diff options
Diffstat (limited to 'WebCore/platform/graphics/UnitBezier.h')
-rw-r--r-- | WebCore/platform/graphics/UnitBezier.h | 123 |
1 files changed, 0 insertions, 123 deletions
diff --git a/WebCore/platform/graphics/UnitBezier.h b/WebCore/platform/graphics/UnitBezier.h deleted file mode 100644 index 973d75b..0000000 --- a/WebCore/platform/graphics/UnitBezier.h +++ /dev/null @@ -1,123 +0,0 @@ -/* - * Copyright (C) 2008 Apple Inc. All Rights Reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY - * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR - * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, - * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, - * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR - * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY - * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - */ - -#ifndef UnitBezier_h -#define UnitBezier_h - -#include <math.h> - -namespace WebCore { - - struct UnitBezier { - UnitBezier(double p1x, double p1y, double p2x, double p2y) - { - // Calculate the polynomial coefficients, implicit first and last control points are (0,0) and (1,1). - cx = 3.0 * p1x; - bx = 3.0 * (p2x - p1x) - cx; - ax = 1.0 - cx -bx; - - cy = 3.0 * p1y; - by = 3.0 * (p2y - p1y) - cy; - ay = 1.0 - cy - by; - } - - double sampleCurveX(double t) - { - // `ax t^3 + bx t^2 + cx t' expanded using Horner's rule. - return ((ax * t + bx) * t + cx) * t; - } - - double sampleCurveY(double t) - { - return ((ay * t + by) * t + cy) * t; - } - - double sampleCurveDerivativeX(double t) - { - return (3.0 * ax * t + 2.0 * bx) * t + cx; - } - - // Given an x value, find a parametric value it came from. - double solveCurveX(double x, double epsilon) - { - double t0; - double t1; - double t2; - double x2; - double d2; - int i; - - // First try a few iterations of Newton's method -- normally very fast. - for (t2 = x, i = 0; i < 8; i++) { - x2 = sampleCurveX(t2) - x; - if (fabs (x2) < epsilon) - return t2; - d2 = sampleCurveDerivativeX(t2); - if (fabs(d2) < 1e-6) - break; - t2 = t2 - x2 / d2; - } - - // Fall back to the bisection method for reliability. - t0 = 0.0; - t1 = 1.0; - t2 = x; - - if (t2 < t0) - return t0; - if (t2 > t1) - return t1; - - while (t0 < t1) { - x2 = sampleCurveX(t2); - if (fabs(x2 - x) < epsilon) - return t2; - if (x > x2) - t0 = t2; - else - t1 = t2; - t2 = (t1 - t0) * .5 + t0; - } - - // Failure. - return t2; - } - - double solve(double x, double epsilon) - { - return sampleCurveY(solveCurveX(x, epsilon)); - } - - private: - double ax; - double bx; - double cx; - - double ay; - double by; - double cy; - }; -} -#endif |