summaryrefslogtreecommitdiffstats
path: root/Source/JavaScriptCore/dfg/DFGByteCodeParser.cpp
blob: 03f5d4f9ac9d656db55ae2dbd1d5e0df016074fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
/*
 * Copyright (C) 2011 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#include "config.h"
#include "DFGByteCodeParser.h"

#if ENABLE(DFG_JIT)

#include "DFGAliasTracker.h"
#include "DFGScoreBoard.h"
#include "CodeBlock.h"

namespace JSC { namespace DFG {

// === ByteCodeParser ===
//
// This class is used to compile the dataflow graph from a CodeBlock.
class ByteCodeParser {
public:
    ByteCodeParser(JSGlobalData* globalData, CodeBlock* codeBlock, Graph& graph)
        : m_globalData(globalData)
        , m_codeBlock(codeBlock)
        , m_graph(graph)
        , m_currentIndex(0)
        , m_noArithmetic(true)
        , m_constantUndefined(UINT_MAX)
        , m_constant1(UINT_MAX)
    {
        unsigned numberOfConstants = codeBlock->numberOfConstantRegisters();
        m_constantRecords.grow(numberOfConstants);

        unsigned numberOfParameters = codeBlock->m_numParameters;
        m_arguments.grow(numberOfParameters);
        for (unsigned i = 0; i < numberOfParameters; ++i)
            m_arguments[i] = NoNode;

        unsigned numberOfRegisters = codeBlock->m_numCalleeRegisters;
        m_calleeRegisters.grow(numberOfRegisters);
        for (unsigned i = 0; i < numberOfRegisters; ++i)
            m_calleeRegisters[i] = NoNode;
    }

    bool parse();

private:
    // Get/Set the operands/result of a bytecode instruction.
    NodeIndex get(int operand)
    {
        // Is this a constant?
        if (operand >= FirstConstantRegisterIndex) {
            unsigned constant = operand - FirstConstantRegisterIndex;
            ASSERT(constant < m_constantRecords.size());
            return getJSConstant(constant);
        }

        // Is this an argument?
        if (operand < 0) {
            unsigned argument = operand + m_codeBlock->m_numParameters + RegisterFile::CallFrameHeaderSize;
            ASSERT(argument < m_arguments.size());
            return getArgument(argument);
        }

        // Must be a local or temporary.
        ASSERT((unsigned)operand < m_calleeRegisters.size());
        return getRegister((unsigned)operand);
    }
    void set(int operand, NodeIndex value)
    {
        // Is this an argument?
        if (operand < 0) {
            unsigned argument = operand + m_codeBlock->m_numParameters + RegisterFile::CallFrameHeaderSize;
            ASSERT(argument < m_arguments.size());
            return setArgument(argument, value);
        }

        // Must be a local or temporary.
        ASSERT((unsigned)operand < m_calleeRegisters.size());
        return setRegister((unsigned)operand, value);
    }

    // Used in implementing get/set, above, where the operand is a local or temporary.
    NodeIndex getRegister(unsigned operand)
    {
        NodeIndex index = m_calleeRegisters[operand];
        if (index != NoNode)
            return index;
        // We have not yet seen a definition for this value in this block.
        // For now, since we are only generating single block functions,
        // this value must be undefined.
        // For example:
        //     function f() { var x; return x; }
        return constantUndefined();
    }
    void setRegister(int operand, NodeIndex value)
    {
        m_calleeRegisters[operand] = value;
    }

    // Used in implementing get/set, above, where the operand is an argument.
    NodeIndex getArgument(unsigned argument)
    {
        NodeIndex index = m_arguments[argument];
        if (index != NoNode)
            return index;
        NodeIndex resultIndex = (NodeIndex)m_graph.size();
        m_graph.append(Node(Argument, m_currentIndex, OpInfo(argument)));
        return m_arguments[argument] = resultIndex;
    }
    void setArgument(int operand, NodeIndex value)
    {
        m_arguments[operand] = value;
    }

    // Get an operand, and perform a ToInt32/ToNumber conversion on it.
    NodeIndex getToInt32(int operand)
    {
        // Avoid wastefully adding a JSConstant node to the graph, only to
        // replace it with a Int32Constant (which is what would happen if
        // we called 'toInt32(get(operand))' in this case).
        if (operand >= FirstConstantRegisterIndex) {
            JSValue v = m_codeBlock->getConstant(operand);
            if (v.isInt32())
                return getInt32Constant(v.asInt32(), operand - FirstConstantRegisterIndex);
        }
        return toInt32(get(operand));
    }
    NodeIndex getToNumber(int operand)
    {
        // Avoid wastefully adding a JSConstant node to the graph, only to
        // replace it with a DoubleConstant (which is what would happen if
        // we called 'toNumber(get(operand))' in this case).
        if (operand >= FirstConstantRegisterIndex) {
            JSValue v = m_codeBlock->getConstant(operand);
            if (v.isNumber())
                return getDoubleConstant(v.uncheckedGetNumber(), operand - FirstConstantRegisterIndex);
        }
        return toNumber(get(operand));
    }

    // Perform an ES5 ToInt32 operation - returns a node of type NodeResultInt32.
    NodeIndex toInt32(NodeIndex index)
    {
        Node& node = m_graph[index];

        if (node.hasInt32Result())
            return index;

        if (node.hasDoubleResult()) {
            if (node.op == DoubleConstant)
                return getInt32Constant(JSC::toInt32(valueOfDoubleConstant(index)), node.constantNumber());
            // 'NumberToInt32(Int32ToNumber(X))' == X, and 'NumberToInt32(UInt32ToNumber(X)) == X'
            if (node.op == Int32ToNumber || node.op == UInt32ToNumber)
                return node.child1;

            // We unique NumberToInt32 nodes in a map to prevent duplicate conversions.
            pair<UnaryOpMap::iterator, bool> result = m_numberToInt32Nodes.add(index, NoNode);
            // Either we added a new value, or the existing value in the map is non-zero.
            ASSERT(result.second == (result.first->second == NoNode));
            if (result.second)
                result.first->second = addToGraph(NumberToInt32, index);
            return result.first->second;
        }

        // Check for numeric constants boxed as JSValues.
        if (node.op == JSConstant) {
            JSValue v = valueOfJSConstant(index);
            if (v.isInt32())
                return getInt32Constant(v.asInt32(), node.constantNumber());
            if (v.isNumber())
                return getInt32Constant(JSC::toInt32(v.uncheckedGetNumber()), node.constantNumber());
        }

        return addToGraph(ValueToInt32, index);
    }

    // Perform an ES5 ToNumber operation - returns a node of type NodeResultDouble.
    NodeIndex toNumber(NodeIndex index)
    {
        Node& node = m_graph[index];

        if (node.hasDoubleResult())
            return index;

        if (node.hasInt32Result()) {
            if (node.op == Int32Constant)
                return getDoubleConstant(valueOfInt32Constant(index), node.constantNumber());

            // We unique Int32ToNumber nodes in a map to prevent duplicate conversions.
            pair<UnaryOpMap::iterator, bool> result = m_int32ToNumberNodes.add(index, NoNode);
            // Either we added a new value, or the existing value in the map is non-zero.
            ASSERT(result.second == (result.first->second == NoNode));
            if (result.second)
                result.first->second = addToGraph(Int32ToNumber, index);
            return result.first->second;
        }

        if (node.op == JSConstant) {
            JSValue v = valueOfJSConstant(index);
            if (v.isNumber())
                return getDoubleConstant(v.uncheckedGetNumber(), node.constantNumber());
        }

        return addToGraph(ValueToNumber, index);
    }


    // Used in implementing get, above, where the operand is a constant.
    NodeIndex getInt32Constant(int32_t value, unsigned constant)
    {
        NodeIndex index = m_constantRecords[constant].asInt32;
        if (index != NoNode)
            return index;
        NodeIndex resultIndex = (NodeIndex)m_graph.size();
        m_graph.append(Node(Int32Constant, m_currentIndex, OpInfo(constant)));
        m_graph[resultIndex].setInt32Constant(value);
        m_constantRecords[constant].asInt32 = resultIndex;
        return resultIndex;
    }
    NodeIndex getDoubleConstant(double value, unsigned constant)
    {
        NodeIndex index = m_constantRecords[constant].asNumeric;
        if (index != NoNode)
            return index;
        NodeIndex resultIndex = (NodeIndex)m_graph.size();
        m_graph.append(Node(DoubleConstant, m_currentIndex, OpInfo(constant)));
        m_graph[resultIndex].setDoubleConstant(value);
        m_constantRecords[constant].asNumeric = resultIndex;
        return resultIndex;
    }
    NodeIndex getJSConstant(unsigned constant)
    {
        NodeIndex index = m_constantRecords[constant].asJSValue;
        if (index != NoNode)
            return index;

        NodeIndex resultIndex = (NodeIndex)m_graph.size();
        m_graph.append(Node(JSConstant, m_currentIndex, OpInfo(constant)));
        m_constantRecords[constant].asJSValue = resultIndex;
        return resultIndex;
    }

    // Helper functions to get/set the this value.
    NodeIndex getThis()
    {
        return getArgument(0);
    }
    void setThis(NodeIndex value)
    {
        setArgument(0, value);
    }

    // Convenience methods for checking nodes for constants.
    bool isInt32Constant(NodeIndex index)
    {
        return m_graph[index].op == Int32Constant;
    }
    bool isDoubleConstant(NodeIndex index)
    {
        return m_graph[index].op == DoubleConstant;
    }
    bool isJSConstant(NodeIndex index)
    {
        return m_graph[index].op == JSConstant;
    }

    // Convenience methods for getting constant values.
    int32_t valueOfInt32Constant(NodeIndex index)
    {
        ASSERT(isInt32Constant(index));
        return m_graph[index].int32Constant();
    }
    double valueOfDoubleConstant(NodeIndex index)
    {
        ASSERT(isDoubleConstant(index));
        return m_graph[index].numericConstant();
    }
    JSValue valueOfJSConstant(NodeIndex index)
    {
        ASSERT(isJSConstant(index));
        return m_codeBlock->getConstant(FirstConstantRegisterIndex + m_graph[index].constantNumber());
    }

    // This method returns a JSConstant with the value 'undefined'.
    NodeIndex constantUndefined()
    {
        // Has m_constantUndefined been set up yet?
        if (m_constantUndefined == UINT_MAX) {
            // Search the constant pool for undefined, if we find it, we can just reuse this!
            unsigned numberOfConstants = m_codeBlock->numberOfConstantRegisters();
            for (m_constantUndefined = 0; m_constantUndefined < numberOfConstants; ++m_constantUndefined) {
                JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantUndefined);
                if (testMe.isUndefined())
                    return getJSConstant(m_constantUndefined);
            }

            // Add undefined to the CodeBlock's constants, and add a corresponding slot in m_constantRecords.
            ASSERT(m_constantRecords.size() == numberOfConstants);
            m_codeBlock->addConstant(jsUndefined());
            m_constantRecords.append(ConstantRecord());
            ASSERT(m_constantRecords.size() == m_codeBlock->numberOfConstantRegisters());
        }

        // m_constantUndefined must refer to an entry in the CodeBlock's constant pool that has the value 'undefined'.
        ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantUndefined).isUndefined());
        return getJSConstant(m_constantUndefined);
    }

    // This method returns a DoubleConstant with the value 1.
    NodeIndex one()
    {
        // Has m_constant1 been set up yet?
        if (m_constant1 == UINT_MAX) {
            // Search the constant pool for the value 1, if we find it, we can just reuse this!
            unsigned numberOfConstants = m_codeBlock->numberOfConstantRegisters();
            for (m_constant1 = 0; m_constant1 < numberOfConstants; ++m_constant1) {
                JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constant1);
                if (testMe.isInt32() && testMe.asInt32() == 1)
                    return getDoubleConstant(1, m_constant1);
            }

            // Add the value 1 to the CodeBlock's constants, and add a corresponding slot in m_constantRecords.
            ASSERT(m_constantRecords.size() == numberOfConstants);
            m_codeBlock->addConstant(jsNumber(1));
            m_constantRecords.append(ConstantRecord());
            ASSERT(m_constantRecords.size() == m_codeBlock->numberOfConstantRegisters());
        }

        // m_constant1 must refer to an entry in the CodeBlock's constant pool that has the integer value 1.
        ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constant1).isInt32());
        ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constant1).asInt32() == 1);
        return getDoubleConstant(1, m_constant1);
    }


    // These methods create a node and add it to the graph. If nodes of this type are
    // 'mustGenerate' then the node  will implicitly be ref'ed to ensure generation.
    NodeIndex addToGraph(NodeType op, NodeIndex child1 = NoNode, NodeIndex child2 = NoNode, NodeIndex child3 = NoNode)
    {
        NodeIndex resultIndex = (NodeIndex)m_graph.size();
        m_graph.append(Node(op, m_currentIndex, child1, child2, child3));

        if (op & NodeMustGenerate)
            m_graph.ref(resultIndex);
        return resultIndex;
    }
    NodeIndex addToGraph(NodeType op, OpInfo info, NodeIndex child1 = NoNode, NodeIndex child2 = NoNode, NodeIndex child3 = NoNode)
    {
        NodeIndex resultIndex = (NodeIndex)m_graph.size();
        m_graph.append(Node(op, m_currentIndex, info, child1, child2, child3));

        if (op & NodeMustGenerate)
            m_graph.ref(resultIndex);
        return resultIndex;
    }

    JSGlobalData* m_globalData;
    CodeBlock* m_codeBlock;
    Graph& m_graph;

    // The bytecode index of the current instruction being generated.
    unsigned m_currentIndex;

    // FIXME: used to temporarily disable arithmetic, until we fix associated performance regressions.
    bool m_noArithmetic;

    // We use these values during code generation, and to avoid the need for
    // special handling we make sure they are available as constants in the
    // CodeBlock's constant pool. These variables are initialized to
    // UINT_MAX, and lazily updated to hold an index into the CodeBlock's
    // constant pool, as necessary.
    unsigned m_constantUndefined;
    unsigned m_constant1;

    // A constant in the constant pool may be represented by more than one
    // node in the graph, depending on the context in which it is being used.
    struct ConstantRecord {
        ConstantRecord()
            : asInt32(NoNode)
            , asNumeric(NoNode)
            , asJSValue(NoNode)
        {
        }

        NodeIndex asInt32;
        NodeIndex asNumeric;
        NodeIndex asJSValue;
    };
    Vector <ConstantRecord, 32> m_constantRecords;

    // Track the index of the node whose result is the current value for every
    // register value in the bytecode - argument, local, and temporary.
    Vector <NodeIndex, 32> m_arguments;
    Vector <NodeIndex, 32> m_calleeRegisters;

    // These maps are used to unique ToNumber and ToInt32 operations.
    typedef HashMap<NodeIndex, NodeIndex> UnaryOpMap;
    UnaryOpMap m_int32ToNumberNodes;
    UnaryOpMap m_numberToInt32Nodes;
};

#define NEXT_OPCODE(name) \
    m_currentIndex += OPCODE_LENGTH(name); \
    continue;

bool ByteCodeParser::parse()
{
    AliasTracker aliases(m_graph);

    Interpreter* interpreter = m_globalData->interpreter;
    Instruction* instructionsBegin = m_codeBlock->instructions().begin();
    while (true) {
        // Switch on the current bytecode opcode.
        Instruction* currentInstruction = instructionsBegin + m_currentIndex;
        switch (interpreter->getOpcodeID(currentInstruction->u.opcode)) {

        // === Function entry opcodes ===

        case op_enter:
            // This is a no-op for now - may need to initialize locals, if
            // DCE analysis cannot determine that the values are never read.
            NEXT_OPCODE(op_enter);

        case op_convert_this: {
            NodeIndex op1 = getThis();
            setThis(addToGraph(ConvertThis, op1));
            NEXT_OPCODE(op_convert_this);
        }

        // === Bitwise operations ===

        case op_bitand: {
            NodeIndex op1 = getToInt32(currentInstruction[2].u.operand);
            NodeIndex op2 = getToInt32(currentInstruction[3].u.operand);
            set(currentInstruction[1].u.operand, addToGraph(BitAnd, op1, op2));
            NEXT_OPCODE(op_bitand);
        }

        case op_bitor: {
            NodeIndex op1 = getToInt32(currentInstruction[2].u.operand);
            NodeIndex op2 = getToInt32(currentInstruction[3].u.operand);
            set(currentInstruction[1].u.operand, addToGraph(BitOr, op1, op2));
            NEXT_OPCODE(op_bitor);
        }

        case op_bitxor: {
            NodeIndex op1 = getToInt32(currentInstruction[2].u.operand);
            NodeIndex op2 = getToInt32(currentInstruction[3].u.operand);
            set(currentInstruction[1].u.operand, addToGraph(BitXor, op1, op2));
            NEXT_OPCODE(op_bitxor);
        }

        case op_rshift: {
            NodeIndex op1 = getToInt32(currentInstruction[2].u.operand);
            NodeIndex op2 = getToInt32(currentInstruction[3].u.operand);
            NodeIndex result;
            // Optimize out shifts by zero.
            if (isInt32Constant(op2) && !(valueOfInt32Constant(op2) & 0x1f))
                result = op1;
            else
                result = addToGraph(BitRShift, op1, op2);
            set(currentInstruction[1].u.operand, result);
            NEXT_OPCODE(op_rshift);
        }

        case op_lshift: {
            NodeIndex op1 = getToInt32(currentInstruction[2].u.operand);
            NodeIndex op2 = getToInt32(currentInstruction[3].u.operand);
            NodeIndex result;
            // Optimize out shifts by zero.
            if (isInt32Constant(op2) && !(valueOfInt32Constant(op2) & 0x1f))
                result = op1;
            else
                result = addToGraph(BitLShift, op1, op2);
            set(currentInstruction[1].u.operand, result);
            NEXT_OPCODE(op_lshift);
        }

        case op_urshift: {
            NodeIndex op1 = getToInt32(currentInstruction[2].u.operand);
            NodeIndex op2 = getToInt32(currentInstruction[3].u.operand);
            NodeIndex result;
            // The result of a zero-extending right shift is treated as an unsigned value.
            // This means that if the top bit is set, the result is not in the int32 range,
            // and as such must be stored as a double. If the shift amount is a constant,
            // we may be able to optimize.
            if (isInt32Constant(op2)) {
                // If we know we are shifting by a non-zero amount, then since the operation
                // zero fills we know the top bit of the result must be zero, and as such the
                // result must be within the int32 range. Conversely, if this is a shift by
                // zero, then the result may be changed by the conversion to unsigned, but it
                // is not necessary to perform the shift!
                if (valueOfInt32Constant(op2) & 0x1f)
                    result = addToGraph(BitURShift, op1, op2);
                else
                    result = addToGraph(UInt32ToNumber, op1);
            }  else {
                // Cannot optimize at this stage; shift & potentially rebox as a double.
                result = addToGraph(BitURShift, op1, op2);
                result = addToGraph(UInt32ToNumber, result);
            }
            set(currentInstruction[1].u.operand, result);
            NEXT_OPCODE(op_urshift);
        }

        // === Increment/Decrement opcodes ===

        case op_pre_inc: {
            unsigned srcDst = currentInstruction[1].u.operand;
            NodeIndex op = getToNumber(srcDst);
            set(srcDst, addToGraph(ArithAdd, op, one()));
            NEXT_OPCODE(op_pre_inc);
        }

        case op_post_inc: {
            unsigned result = currentInstruction[1].u.operand;
            unsigned srcDst = currentInstruction[2].u.operand;
            NodeIndex op = getToNumber(srcDst);
            set(result, op);
            set(srcDst, addToGraph(ArithAdd, op, one()));
            NEXT_OPCODE(op_post_inc);
        }

        case op_pre_dec: {
            unsigned srcDst = currentInstruction[1].u.operand;
            NodeIndex op = getToNumber(srcDst);
            set(srcDst, addToGraph(ArithSub, op, one()));
            NEXT_OPCODE(op_pre_dec);
        }

        case op_post_dec: {
            unsigned result = currentInstruction[1].u.operand;
            unsigned srcDst = currentInstruction[2].u.operand;
            NodeIndex op = getToNumber(srcDst);
            set(result, op);
            set(srcDst, addToGraph(ArithSub, op, one()));
            NEXT_OPCODE(op_post_dec);
        }

        // === Arithmetic operations ===

        case op_add: {
            m_noArithmetic = false;
            NodeIndex op1 = get(currentInstruction[2].u.operand);
            NodeIndex op2 = get(currentInstruction[3].u.operand);
            // If both operands can statically be determined to the numbers, then this is an arithmetic add.
            // Otherwise, we must assume this may be performing a concatenation to a string.
            if (m_graph[op1].hasNumericResult() && m_graph[op2].hasNumericResult())
                set(currentInstruction[1].u.operand, addToGraph(ArithAdd, toNumber(op1), toNumber(op2)));
            else
                set(currentInstruction[1].u.operand, addToGraph(ValueAdd, op1, op2));
            NEXT_OPCODE(op_add);
        }

        case op_sub: {
            m_noArithmetic = false;
            NodeIndex op1 = getToNumber(currentInstruction[2].u.operand);
            NodeIndex op2 = getToNumber(currentInstruction[3].u.operand);
            set(currentInstruction[1].u.operand, addToGraph(ArithSub, op1, op2));
            NEXT_OPCODE(op_sub);
        }

        case op_mul: {
            m_noArithmetic = false;
            NodeIndex op1 = getToNumber(currentInstruction[2].u.operand);
            NodeIndex op2 = getToNumber(currentInstruction[3].u.operand);
            set(currentInstruction[1].u.operand, addToGraph(ArithMul, op1, op2));
            NEXT_OPCODE(op_mul);
        }

        case op_mod: {
            m_noArithmetic = false;
            NodeIndex op1 = getToNumber(currentInstruction[2].u.operand);
            NodeIndex op2 = getToNumber(currentInstruction[3].u.operand);
            set(currentInstruction[1].u.operand, addToGraph(ArithMod, op1, op2));
            NEXT_OPCODE(op_mod);
        }

        case op_div: {
            m_noArithmetic = false;
            NodeIndex op1 = getToNumber(currentInstruction[2].u.operand);
            NodeIndex op2 = getToNumber(currentInstruction[3].u.operand);
            set(currentInstruction[1].u.operand, addToGraph(ArithDiv, op1, op2));
            NEXT_OPCODE(op_div);
        }

        // === Misc operations ===

        case op_mov: {
            NodeIndex op = get(currentInstruction[2].u.operand);
            set(currentInstruction[1].u.operand, op);
            NEXT_OPCODE(op_mov);
        }

        // === Property access operations ===

        case op_get_by_val: {
            NodeIndex base = get(currentInstruction[2].u.operand);
            NodeIndex property = get(currentInstruction[3].u.operand);

            NodeIndex getByVal = addToGraph(GetByVal, base, property, aliases.lookupGetByVal(base, property));
            set(currentInstruction[1].u.operand, getByVal);
            aliases.recordGetByVal(getByVal);

            NEXT_OPCODE(op_get_by_val);
        };

        case op_put_by_val: {
            NodeIndex base = get(currentInstruction[1].u.operand);
            NodeIndex property = get(currentInstruction[2].u.operand);
            NodeIndex value = get(currentInstruction[3].u.operand);

            NodeIndex aliasedGet = aliases.lookupGetByVal(base, property);
            NodeIndex putByVal = addToGraph(aliasedGet != NoNode ? PutByValAlias : PutByVal, base, property, value);
            aliases.recordPutByVal(putByVal);

            NEXT_OPCODE(op_put_by_val);
        };

        case op_get_by_id: {
            NodeIndex base = get(currentInstruction[2].u.operand);
            unsigned identifier = currentInstruction[3].u.operand;

            NodeIndex getById = addToGraph(GetById, OpInfo(identifier), base);
            set(currentInstruction[1].u.operand, getById);
            aliases.recordGetById(getById);

            NEXT_OPCODE(op_get_by_id);
        }

        case op_put_by_id: {
            NodeIndex value = get(currentInstruction[3].u.operand);
            NodeIndex base = get(currentInstruction[1].u.operand);
            unsigned identifier = currentInstruction[2].u.operand;
            bool direct = currentInstruction[8].u.operand;

            if (direct) {
                NodeIndex putByIdDirect = addToGraph(PutByIdDirect, OpInfo(identifier), base, value);
                aliases.recordPutByIdDirect(putByIdDirect);
            } else {
                NodeIndex putById = addToGraph(PutById, OpInfo(identifier), base, value);
                aliases.recordPutById(putById);
            }

            NEXT_OPCODE(op_put_by_id);
        }

        case op_get_global_var: {
            NodeIndex getGlobalVar = addToGraph(GetGlobalVar, OpInfo(currentInstruction[2].u.operand));
            set(currentInstruction[1].u.operand, getGlobalVar);
            NEXT_OPCODE(op_get_global_var);
        }

        case op_put_global_var: {
            NodeIndex value = get(currentInstruction[2].u.operand);
            addToGraph(PutGlobalVar, OpInfo(currentInstruction[1].u.operand), value);
            NEXT_OPCODE(op_put_global_var);
        }

        // === Block terminators. ===

        case op_ret: {
            addToGraph(Return, get(currentInstruction[1].u.operand));
            m_currentIndex += OPCODE_LENGTH(op_ret);
#if ENABLE(DFG_JIT_RESTRICTIONS)
            // FIXME: temporarily disabling the DFG JIT for functions containing arithmetic.
            return m_noArithmetic;
#else
            return true;
#endif
        }

        default:
            // parse failed!
            return false;
        }
    }
}

bool parse(Graph& graph, JSGlobalData* globalData, CodeBlock* codeBlock)
{
    // Call ByteCodeParser::parse to build the dataflow for the basic block at 'startIndex'.
    ByteCodeParser state(globalData, codeBlock, graph);
    if (!state.parse())
        return false;

    // Assign VirtualRegisters.
    ScoreBoard scoreBoard(graph);
    Node* nodes = graph.begin();
    size_t size = graph.size();
    for (size_t i = 0; i < size; ++i) {
        Node& node = nodes[i];
        if (node.refCount) {
            // First, call use on all of the current node's children, then
            // allocate a VirtualRegister for this node. We do so in this
            // order so that if a child is on its last use, and a
            // VirtualRegister is freed, then it may be reused for node.
            scoreBoard.use(node.child1);
            scoreBoard.use(node.child2);
            scoreBoard.use(node.child3);
            node.virtualRegister = scoreBoard.allocate();
            // 'mustGenerate' nodes have their useCount artificially elevated,
            // call use now to account for this.
            if (node.mustGenerate())
                scoreBoard.use(i);
        }
    }

    // 'm_numCalleeRegisters' is the number of locals and temporaries allocated
    // for the function (and checked for on entry). Since we perform a new and
    // different allocation of temporaries, more registers may now be required.
    if ((unsigned)codeBlock->m_numCalleeRegisters < scoreBoard.allocatedCount())
        codeBlock->m_numCalleeRegisters = scoreBoard.allocatedCount();

#if DFG_DEBUG_VERBOSE
    graph.dump(codeBlock);
#endif
    return true;
}

} } // namespace JSC::DFG

#endif