements_[i] = FrameElement::MemoryElement();
+ } else {
+ // Allocate to a register.
+ FrameElement backing_element; // Invalid if not a copy.
+ if (element.is_copy()) {
+ backing_element = elements_[element.index()];
+ }
+ Result fresh = cgen()->allocator()->Allocate();
+ ASSERT(fresh.is_valid()); // A register was spilled if all were in use.
+ elements_[i] =
+ FrameElement::RegisterElement(fresh.reg(),
+ FrameElement::NOT_SYNCED);
+ Use(fresh.reg(), i);
+
+ // Emit a move.
+ if (element.is_constant()) {
+ __ Move(fresh.reg(), element.handle());
+ } else {
+ ASSERT(element.is_copy());
+ // Copies are only backed by register or memory locations.
+ if (backing_element.is_register()) {
+ // The backing store may have been spilled by allocating,
+ // but that's OK. If it was, the value is right where we
+ // want it.
+ if (!fresh.reg().is(backing_element.reg())) {
+ __ movq(fresh.reg(), backing_element.reg());
+ }
+ } else {
+ ASSERT(backing_element.is_memory());
+ __ movq(fresh.reg(), Operand(rbp, fp_relative(element.index())));
+ }
+ }
+ }
+ // No need to set the copied flag --- there are no copies.
+ } else {
+ // Clear the copy flag of non-constant, non-copy elements.
+ // They cannot be copied because copies are not allowed.
+ // The copy flag is not relied on before the end of this loop,
+ // including when registers are spilled.
+ elements_[i].clear_copied();
+ }
+ }
+}
+
+
+void VirtualFrame::MergeTo(VirtualFrame* expected) {
+ Comment cmnt(masm(), "[ Merge frame");
+ // We should always be merging the code generator's current frame to an
+ // expected frame.
+ ASSERT(cgen()->frame() == this);
+
+ // Adjust the stack pointer upward (toward the top of the virtual
+ // frame) if necessary.
+ if (stack_pointer_ < expected->stack_pointer_) {
+ int difference = expected->stack_pointer_ - stack_pointer_;
+ stack_pointer_ = expected->stack_pointer_;
+ __ subq(rsp, Immediate(difference * kPointerSize));
+ }
+
+ MergeMoveRegistersToMemory(expected);
+ MergeMoveRegistersToRegisters(expected);
+ MergeMoveMemoryToRegisters(expected);
+
+ // Adjust the stack pointer downward if necessary.
+ if (stack_pointer_ > expected->stack_pointer_) {
+ int difference = stack_pointer_ - expected->stack_pointer_;
+ stack_pointer_ = expected->stack_pointer_;
+ __ addq(rsp, Immediate(difference * kPointerSize));
+ }
+
+ // At this point, the frames should be identical.
+ ASSERT(Equals(expected));
+}
+
+
+void VirtualFrame::MergeMoveRegistersToMemory(VirtualFrame* expected) {
+ ASSERT(stack_pointer_ >= expected->stack_pointer_);
+
+ // Move registers, constants, and copies to memory. Perform moves
+ // from the top downward in the frame in order to leave the backing
+ // stores of copies in registers.
+ for (int i = element_count() - 1; i >= 0; i--) {
+ FrameElement target = expected->elements_[i];
+ if (target.is_register()) continue; // Handle registers later.
+ if (target.is_memory()) {
+ FrameElement source = elements_[i];
+ switch (source.type()) {
+ case FrameElement::INVALID:
+ // Not a legal merge move.
+ UNREACHABLE();
+ break;
+
+ case FrameElement::MEMORY:
+ // Already in place.
+ break;
+
+ case FrameElement::REGISTER:
+ Unuse(source.reg());
+ if (!source.is_synced()) {
+ __ movq(Operand(rbp, fp_relative(i)), source.reg());
+ }
+ break;
+
+ case FrameElement::CONSTANT:
+ if (!source.is_synced()) {
+ __ Move(Operand(rbp, fp_relative(i)), source.handle());
+ }
+ break;
+
+ case FrameElement::COPY:
+ if (!source.is_synced()) {
+ int backing_index = source.index();
+ FrameElement backing_element = elements_[backing_index];
+ if (backing_element.is_memory()) {
+ __ movq(kScratchRegister,
+ Operand(rbp, fp_relative(backing_index)));
+ __ movq(Operand(rbp, fp_relative(i)), kScratchRegister);
+ } else {
+ ASSERT(backing_element.is_register());
+ __ movq(Operand(rbp, fp_relative(i)), backing_element.reg());
+ }
+ }
+ break;
+ }
+ }
+ elements_[i] = target;
+ }
+}
+
+
+void VirtualFrame::MergeMoveRegistersToRegisters(VirtualFrame* expected) {
+ // We have already done X-to-memory moves.
+ ASSERT(stack_pointer_ >= expected->stack_pointer_);
+
+ for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
+ // Move the right value into register i if it is currently in a register.
+ int index = expected->register_location(i);
+ int use_index = register_location(i);
+ // Skip if register i is unused in the target or else if source is
+ // not a register (this is not a register-to-register move).
+ if (index == kIllegalIndex || !elements_[index].is_register()) continue;
+
+ Register target = RegisterAllocator::ToRegister(i);
+ Register source = elements_[index].reg();
+ if (index != use_index) {
+ if (use_index == kIllegalIndex) { // Target is currently unused.
+ // Copy contents of source from source to target.
+ // Set frame element register to target.
+ Use(target, index);
+ Unuse(source);
+ __ movq(target, source);
+ } else {
+ // Exchange contents of registers source and target.
+ // Nothing except the register backing use_index has changed.
+ elements_[use_index].set_reg(source);
+ set_register_location(target, index);
+ set_register_location(source, use_index);
+ __ xchg(source, target);
+ }
+ }
+
+ if (!elements_[index].is_synced() &&
+ expected->elements_[index].is_synced()) {
+ __ movq(Operand(rbp, fp_relative(index)), target);
+ }
+ elements_[index] = expected->elements_[index];
+ }
+}
+
+
+void VirtualFrame::MergeMoveMemoryToRegisters(VirtualFrame* expected) {
+ // Move memory, constants, and copies to registers. This is the
+ // final step and since it is not done from the bottom up, but in
+ // register code order, we have special code to ensure that the backing
+ // elements of copies are in their correct locations when we
+ // encounter the copies.
+ for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
+ int index = expected->register_location(i);
+ if (index != kIllegalIndex) {
+ FrameElement source = elements_[index];
+ FrameElement target = expected->elements_[index];
+ Register target_reg = RegisterAllocator::ToRegister(i);
+ ASSERT(target.reg().is(target_reg));
+ switch (source.type()) {
+ case FrameElement::INVALID: // Fall through.
+ UNREACHABLE();
+ break;
+ case FrameElement::REGISTER:
+ ASSERT(source.Equals(target));
+ // Go to next iteration. Skips Use(target_reg) and syncing
+ // below. It is safe to skip syncing because a target
+ // register frame element would only be synced if all source
+ // elements were.
+ continue;
+ break;
+ case FrameElement::MEMORY:
+ ASSERT(index <= stack_pointer_);
+ __ movq(target_reg, Operand(rbp, fp_relative(index)));
+ break;
+
+ case FrameElement::CONSTANT:
+ __ Move(target_reg, source.handle());
+ break;
+
+ case FrameElement::COPY: {
+ int backing_index = source.index();
+ FrameElement backing = elements_[backing_index];
+ ASSERT(backing.is_memory() || backing.is_register());
+ if (backing.is_memory()) {
+ ASSERT(backing_index <= stack_pointer_);
+ // Code optimization if backing store should also move
+ // to a register: move backing store to its register first.
+ if (expected->elements_[backing_index].is_register()) {
+ FrameElement new_backing = expected->elements_[backing_index];
+ Register new_backing_reg = new_backing.reg();
+ ASSERT(!is_used(new_backing_reg));
+ elements_[backing_index] = new_backing;
+ Use(new_backing_reg, backing_index);
+ __ movq(new_backing_reg,
+ Operand(rbp, fp_relative(backing_index)));
+ __ movq(target_reg, new_backing_reg);
+ } else {
+ __ movq(target_reg, Operand(rbp, fp_relative(backing_index)));
+ }
+ } else {
+ __ movq(target_reg, backing.reg());
+ }
+ }
+ }
+ // Ensure the proper sync state.
+ if (target.is_synced() && !source.is_synced()) {
+ __ movq(Operand(rbp, fp_relative(index)), target_reg);
+ }
+ Use(target_reg, index);
+ elements_[index] = target;
+ }
+ }
+}
+
+
+Result VirtualFrame::Pop() {
+ FrameElement element = elements_.RemoveLast();
+ int index = element_count();
+ ASSERT(element.is_valid());
+
+ bool pop_needed = (stack_pointer_ == index);
+ if (pop_needed) {
+ stack_pointer_--;
+ if (element.is_memory()) {
+ Result temp = cgen()->allocator()->Allocate();
+ ASSERT(temp.is_valid());
+ __ pop(temp.reg());
+ return temp;
+ }
+
+ __ addq(rsp, Immediate(kPointerSize));
+ }
+ ASSERT(!element.is_memory());
+
+ // The top element is a register, constant, or a copy. Unuse
+ // registers and follow copies to their backing store.
+ if (element.is_register()) {
+ Unuse(element.reg());
+ } else if (element.is_copy()) {
+ ASSERT(element.index() < index);
+ index = element.index();
+ element = elements_[index];
+ }
+ ASSERT(!element.is_copy());
+
+ // The element is memory, a register, or a constant.
+ if (element.is_memory()) {
+ // Memory elements could only be the backing store of a copy.
+ // Allocate the original to a register.
+ ASSERT(index <= stack_pointer_);
+ Result temp = cgen()->allocator()->Allocate();
+ ASSERT(temp.is_valid());
+ Use(temp.reg(), index);
+ FrameElement new_element =
+ FrameElement::RegisterElement(temp.reg(), FrameElement::SYNCED);
+ // Preserve the copy flag on the element.
+ if (element.is_copied()) new_element.set_copied();
+ elements_[index] = new_element;
+ __ movq(temp.reg(), Operand(rbp, fp_relative(index)));
+ return Result(temp.reg());
+ } else if (element.is_register()) {
+ return Result(element.reg());
+ } else {
+ ASSERT(element.is_constant());
+ return Result(element.handle());
+ }
+}
+
+
+Result VirtualFrame::RawCallStub(CodeStub* stub) {
+ ASSERT(cgen()->HasValidEntryRegisters());
+ __ CallStub(stub);
+ Result result = cgen()->allocator()->Allocate(rax);
+ ASSERT(result.is_valid());
+ return result;
+}
+
+
+Result VirtualFrame::CallStub(CodeStub* stub, Result* arg) {
+ PrepareForCall(0, 0);
+ arg->ToRegister(rax);
+ arg->Unuse();
+ return RawCallStub(stub);
+}
+
+
+Result VirtualFrame::CallStub(CodeStub* stub, Result* arg0, Result* arg1) {
+ PrepareForCall(0, 0);
+
+ if (arg0->is_register() && arg0->reg().is(rax)) {
+ if (arg1->is_register() && arg1->reg().is(rdx)) {
+ // Wrong registers.
+ __ xchg(rax, rdx);
+ } else {
+ // Register rdx is free for arg0, which frees rax for arg1.
+ arg0->ToRegister(rdx);
+ arg1->ToRegister(rax);
+ }
+ } else {
+ // Register rax is free for arg1, which guarantees rdx is free for
+ // arg0.
+ arg1->ToRegister(rax);
+ arg0->ToRegister(rdx);
+ }
+
+ arg0->Unuse();
+ arg1->Unuse();
+ return RawCallStub(stub);
+}
+
+
+void VirtualFrame::SyncElementBelowStackPointer(int index) {
+ // Emit code to write elements below the stack pointer to their
+ // (already allocated) stack address.
+ ASSERT(index <= stack_pointer_);
+ FrameElement element = elements_[index];
+ ASSERT(!element.is_synced());
+ switch (element.type()) {
+ case FrameElement::INVALID:
+ break;
+
+ case FrameElement::MEMORY:
+ // This function should not be called with synced elements.
+ // (memory elements are always synced).
+ UNREACHABLE();
+ break;
+
+ case FrameElement::REGISTER:
+ __ movq(Operand(rbp, fp_relative(index)), element.reg());
+ break;
+
+ case FrameElement::CONSTANT:
+ __ Move(Operand(rbp, fp_relative(index)), element.handle());
+ break;
+
+ case FrameElement::COPY: {
+ int backing_index = element.index();
+ FrameElement backing_element = elements_[backing_index];
+ if (backing_element.is_memory()) {
+ __ movq(kScratchRegister, Operand(rbp, fp_relative(backing_index)));
+ __ movq(Operand(rbp, fp_relative(index)), kScratchRegister);
+ } else {
+ ASSERT(backing_element.is_register());
+ __ movq(Operand(rbp, fp_relative(index)), backing_element.reg());
+ }
+ break;
+ }
+ }
+ elements_[index].set_sync();
+}
+
+
+void VirtualFrame::SyncElementByPushing(int index) {
+ // Sync an element of the frame that is just above the stack pointer
+ // by pushing it.
+ ASSERT(index == stack_pointer_ + 1);
+ stack_pointer_++;
+ FrameElement element = elements_[index];
+
+ switch (element.type()) {
+ case FrameElement::INVALID:
+ __ push(Immediate(Smi::FromInt(0)));
+ break;
+
+ case FrameElement::MEMORY:
+ // No memory elements exist above the stack pointer.
+ UNREACHABLE();
+ break;
+
+ case FrameElement::REGISTER:
+ __ push(element.reg());
+ break;
+
+ case FrameElement::CONSTANT:
+ __ Move(kScratchRegister, element.handle());
+ __ push(kScratchRegister);
+ break;
+
+ case FrameElement::COPY: {
+ int backing_index = element.index();
+ FrameElement backing = elements_[backing_index];
+ ASSERT(backing.is_memory() || backing.is_register());
+ if (backing.is_memory()) {
+ __ push(Operand(rbp, fp_relative(backing_index)));
+ } else {
+ __ push(backing.reg());
+ }
+ break;
+ }
+ }
+ elements_[index].set_sync();
+}
+
+
+// Clear the dirty bits for the range of elements in
+// [min(stack_pointer_ + 1,begin), end].
+void VirtualFrame::SyncRange(int begin, int end) {
+ ASSERT(begin >= 0);
+ ASSERT(end < element_count());
+ // Sync elements below the range if they have not been materialized
+ // on the stack.
+ int start = Min(begin, stack_pointer_ + 1);
+
+ // If positive we have to adjust the stack pointer.
+ int delta = end - stack_pointer_;
+ if (delta > 0) {
+ stack_pointer_ = end;
+ __ subq(rsp, Immediate(delta * kPointerSize));
+ }
+
+ for (int i = start; i <= end; i++) {
+ if (!elements_[i].is_synced()) SyncElementBelowStackPointer(i);
+ }
+}
+
+
+Result VirtualFrame::InvokeBuiltin(Builtins::JavaScript id,
+ InvokeFlag flag,
+ int arg_count) {
+ PrepareForCall(arg_count, arg_count);
+ ASSERT(cgen()->HasValidEntryRegisters());
+ __ InvokeBuiltin(id, flag);
+ Result result = cgen()->allocator()->Allocate(rax);
+ ASSERT(result.is_valid());
+ return result;
+}
+
+
+//------------------------------------------------------------------------------
+// Virtual frame stub and IC calling functions.
+
+Result VirtualFrame::RawCallCodeObject(Handle<Code> code,
+ RelocInfo::Mode rmode) {
+ ASSERT(cgen()->HasValidEntryRegisters());
+ __ Call(code, rmode);
+ Result result = cgen()->allocator()->Allocate(rax);
+ ASSERT(result.is_valid());
+ return result;
+}
+
+
+Result VirtualFrame::CallRuntime(Runtime::Function* f, int arg_count) {
+ PrepareForCall(arg_count, arg_count);
+ ASSERT(cgen()->HasValidEntryRegisters());
+ __ CallRuntime(f, arg_count);
+ Result result = cgen()->allocator()->Allocate(rax);
+ ASSERT(result.is_valid());
+ return result;
+}
+
+
+Result VirtualFrame::CallRuntime(Runtime::FunctionId id, int arg_count) {
+ PrepareForCall(arg_count, arg_count);
+ ASSERT(cgen()->HasValidEntryRegisters());
+ __ CallRuntime(id, arg_count);
+ Result result = cgen()->allocator()->Allocate(rax);
+ ASSERT(result.is_valid());
+ return result;
+}
+
+
+Result VirtualFrame::CallLoadIC(RelocInfo::Mode mode) {
+ // Name and receiver are on the top of the frame. The IC expects
+ // name in rcx and receiver on the stack. It does not drop the
+ // receiver.
+ Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
+ Result name = Pop();
+ PrepareForCall(1, 0); // One stack arg, not callee-dropped.
+ name.ToRegister(rcx);
+ name.Unuse();
+ return RawCallCodeObject(ic, mode);
+}
+
+
+Result VirtualFrame::CallKeyedLoadIC(RelocInfo::Mode mode) {
+ // Key and receiver are on top of the frame. The IC expects them on
+ // the stack. It does not drop them.
+ Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
+ PrepareForCall(2, 0); // Two stack args, neither callee-dropped.
+ return RawCallCodeObject(ic, mode);
+}
+
+
+Result VirtualFrame::CallKeyedStoreIC() {
+ // Value, key, and receiver are on the top of the frame. The IC
+ // expects value in rax and key and receiver on the stack. It does
+ // not drop the key and receiver.
+ Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
+ // TODO(1222589): Make the IC grab the values from the stack.
+ Result value = Pop();
+ PrepareForCall(2, 0); // Two stack args, neither callee-dropped.
+ value.ToRegister(rax);
+ value.Unuse();
+ return RawCallCodeObject(ic, RelocInfo::CODE_TARGET);
+}
+
+
+Result VirtualFrame::CallCallIC(RelocInfo::Mode mode,
+ int arg_count,
+ int loop_nesting) {
+ // Arguments, receiver, and function name are on top of the frame.
+ // The IC expects them on the stack. It does not drop the function
+ // name slot (but it does drop the rest).
+ InLoopFlag in_loop = loop_nesting > 0 ? IN_LOOP : NOT_IN_LOOP;
+ Handle<Code> ic = cgen()->ComputeCallInitialize(arg_count, in_loop);
+ // Spill args, receiver, and function. The call will drop args and
+ // receiver.
+ PrepareForCall(arg_count + 2, arg_count + 1);
+ return RawCallCodeObject(ic, mode);
+}
+
+
+Result VirtualFrame::CallConstructor(int arg_count) {
+ // Arguments, receiver, and function are on top of the frame. The
+ // IC expects arg count in rax, function in rdi, and the arguments
+ // and receiver on the stack.
+ Handle<Code> ic(Builtins::builtin(Builtins::JSConstructCall));
+ // Duplicate the function before preparing the frame.
+ PushElementAt(arg_count + 1);
+ Result function = Pop();
+ PrepareForCall(arg_count + 1, arg_count + 1); // Spill args and receiver.
+ function.ToRegister(rdi);
+
+ // Constructors are called with the number of arguments in register
+ // eax for now. Another option would be to have separate construct
+ // call trampolines per different arguments counts encountered.
+ Result num_args = cgen()->allocator()->Allocate(rax);
+ ASSERT(num_args.is_valid());
+ __ movq(num_args.reg(), Immediate(arg_count));
+
+ function.Unuse();
+ num_args.Unuse();
+ return RawCallCodeObject(ic, RelocInfo::CONSTRUCT_CALL);
+}
+
+
+Result VirtualFrame::CallStoreIC() {
+ // Name, value, and receiver are on top of the frame. The IC
+ // expects name in rcx, value in rax, and receiver on the stack. It
+ // does not drop the receiver.
+ Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
+ Result name = Pop();
+ Result value = Pop();
+ PrepareForCall(1, 0); // One stack arg, not callee-dropped.
+
+ if (value.is_register() && value.reg().is(rcx)) {
+ if (name.is_register() && name.reg().is(rax)) {
+ // Wrong registers.
+ __ xchg(rax, rcx);
+ } else {
+ // Register rax is free for value, which frees rcx for name.
+ value.ToRegister(rax);
+ name.ToRegister(rcx);
+ }
+ } else {
+ // Register rcx is free for name, which guarantees rax is free for
+ // value.
+ name.ToRegister(rcx);
+ value.ToRegister(rax);
+ }
+
+ name.Unuse();
+ value.Unuse();
+ return RawCallCodeObject(ic, RelocInfo::CODE_TARGET);
+}
+
+
+void VirtualFrame::PushTryHandler(HandlerType type) {
+ ASSERT(cgen()->HasValidEntryRegisters());
+ // Grow the expression stack by handler size less one (the return
+ // address is already pushed by a call instruction).
+ Adjust(kHandlerSize - 1);
+ __ PushTryHandler(IN_JAVASCRIPT, type);
+}
+
+
+#undef __
+
+} } // namespace v8::internal