summaryrefslogtreecommitdiffstats
path: root/JavaScriptCore/assembler/MacroAssemblerARM.h
blob: b04ed1389e97e0240c75af621d609d017ee39e64 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
/*
 * Copyright (C) 2008 Apple Inc.
 * Copyright (C) 2009 University of Szeged
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef MacroAssemblerARM_h
#define MacroAssemblerARM_h

#include <wtf/Platform.h>

#if ENABLE(ASSEMBLER) && PLATFORM(ARM)

#include "ARMAssembler.h"
#include "AbstractMacroAssembler.h"

namespace JSC {

class MacroAssemblerARM : public AbstractMacroAssembler<ARMAssembler> {
public:
    enum Condition {
        Equal = ARMAssembler::EQ,
        NotEqual = ARMAssembler::NE,
        Above = ARMAssembler::HI,
        AboveOrEqual = ARMAssembler::CS,
        Below = ARMAssembler::CC,
        BelowOrEqual = ARMAssembler::LS,
        GreaterThan = ARMAssembler::GT,
        GreaterThanOrEqual = ARMAssembler::GE,
        LessThan = ARMAssembler::LT,
        LessThanOrEqual = ARMAssembler::LE,
        Overflow = ARMAssembler::VS,
        Signed = ARMAssembler::MI,
        Zero = ARMAssembler::EQ,
        NonZero = ARMAssembler::NE
    };

    enum DoubleCondition {
        DoubleEqual = ARMAssembler::EQ,
        DoubleGreaterThan = ARMAssembler::GT,
        DoubleGreaterThanOrEqual = ARMAssembler::GE,
        DoubleLessThan = ARMAssembler::LT,
        DoubleLessThanOrEqual = ARMAssembler::LE,
    };

    static const RegisterID stackPointerRegister = ARM::sp;

    static const Scale ScalePtr = TimesFour;

    void add32(RegisterID src, RegisterID dest)
    {
        m_assembler.adds_r(dest, dest, src);
    }

    void add32(Imm32 imm, Address address)
    {
        load32(address, ARM::S1);
        add32(imm, ARM::S1);
        store32(ARM::S1, address);
    }

    void add32(Imm32 imm, RegisterID dest)
    {
        m_assembler.adds_r(dest, dest, m_assembler.getImm(imm.m_value, ARM::S0));
    }

    void add32(Address src, RegisterID dest)
    {
        load32(src, ARM::S1);
        add32(ARM::S1, dest);
    }

    void and32(RegisterID src, RegisterID dest)
    {
        m_assembler.ands_r(dest, dest, src);
    }

    void and32(Imm32 imm, RegisterID dest)
    {
        ARMWord w = m_assembler.getImm(imm.m_value, ARM::S0, true);
        if (w & ARMAssembler::OP2_INV_IMM)
            m_assembler.bics_r(dest, dest, w & ~ARMAssembler::OP2_INV_IMM);
        else
            m_assembler.ands_r(dest, dest, w);
    }

    void lshift32(Imm32 imm, RegisterID dest)
    {
        m_assembler.movs_r(dest, m_assembler.lsl(dest, imm.m_value & 0x1f));
    }

    void lshift32(RegisterID shift_amount, RegisterID dest)
    {
        m_assembler.movs_r(dest, m_assembler.lsl_r(dest, shift_amount));
    }

    void mul32(RegisterID src, RegisterID dest)
    {
        if (src == dest) {
            move(src, ARM::S0);
            src = ARM::S0;
        }
        m_assembler.muls_r(dest, dest, src);
    }

    void mul32(Imm32 imm, RegisterID src, RegisterID dest)
    {
        move(imm, ARM::S0);
        m_assembler.muls_r(dest, src, ARM::S0);
    }

    void not32(RegisterID dest)
    {
        m_assembler.mvns_r(dest, dest);
    }

    void or32(RegisterID src, RegisterID dest)
    {
        m_assembler.orrs_r(dest, dest, src);
    }

    void or32(Imm32 imm, RegisterID dest)
    {
        m_assembler.orrs_r(dest, dest, m_assembler.getImm(imm.m_value, ARM::S0));
    }

    void rshift32(RegisterID shift_amount, RegisterID dest)
    {
        m_assembler.movs_r(dest, m_assembler.asr_r(dest, shift_amount));
    }

    void rshift32(Imm32 imm, RegisterID dest)
    {
        m_assembler.movs_r(dest, m_assembler.asr(dest, imm.m_value & 0x1f));
    }

    void sub32(RegisterID src, RegisterID dest)
    {
        m_assembler.subs_r(dest, dest, src);
    }

    void sub32(Imm32 imm, RegisterID dest)
    {
        m_assembler.subs_r(dest, dest, m_assembler.getImm(imm.m_value, ARM::S0));
    }

    void sub32(Imm32 imm, Address address)
    {
        load32(address, ARM::S1);
        sub32(imm, ARM::S1);
        store32(ARM::S1, address);
    }

    void sub32(Address src, RegisterID dest)
    {
        load32(src, ARM::S1);
        sub32(ARM::S1, dest);
    }

    void xor32(RegisterID src, RegisterID dest)
    {
        m_assembler.eors_r(dest, dest, src);
    }

    void xor32(Imm32 imm, RegisterID dest)
    {
        m_assembler.eors_r(dest, dest, m_assembler.getImm(imm.m_value, ARM::S0));
    }

    void load32(ImplicitAddress address, RegisterID dest)
    {
        m_assembler.dataTransfer32(true, dest, address.base, address.offset);
    }

    void load32(BaseIndex address, RegisterID dest)
    {
        m_assembler.baseIndexTransfer32(true, dest, address.base, address.index, static_cast<int>(address.scale), address.offset);
    }

    DataLabel32 load32WithAddressOffsetPatch(Address address, RegisterID dest)
    {
        DataLabel32 dataLabel(this);
        m_assembler.ldr_un_imm(ARM::S0, 0);
        m_assembler.dtr_ur(true, dest, address.base, ARM::S0);
        return dataLabel;
    }

    Label loadPtrWithPatchToLEA(Address address, RegisterID dest)
    {
        Label label(this);
        load32(address, dest);
        return label;
    }

    void load16(BaseIndex address, RegisterID dest)
    {
        m_assembler.add_r(ARM::S0, address.base, m_assembler.lsl(address.index, address.scale));
        if (address.offset>=0)
            m_assembler.ldrh_u(dest, ARM::S0, ARMAssembler::getOp2Byte(address.offset));
        else
            m_assembler.ldrh_d(dest, ARM::S0, ARMAssembler::getOp2Byte(-address.offset));
    }

    DataLabel32 store32WithAddressOffsetPatch(RegisterID src, Address address)
    {
        DataLabel32 dataLabel(this);
        m_assembler.ldr_un_imm(ARM::S0, 0);
        m_assembler.dtr_ur(false, src, address.base, ARM::S0);
        return dataLabel;
    }

    void store32(RegisterID src, ImplicitAddress address)
    {
        m_assembler.dataTransfer32(false, src, address.base, address.offset);
    }

    void store32(RegisterID src, BaseIndex address)
    {
        m_assembler.baseIndexTransfer32(false, src, address.base, address.index, static_cast<int>(address.scale), address.offset);
    }

    void store32(Imm32 imm, ImplicitAddress address)
    {
        if (imm.m_isPointer)
            m_assembler.ldr_un_imm(ARM::S1, imm.m_value);
        else
            move(imm, ARM::S1);
        store32(ARM::S1, address);
    }

    void store32(RegisterID src, void* address)
    {
        m_assembler.ldr_un_imm(ARM::S0, reinterpret_cast<ARMWord>(address));
        m_assembler.dtr_u(false, src, ARM::S0, 0);
    }

    void store32(Imm32 imm, void* address)
    {
        m_assembler.ldr_un_imm(ARM::S0, reinterpret_cast<ARMWord>(address));
        if (imm.m_isPointer)
            m_assembler.ldr_un_imm(ARM::S1, imm.m_value);
        else
            m_assembler.moveImm(imm.m_value, ARM::S1);
        m_assembler.dtr_u(false, ARM::S1, ARM::S0, 0);
    }

    void pop(RegisterID dest)
    {
        m_assembler.pop_r(dest);
    }

    void push(RegisterID src)
    {
        m_assembler.push_r(src);
    }

    void push(Address address)
    {
        load32(address, ARM::S1);
        push(ARM::S1);
    }

    void push(Imm32 imm)
    {
        move(imm, ARM::S0);
        push(ARM::S0);
    }

    void move(Imm32 imm, RegisterID dest)
    {
        if (imm.m_isPointer)
            m_assembler.ldr_un_imm(dest, imm.m_value);
        else
            m_assembler.moveImm(imm.m_value, dest);
    }

    void move(RegisterID src, RegisterID dest)
    {
        m_assembler.mov_r(dest, src);
    }

    void move(ImmPtr imm, RegisterID dest)
    {
        move(Imm32(imm), dest);
    }

    void swap(RegisterID reg1, RegisterID reg2)
    {
        m_assembler.mov_r(ARM::S0, reg1);
        m_assembler.mov_r(reg1, reg2);
        m_assembler.mov_r(reg2, ARM::S0);
    }

    void signExtend32ToPtr(RegisterID src, RegisterID dest)
    {
        if (src != dest)
            move(src, dest);
    }

    void zeroExtend32ToPtr(RegisterID src, RegisterID dest)
    {
        if (src != dest)
            move(src, dest);
    }

    Jump branch32(Condition cond, RegisterID left, RegisterID right)
    {
        m_assembler.cmp_r(left, right);
        return Jump(m_assembler.jmp(ARMCondition(cond)));
    }

    Jump branch32(Condition cond, RegisterID left, Imm32 right)
    {
        if (right.m_isPointer) {
            m_assembler.ldr_un_imm(ARM::S0, right.m_value);
            m_assembler.cmp_r(left, ARM::S0);
        } else
            m_assembler.cmp_r(left, m_assembler.getImm(right.m_value, ARM::S0));
        return Jump(m_assembler.jmp(ARMCondition(cond)));
    }

    Jump branch32(Condition cond, RegisterID left, Address right)
    {
        load32(right, ARM::S1);
        return branch32(cond, left, ARM::S1);
    }

    Jump branch32(Condition cond, Address left, RegisterID right)
    {
        load32(left, ARM::S1);
        return branch32(cond, ARM::S1, right);
    }

    Jump branch32(Condition cond, Address left, Imm32 right)
    {
        load32(left, ARM::S1);
        return branch32(cond, ARM::S1, right);
    }

    Jump branch32(Condition cond, BaseIndex left, Imm32 right)
    {
        load32(left, ARM::S1);
        return branch32(cond, ARM::S1, right);
    }

    Jump branch16(Condition cond, BaseIndex left, RegisterID right)
    {
        UNUSED_PARAM(cond);
        UNUSED_PARAM(left);
        UNUSED_PARAM(right);
        ASSERT_NOT_REACHED();
        return jump();
    }

    Jump branch16(Condition cond, BaseIndex left, Imm32 right)
    {
        load16(left, ARM::S0);
        move(right, ARM::S1);
        m_assembler.cmp_r(ARM::S0, ARM::S1);
        return m_assembler.jmp(ARMCondition(cond));
    }

    Jump branchTest32(Condition cond, RegisterID reg, RegisterID mask)
    {
        ASSERT((cond == Zero) || (cond == NonZero));
        m_assembler.tst_r(reg, mask);
        return Jump(m_assembler.jmp(ARMCondition(cond)));
    }

    Jump branchTest32(Condition cond, RegisterID reg, Imm32 mask = Imm32(-1))
    {
        ASSERT((cond == Zero) || (cond == NonZero));
        ARMWord w = m_assembler.getImm(mask.m_value, ARM::S0, true);
        if (w & ARMAssembler::OP2_INV_IMM)
            m_assembler.bics_r(ARM::S0, reg, w & ~ARMAssembler::OP2_INV_IMM);
        else
            m_assembler.tst_r(reg, w);
        return Jump(m_assembler.jmp(ARMCondition(cond)));
    }

    Jump branchTest32(Condition cond, Address address, Imm32 mask = Imm32(-1))
    {
        load32(address, ARM::S1);
        return branchTest32(cond, ARM::S1, mask);
    }

    Jump branchTest32(Condition cond, BaseIndex address, Imm32 mask = Imm32(-1))
    {
        load32(address, ARM::S1);
        return branchTest32(cond, ARM::S1, mask);
    }

    Jump jump()
    {
        return Jump(m_assembler.jmp());
    }

    void jump(RegisterID target)
    {
        move(target, ARM::pc);
    }

    void jump(Address address)
    {
        load32(address, ARM::pc);
    }

    Jump branchAdd32(Condition cond, RegisterID src, RegisterID dest)
    {
        ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
        add32(src, dest);
        return Jump(m_assembler.jmp(ARMCondition(cond)));
    }

    Jump branchAdd32(Condition cond, Imm32 imm, RegisterID dest)
    {
        ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
        add32(imm, dest);
        return Jump(m_assembler.jmp(ARMCondition(cond)));
    }

    void mull32(RegisterID src1, RegisterID src2, RegisterID dest)
    {
        if (src1 == dest) {
            move(src1, ARM::S0);
            src1 = ARM::S0;
        }
        m_assembler.mull_r(ARM::S1, dest, src2, src1);
        m_assembler.cmp_r(ARM::S1, m_assembler.asr(dest, 31));
    }

    Jump branchMul32(Condition cond, RegisterID src, RegisterID dest)
    {
        ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
        if (cond == Overflow) {
            mull32(src, dest, dest);
            cond = NonZero;
        }
        else
            mul32(src, dest);
        return Jump(m_assembler.jmp(ARMCondition(cond)));
    }

    Jump branchMul32(Condition cond, Imm32 imm, RegisterID src, RegisterID dest)
    {
        ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
        if (cond == Overflow) {
            move(imm, ARM::S0);
            mull32(ARM::S0, src, dest);
            cond = NonZero;
        }
        else
            mul32(imm, src, dest);
        return Jump(m_assembler.jmp(ARMCondition(cond)));
    }

    Jump branchSub32(Condition cond, RegisterID src, RegisterID dest)
    {
        ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
        sub32(src, dest);
        return Jump(m_assembler.jmp(ARMCondition(cond)));
    }

    Jump branchSub32(Condition cond, Imm32 imm, RegisterID dest)
    {
        ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
        sub32(imm, dest);
        return Jump(m_assembler.jmp(ARMCondition(cond)));
    }

    void breakpoint()
    {
        m_assembler.bkpt(0);
    }

    Call nearCall()
    {
        prepareCall();
        return Call(m_assembler.jmp(), Call::LinkableNear);
    }

    Call call(RegisterID target)
    {
        prepareCall();
        move(ARM::pc, target);
        JmpSrc jmpSrc;
        return Call(jmpSrc, Call::None);
    }

    void call(Address address)
    {
        call32(address.base, address.offset);
    }

    void ret()
    {
        pop(ARM::pc);
    }

    void set32(Condition cond, RegisterID left, RegisterID right, RegisterID dest)
    {
        m_assembler.cmp_r(left, right);
        m_assembler.mov_r(dest, ARMAssembler::getOp2(0));
        m_assembler.mov_r(dest, ARMAssembler::getOp2(1), ARMCondition(cond));
    }

    void set32(Condition cond, RegisterID left, Imm32 right, RegisterID dest)
    {
        m_assembler.cmp_r(left, m_assembler.getImm(right.m_value, ARM::S0));
        m_assembler.mov_r(dest, ARMAssembler::getOp2(0));
        m_assembler.mov_r(dest, ARMAssembler::getOp2(1), ARMCondition(cond));
    }

    void setTest32(Condition cond, Address address, Imm32 mask, RegisterID dest)
    {
        load32(address, ARM::S1);
        if (mask.m_value == -1)
            m_assembler.cmp_r(0, ARM::S1);
        else
            m_assembler.tst_r(ARM::S1, m_assembler.getImm(mask.m_value, ARM::S0));
        m_assembler.mov_r(dest, ARMAssembler::getOp2(0));
        m_assembler.mov_r(dest, ARMAssembler::getOp2(1), ARMCondition(cond));
    }

    void add32(Imm32 imm, RegisterID src, RegisterID dest)
    {
        m_assembler.add_r(dest, src, m_assembler.getImm(imm.m_value, ARM::S0));
    }

    void add32(Imm32 imm, AbsoluteAddress address)
    {
        m_assembler.ldr_un_imm(ARM::S1, reinterpret_cast<ARMWord>(address.m_ptr));
        m_assembler.dtr_u(true, ARM::S1, ARM::S1, 0);
        add32(imm, ARM::S1);
        m_assembler.ldr_un_imm(ARM::S0, reinterpret_cast<ARMWord>(address.m_ptr));
        m_assembler.dtr_u(false, ARM::S1, ARM::S0, 0);
    }

    void sub32(Imm32 imm, AbsoluteAddress address)
    {
        m_assembler.ldr_un_imm(ARM::S1, reinterpret_cast<ARMWord>(address.m_ptr));
        m_assembler.dtr_u(true, ARM::S1, ARM::S1, 0);
        sub32(imm, ARM::S1);
        m_assembler.ldr_un_imm(ARM::S0, reinterpret_cast<ARMWord>(address.m_ptr));
        m_assembler.dtr_u(false, ARM::S1, ARM::S0, 0);
    }

    void load32(void* address, RegisterID dest)
    {
        m_assembler.ldr_un_imm(ARM::S0, reinterpret_cast<ARMWord>(address));
        m_assembler.dtr_u(true, dest, ARM::S0, 0);
    }

    Jump branch32(Condition cond, AbsoluteAddress left, RegisterID right)
    {
        load32(left.m_ptr, ARM::S1);
        return branch32(cond, ARM::S1, right);
    }

    Jump branch32(Condition cond, AbsoluteAddress left, Imm32 right)
    {
        load32(left.m_ptr, ARM::S1);
        return branch32(cond, ARM::S1, right);
    }

    Call call()
    {
        prepareCall();
        return Call(m_assembler.jmp(), Call::Linkable);
    }

    Call tailRecursiveCall()
    {
        return Call::fromTailJump(jump());
    }

    Call makeTailRecursiveCall(Jump oldJump)
    {
        return Call::fromTailJump(oldJump);
    }

    DataLabelPtr moveWithPatch(ImmPtr initialValue, RegisterID dest)
    {
        DataLabelPtr dataLabel(this);
        m_assembler.ldr_un_imm(dest, reinterpret_cast<ARMWord>(initialValue.m_value));
        return dataLabel;
    }

    Jump branchPtrWithPatch(Condition cond, RegisterID left, DataLabelPtr& dataLabel, ImmPtr initialRightValue = ImmPtr(0))
    {
        dataLabel = moveWithPatch(initialRightValue, ARM::S1);
        Jump jump = branch32(cond, left, ARM::S1);
        jump.enableLatePatch();
        return jump;
    }

    Jump branchPtrWithPatch(Condition cond, Address left, DataLabelPtr& dataLabel, ImmPtr initialRightValue = ImmPtr(0))
    {
        load32(left, ARM::S1);
        dataLabel = moveWithPatch(initialRightValue, ARM::S0);
        Jump jump = branch32(cond, ARM::S0, ARM::S1);
        jump.enableLatePatch();
        return jump;
    }

    DataLabelPtr storePtrWithPatch(ImmPtr initialValue, ImplicitAddress address)
    {
        DataLabelPtr dataLabel = moveWithPatch(initialValue, ARM::S1);
        store32(ARM::S1, address);
        return dataLabel;
    }

    DataLabelPtr storePtrWithPatch(ImplicitAddress address)
    {
        return storePtrWithPatch(ImmPtr(0), address);
    }

    // Floating point operators
    bool supportsFloatingPoint() const
    {
        // FIXME: should be a dynamic test: VFP, FPA, or nothing
        return false;
    }

    bool supportsFloatingPointTruncate() const
    {
        return false;
    }

    void loadDouble(ImplicitAddress address, FPRegisterID dest)
    {
        m_assembler.doubleTransfer(true, dest, address.base, address.offset);
    }

    void storeDouble(FPRegisterID src, ImplicitAddress address)
    {
        m_assembler.doubleTransfer(false, src, address.base, address.offset);
    }

    void addDouble(FPRegisterID src, FPRegisterID dest)
    {
        m_assembler.faddd_r(dest, dest, src);
    }

    void addDouble(Address src, FPRegisterID dest)
    {
        loadDouble(src, ARM::SD0);
        addDouble(ARM::SD0, dest);
    }

    void subDouble(FPRegisterID src, FPRegisterID dest)
    {
        m_assembler.fsubd_r(dest, dest, src);
    }

    void subDouble(Address src, FPRegisterID dest)
    {
        loadDouble(src, ARM::SD0);
        subDouble(ARM::SD0, dest);
    }

    void mulDouble(FPRegisterID src, FPRegisterID dest)
    {
        m_assembler.fmuld_r(dest, dest, src);
    }

    void mulDouble(Address src, FPRegisterID dest)
    {
        loadDouble(src, ARM::SD0);
        mulDouble(ARM::SD0, dest);
    }

    void convertInt32ToDouble(RegisterID src, FPRegisterID dest)
    {
        m_assembler.fmsr_r(dest, src);
        m_assembler.fsitod_r(dest, dest);
    }

    Jump branchDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right)
    {
        m_assembler.fcmpd_r(left, right);
        m_assembler.fmstat();
        return Jump(m_assembler.jmp(static_cast<ARMAssembler::Condition>(cond)));
    }

    // Truncates 'src' to an integer, and places the resulting 'dest'.
    // If the result is not representable as a 32 bit value, branch.
    // May also branch for some values that are representable in 32 bits
    // (specifically, in this case, INT_MIN).
    Jump branchTruncateDoubleToInt32(FPRegisterID src, RegisterID dest)
    {
        UNUSED_PARAM(src);
        UNUSED_PARAM(dest);
        ASSERT_NOT_REACHED();
        return jump();
    }

protected:
    ARMAssembler::Condition ARMCondition(Condition cond)
    {
        return static_cast<ARMAssembler::Condition>(cond);
    }

    void prepareCall()
    {
        m_assembler.ensureSpace(3 * sizeof(ARMWord), sizeof(ARMWord));

        // S0 might be used for parameter passing
        m_assembler.add_r(ARM::S1, ARM::pc, ARMAssembler::OP2_IMM | 0x4);
        m_assembler.push_r(ARM::S1);
    }

    void call32(RegisterID base, int32_t offset)
    {
        if (base == ARM::sp)
            offset += 4;

        if (offset >= 0) {
            if (offset <= 0xfff) {
                prepareCall();
                m_assembler.dtr_u(true, ARM::pc, base, offset);
            } else if (offset <= 0xfffff) {
                m_assembler.add_r(ARM::S0, base, ARMAssembler::OP2_IMM | (offset >> 12) | (10 << 8));
                prepareCall();
                m_assembler.dtr_u(true, ARM::pc, ARM::S0, offset & 0xfff);
            } else {
                ARMWord reg = m_assembler.getImm(offset, ARM::S0);
                prepareCall();
                m_assembler.dtr_ur(true, ARM::pc, base, reg);
            }
        } else  {
            offset = -offset;
            if (offset <= 0xfff) {
                prepareCall();
                m_assembler.dtr_d(true, ARM::pc, base, offset);
            } else if (offset <= 0xfffff) {
                m_assembler.sub_r(ARM::S0, base, ARMAssembler::OP2_IMM | (offset >> 12) | (10 << 8));
                prepareCall();
                m_assembler.dtr_d(true, ARM::pc, ARM::S0, offset & 0xfff);
            } else {
                ARMWord reg = m_assembler.getImm(offset, ARM::S0);
                prepareCall();
                m_assembler.dtr_dr(true, ARM::pc, base, reg);
            }
        }
    }

private:
    friend class LinkBuffer;
    friend class RepatchBuffer;

    static void linkCall(void* code, Call call, FunctionPtr function)
    {
        ARMAssembler::linkCall(code, call.m_jmp, function.value());
    }

    static void repatchCall(CodeLocationCall call, CodeLocationLabel destination)
    {
        ARMAssembler::relinkCall(call.dataLocation(), destination.executableAddress());
    }

    static void repatchCall(CodeLocationCall call, FunctionPtr destination)
    {
        ARMAssembler::relinkCall(call.dataLocation(), destination.executableAddress());
    }

};

}

#endif

#endif // MacroAssemblerARM_h