1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
|
// Copyright (c) 2005, 2007, Google Inc.
// All rights reserved.
// Copyright (C) 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ---
// Author: Sanjay Ghemawat <opensource@google.com>
//
// A malloc that uses a per-thread cache to satisfy small malloc requests.
// (The time for malloc/free of a small object drops from 300 ns to 50 ns.)
//
// See doc/tcmalloc.html for a high-level
// description of how this malloc works.
//
// SYNCHRONIZATION
// 1. The thread-specific lists are accessed without acquiring any locks.
// This is safe because each such list is only accessed by one thread.
// 2. We have a lock per central free-list, and hold it while manipulating
// the central free list for a particular size.
// 3. The central page allocator is protected by "pageheap_lock".
// 4. The pagemap (which maps from page-number to descriptor),
// can be read without holding any locks, and written while holding
// the "pageheap_lock".
// 5. To improve performance, a subset of the information one can get
// from the pagemap is cached in a data structure, pagemap_cache_,
// that atomically reads and writes its entries. This cache can be
// read and written without locking.
//
// This multi-threaded access to the pagemap is safe for fairly
// subtle reasons. We basically assume that when an object X is
// allocated by thread A and deallocated by thread B, there must
// have been appropriate synchronization in the handoff of object
// X from thread A to thread B. The same logic applies to pagemap_cache_.
//
// THE PAGEID-TO-SIZECLASS CACHE
// Hot PageID-to-sizeclass mappings are held by pagemap_cache_. If this cache
// returns 0 for a particular PageID then that means "no information," not that
// the sizeclass is 0. The cache may have stale information for pages that do
// not hold the beginning of any free()'able object. Staleness is eliminated
// in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and
// do_memalign() for all other relevant pages.
//
// TODO: Bias reclamation to larger addresses
// TODO: implement mallinfo/mallopt
// TODO: Better testing
//
// 9/28/2003 (new page-level allocator replaces ptmalloc2):
// * malloc/free of small objects goes from ~300 ns to ~50 ns.
// * allocation of a reasonably complicated struct
// goes from about 1100 ns to about 300 ns.
#include "config.h"
#include "FastMalloc.h"
#include "Assertions.h"
#include <limits>
#if ENABLE(JSC_MULTIPLE_THREADS)
#include <pthread.h>
#endif
#ifndef NO_TCMALLOC_SAMPLES
#ifdef WTF_CHANGES
#define NO_TCMALLOC_SAMPLES
#endif
#endif
#if !(defined(USE_SYSTEM_MALLOC) && USE_SYSTEM_MALLOC) && defined(NDEBUG)
#define FORCE_SYSTEM_MALLOC 0
#else
#define FORCE_SYSTEM_MALLOC 1
#endif
// Use a background thread to periodically scavenge memory to release back to the system
// https://bugs.webkit.org/show_bug.cgi?id=27900: don't turn this on for Tiger until we have figured out why it caused a crash.
#if defined(BUILDING_ON_TIGER)
#define USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY 0
#else
#define USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY 1
#endif
#ifndef NDEBUG
namespace WTF {
#if ENABLE(JSC_MULTIPLE_THREADS)
static pthread_key_t isForbiddenKey;
static pthread_once_t isForbiddenKeyOnce = PTHREAD_ONCE_INIT;
static void initializeIsForbiddenKey()
{
pthread_key_create(&isForbiddenKey, 0);
}
static bool isForbidden()
{
pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
return !!pthread_getspecific(isForbiddenKey);
}
void fastMallocForbid()
{
pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
pthread_setspecific(isForbiddenKey, &isForbiddenKey);
}
void fastMallocAllow()
{
pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
pthread_setspecific(isForbiddenKey, 0);
}
#else
static bool staticIsForbidden;
static bool isForbidden()
{
return staticIsForbidden;
}
void fastMallocForbid()
{
staticIsForbidden = true;
}
void fastMallocAllow()
{
staticIsForbidden = false;
}
#endif // ENABLE(JSC_MULTIPLE_THREADS)
} // namespace WTF
#endif // NDEBUG
#include <string.h>
namespace WTF {
#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
namespace Internal {
void fastMallocMatchFailed(void*)
{
CRASH();
}
} // namespace Internal
#endif
void* fastZeroedMalloc(size_t n)
{
void* result = fastMalloc(n);
memset(result, 0, n);
return result;
}
TryMallocReturnValue tryFastZeroedMalloc(size_t n)
{
void* result;
if (!tryFastMalloc(n).getValue(result))
return 0;
memset(result, 0, n);
return result;
}
} // namespace WTF
#if FORCE_SYSTEM_MALLOC
#include <stdlib.h>
#if !PLATFORM(WIN_OS)
#include <pthread.h>
#else
#include "windows.h"
#endif
namespace WTF {
TryMallocReturnValue tryFastMalloc(size_t n)
{
ASSERT(!isForbidden());
#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= n) // If overflow would occur...
return 0;
void* result = malloc(n + sizeof(AllocAlignmentInteger));
if (!result)
return 0;
*static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
result = static_cast<AllocAlignmentInteger*>(result) + 1;
return result;
#else
return malloc(n);
#endif
}
void* fastMalloc(size_t n)
{
ASSERT(!isForbidden());
#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
TryMallocReturnValue returnValue = tryFastMalloc(n);
void* result;
returnValue.getValue(result);
#else
void* result = malloc(n);
#endif
if (!result)
CRASH();
return result;
}
TryMallocReturnValue tryFastCalloc(size_t n_elements, size_t element_size)
{
ASSERT(!isForbidden());
#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
size_t totalBytes = n_elements * element_size;
if (n_elements > 1 && element_size && (totalBytes / element_size) != n_elements || (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= totalBytes))
return 0;
totalBytes += sizeof(AllocAlignmentInteger);
void* result = malloc(totalBytes);
if (!result)
return 0;
memset(result, 0, totalBytes);
*static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
result = static_cast<AllocAlignmentInteger*>(result) + 1;
return result;
#else
return calloc(n_elements, element_size);
#endif
}
void* fastCalloc(size_t n_elements, size_t element_size)
{
ASSERT(!isForbidden());
#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
TryMallocReturnValue returnValue = tryFastCalloc(n_elements, element_size);
void* result;
returnValue.getValue(result);
#else
void* result = calloc(n_elements, element_size);
#endif
if (!result)
CRASH();
return result;
}
void fastFree(void* p)
{
ASSERT(!isForbidden());
#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
if (!p)
return;
AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(p);
if (*header != Internal::AllocTypeMalloc)
Internal::fastMallocMatchFailed(p);
free(header);
#else
free(p);
#endif
}
TryMallocReturnValue tryFastRealloc(void* p, size_t n)
{
ASSERT(!isForbidden());
#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
if (p) {
if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= n) // If overflow would occur...
return 0;
AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(p);
if (*header != Internal::AllocTypeMalloc)
Internal::fastMallocMatchFailed(p);
void* result = realloc(header, n + sizeof(AllocAlignmentInteger));
if (!result)
return 0;
// This should not be needed because the value is already there:
// *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
result = static_cast<AllocAlignmentInteger*>(result) + 1;
return result;
} else {
return fastMalloc(n);
}
#else
return realloc(p, n);
#endif
}
void* fastRealloc(void* p, size_t n)
{
ASSERT(!isForbidden());
#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
TryMallocReturnValue returnValue = tryFastRealloc(p, n);
void* result;
returnValue.getValue(result);
#else
void* result = realloc(p, n);
#endif
if (!result)
CRASH();
return result;
}
void releaseFastMallocFreeMemory() { }
FastMallocStatistics fastMallocStatistics()
{
FastMallocStatistics statistics = { 0, 0, 0, 0 };
return statistics;
}
} // namespace WTF
#if PLATFORM(DARWIN)
// This symbol is present in the JavaScriptCore exports file even when FastMalloc is disabled.
// It will never be used in this case, so it's type and value are less interesting than its presence.
extern "C" const int jscore_fastmalloc_introspection = 0;
#endif
#else // FORCE_SYSTEM_MALLOC
#if HAVE(STDINT_H)
#include <stdint.h>
#elif HAVE(INTTYPES_H)
#include <inttypes.h>
#else
#include <sys/types.h>
#endif
#include "AlwaysInline.h"
#include "Assertions.h"
#include "TCPackedCache.h"
#include "TCPageMap.h"
#include "TCSpinLock.h"
#include "TCSystemAlloc.h"
#include <algorithm>
#include <errno.h>
#include <limits>
#include <new>
#include <pthread.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#if PLATFORM(UNIX)
#include <unistd.h>
#endif
#if COMPILER(MSVC)
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
#include <windows.h>
#endif
#if WTF_CHANGES
#if PLATFORM(DARWIN)
#include "MallocZoneSupport.h"
#include <wtf/HashSet.h>
#include <wtf/Vector.h>
#endif
#ifndef PRIuS
#define PRIuS "zu"
#endif
// Calling pthread_getspecific through a global function pointer is faster than a normal
// call to the function on Mac OS X, and it's used in performance-critical code. So we
// use a function pointer. But that's not necessarily faster on other platforms, and we had
// problems with this technique on Windows, so we'll do this only on Mac OS X.
#if PLATFORM(DARWIN)
static void* (*pthread_getspecific_function_pointer)(pthread_key_t) = pthread_getspecific;
#define pthread_getspecific(key) pthread_getspecific_function_pointer(key)
#endif
#define DEFINE_VARIABLE(type, name, value, meaning) \
namespace FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead { \
type FLAGS_##name(value); \
char FLAGS_no##name; \
} \
using FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead::FLAGS_##name
#define DEFINE_int64(name, value, meaning) \
DEFINE_VARIABLE(int64_t, name, value, meaning)
#define DEFINE_double(name, value, meaning) \
DEFINE_VARIABLE(double, name, value, meaning)
namespace WTF {
#define malloc fastMalloc
#define calloc fastCalloc
#define free fastFree
#define realloc fastRealloc
#define MESSAGE LOG_ERROR
#define CHECK_CONDITION ASSERT
#if PLATFORM(DARWIN)
class Span;
class TCMalloc_Central_FreeListPadded;
class TCMalloc_PageHeap;
class TCMalloc_ThreadCache;
template <typename T> class PageHeapAllocator;
class FastMallocZone {
public:
static void init();
static kern_return_t enumerate(task_t, void*, unsigned typeMmask, vm_address_t zoneAddress, memory_reader_t, vm_range_recorder_t);
static size_t goodSize(malloc_zone_t*, size_t size) { return size; }
static boolean_t check(malloc_zone_t*) { return true; }
static void print(malloc_zone_t*, boolean_t) { }
static void log(malloc_zone_t*, void*) { }
static void forceLock(malloc_zone_t*) { }
static void forceUnlock(malloc_zone_t*) { }
static void statistics(malloc_zone_t*, malloc_statistics_t* stats) { memset(stats, 0, sizeof(malloc_statistics_t)); }
private:
FastMallocZone(TCMalloc_PageHeap*, TCMalloc_ThreadCache**, TCMalloc_Central_FreeListPadded*, PageHeapAllocator<Span>*, PageHeapAllocator<TCMalloc_ThreadCache>*);
static size_t size(malloc_zone_t*, const void*);
static void* zoneMalloc(malloc_zone_t*, size_t);
static void* zoneCalloc(malloc_zone_t*, size_t numItems, size_t size);
static void zoneFree(malloc_zone_t*, void*);
static void* zoneRealloc(malloc_zone_t*, void*, size_t);
static void* zoneValloc(malloc_zone_t*, size_t) { LOG_ERROR("valloc is not supported"); return 0; }
static void zoneDestroy(malloc_zone_t*) { }
malloc_zone_t m_zone;
TCMalloc_PageHeap* m_pageHeap;
TCMalloc_ThreadCache** m_threadHeaps;
TCMalloc_Central_FreeListPadded* m_centralCaches;
PageHeapAllocator<Span>* m_spanAllocator;
PageHeapAllocator<TCMalloc_ThreadCache>* m_pageHeapAllocator;
};
#endif
#endif
#ifndef WTF_CHANGES
// This #ifdef should almost never be set. Set NO_TCMALLOC_SAMPLES if
// you're porting to a system where you really can't get a stacktrace.
#ifdef NO_TCMALLOC_SAMPLES
// We use #define so code compiles even if you #include stacktrace.h somehow.
# define GetStackTrace(stack, depth, skip) (0)
#else
# include <google/stacktrace.h>
#endif
#endif
// Even if we have support for thread-local storage in the compiler
// and linker, the OS may not support it. We need to check that at
// runtime. Right now, we have to keep a manual set of "bad" OSes.
#if defined(HAVE_TLS)
static bool kernel_supports_tls = false; // be conservative
static inline bool KernelSupportsTLS() {
return kernel_supports_tls;
}
# if !HAVE_DECL_UNAME // if too old for uname, probably too old for TLS
static void CheckIfKernelSupportsTLS() {
kernel_supports_tls = false;
}
# else
# include <sys/utsname.h> // DECL_UNAME checked for <sys/utsname.h> too
static void CheckIfKernelSupportsTLS() {
struct utsname buf;
if (uname(&buf) != 0) { // should be impossible
MESSAGE("uname failed assuming no TLS support (errno=%d)\n", errno);
kernel_supports_tls = false;
} else if (strcasecmp(buf.sysname, "linux") == 0) {
// The linux case: the first kernel to support TLS was 2.6.0
if (buf.release[0] < '2' && buf.release[1] == '.') // 0.x or 1.x
kernel_supports_tls = false;
else if (buf.release[0] == '2' && buf.release[1] == '.' &&
buf.release[2] >= '0' && buf.release[2] < '6' &&
buf.release[3] == '.') // 2.0 - 2.5
kernel_supports_tls = false;
else
kernel_supports_tls = true;
} else { // some other kernel, we'll be optimisitic
kernel_supports_tls = true;
}
// TODO(csilvers): VLOG(1) the tls status once we support RAW_VLOG
}
# endif // HAVE_DECL_UNAME
#endif // HAVE_TLS
// __THROW is defined in glibc systems. It means, counter-intuitively,
// "This function will never throw an exception." It's an optional
// optimization tool, but we may need to use it to match glibc prototypes.
#ifndef __THROW // I guess we're not on a glibc system
# define __THROW // __THROW is just an optimization, so ok to make it ""
#endif
//-------------------------------------------------------------------
// Configuration
//-------------------------------------------------------------------
// Not all possible combinations of the following parameters make
// sense. In particular, if kMaxSize increases, you may have to
// increase kNumClasses as well.
static const size_t kPageShift = 12;
static const size_t kPageSize = 1 << kPageShift;
static const size_t kMaxSize = 8u * kPageSize;
static const size_t kAlignShift = 3;
static const size_t kAlignment = 1 << kAlignShift;
static const size_t kNumClasses = 68;
// Allocates a big block of memory for the pagemap once we reach more than
// 128MB
static const size_t kPageMapBigAllocationThreshold = 128 << 20;
// Minimum number of pages to fetch from system at a time. Must be
// significantly bigger than kPageSize to amortize system-call
// overhead, and also to reduce external fragementation. Also, we
// should keep this value big because various incarnations of Linux
// have small limits on the number of mmap() regions per
// address-space.
static const size_t kMinSystemAlloc = 1 << (20 - kPageShift);
// Number of objects to move between a per-thread list and a central
// list in one shot. We want this to be not too small so we can
// amortize the lock overhead for accessing the central list. Making
// it too big may temporarily cause unnecessary memory wastage in the
// per-thread free list until the scavenger cleans up the list.
static int num_objects_to_move[kNumClasses];
// Maximum length we allow a per-thread free-list to have before we
// move objects from it into the corresponding central free-list. We
// want this big to avoid locking the central free-list too often. It
// should not hurt to make this list somewhat big because the
// scavenging code will shrink it down when its contents are not in use.
static const int kMaxFreeListLength = 256;
// Lower and upper bounds on the per-thread cache sizes
static const size_t kMinThreadCacheSize = kMaxSize * 2;
static const size_t kMaxThreadCacheSize = 2 << 20;
// Default bound on the total amount of thread caches
static const size_t kDefaultOverallThreadCacheSize = 16 << 20;
// For all span-lengths < kMaxPages we keep an exact-size list.
// REQUIRED: kMaxPages >= kMinSystemAlloc;
static const size_t kMaxPages = kMinSystemAlloc;
/* The smallest prime > 2^n */
static int primes_list[] = {
// Small values might cause high rates of sampling
// and hence commented out.
// 2, 5, 11, 17, 37, 67, 131, 257,
// 521, 1031, 2053, 4099, 8209, 16411,
32771, 65537, 131101, 262147, 524309, 1048583,
2097169, 4194319, 8388617, 16777259, 33554467 };
// Twice the approximate gap between sampling actions.
// I.e., we take one sample approximately once every
// tcmalloc_sample_parameter/2
// bytes of allocation, i.e., ~ once every 128KB.
// Must be a prime number.
#ifdef NO_TCMALLOC_SAMPLES
DEFINE_int64(tcmalloc_sample_parameter, 0,
"Unused: code is compiled with NO_TCMALLOC_SAMPLES");
static size_t sample_period = 0;
#else
DEFINE_int64(tcmalloc_sample_parameter, 262147,
"Twice the approximate gap between sampling actions."
" Must be a prime number. Otherwise will be rounded up to a "
" larger prime number");
static size_t sample_period = 262147;
#endif
// Protects sample_period above
static SpinLock sample_period_lock = SPINLOCK_INITIALIZER;
// Parameters for controlling how fast memory is returned to the OS.
DEFINE_double(tcmalloc_release_rate, 1,
"Rate at which we release unused memory to the system. "
"Zero means we never release memory back to the system. "
"Increase this flag to return memory faster; decrease it "
"to return memory slower. Reasonable rates are in the "
"range [0,10]");
//-------------------------------------------------------------------
// Mapping from size to size_class and vice versa
//-------------------------------------------------------------------
// Sizes <= 1024 have an alignment >= 8. So for such sizes we have an
// array indexed by ceil(size/8). Sizes > 1024 have an alignment >= 128.
// So for these larger sizes we have an array indexed by ceil(size/128).
//
// We flatten both logical arrays into one physical array and use
// arithmetic to compute an appropriate index. The constants used by
// ClassIndex() were selected to make the flattening work.
//
// Examples:
// Size Expression Index
// -------------------------------------------------------
// 0 (0 + 7) / 8 0
// 1 (1 + 7) / 8 1
// ...
// 1024 (1024 + 7) / 8 128
// 1025 (1025 + 127 + (120<<7)) / 128 129
// ...
// 32768 (32768 + 127 + (120<<7)) / 128 376
static const size_t kMaxSmallSize = 1024;
static const int shift_amount[2] = { 3, 7 }; // For divides by 8 or 128
static const int add_amount[2] = { 7, 127 + (120 << 7) };
static unsigned char class_array[377];
// Compute index of the class_array[] entry for a given size
static inline int ClassIndex(size_t s) {
const int i = (s > kMaxSmallSize);
return static_cast<int>((s + add_amount[i]) >> shift_amount[i]);
}
// Mapping from size class to max size storable in that class
static size_t class_to_size[kNumClasses];
// Mapping from size class to number of pages to allocate at a time
static size_t class_to_pages[kNumClasses];
// TransferCache is used to cache transfers of num_objects_to_move[size_class]
// back and forth between thread caches and the central cache for a given size
// class.
struct TCEntry {
void *head; // Head of chain of objects.
void *tail; // Tail of chain of objects.
};
// A central cache freelist can have anywhere from 0 to kNumTransferEntries
// slots to put link list chains into. To keep memory usage bounded the total
// number of TCEntries across size classes is fixed. Currently each size
// class is initially given one TCEntry which also means that the maximum any
// one class can have is kNumClasses.
static const int kNumTransferEntries = kNumClasses;
// Note: the following only works for "n"s that fit in 32-bits, but
// that is fine since we only use it for small sizes.
static inline int LgFloor(size_t n) {
int log = 0;
for (int i = 4; i >= 0; --i) {
int shift = (1 << i);
size_t x = n >> shift;
if (x != 0) {
n = x;
log += shift;
}
}
ASSERT(n == 1);
return log;
}
// Some very basic linked list functions for dealing with using void * as
// storage.
static inline void *SLL_Next(void *t) {
return *(reinterpret_cast<void**>(t));
}
static inline void SLL_SetNext(void *t, void *n) {
*(reinterpret_cast<void**>(t)) = n;
}
static inline void SLL_Push(void **list, void *element) {
SLL_SetNext(element, *list);
*list = element;
}
static inline void *SLL_Pop(void **list) {
void *result = *list;
*list = SLL_Next(*list);
return result;
}
// Remove N elements from a linked list to which head points. head will be
// modified to point to the new head. start and end will point to the first
// and last nodes of the range. Note that end will point to NULL after this
// function is called.
static inline void SLL_PopRange(void **head, int N, void **start, void **end) {
if (N == 0) {
*start = NULL;
*end = NULL;
return;
}
void *tmp = *head;
for (int i = 1; i < N; ++i) {
tmp = SLL_Next(tmp);
}
*start = *head;
*end = tmp;
*head = SLL_Next(tmp);
// Unlink range from list.
SLL_SetNext(tmp, NULL);
}
static inline void SLL_PushRange(void **head, void *start, void *end) {
if (!start) return;
SLL_SetNext(end, *head);
*head = start;
}
static inline size_t SLL_Size(void *head) {
int count = 0;
while (head) {
count++;
head = SLL_Next(head);
}
return count;
}
// Setup helper functions.
static ALWAYS_INLINE size_t SizeClass(size_t size) {
return class_array[ClassIndex(size)];
}
// Get the byte-size for a specified class
static ALWAYS_INLINE size_t ByteSizeForClass(size_t cl) {
return class_to_size[cl];
}
static int NumMoveSize(size_t size) {
if (size == 0) return 0;
// Use approx 64k transfers between thread and central caches.
int num = static_cast<int>(64.0 * 1024.0 / size);
if (num < 2) num = 2;
// Clamp well below kMaxFreeListLength to avoid ping pong between central
// and thread caches.
if (num > static_cast<int>(0.8 * kMaxFreeListLength))
num = static_cast<int>(0.8 * kMaxFreeListLength);
// Also, avoid bringing in too many objects into small object free
// lists. There are lots of such lists, and if we allow each one to
// fetch too many at a time, we end up having to scavenge too often
// (especially when there are lots of threads and each thread gets a
// small allowance for its thread cache).
//
// TODO: Make thread cache free list sizes dynamic so that we do not
// have to equally divide a fixed resource amongst lots of threads.
if (num > 32) num = 32;
return num;
}
// Initialize the mapping arrays
static void InitSizeClasses() {
// Do some sanity checking on add_amount[]/shift_amount[]/class_array[]
if (ClassIndex(0) < 0) {
MESSAGE("Invalid class index %d for size 0\n", ClassIndex(0));
CRASH();
}
if (static_cast<size_t>(ClassIndex(kMaxSize)) >= sizeof(class_array)) {
MESSAGE("Invalid class index %d for kMaxSize\n", ClassIndex(kMaxSize));
CRASH();
}
// Compute the size classes we want to use
size_t sc = 1; // Next size class to assign
unsigned char alignshift = kAlignShift;
int last_lg = -1;
for (size_t size = kAlignment; size <= kMaxSize; size += (1 << alignshift)) {
int lg = LgFloor(size);
if (lg > last_lg) {
// Increase alignment every so often.
//
// Since we double the alignment every time size doubles and
// size >= 128, this means that space wasted due to alignment is
// at most 16/128 i.e., 12.5%. Plus we cap the alignment at 256
// bytes, so the space wasted as a percentage starts falling for
// sizes > 2K.
if ((lg >= 7) && (alignshift < 8)) {
alignshift++;
}
last_lg = lg;
}
// Allocate enough pages so leftover is less than 1/8 of total.
// This bounds wasted space to at most 12.5%.
size_t psize = kPageSize;
while ((psize % size) > (psize >> 3)) {
psize += kPageSize;
}
const size_t my_pages = psize >> kPageShift;
if (sc > 1 && my_pages == class_to_pages[sc-1]) {
// See if we can merge this into the previous class without
// increasing the fragmentation of the previous class.
const size_t my_objects = (my_pages << kPageShift) / size;
const size_t prev_objects = (class_to_pages[sc-1] << kPageShift)
/ class_to_size[sc-1];
if (my_objects == prev_objects) {
// Adjust last class to include this size
class_to_size[sc-1] = size;
continue;
}
}
// Add new class
class_to_pages[sc] = my_pages;
class_to_size[sc] = size;
sc++;
}
if (sc != kNumClasses) {
MESSAGE("wrong number of size classes: found %" PRIuS " instead of %d\n",
sc, int(kNumClasses));
CRASH();
}
// Initialize the mapping arrays
int next_size = 0;
for (unsigned char c = 1; c < kNumClasses; c++) {
const size_t max_size_in_class = class_to_size[c];
for (size_t s = next_size; s <= max_size_in_class; s += kAlignment) {
class_array[ClassIndex(s)] = c;
}
next_size = static_cast<int>(max_size_in_class + kAlignment);
}
// Double-check sizes just to be safe
for (size_t size = 0; size <= kMaxSize; size++) {
const size_t sc = SizeClass(size);
if (sc == 0) {
MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size);
CRASH();
}
if (sc > 1 && size <= class_to_size[sc-1]) {
MESSAGE("Allocating unnecessarily large class %" PRIuS " for %" PRIuS
"\n", sc, size);
CRASH();
}
if (sc >= kNumClasses) {
MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size);
CRASH();
}
const size_t s = class_to_size[sc];
if (size > s) {
MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc);
CRASH();
}
if (s == 0) {
MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc);
CRASH();
}
}
// Initialize the num_objects_to_move array.
for (size_t cl = 1; cl < kNumClasses; ++cl) {
num_objects_to_move[cl] = NumMoveSize(ByteSizeForClass(cl));
}
#ifndef WTF_CHANGES
if (false) {
// Dump class sizes and maximum external wastage per size class
for (size_t cl = 1; cl < kNumClasses; ++cl) {
const int alloc_size = class_to_pages[cl] << kPageShift;
const int alloc_objs = alloc_size / class_to_size[cl];
const int min_used = (class_to_size[cl-1] + 1) * alloc_objs;
const int max_waste = alloc_size - min_used;
MESSAGE("SC %3d [ %8d .. %8d ] from %8d ; %2.0f%% maxwaste\n",
int(cl),
int(class_to_size[cl-1] + 1),
int(class_to_size[cl]),
int(class_to_pages[cl] << kPageShift),
max_waste * 100.0 / alloc_size
);
}
}
#endif
}
// -------------------------------------------------------------------------
// Simple allocator for objects of a specified type. External locking
// is required before accessing one of these objects.
// -------------------------------------------------------------------------
// Metadata allocator -- keeps stats about how many bytes allocated
static uint64_t metadata_system_bytes = 0;
static void* MetaDataAlloc(size_t bytes) {
void* result = TCMalloc_SystemAlloc(bytes, 0);
if (result != NULL) {
metadata_system_bytes += bytes;
}
return result;
}
template <class T>
class PageHeapAllocator {
private:
// How much to allocate from system at a time
static const size_t kAllocIncrement = 32 << 10;
// Aligned size of T
static const size_t kAlignedSize
= (((sizeof(T) + kAlignment - 1) / kAlignment) * kAlignment);
// Free area from which to carve new objects
char* free_area_;
size_t free_avail_;
// Linked list of all regions allocated by this allocator
void* allocated_regions_;
// Free list of already carved objects
void* free_list_;
// Number of allocated but unfreed objects
int inuse_;
public:
void Init() {
ASSERT(kAlignedSize <= kAllocIncrement);
inuse_ = 0;
allocated_regions_ = 0;
free_area_ = NULL;
free_avail_ = 0;
free_list_ = NULL;
}
T* New() {
// Consult free list
void* result;
if (free_list_ != NULL) {
result = free_list_;
free_list_ = *(reinterpret_cast<void**>(result));
} else {
if (free_avail_ < kAlignedSize) {
// Need more room
char* new_allocation = reinterpret_cast<char*>(MetaDataAlloc(kAllocIncrement));
if (!new_allocation)
CRASH();
*(void**)new_allocation = allocated_regions_;
allocated_regions_ = new_allocation;
free_area_ = new_allocation + kAlignedSize;
free_avail_ = kAllocIncrement - kAlignedSize;
}
result = free_area_;
free_area_ += kAlignedSize;
free_avail_ -= kAlignedSize;
}
inuse_++;
return reinterpret_cast<T*>(result);
}
void Delete(T* p) {
*(reinterpret_cast<void**>(p)) = free_list_;
free_list_ = p;
inuse_--;
}
int inuse() const { return inuse_; }
#if defined(WTF_CHANGES) && PLATFORM(DARWIN)
template <class Recorder>
void recordAdministrativeRegions(Recorder& recorder, const RemoteMemoryReader& reader)
{
vm_address_t adminAllocation = reinterpret_cast<vm_address_t>(allocated_regions_);
while (adminAllocation) {
recorder.recordRegion(adminAllocation, kAllocIncrement);
adminAllocation = *reader(reinterpret_cast<vm_address_t*>(adminAllocation));
}
}
#endif
};
// -------------------------------------------------------------------------
// Span - a contiguous run of pages
// -------------------------------------------------------------------------
// Type that can hold a page number
typedef uintptr_t PageID;
// Type that can hold the length of a run of pages
typedef uintptr_t Length;
static const Length kMaxValidPages = (~static_cast<Length>(0)) >> kPageShift;
// Convert byte size into pages. This won't overflow, but may return
// an unreasonably large value if bytes is huge enough.
static inline Length pages(size_t bytes) {
return (bytes >> kPageShift) +
((bytes & (kPageSize - 1)) > 0 ? 1 : 0);
}
// Convert a user size into the number of bytes that will actually be
// allocated
static size_t AllocationSize(size_t bytes) {
if (bytes > kMaxSize) {
// Large object: we allocate an integral number of pages
ASSERT(bytes <= (kMaxValidPages << kPageShift));
return pages(bytes) << kPageShift;
} else {
// Small object: find the size class to which it belongs
return ByteSizeForClass(SizeClass(bytes));
}
}
// Information kept for a span (a contiguous run of pages).
struct Span {
PageID start; // Starting page number
Length length; // Number of pages in span
Span* next; // Used when in link list
Span* prev; // Used when in link list
void* objects; // Linked list of free objects
unsigned int free : 1; // Is the span free
#ifndef NO_TCMALLOC_SAMPLES
unsigned int sample : 1; // Sampled object?
#endif
unsigned int sizeclass : 8; // Size-class for small objects (or 0)
unsigned int refcount : 11; // Number of non-free objects
bool decommitted : 1;
#undef SPAN_HISTORY
#ifdef SPAN_HISTORY
// For debugging, we can keep a log events per span
int nexthistory;
char history[64];
int value[64];
#endif
};
#define ASSERT_SPAN_COMMITTED(span) ASSERT(!span->decommitted)
#ifdef SPAN_HISTORY
void Event(Span* span, char op, int v = 0) {
span->history[span->nexthistory] = op;
span->value[span->nexthistory] = v;
span->nexthistory++;
if (span->nexthistory == sizeof(span->history)) span->nexthistory = 0;
}
#else
#define Event(s,o,v) ((void) 0)
#endif
// Allocator/deallocator for spans
static PageHeapAllocator<Span> span_allocator;
static Span* NewSpan(PageID p, Length len) {
Span* result = span_allocator.New();
memset(result, 0, sizeof(*result));
result->start = p;
result->length = len;
#ifdef SPAN_HISTORY
result->nexthistory = 0;
#endif
return result;
}
static inline void DeleteSpan(Span* span) {
#ifndef NDEBUG
// In debug mode, trash the contents of deleted Spans
memset(span, 0x3f, sizeof(*span));
#endif
span_allocator.Delete(span);
}
// -------------------------------------------------------------------------
// Doubly linked list of spans.
// -------------------------------------------------------------------------
static inline void DLL_Init(Span* list) {
list->next = list;
list->prev = list;
}
static inline void DLL_Remove(Span* span) {
span->prev->next = span->next;
span->next->prev = span->prev;
span->prev = NULL;
span->next = NULL;
}
static ALWAYS_INLINE bool DLL_IsEmpty(const Span* list) {
return list->next == list;
}
static int DLL_Length(const Span* list) {
int result = 0;
for (Span* s = list->next; s != list; s = s->next) {
result++;
}
return result;
}
#if 0 /* Not needed at the moment -- causes compiler warnings if not used */
static void DLL_Print(const char* label, const Span* list) {
MESSAGE("%-10s %p:", label, list);
for (const Span* s = list->next; s != list; s = s->next) {
MESSAGE(" <%p,%u,%u>", s, s->start, s->length);
}
MESSAGE("\n");
}
#endif
static inline void DLL_Prepend(Span* list, Span* span) {
ASSERT(span->next == NULL);
ASSERT(span->prev == NULL);
span->next = list->next;
span->prev = list;
list->next->prev = span;
list->next = span;
}
// -------------------------------------------------------------------------
// Stack traces kept for sampled allocations
// The following state is protected by pageheap_lock_.
// -------------------------------------------------------------------------
// size/depth are made the same size as a pointer so that some generic
// code below can conveniently cast them back and forth to void*.
static const int kMaxStackDepth = 31;
struct StackTrace {
uintptr_t size; // Size of object
uintptr_t depth; // Number of PC values stored in array below
void* stack[kMaxStackDepth];
};
static PageHeapAllocator<StackTrace> stacktrace_allocator;
static Span sampled_objects;
// -------------------------------------------------------------------------
// Map from page-id to per-page data
// -------------------------------------------------------------------------
// We use PageMap2<> for 32-bit and PageMap3<> for 64-bit machines.
// We also use a simple one-level cache for hot PageID-to-sizeclass mappings,
// because sometimes the sizeclass is all the information we need.
// Selector class -- general selector uses 3-level map
template <int BITS> class MapSelector {
public:
typedef TCMalloc_PageMap3<BITS-kPageShift> Type;
typedef PackedCache<BITS, uint64_t> CacheType;
};
#if defined(WTF_CHANGES)
#if PLATFORM(X86_64)
// On all known X86-64 platforms, the upper 16 bits are always unused and therefore
// can be excluded from the PageMap key.
// See http://en.wikipedia.org/wiki/X86-64#Virtual_address_space_details
static const size_t kBitsUnusedOn64Bit = 16;
#else
static const size_t kBitsUnusedOn64Bit = 0;
#endif
// A three-level map for 64-bit machines
template <> class MapSelector<64> {
public:
typedef TCMalloc_PageMap3<64 - kPageShift - kBitsUnusedOn64Bit> Type;
typedef PackedCache<64, uint64_t> CacheType;
};
#endif
// A two-level map for 32-bit machines
template <> class MapSelector<32> {
public:
typedef TCMalloc_PageMap2<32 - kPageShift> Type;
typedef PackedCache<32 - kPageShift, uint16_t> CacheType;
};
// -------------------------------------------------------------------------
// Page-level allocator
// * Eager coalescing
//
// Heap for page-level allocation. We allow allocating and freeing a
// contiguous runs of pages (called a "span").
// -------------------------------------------------------------------------
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
// The central page heap collects spans of memory that have been deleted but are still committed until they are released
// back to the system. We use a background thread to periodically scan the list of free spans and release some back to the
// system. Every 5 seconds, the background thread wakes up and does the following:
// - Check if we needed to commit memory in the last 5 seconds. If so, skip this scavenge because it's a sign that we are short
// of free committed pages and so we should not release them back to the system yet.
// - Otherwise, go through the list of free spans (from largest to smallest) and release up to a fraction of the free committed pages
// back to the system.
// - If the number of free committed pages reaches kMinimumFreeCommittedPageCount, we can stop the scavenging and block the
// scavenging thread until the number of free committed pages goes above kMinimumFreeCommittedPageCount.
// Background thread wakes up every 5 seconds to scavenge as long as there is memory available to return to the system.
static const int kScavengeTimerDelayInSeconds = 5;
// Number of free committed pages that we want to keep around.
static const size_t kMinimumFreeCommittedPageCount = 512;
// During a scavenge, we'll release up to a fraction of the free committed pages.
#if PLATFORM(WIN)
// We are slightly less aggressive in releasing memory on Windows due to performance reasons.
static const int kMaxScavengeAmountFactor = 3;
#else
static const int kMaxScavengeAmountFactor = 2;
#endif
#endif
class TCMalloc_PageHeap {
public:
void init();
// Allocate a run of "n" pages. Returns zero if out of memory.
Span* New(Length n);
// Delete the span "[p, p+n-1]".
// REQUIRES: span was returned by earlier call to New() and
// has not yet been deleted.
void Delete(Span* span);
// Mark an allocated span as being used for small objects of the
// specified size-class.
// REQUIRES: span was returned by an earlier call to New()
// and has not yet been deleted.
void RegisterSizeClass(Span* span, size_t sc);
// Split an allocated span into two spans: one of length "n" pages
// followed by another span of length "span->length - n" pages.
// Modifies "*span" to point to the first span of length "n" pages.
// Returns a pointer to the second span.
//
// REQUIRES: "0 < n < span->length"
// REQUIRES: !span->free
// REQUIRES: span->sizeclass == 0
Span* Split(Span* span, Length n);
// Return the descriptor for the specified page.
inline Span* GetDescriptor(PageID p) const {
return reinterpret_cast<Span*>(pagemap_.get(p));
}
#ifdef WTF_CHANGES
inline Span* GetDescriptorEnsureSafe(PageID p)
{
pagemap_.Ensure(p, 1);
return GetDescriptor(p);
}
size_t ReturnedBytes() const;
#endif
// Dump state to stderr
#ifndef WTF_CHANGES
void Dump(TCMalloc_Printer* out);
#endif
// Return number of bytes allocated from system
inline uint64_t SystemBytes() const { return system_bytes_; }
// Return number of free bytes in heap
uint64_t FreeBytes() const {
return (static_cast<uint64_t>(free_pages_) << kPageShift);
}
bool Check();
bool CheckList(Span* list, Length min_pages, Length max_pages);
// Release all pages on the free list for reuse by the OS:
void ReleaseFreePages();
// Return 0 if we have no information, or else the correct sizeclass for p.
// Reads and writes to pagemap_cache_ do not require locking.
// The entries are 64 bits on 64-bit hardware and 16 bits on
// 32-bit hardware, and we don't mind raciness as long as each read of
// an entry yields a valid entry, not a partially updated entry.
size_t GetSizeClassIfCached(PageID p) const {
return pagemap_cache_.GetOrDefault(p, 0);
}
void CacheSizeClass(PageID p, size_t cl) const { pagemap_cache_.Put(p, cl); }
private:
// Pick the appropriate map and cache types based on pointer size
typedef MapSelector<8*sizeof(uintptr_t)>::Type PageMap;
typedef MapSelector<8*sizeof(uintptr_t)>::CacheType PageMapCache;
PageMap pagemap_;
mutable PageMapCache pagemap_cache_;
// We segregate spans of a given size into two circular linked
// lists: one for normal spans, and one for spans whose memory
// has been returned to the system.
struct SpanList {
Span normal;
Span returned;
};
// List of free spans of length >= kMaxPages
SpanList large_;
// Array mapping from span length to a doubly linked list of free spans
SpanList free_[kMaxPages];
// Number of pages kept in free lists
uintptr_t free_pages_;
// Bytes allocated from system
uint64_t system_bytes_;
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
// Number of pages kept in free lists that are still committed.
Length free_committed_pages_;
// Number of pages that we committed in the last scavenge wait interval.
Length pages_committed_since_last_scavenge_;
#endif
bool GrowHeap(Length n);
// REQUIRES span->length >= n
// Remove span from its free list, and move any leftover part of
// span into appropriate free lists. Also update "span" to have
// length exactly "n" and mark it as non-free so it can be returned
// to the client.
//
// "released" is true iff "span" was found on a "returned" list.
void Carve(Span* span, Length n, bool released);
void RecordSpan(Span* span) {
pagemap_.set(span->start, span);
if (span->length > 1) {
pagemap_.set(span->start + span->length - 1, span);
}
}
// Allocate a large span of length == n. If successful, returns a
// span of exactly the specified length. Else, returns NULL.
Span* AllocLarge(Length n);
#if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
// Incrementally release some memory to the system.
// IncrementalScavenge(n) is called whenever n pages are freed.
void IncrementalScavenge(Length n);
#endif
// Number of pages to deallocate before doing more scavenging
int64_t scavenge_counter_;
// Index of last free list we scavenged
size_t scavenge_index_;
#if defined(WTF_CHANGES) && PLATFORM(DARWIN)
friend class FastMallocZone;
#endif
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
static NO_RETURN void* runScavengerThread(void*);
NO_RETURN void scavengerThread();
void scavenge();
inline bool shouldContinueScavenging() const;
pthread_mutex_t m_scavengeMutex;
pthread_cond_t m_scavengeCondition;
// Keeps track of whether the background thread is actively scavenging memory every kScavengeTimerDelayInSeconds, or
// it's blocked waiting for more pages to be deleted.
bool m_scavengeThreadActive;
#endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
};
void TCMalloc_PageHeap::init()
{
pagemap_.init(MetaDataAlloc);
pagemap_cache_ = PageMapCache(0);
free_pages_ = 0;
system_bytes_ = 0;
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
free_committed_pages_ = 0;
pages_committed_since_last_scavenge_ = 0;
#endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
scavenge_counter_ = 0;
// Start scavenging at kMaxPages list
scavenge_index_ = kMaxPages-1;
COMPILE_ASSERT(kNumClasses <= (1 << PageMapCache::kValuebits), valuebits);
DLL_Init(&large_.normal);
DLL_Init(&large_.returned);
for (size_t i = 0; i < kMaxPages; i++) {
DLL_Init(&free_[i].normal);
DLL_Init(&free_[i].returned);
}
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
pthread_mutex_init(&m_scavengeMutex, 0);
pthread_cond_init(&m_scavengeCondition, 0);
m_scavengeThreadActive = true;
pthread_t thread;
pthread_create(&thread, 0, runScavengerThread, this);
#endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
}
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
void* TCMalloc_PageHeap::runScavengerThread(void* context)
{
static_cast<TCMalloc_PageHeap*>(context)->scavengerThread();
#if COMPILER(MSVC)
// Without this, Visual Studio will complain that this method does not return a value.
return 0;
#endif
}
void TCMalloc_PageHeap::scavenge()
{
// If we have to commit memory in the last 5 seconds, it means we don't have enough free committed pages
// for the amount of allocations that we do. So hold off on releasing memory back to the system.
if (pages_committed_since_last_scavenge_ > 0) {
pages_committed_since_last_scavenge_ = 0;
return;
}
Length pagesDecommitted = 0;
for (int i = kMaxPages; i >= 0; i--) {
SpanList* slist = (static_cast<size_t>(i) == kMaxPages) ? &large_ : &free_[i];
if (!DLL_IsEmpty(&slist->normal)) {
// Release the last span on the normal portion of this list
Span* s = slist->normal.prev;
// Only decommit up to a fraction of the free committed pages if pages_allocated_since_last_scavenge_ > 0.
if ((pagesDecommitted + s->length) * kMaxScavengeAmountFactor > free_committed_pages_)
continue;
DLL_Remove(s);
TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
static_cast<size_t>(s->length << kPageShift));
if (!s->decommitted) {
pagesDecommitted += s->length;
s->decommitted = true;
}
DLL_Prepend(&slist->returned, s);
// We can stop scavenging if the number of free committed pages left is less than or equal to the minimum number we want to keep around.
if (free_committed_pages_ <= kMinimumFreeCommittedPageCount + pagesDecommitted)
break;
}
}
pages_committed_since_last_scavenge_ = 0;
ASSERT(free_committed_pages_ >= pagesDecommitted);
free_committed_pages_ -= pagesDecommitted;
}
inline bool TCMalloc_PageHeap::shouldContinueScavenging() const
{
return free_committed_pages_ > kMinimumFreeCommittedPageCount;
}
#endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
inline Span* TCMalloc_PageHeap::New(Length n) {
ASSERT(Check());
ASSERT(n > 0);
// Find first size >= n that has a non-empty list
for (Length s = n; s < kMaxPages; s++) {
Span* ll = NULL;
bool released = false;
if (!DLL_IsEmpty(&free_[s].normal)) {
// Found normal span
ll = &free_[s].normal;
} else if (!DLL_IsEmpty(&free_[s].returned)) {
// Found returned span; reallocate it
ll = &free_[s].returned;
released = true;
} else {
// Keep looking in larger classes
continue;
}
Span* result = ll->next;
Carve(result, n, released);
if (result->decommitted) {
TCMalloc_SystemCommit(reinterpret_cast<void*>(result->start << kPageShift), static_cast<size_t>(n << kPageShift));
result->decommitted = false;
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
pages_committed_since_last_scavenge_ += n;
#endif
}
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
else {
// The newly allocated memory is from a span that's in the normal span list (already committed). Update the
// free committed pages count.
ASSERT(free_committed_pages_ >= n);
free_committed_pages_ -= n;
}
#endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
ASSERT(Check());
free_pages_ -= n;
return result;
}
Span* result = AllocLarge(n);
if (result != NULL) {
ASSERT_SPAN_COMMITTED(result);
return result;
}
// Grow the heap and try again
if (!GrowHeap(n)) {
ASSERT(Check());
return NULL;
}
return AllocLarge(n);
}
Span* TCMalloc_PageHeap::AllocLarge(Length n) {
// find the best span (closest to n in size).
// The following loops implements address-ordered best-fit.
bool from_released = false;
Span *best = NULL;
// Search through normal list
for (Span* span = large_.normal.next;
span != &large_.normal;
span = span->next) {
if (span->length >= n) {
if ((best == NULL)
|| (span->length < best->length)
|| ((span->length == best->length) && (span->start < best->start))) {
best = span;
from_released = false;
}
}
}
// Search through released list in case it has a better fit
for (Span* span = large_.returned.next;
span != &large_.returned;
span = span->next) {
if (span->length >= n) {
if ((best == NULL)
|| (span->length < best->length)
|| ((span->length == best->length) && (span->start < best->start))) {
best = span;
from_released = true;
}
}
}
if (best != NULL) {
Carve(best, n, from_released);
if (best->decommitted) {
TCMalloc_SystemCommit(reinterpret_cast<void*>(best->start << kPageShift), static_cast<size_t>(n << kPageShift));
best->decommitted = false;
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
pages_committed_since_last_scavenge_ += n;
#endif
}
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
else {
// The newly allocated memory is from a span that's in the normal span list (already committed). Update the
// free committed pages count.
ASSERT(free_committed_pages_ >= n);
free_committed_pages_ -= n;
}
#endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
ASSERT(Check());
free_pages_ -= n;
return best;
}
return NULL;
}
Span* TCMalloc_PageHeap::Split(Span* span, Length n) {
ASSERT(0 < n);
ASSERT(n < span->length);
ASSERT(!span->free);
ASSERT(span->sizeclass == 0);
Event(span, 'T', n);
const Length extra = span->length - n;
Span* leftover = NewSpan(span->start + n, extra);
Event(leftover, 'U', extra);
RecordSpan(leftover);
pagemap_.set(span->start + n - 1, span); // Update map from pageid to span
span->length = n;
return leftover;
}
static ALWAYS_INLINE void propagateDecommittedState(Span* destination, Span* source)
{
destination->decommitted = source->decommitted;
}
inline void TCMalloc_PageHeap::Carve(Span* span, Length n, bool released) {
ASSERT(n > 0);
DLL_Remove(span);
span->free = 0;
Event(span, 'A', n);
const int extra = static_cast<int>(span->length - n);
ASSERT(extra >= 0);
if (extra > 0) {
Span* leftover = NewSpan(span->start + n, extra);
leftover->free = 1;
propagateDecommittedState(leftover, span);
Event(leftover, 'S', extra);
RecordSpan(leftover);
// Place leftover span on appropriate free list
SpanList* listpair = (static_cast<size_t>(extra) < kMaxPages) ? &free_[extra] : &large_;
Span* dst = released ? &listpair->returned : &listpair->normal;
DLL_Prepend(dst, leftover);
span->length = n;
pagemap_.set(span->start + n - 1, span);
}
}
static ALWAYS_INLINE void mergeDecommittedStates(Span* destination, Span* other)
{
if (destination->decommitted && !other->decommitted) {
TCMalloc_SystemRelease(reinterpret_cast<void*>(other->start << kPageShift),
static_cast<size_t>(other->length << kPageShift));
} else if (other->decommitted && !destination->decommitted) {
TCMalloc_SystemRelease(reinterpret_cast<void*>(destination->start << kPageShift),
static_cast<size_t>(destination->length << kPageShift));
destination->decommitted = true;
}
}
inline void TCMalloc_PageHeap::Delete(Span* span) {
ASSERT(Check());
ASSERT(!span->free);
ASSERT(span->length > 0);
ASSERT(GetDescriptor(span->start) == span);
ASSERT(GetDescriptor(span->start + span->length - 1) == span);
span->sizeclass = 0;
#ifndef NO_TCMALLOC_SAMPLES
span->sample = 0;
#endif
// Coalesce -- we guarantee that "p" != 0, so no bounds checking
// necessary. We do not bother resetting the stale pagemap
// entries for the pieces we are merging together because we only
// care about the pagemap entries for the boundaries.
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
// Track the total size of the neighboring free spans that are committed.
Length neighboringCommittedSpansLength = 0;
#endif
const PageID p = span->start;
const Length n = span->length;
Span* prev = GetDescriptor(p-1);
if (prev != NULL && prev->free) {
// Merge preceding span into this span
ASSERT(prev->start + prev->length == p);
const Length len = prev->length;
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
if (!prev->decommitted)
neighboringCommittedSpansLength += len;
#endif
mergeDecommittedStates(span, prev);
DLL_Remove(prev);
DeleteSpan(prev);
span->start -= len;
span->length += len;
pagemap_.set(span->start, span);
Event(span, 'L', len);
}
Span* next = GetDescriptor(p+n);
if (next != NULL && next->free) {
// Merge next span into this span
ASSERT(next->start == p+n);
const Length len = next->length;
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
if (!next->decommitted)
neighboringCommittedSpansLength += len;
#endif
mergeDecommittedStates(span, next);
DLL_Remove(next);
DeleteSpan(next);
span->length += len;
pagemap_.set(span->start + span->length - 1, span);
Event(span, 'R', len);
}
Event(span, 'D', span->length);
span->free = 1;
if (span->decommitted) {
if (span->length < kMaxPages)
DLL_Prepend(&free_[span->length].returned, span);
else
DLL_Prepend(&large_.returned, span);
} else {
if (span->length < kMaxPages)
DLL_Prepend(&free_[span->length].normal, span);
else
DLL_Prepend(&large_.normal, span);
}
free_pages_ += n;
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
if (span->decommitted) {
// If the merged span is decommitted, that means we decommitted any neighboring spans that were
// committed. Update the free committed pages count.
free_committed_pages_ -= neighboringCommittedSpansLength;
} else {
// If the merged span remains committed, add the deleted span's size to the free committed pages count.
free_committed_pages_ += n;
}
// Make sure the scavenge thread becomes active if we have enough freed pages to release some back to the system.
if (!m_scavengeThreadActive && shouldContinueScavenging())
pthread_cond_signal(&m_scavengeCondition);
#else
IncrementalScavenge(n);
#endif
ASSERT(Check());
}
#if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
void TCMalloc_PageHeap::IncrementalScavenge(Length n) {
// Fast path; not yet time to release memory
scavenge_counter_ -= n;
if (scavenge_counter_ >= 0) return; // Not yet time to scavenge
// If there is nothing to release, wait for so many pages before
// scavenging again. With 4K pages, this comes to 16MB of memory.
static const size_t kDefaultReleaseDelay = 1 << 8;
// Find index of free list to scavenge
size_t index = scavenge_index_ + 1;
for (size_t i = 0; i < kMaxPages+1; i++) {
if (index > kMaxPages) index = 0;
SpanList* slist = (index == kMaxPages) ? &large_ : &free_[index];
if (!DLL_IsEmpty(&slist->normal)) {
// Release the last span on the normal portion of this list
Span* s = slist->normal.prev;
DLL_Remove(s);
TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
static_cast<size_t>(s->length << kPageShift));
s->decommitted = true;
DLL_Prepend(&slist->returned, s);
scavenge_counter_ = std::max<size_t>(64UL, std::min<size_t>(kDefaultReleaseDelay, kDefaultReleaseDelay - (free_pages_ / kDefaultReleaseDelay)));
if (index == kMaxPages && !DLL_IsEmpty(&slist->normal))
scavenge_index_ = index - 1;
else
scavenge_index_ = index;
return;
}
index++;
}
// Nothing to scavenge, delay for a while
scavenge_counter_ = kDefaultReleaseDelay;
}
#endif
void TCMalloc_PageHeap::RegisterSizeClass(Span* span, size_t sc) {
// Associate span object with all interior pages as well
ASSERT(!span->free);
ASSERT(GetDescriptor(span->start) == span);
ASSERT(GetDescriptor(span->start+span->length-1) == span);
Event(span, 'C', sc);
span->sizeclass = static_cast<unsigned int>(sc);
for (Length i = 1; i < span->length-1; i++) {
pagemap_.set(span->start+i, span);
}
}
#ifdef WTF_CHANGES
size_t TCMalloc_PageHeap::ReturnedBytes() const {
size_t result = 0;
for (unsigned s = 0; s < kMaxPages; s++) {
const int r_length = DLL_Length(&free_[s].returned);
unsigned r_pages = s * r_length;
result += r_pages << kPageShift;
}
for (Span* s = large_.returned.next; s != &large_.returned; s = s->next)
result += s->length << kPageShift;
return result;
}
#endif
#ifndef WTF_CHANGES
static double PagesToMB(uint64_t pages) {
return (pages << kPageShift) / 1048576.0;
}
void TCMalloc_PageHeap::Dump(TCMalloc_Printer* out) {
int nonempty_sizes = 0;
for (int s = 0; s < kMaxPages; s++) {
if (!DLL_IsEmpty(&free_[s].normal) || !DLL_IsEmpty(&free_[s].returned)) {
nonempty_sizes++;
}
}
out->printf("------------------------------------------------\n");
out->printf("PageHeap: %d sizes; %6.1f MB free\n",
nonempty_sizes, PagesToMB(free_pages_));
out->printf("------------------------------------------------\n");
uint64_t total_normal = 0;
uint64_t total_returned = 0;
for (int s = 0; s < kMaxPages; s++) {
const int n_length = DLL_Length(&free_[s].normal);
const int r_length = DLL_Length(&free_[s].returned);
if (n_length + r_length > 0) {
uint64_t n_pages = s * n_length;
uint64_t r_pages = s * r_length;
total_normal += n_pages;
total_returned += r_pages;
out->printf("%6u pages * %6u spans ~ %6.1f MB; %6.1f MB cum"
"; unmapped: %6.1f MB; %6.1f MB cum\n",
s,
(n_length + r_length),
PagesToMB(n_pages + r_pages),
PagesToMB(total_normal + total_returned),
PagesToMB(r_pages),
PagesToMB(total_returned));
}
}
uint64_t n_pages = 0;
uint64_t r_pages = 0;
int n_spans = 0;
int r_spans = 0;
out->printf("Normal large spans:\n");
for (Span* s = large_.normal.next; s != &large_.normal; s = s->next) {
out->printf(" [ %6" PRIuS " pages ] %6.1f MB\n",
s->length, PagesToMB(s->length));
n_pages += s->length;
n_spans++;
}
out->printf("Unmapped large spans:\n");
for (Span* s = large_.returned.next; s != &large_.returned; s = s->next) {
out->printf(" [ %6" PRIuS " pages ] %6.1f MB\n",
s->length, PagesToMB(s->length));
r_pages += s->length;
r_spans++;
}
total_normal += n_pages;
total_returned += r_pages;
out->printf(">255 large * %6u spans ~ %6.1f MB; %6.1f MB cum"
"; unmapped: %6.1f MB; %6.1f MB cum\n",
(n_spans + r_spans),
PagesToMB(n_pages + r_pages),
PagesToMB(total_normal + total_returned),
PagesToMB(r_pages),
PagesToMB(total_returned));
}
#endif
bool TCMalloc_PageHeap::GrowHeap(Length n) {
ASSERT(kMaxPages >= kMinSystemAlloc);
if (n > kMaxValidPages) return false;
Length ask = (n>kMinSystemAlloc) ? n : static_cast<Length>(kMinSystemAlloc);
size_t actual_size;
void* ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
if (ptr == NULL) {
if (n < ask) {
// Try growing just "n" pages
ask = n;
ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
}
if (ptr == NULL) return false;
}
ask = actual_size >> kPageShift;
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
pages_committed_since_last_scavenge_ += ask;
#endif
uint64_t old_system_bytes = system_bytes_;
system_bytes_ += (ask << kPageShift);
const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
ASSERT(p > 0);
// If we have already a lot of pages allocated, just pre allocate a bunch of
// memory for the page map. This prevents fragmentation by pagemap metadata
// when a program keeps allocating and freeing large blocks.
if (old_system_bytes < kPageMapBigAllocationThreshold
&& system_bytes_ >= kPageMapBigAllocationThreshold) {
pagemap_.PreallocateMoreMemory();
}
// Make sure pagemap_ has entries for all of the new pages.
// Plus ensure one before and one after so coalescing code
// does not need bounds-checking.
if (pagemap_.Ensure(p-1, ask+2)) {
// Pretend the new area is allocated and then Delete() it to
// cause any necessary coalescing to occur.
//
// We do not adjust free_pages_ here since Delete() will do it for us.
Span* span = NewSpan(p, ask);
RecordSpan(span);
Delete(span);
ASSERT(Check());
return true;
} else {
// We could not allocate memory within "pagemap_"
// TODO: Once we can return memory to the system, return the new span
return false;
}
}
bool TCMalloc_PageHeap::Check() {
ASSERT(free_[0].normal.next == &free_[0].normal);
ASSERT(free_[0].returned.next == &free_[0].returned);
CheckList(&large_.normal, kMaxPages, 1000000000);
CheckList(&large_.returned, kMaxPages, 1000000000);
for (Length s = 1; s < kMaxPages; s++) {
CheckList(&free_[s].normal, s, s);
CheckList(&free_[s].returned, s, s);
}
return true;
}
#if ASSERT_DISABLED
bool TCMalloc_PageHeap::CheckList(Span*, Length, Length) {
return true;
}
#else
bool TCMalloc_PageHeap::CheckList(Span* list, Length min_pages, Length max_pages) {
for (Span* s = list->next; s != list; s = s->next) {
CHECK_CONDITION(s->free);
CHECK_CONDITION(s->length >= min_pages);
CHECK_CONDITION(s->length <= max_pages);
CHECK_CONDITION(GetDescriptor(s->start) == s);
CHECK_CONDITION(GetDescriptor(s->start+s->length-1) == s);
}
return true;
}
#endif
static void ReleaseFreeList(Span* list, Span* returned) {
// Walk backwards through list so that when we push these
// spans on the "returned" list, we preserve the order.
while (!DLL_IsEmpty(list)) {
Span* s = list->prev;
DLL_Remove(s);
DLL_Prepend(returned, s);
TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
static_cast<size_t>(s->length << kPageShift));
}
}
void TCMalloc_PageHeap::ReleaseFreePages() {
for (Length s = 0; s < kMaxPages; s++) {
ReleaseFreeList(&free_[s].normal, &free_[s].returned);
}
ReleaseFreeList(&large_.normal, &large_.returned);
ASSERT(Check());
}
//-------------------------------------------------------------------
// Free list
//-------------------------------------------------------------------
class TCMalloc_ThreadCache_FreeList {
private:
void* list_; // Linked list of nodes
uint16_t length_; // Current length
uint16_t lowater_; // Low water mark for list length
public:
void Init() {
list_ = NULL;
length_ = 0;
lowater_ = 0;
}
// Return current length of list
int length() const {
return length_;
}
// Is list empty?
bool empty() const {
return list_ == NULL;
}
// Low-water mark management
int lowwatermark() const { return lowater_; }
void clear_lowwatermark() { lowater_ = length_; }
ALWAYS_INLINE void Push(void* ptr) {
SLL_Push(&list_, ptr);
length_++;
}
void PushRange(int N, void *start, void *end) {
SLL_PushRange(&list_, start, end);
length_ = length_ + static_cast<uint16_t>(N);
}
void PopRange(int N, void **start, void **end) {
SLL_PopRange(&list_, N, start, end);
ASSERT(length_ >= N);
length_ = length_ - static_cast<uint16_t>(N);
if (length_ < lowater_) lowater_ = length_;
}
ALWAYS_INLINE void* Pop() {
ASSERT(list_ != NULL);
length_--;
if (length_ < lowater_) lowater_ = length_;
return SLL_Pop(&list_);
}
#ifdef WTF_CHANGES
template <class Finder, class Reader>
void enumerateFreeObjects(Finder& finder, const Reader& reader)
{
for (void* nextObject = list_; nextObject; nextObject = *reader(reinterpret_cast<void**>(nextObject)))
finder.visit(nextObject);
}
#endif
};
//-------------------------------------------------------------------
// Data kept per thread
//-------------------------------------------------------------------
class TCMalloc_ThreadCache {
private:
typedef TCMalloc_ThreadCache_FreeList FreeList;
#if COMPILER(MSVC)
typedef DWORD ThreadIdentifier;
#else
typedef pthread_t ThreadIdentifier;
#endif
size_t size_; // Combined size of data
ThreadIdentifier tid_; // Which thread owns it
bool in_setspecific_; // Called pthread_setspecific?
FreeList list_[kNumClasses]; // Array indexed by size-class
// We sample allocations, biased by the size of the allocation
uint32_t rnd_; // Cheap random number generator
size_t bytes_until_sample_; // Bytes until we sample next
// Allocate a new heap. REQUIRES: pageheap_lock is held.
static inline TCMalloc_ThreadCache* NewHeap(ThreadIdentifier tid);
// Use only as pthread thread-specific destructor function.
static void DestroyThreadCache(void* ptr);
public:
// All ThreadCache objects are kept in a linked list (for stats collection)
TCMalloc_ThreadCache* next_;
TCMalloc_ThreadCache* prev_;
void Init(ThreadIdentifier tid);
void Cleanup();
// Accessors (mostly just for printing stats)
int freelist_length(size_t cl) const { return list_[cl].length(); }
// Total byte size in cache
size_t Size() const { return size_; }
void* Allocate(size_t size);
void Deallocate(void* ptr, size_t size_class);
void FetchFromCentralCache(size_t cl, size_t allocationSize);
void ReleaseToCentralCache(size_t cl, int N);
void Scavenge();
void Print() const;
// Record allocation of "k" bytes. Return true iff allocation
// should be sampled
bool SampleAllocation(size_t k);
// Pick next sampling point
void PickNextSample(size_t k);
static void InitModule();
static void InitTSD();
static TCMalloc_ThreadCache* GetThreadHeap();
static TCMalloc_ThreadCache* GetCache();
static TCMalloc_ThreadCache* GetCacheIfPresent();
static TCMalloc_ThreadCache* CreateCacheIfNecessary();
static void DeleteCache(TCMalloc_ThreadCache* heap);
static void BecomeIdle();
static void RecomputeThreadCacheSize();
#ifdef WTF_CHANGES
template <class Finder, class Reader>
void enumerateFreeObjects(Finder& finder, const Reader& reader)
{
for (unsigned sizeClass = 0; sizeClass < kNumClasses; sizeClass++)
list_[sizeClass].enumerateFreeObjects(finder, reader);
}
#endif
};
//-------------------------------------------------------------------
// Data kept per size-class in central cache
//-------------------------------------------------------------------
class TCMalloc_Central_FreeList {
public:
void Init(size_t cl);
// These methods all do internal locking.
// Insert the specified range into the central freelist. N is the number of
// elements in the range.
void InsertRange(void *start, void *end, int N);
// Returns the actual number of fetched elements into N.
void RemoveRange(void **start, void **end, int *N);
// Returns the number of free objects in cache.
size_t length() {
SpinLockHolder h(&lock_);
return counter_;
}
// Returns the number of free objects in the transfer cache.
int tc_length() {
SpinLockHolder h(&lock_);
return used_slots_ * num_objects_to_move[size_class_];
}
#ifdef WTF_CHANGES
template <class Finder, class Reader>
void enumerateFreeObjects(Finder& finder, const Reader& reader, TCMalloc_Central_FreeList* remoteCentralFreeList)
{
for (Span* span = &empty_; span && span != &empty_; span = (span->next ? reader(span->next) : 0))
ASSERT(!span->objects);
ASSERT(!nonempty_.objects);
static const ptrdiff_t nonemptyOffset = reinterpret_cast<const char*>(&nonempty_) - reinterpret_cast<const char*>(this);
Span* remoteNonempty = reinterpret_cast<Span*>(reinterpret_cast<char*>(remoteCentralFreeList) + nonemptyOffset);
Span* remoteSpan = nonempty_.next;
for (Span* span = reader(remoteSpan); span && remoteSpan != remoteNonempty; remoteSpan = span->next, span = (span->next ? reader(span->next) : 0)) {
for (void* nextObject = span->objects; nextObject; nextObject = *reader(reinterpret_cast<void**>(nextObject)))
finder.visit(nextObject);
}
}
#endif
private:
// REQUIRES: lock_ is held
// Remove object from cache and return.
// Return NULL if no free entries in cache.
void* FetchFromSpans();
// REQUIRES: lock_ is held
// Remove object from cache and return. Fetches
// from pageheap if cache is empty. Only returns
// NULL on allocation failure.
void* FetchFromSpansSafe();
// REQUIRES: lock_ is held
// Release a linked list of objects to spans.
// May temporarily release lock_.
void ReleaseListToSpans(void *start);
// REQUIRES: lock_ is held
// Release an object to spans.
// May temporarily release lock_.
void ReleaseToSpans(void* object);
// REQUIRES: lock_ is held
// Populate cache by fetching from the page heap.
// May temporarily release lock_.
void Populate();
// REQUIRES: lock is held.
// Tries to make room for a TCEntry. If the cache is full it will try to
// expand it at the cost of some other cache size. Return false if there is
// no space.
bool MakeCacheSpace();
// REQUIRES: lock_ for locked_size_class is held.
// Picks a "random" size class to steal TCEntry slot from. In reality it
// just iterates over the sizeclasses but does so without taking a lock.
// Returns true on success.
// May temporarily lock a "random" size class.
static bool EvictRandomSizeClass(size_t locked_size_class, bool force);
// REQUIRES: lock_ is *not* held.
// Tries to shrink the Cache. If force is true it will relase objects to
// spans if it allows it to shrink the cache. Return false if it failed to
// shrink the cache. Decrements cache_size_ on succeess.
// May temporarily take lock_. If it takes lock_, the locked_size_class
// lock is released to the thread from holding two size class locks
// concurrently which could lead to a deadlock.
bool ShrinkCache(int locked_size_class, bool force);
// This lock protects all the data members. cached_entries and cache_size_
// may be looked at without holding the lock.
SpinLock lock_;
// We keep linked lists of empty and non-empty spans.
size_t size_class_; // My size class
Span empty_; // Dummy header for list of empty spans
Span nonempty_; // Dummy header for list of non-empty spans
size_t counter_; // Number of free objects in cache entry
// Here we reserve space for TCEntry cache slots. Since one size class can
// end up getting all the TCEntries quota in the system we just preallocate
// sufficient number of entries here.
TCEntry tc_slots_[kNumTransferEntries];
// Number of currently used cached entries in tc_slots_. This variable is
// updated under a lock but can be read without one.
int32_t used_slots_;
// The current number of slots for this size class. This is an
// adaptive value that is increased if there is lots of traffic
// on a given size class.
int32_t cache_size_;
};
// Pad each CentralCache object to multiple of 64 bytes
class TCMalloc_Central_FreeListPadded : public TCMalloc_Central_FreeList {
private:
char pad_[(64 - (sizeof(TCMalloc_Central_FreeList) % 64)) % 64];
};
//-------------------------------------------------------------------
// Global variables
//-------------------------------------------------------------------
// Central cache -- a collection of free-lists, one per size-class.
// We have a separate lock per free-list to reduce contention.
static TCMalloc_Central_FreeListPadded central_cache[kNumClasses];
// Page-level allocator
static SpinLock pageheap_lock = SPINLOCK_INITIALIZER;
static void* pageheap_memory[(sizeof(TCMalloc_PageHeap) + sizeof(void*) - 1) / sizeof(void*)];
static bool phinited = false;
// Avoid extra level of indirection by making "pageheap" be just an alias
// of pageheap_memory.
typedef union {
void* m_memory;
TCMalloc_PageHeap* m_pageHeap;
} PageHeapUnion;
static inline TCMalloc_PageHeap* getPageHeap()
{
PageHeapUnion u = { &pageheap_memory[0] };
return u.m_pageHeap;
}
#define pageheap getPageHeap()
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
#if PLATFORM(WIN_OS)
static void sleep(unsigned seconds)
{
::Sleep(seconds * 1000);
}
#endif
void TCMalloc_PageHeap::scavengerThread()
{
#if HAVE(PTHREAD_SETNAME_NP)
pthread_setname_np("JavaScriptCore: FastMalloc scavenger");
#endif
while (1) {
if (!shouldContinueScavenging()) {
pthread_mutex_lock(&m_scavengeMutex);
m_scavengeThreadActive = false;
// Block until there are enough freed pages to release back to the system.
pthread_cond_wait(&m_scavengeCondition, &m_scavengeMutex);
m_scavengeThreadActive = true;
pthread_mutex_unlock(&m_scavengeMutex);
}
sleep(kScavengeTimerDelayInSeconds);
{
SpinLockHolder h(&pageheap_lock);
pageheap->scavenge();
}
}
}
#endif
// If TLS is available, we also store a copy
// of the per-thread object in a __thread variable
// since __thread variables are faster to read
// than pthread_getspecific(). We still need
// pthread_setspecific() because __thread
// variables provide no way to run cleanup
// code when a thread is destroyed.
#ifdef HAVE_TLS
static __thread TCMalloc_ThreadCache *threadlocal_heap;
#endif
// Thread-specific key. Initialization here is somewhat tricky
// because some Linux startup code invokes malloc() before it
// is in a good enough state to handle pthread_keycreate().
// Therefore, we use TSD keys only after tsd_inited is set to true.
// Until then, we use a slow path to get the heap object.
static bool tsd_inited = false;
static pthread_key_t heap_key;
#if COMPILER(MSVC)
DWORD tlsIndex = TLS_OUT_OF_INDEXES;
#endif
static ALWAYS_INLINE void setThreadHeap(TCMalloc_ThreadCache* heap)
{
// still do pthread_setspecific when using MSVC fast TLS to
// benefit from the delete callback.
pthread_setspecific(heap_key, heap);
#if COMPILER(MSVC)
TlsSetValue(tlsIndex, heap);
#endif
}
// Allocator for thread heaps
static PageHeapAllocator<TCMalloc_ThreadCache> threadheap_allocator;
// Linked list of heap objects. Protected by pageheap_lock.
static TCMalloc_ThreadCache* thread_heaps = NULL;
static int thread_heap_count = 0;
// Overall thread cache size. Protected by pageheap_lock.
static size_t overall_thread_cache_size = kDefaultOverallThreadCacheSize;
// Global per-thread cache size. Writes are protected by
// pageheap_lock. Reads are done without any locking, which should be
// fine as long as size_t can be written atomically and we don't place
// invariants between this variable and other pieces of state.
static volatile size_t per_thread_cache_size = kMaxThreadCacheSize;
//-------------------------------------------------------------------
// Central cache implementation
//-------------------------------------------------------------------
void TCMalloc_Central_FreeList::Init(size_t cl) {
lock_.Init();
size_class_ = cl;
DLL_Init(&empty_);
DLL_Init(&nonempty_);
counter_ = 0;
cache_size_ = 1;
used_slots_ = 0;
ASSERT(cache_size_ <= kNumTransferEntries);
}
void TCMalloc_Central_FreeList::ReleaseListToSpans(void* start) {
while (start) {
void *next = SLL_Next(start);
ReleaseToSpans(start);
start = next;
}
}
ALWAYS_INLINE void TCMalloc_Central_FreeList::ReleaseToSpans(void* object) {
const PageID p = reinterpret_cast<uintptr_t>(object) >> kPageShift;
Span* span = pageheap->GetDescriptor(p);
ASSERT(span != NULL);
ASSERT(span->refcount > 0);
// If span is empty, move it to non-empty list
if (span->objects == NULL) {
DLL_Remove(span);
DLL_Prepend(&nonempty_, span);
Event(span, 'N', 0);
}
// The following check is expensive, so it is disabled by default
if (false) {
// Check that object does not occur in list
unsigned got = 0;
for (void* p = span->objects; p != NULL; p = *((void**) p)) {
ASSERT(p != object);
got++;
}
ASSERT(got + span->refcount ==
(span->length<<kPageShift)/ByteSizeForClass(span->sizeclass));
}
counter_++;
span->refcount--;
if (span->refcount == 0) {
Event(span, '#', 0);
counter_ -= (span->length<<kPageShift) / ByteSizeForClass(span->sizeclass);
DLL_Remove(span);
// Release central list lock while operating on pageheap
lock_.Unlock();
{
SpinLockHolder h(&pageheap_lock);
pageheap->Delete(span);
}
lock_.Lock();
} else {
*(reinterpret_cast<void**>(object)) = span->objects;
span->objects = object;
}
}
ALWAYS_INLINE bool TCMalloc_Central_FreeList::EvictRandomSizeClass(
size_t locked_size_class, bool force) {
static int race_counter = 0;
int t = race_counter++; // Updated without a lock, but who cares.
if (t >= static_cast<int>(kNumClasses)) {
while (t >= static_cast<int>(kNumClasses)) {
t -= kNumClasses;
}
race_counter = t;
}
ASSERT(t >= 0);
ASSERT(t < static_cast<int>(kNumClasses));
if (t == static_cast<int>(locked_size_class)) return false;
return central_cache[t].ShrinkCache(static_cast<int>(locked_size_class), force);
}
bool TCMalloc_Central_FreeList::MakeCacheSpace() {
// Is there room in the cache?
if (used_slots_ < cache_size_) return true;
// Check if we can expand this cache?
if (cache_size_ == kNumTransferEntries) return false;
// Ok, we'll try to grab an entry from some other size class.
if (EvictRandomSizeClass(size_class_, false) ||
EvictRandomSizeClass(size_class_, true)) {
// Succeeded in evicting, we're going to make our cache larger.
cache_size_++;
return true;
}
return false;
}
namespace {
class LockInverter {
private:
SpinLock *held_, *temp_;
public:
inline explicit LockInverter(SpinLock* held, SpinLock *temp)
: held_(held), temp_(temp) { held_->Unlock(); temp_->Lock(); }
inline ~LockInverter() { temp_->Unlock(); held_->Lock(); }
};
}
bool TCMalloc_Central_FreeList::ShrinkCache(int locked_size_class, bool force) {
// Start with a quick check without taking a lock.
if (cache_size_ == 0) return false;
// We don't evict from a full cache unless we are 'forcing'.
if (force == false && used_slots_ == cache_size_) return false;
// Grab lock, but first release the other lock held by this thread. We use
// the lock inverter to ensure that we never hold two size class locks
// concurrently. That can create a deadlock because there is no well
// defined nesting order.
LockInverter li(¢ral_cache[locked_size_class].lock_, &lock_);
ASSERT(used_slots_ <= cache_size_);
ASSERT(0 <= cache_size_);
if (cache_size_ == 0) return false;
if (used_slots_ == cache_size_) {
if (force == false) return false;
// ReleaseListToSpans releases the lock, so we have to make all the
// updates to the central list before calling it.
cache_size_--;
used_slots_--;
ReleaseListToSpans(tc_slots_[used_slots_].head);
return true;
}
cache_size_--;
return true;
}
void TCMalloc_Central_FreeList::InsertRange(void *start, void *end, int N) {
SpinLockHolder h(&lock_);
if (N == num_objects_to_move[size_class_] &&
MakeCacheSpace()) {
int slot = used_slots_++;
ASSERT(slot >=0);
ASSERT(slot < kNumTransferEntries);
TCEntry *entry = &tc_slots_[slot];
entry->head = start;
entry->tail = end;
return;
}
ReleaseListToSpans(start);
}
void TCMalloc_Central_FreeList::RemoveRange(void **start, void **end, int *N) {
int num = *N;
ASSERT(num > 0);
SpinLockHolder h(&lock_);
if (num == num_objects_to_move[size_class_] && used_slots_ > 0) {
int slot = --used_slots_;
ASSERT(slot >= 0);
TCEntry *entry = &tc_slots_[slot];
*start = entry->head;
*end = entry->tail;
return;
}
// TODO: Prefetch multiple TCEntries?
void *tail = FetchFromSpansSafe();
if (!tail) {
// We are completely out of memory.
*start = *end = NULL;
*N = 0;
return;
}
SLL_SetNext(tail, NULL);
void *head = tail;
int count = 1;
while (count < num) {
void *t = FetchFromSpans();
if (!t) break;
SLL_Push(&head, t);
count++;
}
*start = head;
*end = tail;
*N = count;
}
void* TCMalloc_Central_FreeList::FetchFromSpansSafe() {
void *t = FetchFromSpans();
if (!t) {
Populate();
t = FetchFromSpans();
}
return t;
}
void* TCMalloc_Central_FreeList::FetchFromSpans() {
if (DLL_IsEmpty(&nonempty_)) return NULL;
Span* span = nonempty_.next;
ASSERT(span->objects != NULL);
ASSERT_SPAN_COMMITTED(span);
span->refcount++;
void* result = span->objects;
span->objects = *(reinterpret_cast<void**>(result));
if (span->objects == NULL) {
// Move to empty list
DLL_Remove(span);
DLL_Prepend(&empty_, span);
Event(span, 'E', 0);
}
counter_--;
return result;
}
// Fetch memory from the system and add to the central cache freelist.
ALWAYS_INLINE void TCMalloc_Central_FreeList::Populate() {
// Release central list lock while operating on pageheap
lock_.Unlock();
const size_t npages = class_to_pages[size_class_];
Span* span;
{
SpinLockHolder h(&pageheap_lock);
span = pageheap->New(npages);
if (span) pageheap->RegisterSizeClass(span, size_class_);
}
if (span == NULL) {
MESSAGE("allocation failed: %d\n", errno);
lock_.Lock();
return;
}
ASSERT_SPAN_COMMITTED(span);
ASSERT(span->length == npages);
// Cache sizeclass info eagerly. Locking is not necessary.
// (Instead of being eager, we could just replace any stale info
// about this span, but that seems to be no better in practice.)
for (size_t i = 0; i < npages; i++) {
pageheap->CacheSizeClass(span->start + i, size_class_);
}
// Split the block into pieces and add to the free-list
// TODO: coloring of objects to avoid cache conflicts?
void** tail = &span->objects;
char* ptr = reinterpret_cast<char*>(span->start << kPageShift);
char* limit = ptr + (npages << kPageShift);
const size_t size = ByteSizeForClass(size_class_);
int num = 0;
char* nptr;
while ((nptr = ptr + size) <= limit) {
*tail = ptr;
tail = reinterpret_cast<void**>(ptr);
ptr = nptr;
num++;
}
ASSERT(ptr <= limit);
*tail = NULL;
span->refcount = 0; // No sub-object in use yet
// Add span to list of non-empty spans
lock_.Lock();
DLL_Prepend(&nonempty_, span);
counter_ += num;
}
//-------------------------------------------------------------------
// TCMalloc_ThreadCache implementation
//-------------------------------------------------------------------
inline bool TCMalloc_ThreadCache::SampleAllocation(size_t k) {
if (bytes_until_sample_ < k) {
PickNextSample(k);
return true;
} else {
bytes_until_sample_ -= k;
return false;
}
}
void TCMalloc_ThreadCache::Init(ThreadIdentifier tid) {
size_ = 0;
next_ = NULL;
prev_ = NULL;
tid_ = tid;
in_setspecific_ = false;
for (size_t cl = 0; cl < kNumClasses; ++cl) {
list_[cl].Init();
}
// Initialize RNG -- run it for a bit to get to good values
bytes_until_sample_ = 0;
rnd_ = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(this));
for (int i = 0; i < 100; i++) {
PickNextSample(static_cast<size_t>(FLAGS_tcmalloc_sample_parameter * 2));
}
}
void TCMalloc_ThreadCache::Cleanup() {
// Put unused memory back into central cache
for (size_t cl = 0; cl < kNumClasses; ++cl) {
if (list_[cl].length() > 0) {
ReleaseToCentralCache(cl, list_[cl].length());
}
}
}
ALWAYS_INLINE void* TCMalloc_ThreadCache::Allocate(size_t size) {
ASSERT(size <= kMaxSize);
const size_t cl = SizeClass(size);
FreeList* list = &list_[cl];
size_t allocationSize = ByteSizeForClass(cl);
if (list->empty()) {
FetchFromCentralCache(cl, allocationSize);
if (list->empty()) return NULL;
}
size_ -= allocationSize;
return list->Pop();
}
inline void TCMalloc_ThreadCache::Deallocate(void* ptr, size_t cl) {
size_ += ByteSizeForClass(cl);
FreeList* list = &list_[cl];
list->Push(ptr);
// If enough data is free, put back into central cache
if (list->length() > kMaxFreeListLength) {
ReleaseToCentralCache(cl, num_objects_to_move[cl]);
}
if (size_ >= per_thread_cache_size) Scavenge();
}
// Remove some objects of class "cl" from central cache and add to thread heap
ALWAYS_INLINE void TCMalloc_ThreadCache::FetchFromCentralCache(size_t cl, size_t allocationSize) {
int fetch_count = num_objects_to_move[cl];
void *start, *end;
central_cache[cl].RemoveRange(&start, &end, &fetch_count);
list_[cl].PushRange(fetch_count, start, end);
size_ += allocationSize * fetch_count;
}
// Remove some objects of class "cl" from thread heap and add to central cache
inline void TCMalloc_ThreadCache::ReleaseToCentralCache(size_t cl, int N) {
ASSERT(N > 0);
FreeList* src = &list_[cl];
if (N > src->length()) N = src->length();
size_ -= N*ByteSizeForClass(cl);
// We return prepackaged chains of the correct size to the central cache.
// TODO: Use the same format internally in the thread caches?
int batch_size = num_objects_to_move[cl];
while (N > batch_size) {
void *tail, *head;
src->PopRange(batch_size, &head, &tail);
central_cache[cl].InsertRange(head, tail, batch_size);
N -= batch_size;
}
void *tail, *head;
src->PopRange(N, &head, &tail);
central_cache[cl].InsertRange(head, tail, N);
}
// Release idle memory to the central cache
inline void TCMalloc_ThreadCache::Scavenge() {
// If the low-water mark for the free list is L, it means we would
// not have had to allocate anything from the central cache even if
// we had reduced the free list size by L. We aim to get closer to
// that situation by dropping L/2 nodes from the free list. This
// may not release much memory, but if so we will call scavenge again
// pretty soon and the low-water marks will be high on that call.
//int64 start = CycleClock::Now();
for (size_t cl = 0; cl < kNumClasses; cl++) {
FreeList* list = &list_[cl];
const int lowmark = list->lowwatermark();
if (lowmark > 0) {
const int drop = (lowmark > 1) ? lowmark/2 : 1;
ReleaseToCentralCache(cl, drop);
}
list->clear_lowwatermark();
}
//int64 finish = CycleClock::Now();
//CycleTimer ct;
//MESSAGE("GC: %.0f ns\n", ct.CyclesToUsec(finish-start)*1000.0);
}
void TCMalloc_ThreadCache::PickNextSample(size_t k) {
// Make next "random" number
// x^32+x^22+x^2+x^1+1 is a primitive polynomial for random numbers
static const uint32_t kPoly = (1 << 22) | (1 << 2) | (1 << 1) | (1 << 0);
uint32_t r = rnd_;
rnd_ = (r << 1) ^ ((static_cast<int32_t>(r) >> 31) & kPoly);
// Next point is "rnd_ % (sample_period)". I.e., average
// increment is "sample_period/2".
const int flag_value = static_cast<int>(FLAGS_tcmalloc_sample_parameter);
static int last_flag_value = -1;
if (flag_value != last_flag_value) {
SpinLockHolder h(&sample_period_lock);
int i;
for (i = 0; i < (static_cast<int>(sizeof(primes_list)/sizeof(primes_list[0])) - 1); i++) {
if (primes_list[i] >= flag_value) {
break;
}
}
sample_period = primes_list[i];
last_flag_value = flag_value;
}
bytes_until_sample_ += rnd_ % sample_period;
if (k > (static_cast<size_t>(-1) >> 2)) {
// If the user has asked for a huge allocation then it is possible
// for the code below to loop infinitely. Just return (note that
// this throws off the sampling accuracy somewhat, but a user who
// is allocating more than 1G of memory at a time can live with a
// minor inaccuracy in profiling of small allocations, and also
// would rather not wait for the loop below to terminate).
return;
}
while (bytes_until_sample_ < k) {
// Increase bytes_until_sample_ by enough average sampling periods
// (sample_period >> 1) to allow us to sample past the current
// allocation.
bytes_until_sample_ += (sample_period >> 1);
}
bytes_until_sample_ -= k;
}
void TCMalloc_ThreadCache::InitModule() {
// There is a slight potential race here because of double-checked
// locking idiom. However, as long as the program does a small
// allocation before switching to multi-threaded mode, we will be
// fine. We increase the chances of doing such a small allocation
// by doing one in the constructor of the module_enter_exit_hook
// object declared below.
SpinLockHolder h(&pageheap_lock);
if (!phinited) {
#ifdef WTF_CHANGES
InitTSD();
#endif
InitSizeClasses();
threadheap_allocator.Init();
span_allocator.Init();
span_allocator.New(); // Reduce cache conflicts
span_allocator.New(); // Reduce cache conflicts
stacktrace_allocator.Init();
DLL_Init(&sampled_objects);
for (size_t i = 0; i < kNumClasses; ++i) {
central_cache[i].Init(i);
}
pageheap->init();
phinited = 1;
#if defined(WTF_CHANGES) && PLATFORM(DARWIN)
FastMallocZone::init();
#endif
}
}
inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::NewHeap(ThreadIdentifier tid) {
// Create the heap and add it to the linked list
TCMalloc_ThreadCache *heap = threadheap_allocator.New();
heap->Init(tid);
heap->next_ = thread_heaps;
heap->prev_ = NULL;
if (thread_heaps != NULL) thread_heaps->prev_ = heap;
thread_heaps = heap;
thread_heap_count++;
RecomputeThreadCacheSize();
return heap;
}
inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetThreadHeap() {
#ifdef HAVE_TLS
// __thread is faster, but only when the kernel supports it
if (KernelSupportsTLS())
return threadlocal_heap;
#elif COMPILER(MSVC)
return static_cast<TCMalloc_ThreadCache*>(TlsGetValue(tlsIndex));
#else
return static_cast<TCMalloc_ThreadCache*>(pthread_getspecific(heap_key));
#endif
}
inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCache() {
TCMalloc_ThreadCache* ptr = NULL;
if (!tsd_inited) {
InitModule();
} else {
ptr = GetThreadHeap();
}
if (ptr == NULL) ptr = CreateCacheIfNecessary();
return ptr;
}
// In deletion paths, we do not try to create a thread-cache. This is
// because we may be in the thread destruction code and may have
// already cleaned up the cache for this thread.
inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCacheIfPresent() {
if (!tsd_inited) return NULL;
void* const p = GetThreadHeap();
return reinterpret_cast<TCMalloc_ThreadCache*>(p);
}
void TCMalloc_ThreadCache::InitTSD() {
ASSERT(!tsd_inited);
pthread_key_create(&heap_key, DestroyThreadCache);
#if COMPILER(MSVC)
tlsIndex = TlsAlloc();
#endif
tsd_inited = true;
#if !COMPILER(MSVC)
// We may have used a fake pthread_t for the main thread. Fix it.
pthread_t zero;
memset(&zero, 0, sizeof(zero));
#endif
#ifndef WTF_CHANGES
SpinLockHolder h(&pageheap_lock);
#else
ASSERT(pageheap_lock.IsHeld());
#endif
for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
#if COMPILER(MSVC)
if (h->tid_ == 0) {
h->tid_ = GetCurrentThreadId();
}
#else
if (pthread_equal(h->tid_, zero)) {
h->tid_ = pthread_self();
}
#endif
}
}
TCMalloc_ThreadCache* TCMalloc_ThreadCache::CreateCacheIfNecessary() {
// Initialize per-thread data if necessary
TCMalloc_ThreadCache* heap = NULL;
{
SpinLockHolder h(&pageheap_lock);
#if COMPILER(MSVC)
DWORD me;
if (!tsd_inited) {
me = 0;
} else {
me = GetCurrentThreadId();
}
#else
// Early on in glibc's life, we cannot even call pthread_self()
pthread_t me;
if (!tsd_inited) {
memset(&me, 0, sizeof(me));
} else {
me = pthread_self();
}
#endif
// This may be a recursive malloc call from pthread_setspecific()
// In that case, the heap for this thread has already been created
// and added to the linked list. So we search for that first.
for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
#if COMPILER(MSVC)
if (h->tid_ == me) {
#else
if (pthread_equal(h->tid_, me)) {
#endif
heap = h;
break;
}
}
if (heap == NULL) heap = NewHeap(me);
}
// We call pthread_setspecific() outside the lock because it may
// call malloc() recursively. The recursive call will never get
// here again because it will find the already allocated heap in the
// linked list of heaps.
if (!heap->in_setspecific_ && tsd_inited) {
heap->in_setspecific_ = true;
setThreadHeap(heap);
}
return heap;
}
void TCMalloc_ThreadCache::BecomeIdle() {
if (!tsd_inited) return; // No caches yet
TCMalloc_ThreadCache* heap = GetThreadHeap();
if (heap == NULL) return; // No thread cache to remove
if (heap->in_setspecific_) return; // Do not disturb the active caller
heap->in_setspecific_ = true;
pthread_setspecific(heap_key, NULL);
#ifdef HAVE_TLS
// Also update the copy in __thread
threadlocal_heap = NULL;
#endif
heap->in_setspecific_ = false;
if (GetThreadHeap() == heap) {
// Somehow heap got reinstated by a recursive call to malloc
// from pthread_setspecific. We give up in this case.
return;
}
// We can now get rid of the heap
DeleteCache(heap);
}
void TCMalloc_ThreadCache::DestroyThreadCache(void* ptr) {
// Note that "ptr" cannot be NULL since pthread promises not
// to invoke the destructor on NULL values, but for safety,
// we check anyway.
if (ptr == NULL) return;
#ifdef HAVE_TLS
// Prevent fast path of GetThreadHeap() from returning heap.
threadlocal_heap = NULL;
#endif
DeleteCache(reinterpret_cast<TCMalloc_ThreadCache*>(ptr));
}
void TCMalloc_ThreadCache::DeleteCache(TCMalloc_ThreadCache* heap) {
// Remove all memory from heap
heap->Cleanup();
// Remove from linked list
SpinLockHolder h(&pageheap_lock);
if (heap->next_ != NULL) heap->next_->prev_ = heap->prev_;
if (heap->prev_ != NULL) heap->prev_->next_ = heap->next_;
if (thread_heaps == heap) thread_heaps = heap->next_;
thread_heap_count--;
RecomputeThreadCacheSize();
threadheap_allocator.Delete(heap);
}
void TCMalloc_ThreadCache::RecomputeThreadCacheSize() {
// Divide available space across threads
int n = thread_heap_count > 0 ? thread_heap_count : 1;
size_t space = overall_thread_cache_size / n;
// Limit to allowed range
if (space < kMinThreadCacheSize) space = kMinThreadCacheSize;
if (space > kMaxThreadCacheSize) space = kMaxThreadCacheSize;
per_thread_cache_size = space;
}
void TCMalloc_ThreadCache::Print() const {
for (size_t cl = 0; cl < kNumClasses; ++cl) {
MESSAGE(" %5" PRIuS " : %4d len; %4d lo\n",
ByteSizeForClass(cl),
list_[cl].length(),
list_[cl].lowwatermark());
}
}
// Extract interesting stats
struct TCMallocStats {
uint64_t system_bytes; // Bytes alloced from system
uint64_t thread_bytes; // Bytes in thread caches
uint64_t central_bytes; // Bytes in central cache
uint64_t transfer_bytes; // Bytes in central transfer cache
uint64_t pageheap_bytes; // Bytes in page heap
uint64_t metadata_bytes; // Bytes alloced for metadata
};
#ifndef WTF_CHANGES
// Get stats into "r". Also get per-size-class counts if class_count != NULL
static void ExtractStats(TCMallocStats* r, uint64_t* class_count) {
r->central_bytes = 0;
r->transfer_bytes = 0;
for (int cl = 0; cl < kNumClasses; ++cl) {
const int length = central_cache[cl].length();
const int tc_length = central_cache[cl].tc_length();
r->central_bytes += static_cast<uint64_t>(ByteSizeForClass(cl)) * length;
r->transfer_bytes +=
static_cast<uint64_t>(ByteSizeForClass(cl)) * tc_length;
if (class_count) class_count[cl] = length + tc_length;
}
// Add stats from per-thread heaps
r->thread_bytes = 0;
{ // scope
SpinLockHolder h(&pageheap_lock);
for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
r->thread_bytes += h->Size();
if (class_count) {
for (size_t cl = 0; cl < kNumClasses; ++cl) {
class_count[cl] += h->freelist_length(cl);
}
}
}
}
{ //scope
SpinLockHolder h(&pageheap_lock);
r->system_bytes = pageheap->SystemBytes();
r->metadata_bytes = metadata_system_bytes;
r->pageheap_bytes = pageheap->FreeBytes();
}
}
#endif
#ifndef WTF_CHANGES
// WRITE stats to "out"
static void DumpStats(TCMalloc_Printer* out, int level) {
TCMallocStats stats;
uint64_t class_count[kNumClasses];
ExtractStats(&stats, (level >= 2 ? class_count : NULL));
if (level >= 2) {
out->printf("------------------------------------------------\n");
uint64_t cumulative = 0;
for (int cl = 0; cl < kNumClasses; ++cl) {
if (class_count[cl] > 0) {
uint64_t class_bytes = class_count[cl] * ByteSizeForClass(cl);
cumulative += class_bytes;
out->printf("class %3d [ %8" PRIuS " bytes ] : "
"%8" PRIu64 " objs; %5.1f MB; %5.1f cum MB\n",
cl, ByteSizeForClass(cl),
class_count[cl],
class_bytes / 1048576.0,
cumulative / 1048576.0);
}
}
SpinLockHolder h(&pageheap_lock);
pageheap->Dump(out);
}
const uint64_t bytes_in_use = stats.system_bytes
- stats.pageheap_bytes
- stats.central_bytes
- stats.transfer_bytes
- stats.thread_bytes;
out->printf("------------------------------------------------\n"
"MALLOC: %12" PRIu64 " Heap size\n"
"MALLOC: %12" PRIu64 " Bytes in use by application\n"
"MALLOC: %12" PRIu64 " Bytes free in page heap\n"
"MALLOC: %12" PRIu64 " Bytes free in central cache\n"
"MALLOC: %12" PRIu64 " Bytes free in transfer cache\n"
"MALLOC: %12" PRIu64 " Bytes free in thread caches\n"
"MALLOC: %12" PRIu64 " Spans in use\n"
"MALLOC: %12" PRIu64 " Thread heaps in use\n"
"MALLOC: %12" PRIu64 " Metadata allocated\n"
"------------------------------------------------\n",
stats.system_bytes,
bytes_in_use,
stats.pageheap_bytes,
stats.central_bytes,
stats.transfer_bytes,
stats.thread_bytes,
uint64_t(span_allocator.inuse()),
uint64_t(threadheap_allocator.inuse()),
stats.metadata_bytes);
}
static void PrintStats(int level) {
const int kBufferSize = 16 << 10;
char* buffer = new char[kBufferSize];
TCMalloc_Printer printer(buffer, kBufferSize);
DumpStats(&printer, level);
write(STDERR_FILENO, buffer, strlen(buffer));
delete[] buffer;
}
static void** DumpStackTraces() {
// Count how much space we need
int needed_slots = 0;
{
SpinLockHolder h(&pageheap_lock);
for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) {
StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
needed_slots += 3 + stack->depth;
}
needed_slots += 100; // Slop in case sample grows
needed_slots += needed_slots/8; // An extra 12.5% slop
}
void** result = new void*[needed_slots];
if (result == NULL) {
MESSAGE("tcmalloc: could not allocate %d slots for stack traces\n",
needed_slots);
return NULL;
}
SpinLockHolder h(&pageheap_lock);
int used_slots = 0;
for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) {
ASSERT(used_slots < needed_slots); // Need to leave room for terminator
StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
if (used_slots + 3 + stack->depth >= needed_slots) {
// No more room
break;
}
result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1));
result[used_slots+1] = reinterpret_cast<void*>(stack->size);
result[used_slots+2] = reinterpret_cast<void*>(stack->depth);
for (int d = 0; d < stack->depth; d++) {
result[used_slots+3+d] = stack->stack[d];
}
used_slots += 3 + stack->depth;
}
result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0));
return result;
}
#endif
#ifndef WTF_CHANGES
// TCMalloc's support for extra malloc interfaces
class TCMallocImplementation : public MallocExtension {
public:
virtual void GetStats(char* buffer, int buffer_length) {
ASSERT(buffer_length > 0);
TCMalloc_Printer printer(buffer, buffer_length);
// Print level one stats unless lots of space is available
if (buffer_length < 10000) {
DumpStats(&printer, 1);
} else {
DumpStats(&printer, 2);
}
}
virtual void** ReadStackTraces() {
return DumpStackTraces();
}
virtual bool GetNumericProperty(const char* name, size_t* value) {
ASSERT(name != NULL);
if (strcmp(name, "generic.current_allocated_bytes") == 0) {
TCMallocStats stats;
ExtractStats(&stats, NULL);
*value = stats.system_bytes
- stats.thread_bytes
- stats.central_bytes
- stats.pageheap_bytes;
return true;
}
if (strcmp(name, "generic.heap_size") == 0) {
TCMallocStats stats;
ExtractStats(&stats, NULL);
*value = stats.system_bytes;
return true;
}
if (strcmp(name, "tcmalloc.slack_bytes") == 0) {
// We assume that bytes in the page heap are not fragmented too
// badly, and are therefore available for allocation.
SpinLockHolder l(&pageheap_lock);
*value = pageheap->FreeBytes();
return true;
}
if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
SpinLockHolder l(&pageheap_lock);
*value = overall_thread_cache_size;
return true;
}
if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) {
TCMallocStats stats;
ExtractStats(&stats, NULL);
*value = stats.thread_bytes;
return true;
}
return false;
}
virtual bool SetNumericProperty(const char* name, size_t value) {
ASSERT(name != NULL);
if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
// Clip the value to a reasonable range
if (value < kMinThreadCacheSize) value = kMinThreadCacheSize;
if (value > (1<<30)) value = (1<<30); // Limit to 1GB
SpinLockHolder l(&pageheap_lock);
overall_thread_cache_size = static_cast<size_t>(value);
TCMalloc_ThreadCache::RecomputeThreadCacheSize();
return true;
}
return false;
}
virtual void MarkThreadIdle() {
TCMalloc_ThreadCache::BecomeIdle();
}
virtual void ReleaseFreeMemory() {
SpinLockHolder h(&pageheap_lock);
pageheap->ReleaseFreePages();
}
};
#endif
// The constructor allocates an object to ensure that initialization
// runs before main(), and therefore we do not have a chance to become
// multi-threaded before initialization. We also create the TSD key
// here. Presumably by the time this constructor runs, glibc is in
// good enough shape to handle pthread_key_create().
//
// The constructor also takes the opportunity to tell STL to use
// tcmalloc. We want to do this early, before construct time, so
// all user STL allocations go through tcmalloc (which works really
// well for STL).
//
// The destructor prints stats when the program exits.
class TCMallocGuard {
public:
TCMallocGuard() {
#ifdef HAVE_TLS // this is true if the cc/ld/libc combo support TLS
// Check whether the kernel also supports TLS (needs to happen at runtime)
CheckIfKernelSupportsTLS();
#endif
#ifndef WTF_CHANGES
#ifdef WIN32 // patch the windows VirtualAlloc, etc.
PatchWindowsFunctions(); // defined in windows/patch_functions.cc
#endif
#endif
free(malloc(1));
TCMalloc_ThreadCache::InitTSD();
free(malloc(1));
#ifndef WTF_CHANGES
MallocExtension::Register(new TCMallocImplementation);
#endif
}
#ifndef WTF_CHANGES
~TCMallocGuard() {
const char* env = getenv("MALLOCSTATS");
if (env != NULL) {
int level = atoi(env);
if (level < 1) level = 1;
PrintStats(level);
}
#ifdef WIN32
UnpatchWindowsFunctions();
#endif
}
#endif
};
#ifndef WTF_CHANGES
static TCMallocGuard module_enter_exit_hook;
#endif
//-------------------------------------------------------------------
// Helpers for the exported routines below
//-------------------------------------------------------------------
#ifndef WTF_CHANGES
static Span* DoSampledAllocation(size_t size) {
// Grab the stack trace outside the heap lock
StackTrace tmp;
tmp.depth = GetStackTrace(tmp.stack, kMaxStackDepth, 1);
tmp.size = size;
SpinLockHolder h(&pageheap_lock);
// Allocate span
Span *span = pageheap->New(pages(size == 0 ? 1 : size));
if (span == NULL) {
return NULL;
}
// Allocate stack trace
StackTrace *stack = stacktrace_allocator.New();
if (stack == NULL) {
// Sampling failed because of lack of memory
return span;
}
*stack = tmp;
span->sample = 1;
span->objects = stack;
DLL_Prepend(&sampled_objects, span);
return span;
}
#endif
static inline bool CheckCachedSizeClass(void *ptr) {
PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
size_t cached_value = pageheap->GetSizeClassIfCached(p);
return cached_value == 0 ||
cached_value == pageheap->GetDescriptor(p)->sizeclass;
}
static inline void* CheckedMallocResult(void *result)
{
ASSERT(result == 0 || CheckCachedSizeClass(result));
return result;
}
static inline void* SpanToMallocResult(Span *span) {
ASSERT_SPAN_COMMITTED(span);
pageheap->CacheSizeClass(span->start, 0);
return
CheckedMallocResult(reinterpret_cast<void*>(span->start << kPageShift));
}
#ifdef WTF_CHANGES
template <bool crashOnFailure>
#endif
static ALWAYS_INLINE void* do_malloc(size_t size) {
void* ret = NULL;
#ifdef WTF_CHANGES
ASSERT(!isForbidden());
#endif
// The following call forces module initialization
TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache();
#ifndef WTF_CHANGES
if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) {
Span* span = DoSampledAllocation(size);
if (span != NULL) {
ret = SpanToMallocResult(span);
}
} else
#endif
if (size > kMaxSize) {
// Use page-level allocator
SpinLockHolder h(&pageheap_lock);
Span* span = pageheap->New(pages(size));
if (span != NULL) {
ret = SpanToMallocResult(span);
}
} else {
// The common case, and also the simplest. This just pops the
// size-appropriate freelist, afer replenishing it if it's empty.
ret = CheckedMallocResult(heap->Allocate(size));
}
if (!ret) {
#ifdef WTF_CHANGES
if (crashOnFailure) // This branch should be optimized out by the compiler.
CRASH();
#else
errno = ENOMEM;
#endif
}
return ret;
}
static ALWAYS_INLINE void do_free(void* ptr) {
if (ptr == NULL) return;
ASSERT(pageheap != NULL); // Should not call free() before malloc()
const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
Span* span = NULL;
size_t cl = pageheap->GetSizeClassIfCached(p);
if (cl == 0) {
span = pageheap->GetDescriptor(p);
cl = span->sizeclass;
pageheap->CacheSizeClass(p, cl);
}
if (cl != 0) {
#ifndef NO_TCMALLOC_SAMPLES
ASSERT(!pageheap->GetDescriptor(p)->sample);
#endif
TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCacheIfPresent();
if (heap != NULL) {
heap->Deallocate(ptr, cl);
} else {
// Delete directly into central cache
SLL_SetNext(ptr, NULL);
central_cache[cl].InsertRange(ptr, ptr, 1);
}
} else {
SpinLockHolder h(&pageheap_lock);
ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0);
ASSERT(span != NULL && span->start == p);
#ifndef NO_TCMALLOC_SAMPLES
if (span->sample) {
DLL_Remove(span);
stacktrace_allocator.Delete(reinterpret_cast<StackTrace*>(span->objects));
span->objects = NULL;
}
#endif
pageheap->Delete(span);
}
}
#ifndef WTF_CHANGES
// For use by exported routines below that want specific alignments
//
// Note: this code can be slow, and can significantly fragment memory.
// The expectation is that memalign/posix_memalign/valloc/pvalloc will
// not be invoked very often. This requirement simplifies our
// implementation and allows us to tune for expected allocation
// patterns.
static void* do_memalign(size_t align, size_t size) {
ASSERT((align & (align - 1)) == 0);
ASSERT(align > 0);
if (pageheap == NULL) TCMalloc_ThreadCache::InitModule();
// Allocate at least one byte to avoid boundary conditions below
if (size == 0) size = 1;
if (size <= kMaxSize && align < kPageSize) {
// Search through acceptable size classes looking for one with
// enough alignment. This depends on the fact that
// InitSizeClasses() currently produces several size classes that
// are aligned at powers of two. We will waste time and space if
// we miss in the size class array, but that is deemed acceptable
// since memalign() should be used rarely.
size_t cl = SizeClass(size);
while (cl < kNumClasses && ((class_to_size[cl] & (align - 1)) != 0)) {
cl++;
}
if (cl < kNumClasses) {
TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache();
return CheckedMallocResult(heap->Allocate(class_to_size[cl]));
}
}
// We will allocate directly from the page heap
SpinLockHolder h(&pageheap_lock);
if (align <= kPageSize) {
// Any page-level allocation will be fine
// TODO: We could put the rest of this page in the appropriate
// TODO: cache but it does not seem worth it.
Span* span = pageheap->New(pages(size));
return span == NULL ? NULL : SpanToMallocResult(span);
}
// Allocate extra pages and carve off an aligned portion
const Length alloc = pages(size + align);
Span* span = pageheap->New(alloc);
if (span == NULL) return NULL;
// Skip starting portion so that we end up aligned
Length skip = 0;
while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) {
skip++;
}
ASSERT(skip < alloc);
if (skip > 0) {
Span* rest = pageheap->Split(span, skip);
pageheap->Delete(span);
span = rest;
}
// Skip trailing portion that we do not need to return
const Length needed = pages(size);
ASSERT(span->length >= needed);
if (span->length > needed) {
Span* trailer = pageheap->Split(span, needed);
pageheap->Delete(trailer);
}
return SpanToMallocResult(span);
}
#endif
// Helpers for use by exported routines below:
#ifndef WTF_CHANGES
static inline void do_malloc_stats() {
PrintStats(1);
}
#endif
static inline int do_mallopt(int, int) {
return 1; // Indicates error
}
#ifdef HAVE_STRUCT_MALLINFO // mallinfo isn't defined on freebsd, for instance
static inline struct mallinfo do_mallinfo() {
TCMallocStats stats;
ExtractStats(&stats, NULL);
// Just some of the fields are filled in.
struct mallinfo info;
memset(&info, 0, sizeof(info));
// Unfortunately, the struct contains "int" field, so some of the
// size values will be truncated.
info.arena = static_cast<int>(stats.system_bytes);
info.fsmblks = static_cast<int>(stats.thread_bytes
+ stats.central_bytes
+ stats.transfer_bytes);
info.fordblks = static_cast<int>(stats.pageheap_bytes);
info.uordblks = static_cast<int>(stats.system_bytes
- stats.thread_bytes
- stats.central_bytes
- stats.transfer_bytes
- stats.pageheap_bytes);
return info;
}
#endif
//-------------------------------------------------------------------
// Exported routines
//-------------------------------------------------------------------
// CAVEAT: The code structure below ensures that MallocHook methods are always
// called from the stack frame of the invoked allocation function.
// heap-checker.cc depends on this to start a stack trace from
// the call to the (de)allocation function.
#ifndef WTF_CHANGES
extern "C"
#else
#define do_malloc do_malloc<crashOnFailure>
template <bool crashOnFailure>
void* malloc(size_t);
void* fastMalloc(size_t size)
{
return malloc<true>(size);
}
TryMallocReturnValue tryFastMalloc(size_t size)
{
return malloc<false>(size);
}
template <bool crashOnFailure>
ALWAYS_INLINE
#endif
void* malloc(size_t size) {
#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= size) // If overflow would occur...
return 0;
size += sizeof(AllocAlignmentInteger);
void* result = do_malloc(size);
if (!result)
return 0;
*static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
result = static_cast<AllocAlignmentInteger*>(result) + 1;
#else
void* result = do_malloc(size);
#endif
#ifndef WTF_CHANGES
MallocHook::InvokeNewHook(result, size);
#endif
return result;
}
#ifndef WTF_CHANGES
extern "C"
#endif
void free(void* ptr) {
#ifndef WTF_CHANGES
MallocHook::InvokeDeleteHook(ptr);
#endif
#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
if (!ptr)
return;
AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(ptr);
if (*header != Internal::AllocTypeMalloc)
Internal::fastMallocMatchFailed(ptr);
do_free(header);
#else
do_free(ptr);
#endif
}
#ifndef WTF_CHANGES
extern "C"
#else
template <bool crashOnFailure>
void* calloc(size_t, size_t);
void* fastCalloc(size_t n, size_t elem_size)
{
return calloc<true>(n, elem_size);
}
TryMallocReturnValue tryFastCalloc(size_t n, size_t elem_size)
{
return calloc<false>(n, elem_size);
}
template <bool crashOnFailure>
ALWAYS_INLINE
#endif
void* calloc(size_t n, size_t elem_size) {
size_t totalBytes = n * elem_size;
// Protect against overflow
if (n > 1 && elem_size && (totalBytes / elem_size) != n)
return 0;
#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= totalBytes) // If overflow would occur...
return 0;
totalBytes += sizeof(AllocAlignmentInteger);
void* result = do_malloc(totalBytes);
if (!result)
return 0;
memset(result, 0, totalBytes);
*static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
result = static_cast<AllocAlignmentInteger*>(result) + 1;
#else
void* result = do_malloc(totalBytes);
if (result != NULL) {
memset(result, 0, totalBytes);
}
#endif
#ifndef WTF_CHANGES
MallocHook::InvokeNewHook(result, totalBytes);
#endif
return result;
}
// Since cfree isn't used anywhere, we don't compile it in.
#ifndef WTF_CHANGES
#ifndef WTF_CHANGES
extern "C"
#endif
void cfree(void* ptr) {
#ifndef WTF_CHANGES
MallocHook::InvokeDeleteHook(ptr);
#endif
do_free(ptr);
}
#endif
#ifndef WTF_CHANGES
extern "C"
#else
template <bool crashOnFailure>
void* realloc(void*, size_t);
void* fastRealloc(void* old_ptr, size_t new_size)
{
return realloc<true>(old_ptr, new_size);
}
TryMallocReturnValue tryFastRealloc(void* old_ptr, size_t new_size)
{
return realloc<false>(old_ptr, new_size);
}
template <bool crashOnFailure>
ALWAYS_INLINE
#endif
void* realloc(void* old_ptr, size_t new_size) {
if (old_ptr == NULL) {
#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
void* result = malloc(new_size);
#else
void* result = do_malloc(new_size);
#ifndef WTF_CHANGES
MallocHook::InvokeNewHook(result, new_size);
#endif
#endif
return result;
}
if (new_size == 0) {
#ifndef WTF_CHANGES
MallocHook::InvokeDeleteHook(old_ptr);
#endif
free(old_ptr);
return NULL;
}
#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= new_size) // If overflow would occur...
return 0;
new_size += sizeof(AllocAlignmentInteger);
AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(old_ptr);
if (*header != Internal::AllocTypeMalloc)
Internal::fastMallocMatchFailed(old_ptr);
old_ptr = header;
#endif
// Get the size of the old entry
const PageID p = reinterpret_cast<uintptr_t>(old_ptr) >> kPageShift;
size_t cl = pageheap->GetSizeClassIfCached(p);
Span *span = NULL;
size_t old_size;
if (cl == 0) {
span = pageheap->GetDescriptor(p);
cl = span->sizeclass;
pageheap->CacheSizeClass(p, cl);
}
if (cl != 0) {
old_size = ByteSizeForClass(cl);
} else {
ASSERT(span != NULL);
old_size = span->length << kPageShift;
}
// Reallocate if the new size is larger than the old size,
// or if the new size is significantly smaller than the old size.
if ((new_size > old_size) || (AllocationSize(new_size) < old_size)) {
// Need to reallocate
void* new_ptr = do_malloc(new_size);
if (new_ptr == NULL) {
return NULL;
}
#ifndef WTF_CHANGES
MallocHook::InvokeNewHook(new_ptr, new_size);
#endif
memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size));
#ifndef WTF_CHANGES
MallocHook::InvokeDeleteHook(old_ptr);
#endif
// We could use a variant of do_free() that leverages the fact
// that we already know the sizeclass of old_ptr. The benefit
// would be small, so don't bother.
do_free(old_ptr);
#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
new_ptr = static_cast<AllocAlignmentInteger*>(new_ptr) + 1;
#endif
return new_ptr;
} else {
#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
old_ptr = pByte + sizeof(AllocAlignmentInteger); // Set old_ptr back to the user pointer.
#endif
return old_ptr;
}
}
#ifdef WTF_CHANGES
#undef do_malloc
#else
static SpinLock set_new_handler_lock = SPINLOCK_INITIALIZER;
static inline void* cpp_alloc(size_t size, bool nothrow) {
for (;;) {
void* p = do_malloc(size);
#ifdef PREANSINEW
return p;
#else
if (p == NULL) { // allocation failed
// Get the current new handler. NB: this function is not
// thread-safe. We make a feeble stab at making it so here, but
// this lock only protects against tcmalloc interfering with
// itself, not with other libraries calling set_new_handler.
std::new_handler nh;
{
SpinLockHolder h(&set_new_handler_lock);
nh = std::set_new_handler(0);
(void) std::set_new_handler(nh);
}
// If no new_handler is established, the allocation failed.
if (!nh) {
if (nothrow) return 0;
throw std::bad_alloc();
}
// Otherwise, try the new_handler. If it returns, retry the
// allocation. If it throws std::bad_alloc, fail the allocation.
// if it throws something else, don't interfere.
try {
(*nh)();
} catch (const std::bad_alloc&) {
if (!nothrow) throw;
return p;
}
} else { // allocation success
return p;
}
#endif
}
}
void* operator new(size_t size) {
void* p = cpp_alloc(size, false);
// We keep this next instruction out of cpp_alloc for a reason: when
// it's in, and new just calls cpp_alloc, the optimizer may fold the
// new call into cpp_alloc, which messes up our whole section-based
// stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc
// isn't the last thing this fn calls, and prevents the folding.
MallocHook::InvokeNewHook(p, size);
return p;
}
void* operator new(size_t size, const std::nothrow_t&) __THROW {
void* p = cpp_alloc(size, true);
MallocHook::InvokeNewHook(p, size);
return p;
}
void operator delete(void* p) __THROW {
MallocHook::InvokeDeleteHook(p);
do_free(p);
}
void operator delete(void* p, const std::nothrow_t&) __THROW {
MallocHook::InvokeDeleteHook(p);
do_free(p);
}
void* operator new[](size_t size) {
void* p = cpp_alloc(size, false);
// We keep this next instruction out of cpp_alloc for a reason: when
// it's in, and new just calls cpp_alloc, the optimizer may fold the
// new call into cpp_alloc, which messes up our whole section-based
// stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc
// isn't the last thing this fn calls, and prevents the folding.
MallocHook::InvokeNewHook(p, size);
return p;
}
void* operator new[](size_t size, const std::nothrow_t&) __THROW {
void* p = cpp_alloc(size, true);
MallocHook::InvokeNewHook(p, size);
return p;
}
void operator delete[](void* p) __THROW {
MallocHook::InvokeDeleteHook(p);
do_free(p);
}
void operator delete[](void* p, const std::nothrow_t&) __THROW {
MallocHook::InvokeDeleteHook(p);
do_free(p);
}
extern "C" void* memalign(size_t align, size_t size) __THROW {
void* result = do_memalign(align, size);
MallocHook::InvokeNewHook(result, size);
return result;
}
extern "C" int posix_memalign(void** result_ptr, size_t align, size_t size)
__THROW {
if (((align % sizeof(void*)) != 0) ||
((align & (align - 1)) != 0) ||
(align == 0)) {
return EINVAL;
}
void* result = do_memalign(align, size);
MallocHook::InvokeNewHook(result, size);
if (result == NULL) {
return ENOMEM;
} else {
*result_ptr = result;
return 0;
}
}
static size_t pagesize = 0;
extern "C" void* valloc(size_t size) __THROW {
// Allocate page-aligned object of length >= size bytes
if (pagesize == 0) pagesize = getpagesize();
void* result = do_memalign(pagesize, size);
MallocHook::InvokeNewHook(result, size);
return result;
}
extern "C" void* pvalloc(size_t size) __THROW {
// Round up size to a multiple of pagesize
if (pagesize == 0) pagesize = getpagesize();
size = (size + pagesize - 1) & ~(pagesize - 1);
void* result = do_memalign(pagesize, size);
MallocHook::InvokeNewHook(result, size);
return result;
}
extern "C" void malloc_stats(void) {
do_malloc_stats();
}
extern "C" int mallopt(int cmd, int value) {
return do_mallopt(cmd, value);
}
#ifdef HAVE_STRUCT_MALLINFO
extern "C" struct mallinfo mallinfo(void) {
return do_mallinfo();
}
#endif
//-------------------------------------------------------------------
// Some library routines on RedHat 9 allocate memory using malloc()
// and free it using __libc_free() (or vice-versa). Since we provide
// our own implementations of malloc/free, we need to make sure that
// the __libc_XXX variants (defined as part of glibc) also point to
// the same implementations.
//-------------------------------------------------------------------
#if defined(__GLIBC__)
extern "C" {
#if COMPILER(GCC) && !defined(__MACH__) && defined(HAVE___ATTRIBUTE__)
// Potentially faster variants that use the gcc alias extension.
// Mach-O (Darwin) does not support weak aliases, hence the __MACH__ check.
# define ALIAS(x) __attribute__ ((weak, alias (x)))
void* __libc_malloc(size_t size) ALIAS("malloc");
void __libc_free(void* ptr) ALIAS("free");
void* __libc_realloc(void* ptr, size_t size) ALIAS("realloc");
void* __libc_calloc(size_t n, size_t size) ALIAS("calloc");
void __libc_cfree(void* ptr) ALIAS("cfree");
void* __libc_memalign(size_t align, size_t s) ALIAS("memalign");
void* __libc_valloc(size_t size) ALIAS("valloc");
void* __libc_pvalloc(size_t size) ALIAS("pvalloc");
int __posix_memalign(void** r, size_t a, size_t s) ALIAS("posix_memalign");
# undef ALIAS
# else /* not __GNUC__ */
// Portable wrappers
void* __libc_malloc(size_t size) { return malloc(size); }
void __libc_free(void* ptr) { free(ptr); }
void* __libc_realloc(void* ptr, size_t size) { return realloc(ptr, size); }
void* __libc_calloc(size_t n, size_t size) { return calloc(n, size); }
void __libc_cfree(void* ptr) { cfree(ptr); }
void* __libc_memalign(size_t align, size_t s) { return memalign(align, s); }
void* __libc_valloc(size_t size) { return valloc(size); }
void* __libc_pvalloc(size_t size) { return pvalloc(size); }
int __posix_memalign(void** r, size_t a, size_t s) {
return posix_memalign(r, a, s);
}
# endif /* __GNUC__ */
}
#endif /* __GLIBC__ */
// Override __libc_memalign in libc on linux boxes specially.
// They have a bug in libc that causes them to (very rarely) allocate
// with __libc_memalign() yet deallocate with free() and the
// definitions above don't catch it.
// This function is an exception to the rule of calling MallocHook method
// from the stack frame of the allocation function;
// heap-checker handles this special case explicitly.
static void *MemalignOverride(size_t align, size_t size, const void *caller)
__THROW {
void* result = do_memalign(align, size);
MallocHook::InvokeNewHook(result, size);
return result;
}
void *(*__memalign_hook)(size_t, size_t, const void *) = MemalignOverride;
#endif
#if defined(WTF_CHANGES) && PLATFORM(DARWIN)
class FreeObjectFinder {
const RemoteMemoryReader& m_reader;
HashSet<void*> m_freeObjects;
public:
FreeObjectFinder(const RemoteMemoryReader& reader) : m_reader(reader) { }
void visit(void* ptr) { m_freeObjects.add(ptr); }
bool isFreeObject(void* ptr) const { return m_freeObjects.contains(ptr); }
bool isFreeObject(vm_address_t ptr) const { return isFreeObject(reinterpret_cast<void*>(ptr)); }
size_t freeObjectCount() const { return m_freeObjects.size(); }
void findFreeObjects(TCMalloc_ThreadCache* threadCache)
{
for (; threadCache; threadCache = (threadCache->next_ ? m_reader(threadCache->next_) : 0))
threadCache->enumerateFreeObjects(*this, m_reader);
}
void findFreeObjects(TCMalloc_Central_FreeListPadded* centralFreeList, size_t numSizes, TCMalloc_Central_FreeListPadded* remoteCentralFreeList)
{
for (unsigned i = 0; i < numSizes; i++)
centralFreeList[i].enumerateFreeObjects(*this, m_reader, remoteCentralFreeList + i);
}
};
class PageMapFreeObjectFinder {
const RemoteMemoryReader& m_reader;
FreeObjectFinder& m_freeObjectFinder;
public:
PageMapFreeObjectFinder(const RemoteMemoryReader& reader, FreeObjectFinder& freeObjectFinder)
: m_reader(reader)
, m_freeObjectFinder(freeObjectFinder)
{ }
int visit(void* ptr) const
{
if (!ptr)
return 1;
Span* span = m_reader(reinterpret_cast<Span*>(ptr));
if (span->free) {
void* ptr = reinterpret_cast<void*>(span->start << kPageShift);
m_freeObjectFinder.visit(ptr);
} else if (span->sizeclass) {
// Walk the free list of the small-object span, keeping track of each object seen
for (void* nextObject = span->objects; nextObject; nextObject = *m_reader(reinterpret_cast<void**>(nextObject)))
m_freeObjectFinder.visit(nextObject);
}
return span->length;
}
};
class PageMapMemoryUsageRecorder {
task_t m_task;
void* m_context;
unsigned m_typeMask;
vm_range_recorder_t* m_recorder;
const RemoteMemoryReader& m_reader;
const FreeObjectFinder& m_freeObjectFinder;
HashSet<void*> m_seenPointers;
Vector<Span*> m_coalescedSpans;
public:
PageMapMemoryUsageRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader, const FreeObjectFinder& freeObjectFinder)
: m_task(task)
, m_context(context)
, m_typeMask(typeMask)
, m_recorder(recorder)
, m_reader(reader)
, m_freeObjectFinder(freeObjectFinder)
{ }
~PageMapMemoryUsageRecorder()
{
ASSERT(!m_coalescedSpans.size());
}
void recordPendingRegions()
{
Span* lastSpan = m_coalescedSpans[m_coalescedSpans.size() - 1];
vm_range_t ptrRange = { m_coalescedSpans[0]->start << kPageShift, 0 };
ptrRange.size = (lastSpan->start << kPageShift) - ptrRange.address + (lastSpan->length * kPageSize);
// Mark the memory region the spans represent as a candidate for containing pointers
if (m_typeMask & MALLOC_PTR_REGION_RANGE_TYPE)
(*m_recorder)(m_task, m_context, MALLOC_PTR_REGION_RANGE_TYPE, &ptrRange, 1);
if (!(m_typeMask & MALLOC_PTR_IN_USE_RANGE_TYPE)) {
m_coalescedSpans.clear();
return;
}
Vector<vm_range_t, 1024> allocatedPointers;
for (size_t i = 0; i < m_coalescedSpans.size(); ++i) {
Span *theSpan = m_coalescedSpans[i];
if (theSpan->free)
continue;
vm_address_t spanStartAddress = theSpan->start << kPageShift;
vm_size_t spanSizeInBytes = theSpan->length * kPageSize;
if (!theSpan->sizeclass) {
// If it's an allocated large object span, mark it as in use
if (!m_freeObjectFinder.isFreeObject(spanStartAddress))
allocatedPointers.append((vm_range_t){spanStartAddress, spanSizeInBytes});
} else {
const size_t objectSize = ByteSizeForClass(theSpan->sizeclass);
// Mark each allocated small object within the span as in use
const vm_address_t endOfSpan = spanStartAddress + spanSizeInBytes;
for (vm_address_t object = spanStartAddress; object + objectSize <= endOfSpan; object += objectSize) {
if (!m_freeObjectFinder.isFreeObject(object))
allocatedPointers.append((vm_range_t){object, objectSize});
}
}
}
(*m_recorder)(m_task, m_context, MALLOC_PTR_IN_USE_RANGE_TYPE, allocatedPointers.data(), allocatedPointers.size());
m_coalescedSpans.clear();
}
int visit(void* ptr)
{
if (!ptr)
return 1;
Span* span = m_reader(reinterpret_cast<Span*>(ptr));
if (!span->start)
return 1;
if (m_seenPointers.contains(ptr))
return span->length;
m_seenPointers.add(ptr);
if (!m_coalescedSpans.size()) {
m_coalescedSpans.append(span);
return span->length;
}
Span* previousSpan = m_coalescedSpans[m_coalescedSpans.size() - 1];
vm_address_t previousSpanStartAddress = previousSpan->start << kPageShift;
vm_size_t previousSpanSizeInBytes = previousSpan->length * kPageSize;
// If the new span is adjacent to the previous span, do nothing for now.
vm_address_t spanStartAddress = span->start << kPageShift;
if (spanStartAddress == previousSpanStartAddress + previousSpanSizeInBytes) {
m_coalescedSpans.append(span);
return span->length;
}
// New span is not adjacent to previous span, so record the spans coalesced so far.
recordPendingRegions();
m_coalescedSpans.append(span);
return span->length;
}
};
class AdminRegionRecorder {
task_t m_task;
void* m_context;
unsigned m_typeMask;
vm_range_recorder_t* m_recorder;
const RemoteMemoryReader& m_reader;
Vector<vm_range_t, 1024> m_pendingRegions;
public:
AdminRegionRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader)
: m_task(task)
, m_context(context)
, m_typeMask(typeMask)
, m_recorder(recorder)
, m_reader(reader)
{ }
void recordRegion(vm_address_t ptr, size_t size)
{
if (m_typeMask & MALLOC_ADMIN_REGION_RANGE_TYPE)
m_pendingRegions.append((vm_range_t){ ptr, size });
}
void visit(void *ptr, size_t size)
{
recordRegion(reinterpret_cast<vm_address_t>(ptr), size);
}
void recordPendingRegions()
{
if (m_pendingRegions.size()) {
(*m_recorder)(m_task, m_context, MALLOC_ADMIN_REGION_RANGE_TYPE, m_pendingRegions.data(), m_pendingRegions.size());
m_pendingRegions.clear();
}
}
~AdminRegionRecorder()
{
ASSERT(!m_pendingRegions.size());
}
};
kern_return_t FastMallocZone::enumerate(task_t task, void* context, unsigned typeMask, vm_address_t zoneAddress, memory_reader_t reader, vm_range_recorder_t recorder)
{
RemoteMemoryReader memoryReader(task, reader);
InitSizeClasses();
FastMallocZone* mzone = memoryReader(reinterpret_cast<FastMallocZone*>(zoneAddress));
TCMalloc_PageHeap* pageHeap = memoryReader(mzone->m_pageHeap);
TCMalloc_ThreadCache** threadHeapsPointer = memoryReader(mzone->m_threadHeaps);
TCMalloc_ThreadCache* threadHeaps = memoryReader(*threadHeapsPointer);
TCMalloc_Central_FreeListPadded* centralCaches = memoryReader(mzone->m_centralCaches, sizeof(TCMalloc_Central_FreeListPadded) * kNumClasses);
FreeObjectFinder finder(memoryReader);
finder.findFreeObjects(threadHeaps);
finder.findFreeObjects(centralCaches, kNumClasses, mzone->m_centralCaches);
TCMalloc_PageHeap::PageMap* pageMap = &pageHeap->pagemap_;
PageMapFreeObjectFinder pageMapFinder(memoryReader, finder);
pageMap->visitValues(pageMapFinder, memoryReader);
PageMapMemoryUsageRecorder usageRecorder(task, context, typeMask, recorder, memoryReader, finder);
pageMap->visitValues(usageRecorder, memoryReader);
usageRecorder.recordPendingRegions();
AdminRegionRecorder adminRegionRecorder(task, context, typeMask, recorder, memoryReader);
pageMap->visitAllocations(adminRegionRecorder, memoryReader);
PageHeapAllocator<Span>* spanAllocator = memoryReader(mzone->m_spanAllocator);
PageHeapAllocator<TCMalloc_ThreadCache>* pageHeapAllocator = memoryReader(mzone->m_pageHeapAllocator);
spanAllocator->recordAdministrativeRegions(adminRegionRecorder, memoryReader);
pageHeapAllocator->recordAdministrativeRegions(adminRegionRecorder, memoryReader);
adminRegionRecorder.recordPendingRegions();
return 0;
}
size_t FastMallocZone::size(malloc_zone_t*, const void*)
{
return 0;
}
void* FastMallocZone::zoneMalloc(malloc_zone_t*, size_t)
{
return 0;
}
void* FastMallocZone::zoneCalloc(malloc_zone_t*, size_t, size_t)
{
return 0;
}
void FastMallocZone::zoneFree(malloc_zone_t*, void* ptr)
{
// Due to <rdar://problem/5671357> zoneFree may be called by the system free even if the pointer
// is not in this zone. When this happens, the pointer being freed was not allocated by any
// zone so we need to print a useful error for the application developer.
malloc_printf("*** error for object %p: pointer being freed was not allocated\n", ptr);
}
void* FastMallocZone::zoneRealloc(malloc_zone_t*, void*, size_t)
{
return 0;
}
#undef malloc
#undef free
#undef realloc
#undef calloc
extern "C" {
malloc_introspection_t jscore_fastmalloc_introspection = { &FastMallocZone::enumerate, &FastMallocZone::goodSize, &FastMallocZone::check, &FastMallocZone::print,
&FastMallocZone::log, &FastMallocZone::forceLock, &FastMallocZone::forceUnlock, &FastMallocZone::statistics
#if !defined(BUILDING_ON_TIGER) && !defined(BUILDING_ON_LEOPARD) && !PLATFORM(IPHONE)
, 0 // zone_locked will not be called on the zone unless it advertises itself as version five or higher.
#endif
};
}
FastMallocZone::FastMallocZone(TCMalloc_PageHeap* pageHeap, TCMalloc_ThreadCache** threadHeaps, TCMalloc_Central_FreeListPadded* centralCaches, PageHeapAllocator<Span>* spanAllocator, PageHeapAllocator<TCMalloc_ThreadCache>* pageHeapAllocator)
: m_pageHeap(pageHeap)
, m_threadHeaps(threadHeaps)
, m_centralCaches(centralCaches)
, m_spanAllocator(spanAllocator)
, m_pageHeapAllocator(pageHeapAllocator)
{
memset(&m_zone, 0, sizeof(m_zone));
m_zone.version = 4;
m_zone.zone_name = "JavaScriptCore FastMalloc";
m_zone.size = &FastMallocZone::size;
m_zone.malloc = &FastMallocZone::zoneMalloc;
m_zone.calloc = &FastMallocZone::zoneCalloc;
m_zone.realloc = &FastMallocZone::zoneRealloc;
m_zone.free = &FastMallocZone::zoneFree;
m_zone.valloc = &FastMallocZone::zoneValloc;
m_zone.destroy = &FastMallocZone::zoneDestroy;
m_zone.introspect = &jscore_fastmalloc_introspection;
malloc_zone_register(&m_zone);
}
void FastMallocZone::init()
{
static FastMallocZone zone(pageheap, &thread_heaps, static_cast<TCMalloc_Central_FreeListPadded*>(central_cache), &span_allocator, &threadheap_allocator);
}
#endif
#if WTF_CHANGES
void releaseFastMallocFreeMemory()
{
// Flush free pages in the current thread cache back to the page heap.
// Low watermark mechanism in Scavenge() prevents full return on the first pass.
// The second pass flushes everything.
if (TCMalloc_ThreadCache* threadCache = TCMalloc_ThreadCache::GetCacheIfPresent()) {
threadCache->Scavenge();
threadCache->Scavenge();
}
SpinLockHolder h(&pageheap_lock);
pageheap->ReleaseFreePages();
}
FastMallocStatistics fastMallocStatistics()
{
FastMallocStatistics statistics;
{
SpinLockHolder lockHolder(&pageheap_lock);
statistics.heapSize = static_cast<size_t>(pageheap->SystemBytes());
statistics.freeSizeInHeap = static_cast<size_t>(pageheap->FreeBytes());
statistics.returnedSize = pageheap->ReturnedBytes();
statistics.freeSizeInCaches = 0;
for (TCMalloc_ThreadCache* threadCache = thread_heaps; threadCache ; threadCache = threadCache->next_)
statistics.freeSizeInCaches += threadCache->Size();
}
for (unsigned cl = 0; cl < kNumClasses; ++cl) {
const int length = central_cache[cl].length();
const int tc_length = central_cache[cl].tc_length();
statistics.freeSizeInCaches += ByteSizeForClass(cl) * (length + tc_length);
}
return statistics;
}
} // namespace WTF
#endif
#endif // FORCE_SYSTEM_MALLOC
|