1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
|
/*
* Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
* Copyright (C) 2003, 2007, 2008, 2009 Apple Inc. All rights reserved.
* Copyright (C) 2003 Peter Kelly (pmk@post.com)
* Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "config.h"
#include "JSArray.h"
#include "ArrayPrototype.h"
#include "CachedCall.h"
#include "Error.h"
#include "Executable.h"
#include "PropertyNameArray.h"
#include <wtf/AVLTree.h>
#include <wtf/Assertions.h>
#include <wtf/OwnPtr.h>
#include <Operations.h>
using namespace std;
using namespace WTF;
namespace JSC {
ASSERT_CLASS_FITS_IN_CELL(JSArray);
// Overview of JSArray
//
// Properties of JSArray objects may be stored in one of three locations:
// * The regular JSObject property map.
// * A storage vector.
// * A sparse map of array entries.
//
// Properties with non-numeric identifiers, with identifiers that are not representable
// as an unsigned integer, or where the value is greater than MAX_ARRAY_INDEX
// (specifically, this is only one property - the value 0xFFFFFFFFU as an unsigned 32-bit
// integer) are not considered array indices and will be stored in the JSObject property map.
//
// All properties with a numeric identifer, representable as an unsigned integer i,
// where (i <= MAX_ARRAY_INDEX), are an array index and will be stored in either the
// storage vector or the sparse map. An array index i will be handled in the following
// fashion:
//
// * Where (i < MIN_SPARSE_ARRAY_INDEX) the value will be stored in the storage vector.
// * Where (MIN_SPARSE_ARRAY_INDEX <= i <= MAX_STORAGE_VECTOR_INDEX) the value will either
// be stored in the storage vector or in the sparse array, depending on the density of
// data that would be stored in the vector (a vector being used where at least
// (1 / minDensityMultiplier) of the entries would be populated).
// * Where (MAX_STORAGE_VECTOR_INDEX < i <= MAX_ARRAY_INDEX) the value will always be stored
// in the sparse array.
// The definition of MAX_STORAGE_VECTOR_LENGTH is dependant on the definition storageSize
// function below - the MAX_STORAGE_VECTOR_LENGTH limit is defined such that the storage
// size calculation cannot overflow. (sizeof(ArrayStorage) - sizeof(JSValue)) +
// (vectorLength * sizeof(JSValue)) must be <= 0xFFFFFFFFU (which is maximum value of size_t).
#define MAX_STORAGE_VECTOR_LENGTH static_cast<unsigned>((0xFFFFFFFFU - (sizeof(ArrayStorage) - sizeof(JSValue))) / sizeof(JSValue))
// These values have to be macros to be used in max() and min() without introducing
// a PIC branch in Mach-O binaries, see <rdar://problem/5971391>.
#define MIN_SPARSE_ARRAY_INDEX 10000U
#define MAX_STORAGE_VECTOR_INDEX (MAX_STORAGE_VECTOR_LENGTH - 1)
// 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer.
#define MAX_ARRAY_INDEX 0xFFFFFFFEU
// The value BASE_VECTOR_LEN is the maximum number of vector elements we'll allocate
// for an array that was created with a sepcified length (e.g. a = new Array(123))
#define BASE_VECTOR_LEN 4U
// The upper bound to the size we'll grow a zero length array when the first element
// is added.
#define FIRST_VECTOR_GROW 4U
// Our policy for when to use a vector and when to use a sparse map.
// For all array indices under MIN_SPARSE_ARRAY_INDEX, we always use a vector.
// When indices greater than MIN_SPARSE_ARRAY_INDEX are involved, we use a vector
// as long as it is 1/8 full. If more sparse than that, we use a map.
static const unsigned minDensityMultiplier = 8;
const ClassInfo JSArray::info = {"Array", 0, 0, 0};
// We keep track of the size of the last array after it was grown. We use this
// as a simple heuristic for as the value to grow the next array from size 0.
// This value is capped by the constant FIRST_VECTOR_GROW defined above.
static unsigned lastArraySize = 0;
static inline size_t storageSize(unsigned vectorLength)
{
ASSERT(vectorLength <= MAX_STORAGE_VECTOR_LENGTH);
// MAX_STORAGE_VECTOR_LENGTH is defined such that provided (vectorLength <= MAX_STORAGE_VECTOR_LENGTH)
// - as asserted above - the following calculation cannot overflow.
size_t size = (sizeof(ArrayStorage) - sizeof(JSValue)) + (vectorLength * sizeof(JSValue));
// Assertion to detect integer overflow in previous calculation (should not be possible, provided that
// MAX_STORAGE_VECTOR_LENGTH is correctly defined).
ASSERT(((size - (sizeof(ArrayStorage) - sizeof(JSValue))) / sizeof(JSValue) == vectorLength) && (size >= (sizeof(ArrayStorage) - sizeof(JSValue))));
return size;
}
static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues)
{
return length / minDensityMultiplier <= numValues;
}
#if !CHECK_ARRAY_CONSISTENCY
inline void JSArray::checkConsistency(ConsistencyCheckType)
{
}
#endif
JSArray::JSArray(NonNullPassRefPtr<Structure> structure)
: JSObject(structure)
{
unsigned initialCapacity = 0;
ArrayStorage* storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity)));
m_indexBias = 0;
setArrayStorage(storage);
m_vectorLength = initialCapacity;
checkConsistency();
}
JSArray::JSArray(NonNullPassRefPtr<Structure> structure, unsigned initialLength, ArrayCreationMode creationMode)
: JSObject(structure)
{
unsigned initialCapacity;
if (creationMode == CreateCompact)
initialCapacity = initialLength;
else
initialCapacity = min(BASE_VECTOR_LEN, MIN_SPARSE_ARRAY_INDEX);
ArrayStorage* storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(initialCapacity)));
storage->m_length = initialLength;
m_indexBias = 0;
m_vectorLength = initialCapacity;
setArrayStorage(storage);
storage->m_sparseValueMap = 0;
storage->subclassData = 0;
storage->reportedMapCapacity = 0;
if (creationMode == CreateCompact) {
#if CHECK_ARRAY_CONSISTENCY
storage->m_inCompactInitialization = !!initialCapacity;
#endif
storage->m_length = 0;
storage->m_numValuesInVector = initialCapacity;
} else {
#if CHECK_ARRAY_CONSISTENCY
storage->m_inCompactInitialization = false;
#endif
storage->m_length = initialLength;
storage->m_numValuesInVector = 0;
JSValue* vector = m_vector;
for (size_t i = 0; i < initialCapacity; ++i)
vector[i] = JSValue();
}
checkConsistency();
Heap::heap(this)->reportExtraMemoryCost(initialCapacity * sizeof(JSValue));
}
JSArray::JSArray(NonNullPassRefPtr<Structure> structure, const ArgList& list)
: JSObject(structure)
{
unsigned initialCapacity = list.size();
ArrayStorage* storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(initialCapacity)));
m_indexBias = 0;
storage->m_length = initialCapacity;
m_vectorLength = initialCapacity;
storage->m_numValuesInVector = initialCapacity;
storage->m_sparseValueMap = 0;
storage->subclassData = 0;
storage->reportedMapCapacity = 0;
#if CHECK_ARRAY_CONSISTENCY
storage->m_inCompactInitialization = false;
#endif
setArrayStorage(storage);
size_t i = 0;
JSValue* vector = m_vector;
ArgList::const_iterator end = list.end();
for (ArgList::const_iterator it = list.begin(); it != end; ++it, ++i)
vector[i] = *it;
checkConsistency();
Heap::heap(this)->reportExtraMemoryCost(storageSize(initialCapacity));
}
JSArray::~JSArray()
{
ASSERT(vptr() == JSGlobalData::jsArrayVPtr);
checkConsistency(DestructorConsistencyCheck);
ArrayStorage* storage = arrayStorage();
delete storage->m_sparseValueMap;
char* realStorage = reinterpret_cast<char*>(storage) - (m_indexBias * sizeof(JSValue));
fastFree(realStorage);
}
bool JSArray::getOwnPropertySlot(ExecState* exec, unsigned i, PropertySlot& slot)
{
ArrayStorage* storage = arrayStorage();
if (i >= storage->m_length) {
if (i > MAX_ARRAY_INDEX)
return getOwnPropertySlot(exec, Identifier::from(exec, i), slot);
return false;
}
if (i < m_vectorLength) {
JSValue& valueSlot = m_vector[i];
if (valueSlot) {
slot.setValueSlot(&valueSlot);
return true;
}
} else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
if (i >= MIN_SPARSE_ARRAY_INDEX) {
SparseArrayValueMap::iterator it = map->find(i);
if (it != map->end()) {
slot.setValueSlot(&it->second);
return true;
}
}
}
return JSObject::getOwnPropertySlot(exec, Identifier::from(exec, i), slot);
}
bool JSArray::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
{
if (propertyName == exec->propertyNames().length) {
slot.setValue(jsNumber(exec, length()));
return true;
}
bool isArrayIndex;
unsigned i = propertyName.toArrayIndex(&isArrayIndex);
if (isArrayIndex)
return JSArray::getOwnPropertySlot(exec, i, slot);
return JSObject::getOwnPropertySlot(exec, propertyName, slot);
}
bool JSArray::getOwnPropertyDescriptor(ExecState* exec, const Identifier& propertyName, PropertyDescriptor& descriptor)
{
if (propertyName == exec->propertyNames().length) {
descriptor.setDescriptor(jsNumber(exec, length()), DontDelete | DontEnum);
return true;
}
ArrayStorage* storage = arrayStorage();
bool isArrayIndex;
unsigned i = propertyName.toArrayIndex(&isArrayIndex);
if (isArrayIndex) {
if (i >= storage->m_length)
return false;
if (i < m_vectorLength) {
JSValue& value = m_vector[i];
if (value) {
descriptor.setDescriptor(value, 0);
return true;
}
} else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
if (i >= MIN_SPARSE_ARRAY_INDEX) {
SparseArrayValueMap::iterator it = map->find(i);
if (it != map->end()) {
descriptor.setDescriptor(it->second, 0);
return true;
}
}
}
}
return JSObject::getOwnPropertyDescriptor(exec, propertyName, descriptor);
}
// ECMA 15.4.5.1
void JSArray::put(ExecState* exec, const Identifier& propertyName, JSValue value, PutPropertySlot& slot)
{
bool isArrayIndex;
unsigned i = propertyName.toArrayIndex(&isArrayIndex);
if (isArrayIndex) {
put(exec, i, value);
return;
}
if (propertyName == exec->propertyNames().length) {
unsigned newLength = value.toUInt32(exec);
if (value.toNumber(exec) != static_cast<double>(newLength)) {
throwError(exec, createRangeError(exec, "Invalid array length."));
return;
}
setLength(newLength);
return;
}
JSObject::put(exec, propertyName, value, slot);
}
void JSArray::put(ExecState* exec, unsigned i, JSValue value)
{
checkConsistency();
ArrayStorage* storage = arrayStorage();
unsigned length = storage->m_length;
if (i >= length && i <= MAX_ARRAY_INDEX) {
length = i + 1;
storage->m_length = length;
}
if (i < m_vectorLength) {
JSValue& valueSlot = m_vector[i];
if (valueSlot) {
valueSlot = value;
checkConsistency();
return;
}
valueSlot = value;
++storage->m_numValuesInVector;
checkConsistency();
return;
}
putSlowCase(exec, i, value);
}
NEVER_INLINE void JSArray::putSlowCase(ExecState* exec, unsigned i, JSValue value)
{
ArrayStorage* storage = arrayStorage();
SparseArrayValueMap* map = storage->m_sparseValueMap;
if (i >= MIN_SPARSE_ARRAY_INDEX) {
if (i > MAX_ARRAY_INDEX) {
PutPropertySlot slot;
put(exec, Identifier::from(exec, i), value, slot);
return;
}
// We miss some cases where we could compact the storage, such as a large array that is being filled from the end
// (which will only be compacted as we reach indices that are less than MIN_SPARSE_ARRAY_INDEX) - but this makes the check much faster.
if ((i > MAX_STORAGE_VECTOR_INDEX) || !isDenseEnoughForVector(i + 1, storage->m_numValuesInVector + 1)) {
if (!map) {
map = new SparseArrayValueMap;
storage->m_sparseValueMap = map;
}
pair<SparseArrayValueMap::iterator, bool> result = map->add(i, value);
if (!result.second) { // pre-existing entry
result.first->second = value;
return;
}
size_t capacity = map->capacity();
if (capacity != storage->reportedMapCapacity) {
Heap::heap(this)->reportExtraMemoryCost((capacity - storage->reportedMapCapacity) * (sizeof(unsigned) + sizeof(JSValue)));
storage->reportedMapCapacity = capacity;
}
return;
}
}
// We have decided that we'll put the new item into the vector.
// Fast case is when there is no sparse map, so we can increase the vector size without moving values from it.
if (!map || map->isEmpty()) {
if (increaseVectorLength(i + 1)) {
m_vector[i] = value;
++arrayStorage()->m_numValuesInVector;
checkConsistency();
} else
throwOutOfMemoryError(exec);
return;
}
// Decide how many values it would be best to move from the map.
unsigned newNumValuesInVector = storage->m_numValuesInVector + 1;
unsigned newVectorLength = getNewVectorLength(i + 1);
for (unsigned j = max(m_vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
newNumValuesInVector += map->contains(j);
if (i >= MIN_SPARSE_ARRAY_INDEX)
newNumValuesInVector -= map->contains(i);
if (isDenseEnoughForVector(newVectorLength, newNumValuesInVector)) {
unsigned proposedNewNumValuesInVector = newNumValuesInVector;
// If newVectorLength is already the maximum - MAX_STORAGE_VECTOR_LENGTH - then do not attempt to grow any further.
while (newVectorLength < MAX_STORAGE_VECTOR_LENGTH) {
unsigned proposedNewVectorLength = getNewVectorLength(newVectorLength + 1);
for (unsigned j = max(newVectorLength, MIN_SPARSE_ARRAY_INDEX); j < proposedNewVectorLength; ++j)
proposedNewNumValuesInVector += map->contains(j);
if (!isDenseEnoughForVector(proposedNewVectorLength, proposedNewNumValuesInVector))
break;
newVectorLength = proposedNewVectorLength;
newNumValuesInVector = proposedNewNumValuesInVector;
}
}
int baseBias = m_indexBias * sizeof(JSValue);
char* baseStorage = reinterpret_cast<char*>(storage - baseBias);
if (!tryFastRealloc(baseStorage, storageSize(newVectorLength + m_indexBias)).getValue(baseStorage)) {
throwOutOfMemoryError(exec);
return;
}
storage = reinterpret_cast<ArrayStorage*>(baseStorage + baseBias);
setArrayStorage(storage);
unsigned vectorLength = m_vectorLength;
if (newNumValuesInVector == storage->m_numValuesInVector + 1) {
for (unsigned j = vectorLength; j < newVectorLength; ++j)
m_vector[j] = JSValue();
if (i > MIN_SPARSE_ARRAY_INDEX)
map->remove(i);
} else {
for (unsigned j = vectorLength; j < max(vectorLength, MIN_SPARSE_ARRAY_INDEX); ++j)
m_vector[j] = JSValue();
for (unsigned j = max(vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
m_vector[j] = map->take(j);
}
ASSERT(i < newVectorLength);
m_vectorLength = newVectorLength;
storage->m_numValuesInVector = newNumValuesInVector;
m_vector[i] = value;
checkConsistency();
Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
}
bool JSArray::deleteProperty(ExecState* exec, const Identifier& propertyName)
{
bool isArrayIndex;
unsigned i = propertyName.toArrayIndex(&isArrayIndex);
if (isArrayIndex)
return deleteProperty(exec, i);
if (propertyName == exec->propertyNames().length)
return false;
return JSObject::deleteProperty(exec, propertyName);
}
bool JSArray::deleteProperty(ExecState* exec, unsigned i)
{
checkConsistency();
ArrayStorage* storage = arrayStorage();
if (i < m_vectorLength) {
JSValue& valueSlot = m_vector[i];
if (!valueSlot) {
checkConsistency();
return false;
}
valueSlot = JSValue();
--storage->m_numValuesInVector;
checkConsistency();
return true;
}
if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
if (i >= MIN_SPARSE_ARRAY_INDEX) {
SparseArrayValueMap::iterator it = map->find(i);
if (it != map->end()) {
map->remove(it);
checkConsistency();
return true;
}
}
}
checkConsistency();
if (i > MAX_ARRAY_INDEX)
return deleteProperty(exec, Identifier::from(exec, i));
return false;
}
void JSArray::getOwnPropertyNames(ExecState* exec, PropertyNameArray& propertyNames, EnumerationMode mode)
{
// FIXME: Filling PropertyNameArray with an identifier for every integer
// is incredibly inefficient for large arrays. We need a different approach,
// which almost certainly means a different structure for PropertyNameArray.
ArrayStorage* storage = arrayStorage();
unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
for (unsigned i = 0; i < usedVectorLength; ++i) {
if (m_vector[i])
propertyNames.add(Identifier::from(exec, i));
}
if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
SparseArrayValueMap::iterator end = map->end();
for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
propertyNames.add(Identifier::from(exec, it->first));
}
if (mode == IncludeDontEnumProperties)
propertyNames.add(exec->propertyNames().length);
JSObject::getOwnPropertyNames(exec, propertyNames, mode);
}
ALWAYS_INLINE unsigned JSArray::getNewVectorLength(unsigned desiredLength)
{
ASSERT(desiredLength <= MAX_STORAGE_VECTOR_LENGTH);
unsigned increasedLength;
unsigned length = arrayStorage()->m_length;
if (desiredLength < length)
increasedLength = length;
else if (!m_vectorLength)
increasedLength = max(desiredLength, lastArraySize);
else {
// Mathematically equivalent to:
// increasedLength = (newLength * 3 + 1) / 2;
// or:
// increasedLength = (unsigned)ceil(newLength * 1.5));
// This form is not prone to internal overflow.
increasedLength = desiredLength + (desiredLength >> 1) + (desiredLength & 1);
}
ASSERT(increasedLength >= desiredLength);
lastArraySize = min(increasedLength, FIRST_VECTOR_GROW);
return min(increasedLength, MAX_STORAGE_VECTOR_LENGTH);
}
bool JSArray::increaseVectorLength(unsigned newLength)
{
// This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
// to the vector. Callers have to account for that, because they can do it more efficiently.
ArrayStorage* storage = arrayStorage();
unsigned vectorLength = m_vectorLength;
ASSERT(newLength > vectorLength);
ASSERT(newLength <= MAX_STORAGE_VECTOR_INDEX);
unsigned newVectorLength = getNewVectorLength(newLength);
int baseBias = m_indexBias * sizeof(JSValue);
char* baseStorage = reinterpret_cast<char*>(storage) - baseBias;
if (!tryFastRealloc(baseStorage, storageSize(newVectorLength + m_indexBias)).getValue(baseStorage))
return false;
storage = reinterpret_cast<ArrayStorage*>(baseStorage + baseBias);
setArrayStorage(storage);
JSValue* vector = m_vector;
for (unsigned i = vectorLength; i < newVectorLength; ++i)
vector[i] = JSValue();
m_vectorLength = newVectorLength;
Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
return true;
}
bool JSArray::increaseVectorPrefixLength(unsigned newLength)
{
// This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
// to the vector. Callers have to account for that, because they can do it more efficiently.
ArrayStorage* storage = arrayStorage();
ArrayStorage* newStorage;
unsigned vectorLength = m_vectorLength;
ASSERT(newLength > vectorLength);
ASSERT(newLength <= MAX_STORAGE_VECTOR_INDEX);
unsigned newVectorLength = getNewVectorLength(newLength);
char* baseStorage = reinterpret_cast<char*>(storage) - (m_indexBias * sizeof(JSValue));
char* newBaseStorage = reinterpret_cast<char*>(fastMalloc(storageSize(newVectorLength + m_indexBias)));
if (!newBaseStorage)
return false;
m_indexBias += newVectorLength - newLength;
int newStorageOffset = m_indexBias * sizeof(JSValue);
newStorage = reinterpret_cast<ArrayStorage*>(newBaseStorage + newStorageOffset);
memcpy(newStorage, storage, storageSize(0));
memcpy(&newStorage->m_vector[newLength - m_vectorLength], &storage->m_vector[0], storage->m_length * sizeof(JSValue));
m_vectorLength = newLength;
fastFree(baseStorage);
setArrayStorage(newStorage);
Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
return true;
}
void JSArray::setLength(unsigned newLength)
{
#if CHECK_ARRAY_CONSISTENCY
if (!m_storage->m_inCompactInitialization)
checkConsistency();
else
m_storage->m_inCompactInitialization = false;
#endif
ArrayStorage* storage = arrayStorage();
unsigned length = storage->m_length;
if (newLength < length) {
unsigned usedVectorLength = min(length, m_vectorLength);
for (unsigned i = newLength; i < usedVectorLength; ++i) {
JSValue& valueSlot = m_vector[i];
bool hadValue = valueSlot;
valueSlot = JSValue();
storage->m_numValuesInVector -= hadValue;
}
if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
SparseArrayValueMap copy = *map;
SparseArrayValueMap::iterator end = copy.end();
for (SparseArrayValueMap::iterator it = copy.begin(); it != end; ++it) {
if (it->first >= newLength)
map->remove(it->first);
}
if (map->isEmpty()) {
delete map;
storage->m_sparseValueMap = 0;
}
}
}
storage->m_length = newLength;
checkConsistency();
}
JSValue JSArray::pop()
{
checkConsistency();
ArrayStorage* storage = arrayStorage();
unsigned length = storage->m_length;
if (!length)
return jsUndefined();
--length;
JSValue result;
if (length < m_vectorLength) {
JSValue& valueSlot = m_vector[length];
if (valueSlot) {
--storage->m_numValuesInVector;
result = valueSlot;
valueSlot = JSValue();
} else
result = jsUndefined();
} else {
result = jsUndefined();
if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
SparseArrayValueMap::iterator it = map->find(length);
if (it != map->end()) {
result = it->second;
map->remove(it);
if (map->isEmpty()) {
delete map;
storage->m_sparseValueMap = 0;
}
}
}
}
storage->m_length = length;
checkConsistency();
return result;
}
void JSArray::push(ExecState* exec, JSValue value)
{
checkConsistency();
ArrayStorage* storage = arrayStorage();
if (storage->m_length < m_vectorLength) {
m_vector[storage->m_length] = value;
++storage->m_numValuesInVector;
++storage->m_length;
checkConsistency();
return;
}
if (storage->m_length < MIN_SPARSE_ARRAY_INDEX) {
SparseArrayValueMap* map = storage->m_sparseValueMap;
if (!map || map->isEmpty()) {
if (increaseVectorLength(storage->m_length + 1)) {
storage = arrayStorage();
m_vector[storage->m_length] = value;
++storage->m_numValuesInVector;
++storage->m_length;
checkConsistency();
return;
}
checkConsistency();
throwOutOfMemoryError(exec);
return;
}
}
putSlowCase(exec, storage->m_length++, value);
}
void JSArray::shiftCount(ExecState* exec, int count)
{
ASSERT(count > 0);
ArrayStorage* storage = arrayStorage();
unsigned oldLength = storage->m_length;
if (!oldLength)
return;
if (oldLength != storage->m_numValuesInVector) {
// If m_length and m_numValuesInVector aren't the same, we have a sparse vector
// which means we need to go through each entry looking for the the "empty"
// slots and then fill them with possible properties. See ECMA spec.
// 15.4.4.9 steps 11 through 13.
for (unsigned i = count; i < oldLength; ++i) {
if ((i >= m_vectorLength) || (!m_vector[i])) {
PropertySlot slot(this);
JSValue p = prototype();
if ((!p.isNull()) && (asObject(p)->getPropertySlot(exec, i, slot)))
put(exec, i, slot.getValue(exec, i));
}
}
storage = arrayStorage(); // The put() above could have grown the vector and realloc'ed storage.
// Need to decrement numValuesInvector based on number of real entries
for (unsigned i = 0; i < (unsigned)count; ++i)
if ((i < m_vectorLength) && (m_vector[i]))
--storage->m_numValuesInVector;
} else
storage->m_numValuesInVector -= count;
storage->m_length -= count;
if (m_vectorLength) {
count = min(m_vectorLength, (unsigned)count);
m_vectorLength -= count;
if (m_vectorLength) {
char* newBaseStorage = reinterpret_cast<char*>(storage) + count * sizeof(JSValue);
memmove(newBaseStorage, storage, storageSize(0));
storage = reinterpret_cast<ArrayStorage*>(newBaseStorage);
m_indexBias += count;
setArrayStorage(storage);
}
}
}
void JSArray::unshiftCount(ExecState* exec, int count)
{
ArrayStorage* storage = arrayStorage();
ASSERT(m_indexBias >= 0);
ASSERT(count >= 0);
unsigned length = storage->m_length;
if (length != storage->m_numValuesInVector) {
// If m_length and m_numValuesInVector aren't the same, we have a sparse vector
// which means we need to go through each entry looking for the the "empty"
// slots and then fill them with possible properties. See ECMA spec.
// 15.4.4.13 steps 8 through 10.
for (unsigned i = 0; i < length; ++i) {
if ((i >= m_vectorLength) || (!m_vector[i])) {
PropertySlot slot(this);
JSValue p = prototype();
if ((!p.isNull()) && (asObject(p)->getPropertySlot(exec, i, slot)))
put(exec, i, slot.getValue(exec, i));
}
}
}
storage = arrayStorage(); // The put() above could have grown the vector and realloc'ed storage.
if (m_indexBias >= count) {
m_indexBias -= count;
char* newBaseStorage = reinterpret_cast<char*>(storage) - count * sizeof(JSValue);
memmove(newBaseStorage, storage, storageSize(0));
storage = reinterpret_cast<ArrayStorage*>(newBaseStorage);
setArrayStorage(storage);
m_vectorLength += count;
} else if ((!m_indexBias) && (!increaseVectorPrefixLength(m_vectorLength + count))) {
throwOutOfMemoryError(exec);
return;
}
}
void JSArray::markChildren(MarkStack& markStack)
{
markChildrenDirect(markStack);
}
static int compareNumbersForQSort(const void* a, const void* b)
{
double da = static_cast<const JSValue*>(a)->uncheckedGetNumber();
double db = static_cast<const JSValue*>(b)->uncheckedGetNumber();
return (da > db) - (da < db);
}
typedef std::pair<JSValue, UString> ValueStringPair;
static int compareByStringPairForQSort(const void* a, const void* b)
{
const ValueStringPair* va = static_cast<const ValueStringPair*>(a);
const ValueStringPair* vb = static_cast<const ValueStringPair*>(b);
return codePointCompare(va->second, vb->second);
}
void JSArray::sortNumeric(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
{
ArrayStorage* storage = arrayStorage();
unsigned lengthNotIncludingUndefined = compactForSorting();
if (storage->m_sparseValueMap) {
throwOutOfMemoryError(exec);
return;
}
if (!lengthNotIncludingUndefined)
return;
bool allValuesAreNumbers = true;
size_t size = storage->m_numValuesInVector;
for (size_t i = 0; i < size; ++i) {
if (!m_vector[i].isNumber()) {
allValuesAreNumbers = false;
break;
}
}
if (!allValuesAreNumbers)
return sort(exec, compareFunction, callType, callData);
// For numeric comparison, which is fast, qsort is faster than mergesort. We
// also don't require mergesort's stability, since there's no user visible
// side-effect from swapping the order of equal primitive values.
qsort(m_vector, size, sizeof(JSValue), compareNumbersForQSort);
checkConsistency(SortConsistencyCheck);
}
void JSArray::sort(ExecState* exec)
{
ArrayStorage* storage = arrayStorage();
unsigned lengthNotIncludingUndefined = compactForSorting();
if (storage->m_sparseValueMap) {
throwOutOfMemoryError(exec);
return;
}
if (!lengthNotIncludingUndefined)
return;
// Converting JavaScript values to strings can be expensive, so we do it once up front and sort based on that.
// This is a considerable improvement over doing it twice per comparison, though it requires a large temporary
// buffer. Besides, this protects us from crashing if some objects have custom toString methods that return
// random or otherwise changing results, effectively making compare function inconsistent.
Vector<ValueStringPair> values(lengthNotIncludingUndefined);
if (!values.begin()) {
throwOutOfMemoryError(exec);
return;
}
for (size_t i = 0; i < lengthNotIncludingUndefined; i++) {
JSValue value = m_vector[i];
ASSERT(!value.isUndefined());
values[i].first = value;
}
// FIXME: While calling these toString functions, the array could be mutated.
// In that case, objects pointed to by values in this vector might get garbage-collected!
// FIXME: The following loop continues to call toString on subsequent values even after
// a toString call raises an exception.
for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
values[i].second = values[i].first.toString(exec);
if (exec->hadException())
return;
// FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather
// than O(N log N).
#if HAVE(MERGESORT)
mergesort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
#else
// FIXME: The qsort library function is likely to not be a stable sort.
// ECMAScript-262 does not specify a stable sort, but in practice, browsers perform a stable sort.
qsort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
#endif
// FIXME: If the toString function changed the length of the array, this might be
// modifying the vector incorrectly.
for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
m_vector[i] = values[i].first;
checkConsistency(SortConsistencyCheck);
}
struct AVLTreeNodeForArrayCompare {
JSValue value;
// Child pointers. The high bit of gt is robbed and used as the
// balance factor sign. The high bit of lt is robbed and used as
// the magnitude of the balance factor.
int32_t gt;
int32_t lt;
};
struct AVLTreeAbstractorForArrayCompare {
typedef int32_t handle; // Handle is an index into m_nodes vector.
typedef JSValue key;
typedef int32_t size;
Vector<AVLTreeNodeForArrayCompare> m_nodes;
ExecState* m_exec;
JSValue m_compareFunction;
CallType m_compareCallType;
const CallData* m_compareCallData;
JSValue m_globalThisValue;
OwnPtr<CachedCall> m_cachedCall;
handle get_less(handle h) { return m_nodes[h].lt & 0x7FFFFFFF; }
void set_less(handle h, handle lh) { m_nodes[h].lt &= 0x80000000; m_nodes[h].lt |= lh; }
handle get_greater(handle h) { return m_nodes[h].gt & 0x7FFFFFFF; }
void set_greater(handle h, handle gh) { m_nodes[h].gt &= 0x80000000; m_nodes[h].gt |= gh; }
int get_balance_factor(handle h)
{
if (m_nodes[h].gt & 0x80000000)
return -1;
return static_cast<unsigned>(m_nodes[h].lt) >> 31;
}
void set_balance_factor(handle h, int bf)
{
if (bf == 0) {
m_nodes[h].lt &= 0x7FFFFFFF;
m_nodes[h].gt &= 0x7FFFFFFF;
} else {
m_nodes[h].lt |= 0x80000000;
if (bf < 0)
m_nodes[h].gt |= 0x80000000;
else
m_nodes[h].gt &= 0x7FFFFFFF;
}
}
int compare_key_key(key va, key vb)
{
ASSERT(!va.isUndefined());
ASSERT(!vb.isUndefined());
if (m_exec->hadException())
return 1;
double compareResult;
if (m_cachedCall) {
m_cachedCall->setThis(m_globalThisValue);
m_cachedCall->setArgument(0, va);
m_cachedCall->setArgument(1, vb);
compareResult = m_cachedCall->call().toNumber(m_cachedCall->newCallFrame(m_exec));
} else {
MarkedArgumentBuffer arguments;
arguments.append(va);
arguments.append(vb);
compareResult = call(m_exec, m_compareFunction, m_compareCallType, *m_compareCallData, m_globalThisValue, arguments).toNumber(m_exec);
}
return (compareResult < 0) ? -1 : 1; // Not passing equality through, because we need to store all values, even if equivalent.
}
int compare_key_node(key k, handle h) { return compare_key_key(k, m_nodes[h].value); }
int compare_node_node(handle h1, handle h2) { return compare_key_key(m_nodes[h1].value, m_nodes[h2].value); }
static handle null() { return 0x7FFFFFFF; }
};
void JSArray::sort(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
{
checkConsistency();
ArrayStorage* storage = arrayStorage();
// FIXME: This ignores exceptions raised in the compare function or in toNumber.
// The maximum tree depth is compiled in - but the caller is clearly up to no good
// if a larger array is passed.
ASSERT(storage->m_length <= static_cast<unsigned>(std::numeric_limits<int>::max()));
if (storage->m_length > static_cast<unsigned>(std::numeric_limits<int>::max()))
return;
if (!storage->m_length)
return;
unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree; // Depth 44 is enough for 2^31 items
tree.abstractor().m_exec = exec;
tree.abstractor().m_compareFunction = compareFunction;
tree.abstractor().m_compareCallType = callType;
tree.abstractor().m_compareCallData = &callData;
tree.abstractor().m_globalThisValue = exec->globalThisValue();
tree.abstractor().m_nodes.resize(usedVectorLength + (storage->m_sparseValueMap ? storage->m_sparseValueMap->size() : 0));
if (callType == CallTypeJS)
tree.abstractor().m_cachedCall = adoptPtr(new CachedCall(exec, asFunction(compareFunction), 2, exec->exceptionSlot()));
if (!tree.abstractor().m_nodes.begin()) {
throwOutOfMemoryError(exec);
return;
}
// FIXME: If the compare function modifies the array, the vector, map, etc. could be modified
// right out from under us while we're building the tree here.
unsigned numDefined = 0;
unsigned numUndefined = 0;
// Iterate over the array, ignoring missing values, counting undefined ones, and inserting all other ones into the tree.
for (; numDefined < usedVectorLength; ++numDefined) {
JSValue v = m_vector[numDefined];
if (!v || v.isUndefined())
break;
tree.abstractor().m_nodes[numDefined].value = v;
tree.insert(numDefined);
}
for (unsigned i = numDefined; i < usedVectorLength; ++i) {
JSValue v = m_vector[i];
if (v) {
if (v.isUndefined())
++numUndefined;
else {
tree.abstractor().m_nodes[numDefined].value = v;
tree.insert(numDefined);
++numDefined;
}
}
}
unsigned newUsedVectorLength = numDefined + numUndefined;
if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
newUsedVectorLength += map->size();
if (newUsedVectorLength > m_vectorLength) {
// Check that it is possible to allocate an array large enough to hold all the entries.
if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength)) {
throwOutOfMemoryError(exec);
return;
}
}
storage = arrayStorage();
SparseArrayValueMap::iterator end = map->end();
for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) {
tree.abstractor().m_nodes[numDefined].value = it->second;
tree.insert(numDefined);
++numDefined;
}
delete map;
storage->m_sparseValueMap = 0;
}
ASSERT(tree.abstractor().m_nodes.size() >= numDefined);
// FIXME: If the compare function changed the length of the array, the following might be
// modifying the vector incorrectly.
// Copy the values back into m_storage.
AVLTree<AVLTreeAbstractorForArrayCompare, 44>::Iterator iter;
iter.start_iter_least(tree);
for (unsigned i = 0; i < numDefined; ++i) {
m_vector[i] = tree.abstractor().m_nodes[*iter].value;
++iter;
}
// Put undefined values back in.
for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
m_vector[i] = jsUndefined();
// Ensure that unused values in the vector are zeroed out.
for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
m_vector[i] = JSValue();
storage->m_numValuesInVector = newUsedVectorLength;
checkConsistency(SortConsistencyCheck);
}
void JSArray::fillArgList(ExecState* exec, MarkedArgumentBuffer& args)
{
ArrayStorage* storage = arrayStorage();
JSValue* vector = storage->m_vector;
unsigned vectorEnd = min(storage->m_length, m_vectorLength);
unsigned i = 0;
for (; i < vectorEnd; ++i) {
JSValue& v = vector[i];
if (!v)
break;
args.append(v);
}
for (; i < storage->m_length; ++i)
args.append(get(exec, i));
}
void JSArray::copyToRegisters(ExecState* exec, Register* buffer, uint32_t maxSize)
{
ASSERT(arrayStorage()->m_length >= maxSize);
UNUSED_PARAM(maxSize);
JSValue* vector = m_vector;
unsigned vectorEnd = min(maxSize, m_vectorLength);
unsigned i = 0;
for (; i < vectorEnd; ++i) {
JSValue& v = vector[i];
if (!v)
break;
buffer[i] = v;
}
for (; i < maxSize; ++i)
buffer[i] = get(exec, i);
}
unsigned JSArray::compactForSorting()
{
checkConsistency();
ArrayStorage* storage = arrayStorage();
unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
unsigned numDefined = 0;
unsigned numUndefined = 0;
for (; numDefined < usedVectorLength; ++numDefined) {
JSValue v = m_vector[numDefined];
if (!v || v.isUndefined())
break;
}
for (unsigned i = numDefined; i < usedVectorLength; ++i) {
JSValue v = m_vector[i];
if (v) {
if (v.isUndefined())
++numUndefined;
else
m_vector[numDefined++] = v;
}
}
unsigned newUsedVectorLength = numDefined + numUndefined;
if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
newUsedVectorLength += map->size();
if (newUsedVectorLength > m_vectorLength) {
// Check that it is possible to allocate an array large enough to hold all the entries - if not,
// exception is thrown by caller.
if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength))
return 0;
storage = arrayStorage();
}
SparseArrayValueMap::iterator end = map->end();
for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
m_vector[numDefined++] = it->second;
delete map;
storage->m_sparseValueMap = 0;
}
for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
m_vector[i] = jsUndefined();
for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
m_vector[i] = JSValue();
storage->m_numValuesInVector = newUsedVectorLength;
checkConsistency(SortConsistencyCheck);
return numDefined;
}
void* JSArray::subclassData() const
{
return arrayStorage()->subclassData;
}
void JSArray::setSubclassData(void* d)
{
arrayStorage()->subclassData = d;
}
#if CHECK_ARRAY_CONSISTENCY
void JSArray::checkConsistency(ConsistencyCheckType type)
{
ArrayStorage* storage = arrayStorage();
ASSERT(storage);
if (type == SortConsistencyCheck)
ASSERT(!storage->m_sparseValueMap);
unsigned numValuesInVector = 0;
for (unsigned i = 0; i < m_vectorLength; ++i) {
if (JSValue value = m_vector[i]) {
ASSERT(i < storage->m_length);
if (type != DestructorConsistencyCheck)
value.isUndefined(); // Likely to crash if the object was deallocated.
++numValuesInVector;
} else {
if (type == SortConsistencyCheck)
ASSERT(i >= storage->m_numValuesInVector);
}
}
ASSERT(numValuesInVector == storage->m_numValuesInVector);
ASSERT(numValuesInVector <= storage->m_length);
if (storage->m_sparseValueMap) {
SparseArrayValueMap::iterator end = storage->m_sparseValueMap->end();
for (SparseArrayValueMap::iterator it = storage->m_sparseValueMap->begin(); it != end; ++it) {
unsigned index = it->first;
ASSERT(index < storage->m_length);
ASSERT(index >= m_vectorLength);
ASSERT(index <= MAX_ARRAY_INDEX);
ASSERT(it->second);
if (type != DestructorConsistencyCheck)
it->second.isUndefined(); // Likely to crash if the object was deallocated.
}
}
}
#endif
} // namespace JSC
|