summaryrefslogtreecommitdiffstats
path: root/Source/JavaScriptCore/assembler/MacroAssemblerARM.h
blob: 80f69bfc9ba329ea513d1b98e379a6c6e4e313d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
/*
 * Copyright (C) 2008 Apple Inc.
 * Copyright (C) 2009, 2010 University of Szeged
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef MacroAssemblerARM_h
#define MacroAssemblerARM_h

#if ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL)

#include "ARMAssembler.h"
#include "AbstractMacroAssembler.h"

namespace JSC {

class MacroAssemblerARM : public AbstractMacroAssembler<ARMAssembler> {
    static const int DoubleConditionMask = 0x0f;
    static const int DoubleConditionBitSpecial = 0x10;
    COMPILE_ASSERT(!(DoubleConditionBitSpecial & DoubleConditionMask), DoubleConditionBitSpecial_should_not_interfere_with_ARMAssembler_Condition_codes);
public:
    typedef ARMRegisters::FPRegisterID FPRegisterID;

    enum Condition {
        Equal = ARMAssembler::EQ,
        NotEqual = ARMAssembler::NE,
        Above = ARMAssembler::HI,
        AboveOrEqual = ARMAssembler::CS,
        Below = ARMAssembler::CC,
        BelowOrEqual = ARMAssembler::LS,
        GreaterThan = ARMAssembler::GT,
        GreaterThanOrEqual = ARMAssembler::GE,
        LessThan = ARMAssembler::LT,
        LessThanOrEqual = ARMAssembler::LE,
        Overflow = ARMAssembler::VS,
        Signed = ARMAssembler::MI,
        Zero = ARMAssembler::EQ,
        NonZero = ARMAssembler::NE
    };

    enum DoubleCondition {
        // These conditions will only evaluate to true if the comparison is ordered - i.e. neither operand is NaN.
        DoubleEqual = ARMAssembler::EQ,
        DoubleNotEqual = ARMAssembler::NE | DoubleConditionBitSpecial,
        DoubleGreaterThan = ARMAssembler::GT,
        DoubleGreaterThanOrEqual = ARMAssembler::GE,
        DoubleLessThan = ARMAssembler::CC,
        DoubleLessThanOrEqual = ARMAssembler::LS,
        // If either operand is NaN, these conditions always evaluate to true.
        DoubleEqualOrUnordered = ARMAssembler::EQ | DoubleConditionBitSpecial,
        DoubleNotEqualOrUnordered = ARMAssembler::NE,
        DoubleGreaterThanOrUnordered = ARMAssembler::HI,
        DoubleGreaterThanOrEqualOrUnordered = ARMAssembler::CS,
        DoubleLessThanOrUnordered = ARMAssembler::LT,
        DoubleLessThanOrEqualOrUnordered = ARMAssembler::LE,
    };

    static const RegisterID stackPointerRegister = ARMRegisters::sp;
    static const RegisterID linkRegister = ARMRegisters::lr;

    static const Scale ScalePtr = TimesFour;

    void add32(RegisterID src, RegisterID dest)
    {
        m_assembler.adds_r(dest, dest, src);
    }

    void add32(TrustedImm32 imm, Address address)
    {
        load32(address, ARMRegisters::S1);
        add32(imm, ARMRegisters::S1);
        store32(ARMRegisters::S1, address);
    }

    void add32(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.adds_r(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0));
    }

    void add32(Address src, RegisterID dest)
    {
        load32(src, ARMRegisters::S1);
        add32(ARMRegisters::S1, dest);
    }

    void and32(RegisterID src, RegisterID dest)
    {
        m_assembler.ands_r(dest, dest, src);
    }

    void and32(TrustedImm32 imm, RegisterID dest)
    {
        ARMWord w = m_assembler.getImm(imm.m_value, ARMRegisters::S0, true);
        if (w & ARMAssembler::OP2_INV_IMM)
            m_assembler.bics_r(dest, dest, w & ~ARMAssembler::OP2_INV_IMM);
        else
            m_assembler.ands_r(dest, dest, w);
    }

    void lshift32(RegisterID shift_amount, RegisterID dest)
    {
        ARMWord w = ARMAssembler::getOp2(0x1f);
        ASSERT(w != ARMAssembler::INVALID_IMM);
        m_assembler.and_r(ARMRegisters::S0, shift_amount, w);

        m_assembler.movs_r(dest, m_assembler.lsl_r(dest, ARMRegisters::S0));
    }

    void lshift32(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.movs_r(dest, m_assembler.lsl(dest, imm.m_value & 0x1f));
    }

    void mul32(RegisterID src, RegisterID dest)
    {
        if (src == dest) {
            move(src, ARMRegisters::S0);
            src = ARMRegisters::S0;
        }
        m_assembler.muls_r(dest, dest, src);
    }

    void mul32(TrustedImm32 imm, RegisterID src, RegisterID dest)
    {
        move(imm, ARMRegisters::S0);
        m_assembler.muls_r(dest, src, ARMRegisters::S0);
    }

    void neg32(RegisterID srcDest)
    {
        m_assembler.rsbs_r(srcDest, srcDest, ARMAssembler::getOp2(0));
    }

    void not32(RegisterID dest)
    {
        m_assembler.mvns_r(dest, dest);
    }

    void or32(RegisterID src, RegisterID dest)
    {
        m_assembler.orrs_r(dest, dest, src);
    }

    void or32(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.orrs_r(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0));
    }

    void rshift32(RegisterID shift_amount, RegisterID dest)
    {
        ARMWord w = ARMAssembler::getOp2(0x1f);
        ASSERT(w != ARMAssembler::INVALID_IMM);
        m_assembler.and_r(ARMRegisters::S0, shift_amount, w);

        m_assembler.movs_r(dest, m_assembler.asr_r(dest, ARMRegisters::S0));
    }

    void rshift32(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.movs_r(dest, m_assembler.asr(dest, imm.m_value & 0x1f));
    }
    
    void urshift32(RegisterID shift_amount, RegisterID dest)
    {
        ARMWord w = ARMAssembler::getOp2(0x1f);
        ASSERT(w != ARMAssembler::INVALID_IMM);
        m_assembler.and_r(ARMRegisters::S0, shift_amount, w);
        
        m_assembler.movs_r(dest, m_assembler.lsr_r(dest, ARMRegisters::S0));
    }
    
    void urshift32(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.movs_r(dest, m_assembler.lsr(dest, imm.m_value & 0x1f));
    }

    void sub32(RegisterID src, RegisterID dest)
    {
        m_assembler.subs_r(dest, dest, src);
    }

    void sub32(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.subs_r(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0));
    }

    void sub32(TrustedImm32 imm, Address address)
    {
        load32(address, ARMRegisters::S1);
        sub32(imm, ARMRegisters::S1);
        store32(ARMRegisters::S1, address);
    }

    void sub32(Address src, RegisterID dest)
    {
        load32(src, ARMRegisters::S1);
        sub32(ARMRegisters::S1, dest);
    }

    void xor32(RegisterID src, RegisterID dest)
    {
        m_assembler.eors_r(dest, dest, src);
    }

    void xor32(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.eors_r(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0));
    }

    void countLeadingZeros32(RegisterID src, RegisterID dest)
    {
#if WTF_ARM_ARCH_AT_LEAST(5)
        m_assembler.clz_r(dest, src);
#else
        UNUSED_PARAM(src);
        UNUSED_PARAM(dest);
        ASSERT_NOT_REACHED();
#endif
    }

    void load8(ImplicitAddress address, RegisterID dest)
    {
        m_assembler.dataTransfer32(true, dest, address.base, address.offset, true);
    }

    void load32(ImplicitAddress address, RegisterID dest)
    {
        m_assembler.dataTransfer32(true, dest, address.base, address.offset);
    }

    void load32(BaseIndex address, RegisterID dest)
    {
        m_assembler.baseIndexTransfer32(true, dest, address.base, address.index, static_cast<int>(address.scale), address.offset);
    }

#if CPU(ARMV5_OR_LOWER)
    void load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest);
#else
    void load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest)
    {
        load32(address, dest);
    }
#endif

    DataLabel32 load32WithAddressOffsetPatch(Address address, RegisterID dest)
    {
        DataLabel32 dataLabel(this);
        m_assembler.ldr_un_imm(ARMRegisters::S0, 0);
        m_assembler.dtr_ur(true, dest, address.base, ARMRegisters::S0);
        return dataLabel;
    }

    void load16(BaseIndex address, RegisterID dest)
    {
        m_assembler.add_r(ARMRegisters::S1, address.base, m_assembler.lsl(address.index, address.scale));
        load16(Address(ARMRegisters::S1, address.offset), dest);
    }
    
    void load16(ImplicitAddress address, RegisterID dest)
    {
        if (address.offset >= 0)
            m_assembler.ldrh_u(dest, address.base, m_assembler.getOffsetForHalfwordDataTransfer(address.offset, ARMRegisters::S0));
        else
            m_assembler.ldrh_d(dest, address.base, m_assembler.getOffsetForHalfwordDataTransfer(-address.offset, ARMRegisters::S0));
    }

    DataLabel32 store32WithAddressOffsetPatch(RegisterID src, Address address)
    {
        DataLabel32 dataLabel(this);
        m_assembler.ldr_un_imm(ARMRegisters::S0, 0);
        m_assembler.dtr_ur(false, src, address.base, ARMRegisters::S0);
        return dataLabel;
    }

    void store32(RegisterID src, ImplicitAddress address)
    {
        m_assembler.dataTransfer32(false, src, address.base, address.offset);
    }

    void store32(RegisterID src, BaseIndex address)
    {
        m_assembler.baseIndexTransfer32(false, src, address.base, address.index, static_cast<int>(address.scale), address.offset);
    }

    void store32(TrustedImm32 imm, ImplicitAddress address)
    {
        if (imm.m_isPointer)
            m_assembler.ldr_un_imm(ARMRegisters::S1, imm.m_value);
        else
            move(imm, ARMRegisters::S1);
        store32(ARMRegisters::S1, address);
    }

    void store32(RegisterID src, void* address)
    {
        m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address));
        m_assembler.dtr_u(false, src, ARMRegisters::S0, 0);
    }

    void store32(TrustedImm32 imm, void* address)
    {
        m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address));
        if (imm.m_isPointer)
            m_assembler.ldr_un_imm(ARMRegisters::S1, imm.m_value);
        else
            m_assembler.moveImm(imm.m_value, ARMRegisters::S1);
        m_assembler.dtr_u(false, ARMRegisters::S1, ARMRegisters::S0, 0);
    }

    void pop(RegisterID dest)
    {
        m_assembler.pop_r(dest);
    }

    void push(RegisterID src)
    {
        m_assembler.push_r(src);
    }

    void push(Address address)
    {
        load32(address, ARMRegisters::S1);
        push(ARMRegisters::S1);
    }

    void push(TrustedImm32 imm)
    {
        move(imm, ARMRegisters::S0);
        push(ARMRegisters::S0);
    }

    void move(TrustedImm32 imm, RegisterID dest)
    {
        if (imm.m_isPointer)
            m_assembler.ldr_un_imm(dest, imm.m_value);
        else
            m_assembler.moveImm(imm.m_value, dest);
    }

    void move(RegisterID src, RegisterID dest)
    {
        m_assembler.mov_r(dest, src);
    }

    void move(TrustedImmPtr imm, RegisterID dest)
    {
        move(TrustedImm32(imm), dest);
    }

    void swap(RegisterID reg1, RegisterID reg2)
    {
        m_assembler.mov_r(ARMRegisters::S0, reg1);
        m_assembler.mov_r(reg1, reg2);
        m_assembler.mov_r(reg2, ARMRegisters::S0);
    }

    void signExtend32ToPtr(RegisterID src, RegisterID dest)
    {
        if (src != dest)
            move(src, dest);
    }

    void zeroExtend32ToPtr(RegisterID src, RegisterID dest)
    {
        if (src != dest)
            move(src, dest);
    }

    Jump branch8(Condition cond, Address left, TrustedImm32 right)
    {
        load8(left, ARMRegisters::S1);
        return branch32(cond, ARMRegisters::S1, right);
    }

    Jump branch32(Condition cond, RegisterID left, RegisterID right, int useConstantPool = 0)
    {
        m_assembler.cmp_r(left, right);
        return Jump(m_assembler.jmp(ARMCondition(cond), useConstantPool));
    }

    Jump branch32(Condition cond, RegisterID left, TrustedImm32 right, int useConstantPool = 0)
    {
        if (right.m_isPointer) {
            m_assembler.ldr_un_imm(ARMRegisters::S0, right.m_value);
            m_assembler.cmp_r(left, ARMRegisters::S0);
        } else {
            ARMWord tmp = m_assembler.getOp2(-right.m_value);
            if (tmp != ARMAssembler::INVALID_IMM)
                m_assembler.cmn_r(left, tmp);
            else
                m_assembler.cmp_r(left, m_assembler.getImm(right.m_value, ARMRegisters::S0));
        }
        return Jump(m_assembler.jmp(ARMCondition(cond), useConstantPool));
    }

    Jump branch32(Condition cond, RegisterID left, Address right)
    {
        load32(right, ARMRegisters::S1);
        return branch32(cond, left, ARMRegisters::S1);
    }

    Jump branch32(Condition cond, Address left, RegisterID right)
    {
        load32(left, ARMRegisters::S1);
        return branch32(cond, ARMRegisters::S1, right);
    }

    Jump branch32(Condition cond, Address left, TrustedImm32 right)
    {
        load32(left, ARMRegisters::S1);
        return branch32(cond, ARMRegisters::S1, right);
    }

    Jump branch32(Condition cond, BaseIndex left, TrustedImm32 right)
    {
        load32(left, ARMRegisters::S1);
        return branch32(cond, ARMRegisters::S1, right);
    }

    Jump branch32WithUnalignedHalfWords(Condition cond, BaseIndex left, TrustedImm32 right)
    {
        load32WithUnalignedHalfWords(left, ARMRegisters::S1);
        return branch32(cond, ARMRegisters::S1, right);
    }

    Jump branch16(Condition cond, BaseIndex left, RegisterID right)
    {
        UNUSED_PARAM(cond);
        UNUSED_PARAM(left);
        UNUSED_PARAM(right);
        ASSERT_NOT_REACHED();
        return jump();
    }

    Jump branch16(Condition cond, BaseIndex left, TrustedImm32 right)
    {
        load16(left, ARMRegisters::S0);
        move(right, ARMRegisters::S1);
        m_assembler.cmp_r(ARMRegisters::S0, ARMRegisters::S1);
        return m_assembler.jmp(ARMCondition(cond));
    }

    Jump branchTest8(Condition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
    {
        load8(address, ARMRegisters::S1);
        return branchTest32(cond, ARMRegisters::S1, mask);
    }

    Jump branchTest32(Condition cond, RegisterID reg, RegisterID mask)
    {
        ASSERT((cond == Zero) || (cond == NonZero));
        m_assembler.tst_r(reg, mask);
        return Jump(m_assembler.jmp(ARMCondition(cond)));
    }

    Jump branchTest32(Condition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
    {
        ASSERT((cond == Zero) || (cond == NonZero));
        ARMWord w = m_assembler.getImm(mask.m_value, ARMRegisters::S0, true);
        if (w & ARMAssembler::OP2_INV_IMM)
            m_assembler.bics_r(ARMRegisters::S0, reg, w & ~ARMAssembler::OP2_INV_IMM);
        else
            m_assembler.tst_r(reg, w);
        return Jump(m_assembler.jmp(ARMCondition(cond)));
    }

    Jump branchTest32(Condition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
    {
        load32(address, ARMRegisters::S1);
        return branchTest32(cond, ARMRegisters::S1, mask);
    }

    Jump branchTest32(Condition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
    {
        load32(address, ARMRegisters::S1);
        return branchTest32(cond, ARMRegisters::S1, mask);
    }

    Jump jump()
    {
        return Jump(m_assembler.jmp());
    }

    void jump(RegisterID target)
    {
        m_assembler.bx(target);
    }

    void jump(Address address)
    {
        load32(address, ARMRegisters::pc);
    }

    Jump branchAdd32(Condition cond, RegisterID src, RegisterID dest)
    {
        ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
        add32(src, dest);
        return Jump(m_assembler.jmp(ARMCondition(cond)));
    }

    Jump branchAdd32(Condition cond, TrustedImm32 imm, RegisterID dest)
    {
        ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
        add32(imm, dest);
        return Jump(m_assembler.jmp(ARMCondition(cond)));
    }

    void mull32(RegisterID src1, RegisterID src2, RegisterID dest)
    {
        if (src1 == dest) {
            move(src1, ARMRegisters::S0);
            src1 = ARMRegisters::S0;
        }
        m_assembler.mull_r(ARMRegisters::S1, dest, src2, src1);
        m_assembler.cmp_r(ARMRegisters::S1, m_assembler.asr(dest, 31));
    }

    Jump branchMul32(Condition cond, RegisterID src, RegisterID dest)
    {
        ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
        if (cond == Overflow) {
            mull32(src, dest, dest);
            cond = NonZero;
        }
        else
            mul32(src, dest);
        return Jump(m_assembler.jmp(ARMCondition(cond)));
    }

    Jump branchMul32(Condition cond, TrustedImm32 imm, RegisterID src, RegisterID dest)
    {
        ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
        if (cond == Overflow) {
            move(imm, ARMRegisters::S0);
            mull32(ARMRegisters::S0, src, dest);
            cond = NonZero;
        }
        else
            mul32(imm, src, dest);
        return Jump(m_assembler.jmp(ARMCondition(cond)));
    }

    Jump branchSub32(Condition cond, RegisterID src, RegisterID dest)
    {
        ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
        sub32(src, dest);
        return Jump(m_assembler.jmp(ARMCondition(cond)));
    }

    Jump branchSub32(Condition cond, TrustedImm32 imm, RegisterID dest)
    {
        ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
        sub32(imm, dest);
        return Jump(m_assembler.jmp(ARMCondition(cond)));
    }

    Jump branchNeg32(Condition cond, RegisterID srcDest)
    {
        ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
        neg32(srcDest);
        return Jump(m_assembler.jmp(ARMCondition(cond)));
    }

    Jump branchOr32(Condition cond, RegisterID src, RegisterID dest)
    {
        ASSERT((cond == Signed) || (cond == Zero) || (cond == NonZero));
        or32(src, dest);
        return Jump(m_assembler.jmp(ARMCondition(cond)));
    }

    void breakpoint()
    {
        m_assembler.bkpt(0);
    }

    Call nearCall()
    {
#if WTF_ARM_ARCH_AT_LEAST(5)
        ensureSpace(2 * sizeof(ARMWord), sizeof(ARMWord));
        m_assembler.loadBranchTarget(ARMRegisters::S1, ARMAssembler::AL, true);
        return Call(m_assembler.blx(ARMRegisters::S1), Call::LinkableNear);
#else
        prepareCall();
        return Call(m_assembler.jmp(ARMAssembler::AL, true), Call::LinkableNear);
#endif
    }

    Call call(RegisterID target)
    {
        return Call(m_assembler.blx(target), Call::None);
    }

    void call(Address address)
    {
        call32(address.base, address.offset);
    }

    void ret()
    {
        m_assembler.bx(linkRegister);
    }

    void set32Compare32(Condition cond, RegisterID left, RegisterID right, RegisterID dest)
    {
        m_assembler.cmp_r(left, right);
        m_assembler.mov_r(dest, ARMAssembler::getOp2(0));
        m_assembler.mov_r(dest, ARMAssembler::getOp2(1), ARMCondition(cond));
    }

    void set32Compare32(Condition cond, RegisterID left, TrustedImm32 right, RegisterID dest)
    {
        m_assembler.cmp_r(left, m_assembler.getImm(right.m_value, ARMRegisters::S0));
        m_assembler.mov_r(dest, ARMAssembler::getOp2(0));
        m_assembler.mov_r(dest, ARMAssembler::getOp2(1), ARMCondition(cond));
    }

    void set8Compare32(Condition cond, RegisterID left, RegisterID right, RegisterID dest)
    {
        // ARM doesn't have byte registers
        set32Compare32(cond, left, right, dest);
    }

    void set8Compare32(Condition cond, Address left, RegisterID right, RegisterID dest)
    {
        // ARM doesn't have byte registers
        load32(left, ARMRegisters::S1);
        set32Compare32(cond, ARMRegisters::S1, right, dest);
    }

    void set8Compare32(Condition cond, RegisterID left, TrustedImm32 right, RegisterID dest)
    {
        // ARM doesn't have byte registers
        set32Compare32(cond, left, right, dest);
    }

    void set32Test32(Condition cond, RegisterID reg, TrustedImm32 mask, RegisterID dest)
    {
        if (mask.m_value == -1)
            m_assembler.cmp_r(0, reg);
        else
            m_assembler.tst_r(reg, m_assembler.getImm(mask.m_value, ARMRegisters::S0));
        m_assembler.mov_r(dest, ARMAssembler::getOp2(0));
        m_assembler.mov_r(dest, ARMAssembler::getOp2(1), ARMCondition(cond));
    }

    void set32Test32(Condition cond, Address address, TrustedImm32 mask, RegisterID dest)
    {
        load32(address, ARMRegisters::S1);
        set32Test32(cond, ARMRegisters::S1, mask, dest);
    }

    void set32Test8(Condition cond, Address address, TrustedImm32 mask, RegisterID dest)
    {
        load8(address, ARMRegisters::S1);
        set32Test32(cond, ARMRegisters::S1, mask, dest);
    }

    void add32(TrustedImm32 imm, RegisterID src, RegisterID dest)
    {
        m_assembler.add_r(dest, src, m_assembler.getImm(imm.m_value, ARMRegisters::S0));
    }

    void add32(TrustedImm32 imm, AbsoluteAddress address)
    {
        m_assembler.ldr_un_imm(ARMRegisters::S1, reinterpret_cast<ARMWord>(address.m_ptr));
        m_assembler.dtr_u(true, ARMRegisters::S1, ARMRegisters::S1, 0);
        add32(imm, ARMRegisters::S1);
        m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address.m_ptr));
        m_assembler.dtr_u(false, ARMRegisters::S1, ARMRegisters::S0, 0);
    }

    void sub32(TrustedImm32 imm, AbsoluteAddress address)
    {
        m_assembler.ldr_un_imm(ARMRegisters::S1, reinterpret_cast<ARMWord>(address.m_ptr));
        m_assembler.dtr_u(true, ARMRegisters::S1, ARMRegisters::S1, 0);
        sub32(imm, ARMRegisters::S1);
        m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address.m_ptr));
        m_assembler.dtr_u(false, ARMRegisters::S1, ARMRegisters::S0, 0);
    }

    void load32(const void* address, RegisterID dest)
    {
        m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address));
        m_assembler.dtr_u(true, dest, ARMRegisters::S0, 0);
    }

    Jump branch32(Condition cond, AbsoluteAddress left, RegisterID right)
    {
        load32(left.m_ptr, ARMRegisters::S1);
        return branch32(cond, ARMRegisters::S1, right);
    }

    Jump branch32(Condition cond, AbsoluteAddress left, TrustedImm32 right)
    {
        load32(left.m_ptr, ARMRegisters::S1);
        return branch32(cond, ARMRegisters::S1, right);
    }

    void relativeTableJump(RegisterID index, int scale)
    {
        ASSERT(scale >= 0 && scale <= 31);
        m_assembler.add_r(ARMRegisters::pc, ARMRegisters::pc, m_assembler.lsl(index, scale));

        // NOP the default prefetching
        m_assembler.mov_r(ARMRegisters::r0, ARMRegisters::r0);
    }

    Call call()
    {
#if WTF_ARM_ARCH_AT_LEAST(5)
        ensureSpace(2 * sizeof(ARMWord), sizeof(ARMWord));
        m_assembler.loadBranchTarget(ARMRegisters::S1, ARMAssembler::AL, true);
        return Call(m_assembler.blx(ARMRegisters::S1), Call::Linkable);
#else
        prepareCall();
        return Call(m_assembler.jmp(ARMAssembler::AL, true), Call::Linkable);
#endif
    }

    Call tailRecursiveCall()
    {
        return Call::fromTailJump(jump());
    }

    Call makeTailRecursiveCall(Jump oldJump)
    {
        return Call::fromTailJump(oldJump);
    }

    DataLabelPtr moveWithPatch(TrustedImmPtr initialValue, RegisterID dest)
    {
        DataLabelPtr dataLabel(this);
        m_assembler.ldr_un_imm(dest, reinterpret_cast<ARMWord>(initialValue.m_value));
        return dataLabel;
    }

    Jump branchPtrWithPatch(Condition cond, RegisterID left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0))
    {
        dataLabel = moveWithPatch(initialRightValue, ARMRegisters::S1);
        Jump jump = branch32(cond, left, ARMRegisters::S1, true);
        return jump;
    }

    Jump branchPtrWithPatch(Condition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0))
    {
        load32(left, ARMRegisters::S1);
        dataLabel = moveWithPatch(initialRightValue, ARMRegisters::S0);
        Jump jump = branch32(cond, ARMRegisters::S0, ARMRegisters::S1, true);
        return jump;
    }

    DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address)
    {
        DataLabelPtr dataLabel = moveWithPatch(initialValue, ARMRegisters::S1);
        store32(ARMRegisters::S1, address);
        return dataLabel;
    }

    DataLabelPtr storePtrWithPatch(ImplicitAddress address)
    {
        return storePtrWithPatch(TrustedImmPtr(0), address);
    }

    // Floating point operators
    bool supportsFloatingPoint() const
    {
        return s_isVFPPresent;
    }

    bool supportsFloatingPointTruncate() const
    {
        return s_isVFPPresent;
    }

    bool supportsFloatingPointSqrt() const
    {
        return s_isVFPPresent;
    }

    void loadDouble(ImplicitAddress address, FPRegisterID dest)
    {
        m_assembler.doubleTransfer(true, dest, address.base, address.offset);
    }

    void loadDouble(const void* address, FPRegisterID dest)
    {
        m_assembler.ldr_un_imm(ARMRegisters::S0, (ARMWord)address);
        m_assembler.fdtr_u(true, dest, ARMRegisters::S0, 0);
    }

    void storeDouble(FPRegisterID src, ImplicitAddress address)
    {
        m_assembler.doubleTransfer(false, src, address.base, address.offset);
    }

    void addDouble(FPRegisterID src, FPRegisterID dest)
    {
        m_assembler.vadd_f64_r(dest, dest, src);
    }

    void addDouble(Address src, FPRegisterID dest)
    {
        loadDouble(src, ARMRegisters::SD0);
        addDouble(ARMRegisters::SD0, dest);
    }

    void divDouble(FPRegisterID src, FPRegisterID dest)
    {
        m_assembler.vdiv_f64_r(dest, dest, src);
    }

    void divDouble(Address src, FPRegisterID dest)
    {
        ASSERT_NOT_REACHED(); // Untested
        loadDouble(src, ARMRegisters::SD0);
        divDouble(ARMRegisters::SD0, dest);
    }

    void subDouble(FPRegisterID src, FPRegisterID dest)
    {
        m_assembler.vsub_f64_r(dest, dest, src);
    }

    void subDouble(Address src, FPRegisterID dest)
    {
        loadDouble(src, ARMRegisters::SD0);
        subDouble(ARMRegisters::SD0, dest);
    }

    void mulDouble(FPRegisterID src, FPRegisterID dest)
    {
        m_assembler.vmul_f64_r(dest, dest, src);
    }

    void mulDouble(Address src, FPRegisterID dest)
    {
        loadDouble(src, ARMRegisters::SD0);
        mulDouble(ARMRegisters::SD0, dest);
    }

    void sqrtDouble(FPRegisterID src, FPRegisterID dest)
    {
        m_assembler.vsqrt_f64_r(dest, src);
    }

    void convertInt32ToDouble(RegisterID src, FPRegisterID dest)
    {
        m_assembler.vmov_vfp_r(dest << 1, src);
        m_assembler.vcvt_f64_s32_r(dest, dest << 1);
    }

    void convertInt32ToDouble(Address src, FPRegisterID dest)
    {
        ASSERT_NOT_REACHED(); // Untested
        // flds does not worth the effort here
        load32(src, ARMRegisters::S1);
        convertInt32ToDouble(ARMRegisters::S1, dest);
    }

    void convertInt32ToDouble(AbsoluteAddress src, FPRegisterID dest)
    {
        ASSERT_NOT_REACHED(); // Untested
        // flds does not worth the effort here
        m_assembler.ldr_un_imm(ARMRegisters::S1, (ARMWord)src.m_ptr);
        m_assembler.dtr_u(true, ARMRegisters::S1, ARMRegisters::S1, 0);
        convertInt32ToDouble(ARMRegisters::S1, dest);
    }

    Jump branchDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right)
    {
        m_assembler.vcmp_f64_r(left, right);
        m_assembler.vmrs_apsr();
        if (cond & DoubleConditionBitSpecial)
            m_assembler.cmp_r(ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::VS);
        return Jump(m_assembler.jmp(static_cast<ARMAssembler::Condition>(cond & ~DoubleConditionMask)));
    }

    // Truncates 'src' to an integer, and places the resulting 'dest'.
    // If the result is not representable as a 32 bit value, branch.
    // May also branch for some values that are representable in 32 bits
    // (specifically, in this case, INT_MIN and INT_MAX).
    Jump branchTruncateDoubleToInt32(FPRegisterID src, RegisterID dest)
    {
        m_assembler.vcvtr_s32_f64_r(ARMRegisters::SD0 << 1, src);
        // If VCVTR.S32.F64 can't fit the result into a 32-bit
        // integer, it saturates at INT_MAX or INT_MIN. Testing this is
        // probably quicker than testing FPSCR for exception.
        m_assembler.vmov_arm_r(dest, ARMRegisters::SD0 << 1);
        m_assembler.sub_r(ARMRegisters::S0, dest, ARMAssembler::getOp2(0x80000000));
        m_assembler.cmn_r(ARMRegisters::S0, ARMAssembler::getOp2(1), ARMCondition(NotEqual));
        return Jump(m_assembler.jmp(ARMCondition(Equal)));
    }

    // Convert 'src' to an integer, and places the resulting 'dest'.
    // If the result is not representable as a 32 bit value, branch.
    // May also branch for some values that are representable in 32 bits
    // (specifically, in this case, 0).
    void branchConvertDoubleToInt32(FPRegisterID src, RegisterID dest, JumpList& failureCases, FPRegisterID fpTemp)
    {
        m_assembler.vcvt_s32_f64_r(ARMRegisters::SD0 << 1, src);
        m_assembler.vmov_arm_r(dest, ARMRegisters::SD0 << 1);

        // Convert the integer result back to float & compare to the original value - if not equal or unordered (NaN) then jump.
        m_assembler.vcvt_f64_s32_r(ARMRegisters::SD0, ARMRegisters::SD0 << 1);
        failureCases.append(branchDouble(DoubleNotEqualOrUnordered, src, ARMRegisters::SD0));

        // If the result is zero, it might have been -0.0, and 0.0 equals to -0.0
        failureCases.append(branchTest32(Zero, dest));
    }

    Jump branchDoubleNonZero(FPRegisterID reg, FPRegisterID scratch)
    {
        m_assembler.mov_r(ARMRegisters::S0, ARMAssembler::getOp2(0));
        convertInt32ToDouble(ARMRegisters::S0, scratch);
        return branchDouble(DoubleNotEqual, reg, scratch);
    }

    Jump branchDoubleZeroOrNaN(FPRegisterID reg, FPRegisterID scratch)
    {
        m_assembler.mov_r(ARMRegisters::S0, ARMAssembler::getOp2(0));
        convertInt32ToDouble(ARMRegisters::S0, scratch);
        return branchDouble(DoubleEqualOrUnordered, reg, scratch);
    }

protected:
    ARMAssembler::Condition ARMCondition(Condition cond)
    {
        return static_cast<ARMAssembler::Condition>(cond);
    }

    void ensureSpace(int insnSpace, int constSpace)
    {
        m_assembler.ensureSpace(insnSpace, constSpace);
    }

    int sizeOfConstantPool()
    {
        return m_assembler.sizeOfConstantPool();
    }

    void prepareCall()
    {
#if WTF_ARM_ARCH_VERSION < 5
        ensureSpace(2 * sizeof(ARMWord), sizeof(ARMWord));

        m_assembler.mov_r(linkRegister, ARMRegisters::pc);
#endif
    }

    void call32(RegisterID base, int32_t offset)
    {
#if WTF_ARM_ARCH_AT_LEAST(5)
        int targetReg = ARMRegisters::S1;
#else
        int targetReg = ARMRegisters::pc;
#endif
        int tmpReg = ARMRegisters::S1;

        if (base == ARMRegisters::sp)
            offset += 4;

        if (offset >= 0) {
            if (offset <= 0xfff) {
                prepareCall();
                m_assembler.dtr_u(true, targetReg, base, offset);
            } else if (offset <= 0xfffff) {
                m_assembler.add_r(tmpReg, base, ARMAssembler::OP2_IMM | (offset >> 12) | (10 << 8));
                prepareCall();
                m_assembler.dtr_u(true, targetReg, tmpReg, offset & 0xfff);
            } else {
                m_assembler.moveImm(offset, tmpReg);
                prepareCall();
                m_assembler.dtr_ur(true, targetReg, base, tmpReg);
            }
        } else  {
            offset = -offset;
            if (offset <= 0xfff) {
                prepareCall();
                m_assembler.dtr_d(true, targetReg, base, offset);
            } else if (offset <= 0xfffff) {
                m_assembler.sub_r(tmpReg, base, ARMAssembler::OP2_IMM | (offset >> 12) | (10 << 8));
                prepareCall();
                m_assembler.dtr_d(true, targetReg, tmpReg, offset & 0xfff);
            } else {
                m_assembler.moveImm(offset, tmpReg);
                prepareCall();
                m_assembler.dtr_dr(true, targetReg, base, tmpReg);
            }
        }
#if WTF_ARM_ARCH_AT_LEAST(5)
        m_assembler.blx(targetReg);
#endif
    }

private:
    friend class LinkBuffer;
    friend class RepatchBuffer;

    static void linkCall(void* code, Call call, FunctionPtr function)
    {
        ARMAssembler::linkCall(code, call.m_jmp, function.value());
    }

    static void repatchCall(CodeLocationCall call, CodeLocationLabel destination)
    {
        ARMAssembler::relinkCall(call.dataLocation(), destination.executableAddress());
    }

    static void repatchCall(CodeLocationCall call, FunctionPtr destination)
    {
        ARMAssembler::relinkCall(call.dataLocation(), destination.executableAddress());
    }

    static const bool s_isVFPPresent;
};

}

#endif // ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL)

#endif // MacroAssemblerARM_h