summaryrefslogtreecommitdiffstats
path: root/Source/JavaScriptCore/dfg/DFGJITCompiler.cpp
blob: 5cd044aa53fd78085aa69a38e82413c8f9cf7071 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
/*
 * Copyright (C) 2011 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#include "config.h"
#include "DFGJITCompiler.h"

#if ENABLE(DFG_JIT)

#include "CodeBlock.h"
#include "DFGJITCodeGenerator.h"
#include "DFGNonSpeculativeJIT.h"
#include "DFGOperations.h"
#include "DFGRegisterBank.h"
#include "DFGSpeculativeJIT.h"
#include "JSGlobalData.h"
#include "LinkBuffer.h"

namespace JSC { namespace DFG {

// This method used to fill a numeric value to a FPR when linking speculative -> non-speculative.
void JITCompiler::fillNumericToDouble(NodeIndex nodeIndex, FPRReg fpr, GPRReg temporary)
{
    Node& node = graph()[nodeIndex];
    MacroAssembler::RegisterID tempReg = gprToRegisterID(temporary);

    if (node.isConstant()) {
        ASSERT(node.op == DoubleConstant);
        move(MacroAssembler::ImmPtr(reinterpret_cast<void*>(reinterpretDoubleToIntptr(valueOfDoubleConstant(nodeIndex)))), tempReg);
        movePtrToDouble(tempReg, fprToRegisterID(fpr));
    } else {
        loadPtr(addressFor(node.virtualRegister), tempReg);
        Jump isInteger = branchPtr(MacroAssembler::AboveOrEqual, tempReg, tagTypeNumberRegister);
        jitAssertIsJSDouble(gpr0);
        addPtr(tagTypeNumberRegister, tempReg);
        movePtrToDouble(tempReg, fprToRegisterID(fpr));
        Jump hasUnboxedDouble = jump();
        isInteger.link(this);
        convertInt32ToDouble(tempReg, fprToRegisterID(fpr));
        hasUnboxedDouble.link(this);
    }
}

// This method used to fill an integer value to a GPR when linking speculative -> non-speculative.
void JITCompiler::fillInt32ToInteger(NodeIndex nodeIndex, GPRReg gpr)
{
    Node& node = graph()[nodeIndex];

    if (node.isConstant()) {
        ASSERT(node.op == Int32Constant);
        move(MacroAssembler::Imm32(valueOfInt32Constant(nodeIndex)), gprToRegisterID(gpr));
    } else {
#if DFG_JIT_ASSERT
        // Redundant load, just so we can check the tag!
        loadPtr(addressFor(node.virtualRegister), gprToRegisterID(gpr));
        jitAssertIsJSInt32(gpr);
#endif
        load32(addressFor(node.virtualRegister), gprToRegisterID(gpr));
    }
}

// This method used to fill a JSValue to a GPR when linking speculative -> non-speculative.
void JITCompiler::fillToJS(NodeIndex nodeIndex, GPRReg gpr)
{
    Node& node = graph()[nodeIndex];

    if (node.isConstant()) {
        if (isInt32Constant(nodeIndex)) {
            JSValue jsValue = jsNumber(valueOfInt32Constant(nodeIndex));
            move(MacroAssembler::ImmPtr(JSValue::encode(jsValue)), gprToRegisterID(gpr));
        } else if (isDoubleConstant(nodeIndex)) {
            JSValue jsValue(JSValue::EncodeAsDouble, valueOfDoubleConstant(nodeIndex));
            move(MacroAssembler::ImmPtr(JSValue::encode(jsValue)), gprToRegisterID(gpr));
        } else {
            ASSERT(isJSConstant(nodeIndex));
            JSValue jsValue = valueOfJSConstant(nodeIndex);
            move(MacroAssembler::ImmPtr(JSValue::encode(jsValue)), gprToRegisterID(gpr));
        }
        return;
    }

    loadPtr(addressFor(node.virtualRegister), gprToRegisterID(gpr));
}

void JITCompiler::jumpFromSpeculativeToNonSpeculative(const SpeculationCheck& check, const EntryLocation& entry, SpeculationRecovery* recovery)
{
    ASSERT(check.m_nodeIndex == entry.m_nodeIndex);

    // Link the jump from the Speculative path to here.
    check.m_check.link(this);

    // Does this speculation check require any additional recovery to be performed,
    // to restore any state that has been overwritten before we enter back in to the
    // non-speculative path.
    if (recovery) {
        // The only additional recovery we currently support is for integer add operation
        ASSERT(recovery->type() == SpeculativeAdd);
        // Revert the add.
        sub32(gprToRegisterID(recovery->src()), gprToRegisterID(recovery->dest()));
    }

    // FIXME: - This is hideously inefficient!
    // Where a value is live in a register in the speculative path, and is required in a register
    // on the non-speculative path, we should not need to be spilling it and reloading (we may
    // need to spill anyway, if the value is marked as spilled on the non-speculative path).
    // This may also be spilling values that don't need spilling, e.g. are already spilled,
    // are constants, or are arguments.

    // Spill all GPRs in use by the speculative path.
    for (GPRReg gpr = gpr0; gpr < numberOfGPRs; next(gpr)) {
        NodeIndex nodeIndex = check.m_gprInfo[gpr].nodeIndex;
        if (nodeIndex == NoNode)
            continue;

        DataFormat dataFormat = check.m_gprInfo[gpr].format;
        VirtualRegister virtualRegister = graph()[nodeIndex].virtualRegister;

        ASSERT(dataFormat == DataFormatInteger || DataFormatCell || dataFormat & DataFormatJS);
        if (dataFormat == DataFormatInteger)
            orPtr(tagTypeNumberRegister, gprToRegisterID(gpr));
        storePtr(gprToRegisterID(gpr), addressFor(virtualRegister));
    }

    // Spill all FPRs in use by the speculative path.
    for (FPRReg fpr = fpr0; fpr < numberOfFPRs; next(fpr)) {
        NodeIndex nodeIndex = check.m_fprInfo[fpr];
        if (nodeIndex == NoNode)
            continue;

        VirtualRegister virtualRegister = graph()[nodeIndex].virtualRegister;

        moveDoubleToPtr(fprToRegisterID(fpr), regT0);
        subPtr(tagTypeNumberRegister, regT0);
        storePtr(regT0, addressFor(virtualRegister));
    }

    // Fill all FPRs in use by the non-speculative path.
    for (FPRReg fpr = fpr0; fpr < numberOfFPRs; next(fpr)) {
        NodeIndex nodeIndex = entry.m_fprInfo[fpr];
        if (nodeIndex == NoNode)
            continue;

        fillNumericToDouble(nodeIndex, fpr, gpr0);
    }

    // Fill all GPRs in use by the non-speculative path.
    for (GPRReg gpr = gpr0; gpr < numberOfGPRs; next(gpr)) {
        NodeIndex nodeIndex = entry.m_gprInfo[gpr].nodeIndex;
        if (nodeIndex == NoNode)
            continue;

        DataFormat dataFormat = entry.m_gprInfo[gpr].format;
        if (dataFormat == DataFormatInteger)
            fillInt32ToInteger(nodeIndex, gpr);
        else {
            ASSERT(dataFormat & DataFormatJS || dataFormat == DataFormatCell); // Treat cell as JSValue for now!
            fillToJS(nodeIndex, gpr);
            // FIXME: For subtypes of DataFormatJS, should jitAssert the subtype?
        }
    }

    // Jump into the non-speculative path.
    jump(entry.m_entry);
}

void JITCompiler::linkSpeculationChecks(SpeculativeJIT& speculative, NonSpeculativeJIT& nonSpeculative)
{
    // Iterators to walk over the set of bail outs & corresponding entry points.
    SpeculationCheckVector::Iterator checksIter = speculative.speculationChecks().begin();
    SpeculationCheckVector::Iterator checksEnd = speculative.speculationChecks().end();
    NonSpeculativeJIT::EntryLocationVector::Iterator entriesIter = nonSpeculative.entryLocations().begin();
    NonSpeculativeJIT::EntryLocationVector::Iterator entriesEnd = nonSpeculative.entryLocations().end();

    // Iterate over the speculation checks.
    while (checksIter != checksEnd) {
        // For every bail out from the speculative path, we must have provided an entry point
        // into the non-speculative one.
        ASSERT(checksIter->m_nodeIndex == entriesIter->m_nodeIndex);

        // There may be multiple bail outs that map to the same entry point!
        do {
            ASSERT(checksIter != checksEnd);
            ASSERT(entriesIter != entriesEnd);

            // Plant code to link this speculation failure.
            const SpeculationCheck& check = *checksIter;
            const EntryLocation& entry = *entriesIter;
            jumpFromSpeculativeToNonSpeculative(check, entry, speculative.speculationRecovery(check.m_recoveryIndex));
             ++checksIter;
        } while (checksIter != checksEnd && checksIter->m_nodeIndex == entriesIter->m_nodeIndex);
         ++entriesIter;
    }

    // FIXME: https://bugs.webkit.org/show_bug.cgi?id=56289
    ASSERT(!(checksIter != checksEnd));
    ASSERT(!(entriesIter != entriesEnd));
}

void JITCompiler::compileFunction(JITCode& entry, MacroAssemblerCodePtr& entryWithArityCheck)
{
    // === Stage 1 - Function header code generation ===
    //
    // This code currently matches the old JIT. In the function header we need to
    // pop the return address (since we do not allow any recursion on the machine
    // stack), and perform a fast register file check.

    // This is the main entry point, without performing an arity check.
    // FIXME: https://bugs.webkit.org/show_bug.cgi?id=56292
    // We'll need to convert the remaining cti_ style calls (specifically the register file
    // check) which will be dependent on stack layout. (We'd need to account for this in
    // both normal return code and when jumping to an exception handler).
    preserveReturnAddressAfterCall(regT2);
    emitPutToCallFrameHeader(regT2, RegisterFile::ReturnPC);
    // If we needed to perform an arity check we will already have moved the return address,
    // so enter after this.
    Label fromArityCheck(this);

    // Setup a pointer to the codeblock in the CallFrameHeader.
    emitPutImmediateToCallFrameHeader(m_codeBlock, RegisterFile::CodeBlock);

    // Plant a check that sufficient space is available in the RegisterFile.
    // FIXME: https://bugs.webkit.org/show_bug.cgi?id=56291
    addPtr(Imm32(m_codeBlock->m_numCalleeRegisters * sizeof(Register)), callFrameRegister, regT1);
    Jump registerFileCheck = branchPtr(Below, AbsoluteAddress(m_globalData->interpreter->registerFile().addressOfEnd()), regT1);
    // Return here after register file check.
    Label fromRegisterFileCheck = label();


    // === Stage 2 - Function body code generation ===
    //
    // We generate the speculative code path, followed by the non-speculative
    // code for the function. Next we need to link the two together, making
    // bail-outs from the speculative path jump to the corresponding point on
    // the non-speculative one (and generating any code necessary to juggle
    // register values around, rebox values, and ensure spilled, to match the
    // non-speculative path's requirements).

#if DFG_JIT_BREAK_ON_EVERY_FUNCTION
    // Handy debug tool!
    breakpoint();
#endif

    // First generate the speculative path.
    Label speculativePathBegin = label();
    SpeculativeJIT speculative(*this);
    bool compiledSpeculative = speculative.compile();

    // Next, generate the non-speculative path. We pass this a SpeculationCheckIndexIterator
    // to allow it to check which nodes in the graph may bail out, and may need to reenter the
    // non-speculative path.
    if (compiledSpeculative) {
        SpeculationCheckIndexIterator checkIterator(speculative.speculationChecks());
        NonSpeculativeJIT nonSpeculative(*this);
        nonSpeculative.compile(checkIterator);

        // Link the bail-outs from the speculative path to the corresponding entry points into the non-speculative one.
        linkSpeculationChecks(speculative, nonSpeculative);
    } else {
        // If compilation through the SpeculativeJIT failed, throw away the code we generated.
        m_calls.clear();
        rewindToLabel(speculativePathBegin);

        SpeculationCheckVector noChecks;
        SpeculationCheckIndexIterator checkIterator(noChecks);
        NonSpeculativeJIT nonSpeculative(*this);
        nonSpeculative.compile(checkIterator);
    }

    // === Stage 3 - Function footer code generation ===
    //
    // Generate code to lookup and jump to exception handlers, to perform the slow
    // register file check (if the fast one in the function header fails), and
    // generate the entry point with arity check.

    // Iterate over the m_calls vector, checking for exception checks,
    // and linking them to here.
    unsigned exceptionCheckCount = 0;
    for (unsigned i = 0; i < m_calls.size(); ++i) {
        Jump& exceptionCheck = m_calls[i].m_exceptionCheck;
        if (exceptionCheck.isSet()) {
            exceptionCheck.link(this);
            ++exceptionCheckCount;
        }
    }
    // If any exception checks were linked, generate code to lookup a handler.
    if (exceptionCheckCount) {
        // lookupExceptionHandler is passed two arguments, exec (the CallFrame*), and
        // an identifier for the operation that threw the exception, which we can use
        // to look up handler information. The identifier we use is the return address
        // of the call out from JIT code that threw the exception; this is still
        // available on the stack, just below the stack pointer!
        move(callFrameRegister, argumentRegister0);
        peek(argumentRegister1, -1);
        m_calls.append(CallRecord(call(), lookupExceptionHandler));
        // lookupExceptionHandler leaves the handler CallFrame* in the returnValueRegister,
        // and the address of the handler in returnValueRegister2.
        jump(returnValueRegister2);
    }

    // Generate the register file check; if the fast check in the function head fails,
    // we need to call out to a helper function to check whether more space is available.
    // FIXME: change this from a cti call to a DFG style operation (normal C calling conventions).
    registerFileCheck.link(this);
    move(stackPointerRegister, argumentRegister0);
    poke(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof(void*));
    Call callRegisterFileCheck = call();
    jump(fromRegisterFileCheck);

    // The fast entry point into a function does not check the correct number of arguments
    // have been passed to the call (we only use the fast entry point where we can statically
    // determine the correct number of arguments have been passed, or have already checked).
    // In cases where an arity check is necessary, we enter here.
    // FIXME: change this from a cti call to a DFG style operation (normal C calling conventions).
    Label arityCheck = label();
    preserveReturnAddressAfterCall(regT2);
    emitPutToCallFrameHeader(regT2, RegisterFile::ReturnPC);
    branch32(Equal, regT1, Imm32(m_codeBlock->m_numParameters)).linkTo(fromArityCheck, this);
    move(stackPointerRegister, argumentRegister0);
    poke(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof(void*));
    Call callArityCheck = call();
    move(regT0, callFrameRegister);
    jump(fromArityCheck);


    // === Stage 4 - Link ===
    //
    // Link the code, populate data in CodeBlock data structures.

    LinkBuffer linkBuffer(this, m_globalData->executableAllocator.poolForSize(m_assembler.size()), 0);

#if DFG_DEBUG_VERBOSE
    fprintf(stderr, "JIT code start at %p\n", linkBuffer.debugAddress());
#endif

    // Link all calls out from the JIT code to their respective functions.
    for (unsigned i = 0; i < m_calls.size(); ++i)
        linkBuffer.link(m_calls[i].m_call, m_calls[i].m_function);

    if (m_codeBlock->needsCallReturnIndices()) {
        m_codeBlock->callReturnIndexVector().reserveCapacity(exceptionCheckCount);
        for (unsigned i = 0; i < m_calls.size(); ++i) {
            if (m_calls[i].m_exceptionCheck.isSet()) {
                unsigned returnAddressOffset = linkBuffer.returnAddressOffset(m_calls[i].m_call);
                unsigned exceptionInfo = m_calls[i].m_exceptionInfo;
                m_codeBlock->callReturnIndexVector().append(CallReturnOffsetToBytecodeOffset(returnAddressOffset, exceptionInfo));
            }
        }
    }

    // FIXME: switch the register file check & arity check over to DFGOpertaion style calls, not JIT stubs.
    linkBuffer.link(callRegisterFileCheck, cti_register_file_check);
    linkBuffer.link(callArityCheck, m_codeBlock->m_isConstructor ? cti_op_construct_arityCheck : cti_op_call_arityCheck);

    entryWithArityCheck = linkBuffer.locationOf(arityCheck);
    entry = linkBuffer.finalizeCode();
}

#if DFG_JIT_ASSERT
void JITCompiler::jitAssertIsInt32(GPRReg gpr)
{
#if CPU(X86_64)
    Jump checkInt32 = branchPtr(BelowOrEqual, gprToRegisterID(gpr), TrustedImmPtr(reinterpret_cast<void*>(static_cast<uintptr_t>(0xFFFFFFFFu))));
    breakpoint();
    checkInt32.link(this);
#else
    UNUSED_PARAM(gpr);
#endif
}

void JITCompiler::jitAssertIsJSInt32(GPRReg gpr)
{
    Jump checkJSInt32 = branchPtr(AboveOrEqual, gprToRegisterID(gpr), tagTypeNumberRegister);
    breakpoint();
    checkJSInt32.link(this);
}

void JITCompiler::jitAssertIsJSNumber(GPRReg gpr)
{
    Jump checkJSNumber = branchTestPtr(MacroAssembler::NonZero, gprToRegisterID(gpr), tagTypeNumberRegister);
    breakpoint();
    checkJSNumber.link(this);
}

void JITCompiler::jitAssertIsJSDouble(GPRReg gpr)
{
    Jump checkJSInt32 = branchPtr(AboveOrEqual, gprToRegisterID(gpr), tagTypeNumberRegister);
    Jump checkJSNumber = branchTestPtr(MacroAssembler::NonZero, gprToRegisterID(gpr), tagTypeNumberRegister);
    checkJSInt32.link(this);
    breakpoint();
    checkJSNumber.link(this);
}
#endif

#if ENABLE(SAMPLING_COUNTERS) && CPU(X86_64) // Or any other 64-bit platform!
void JITCompiler::emitCount(AbstractSamplingCounter& counter, uint32_t increment)
{
    addPtr(TrustedImm32(increment), AbsoluteAddress(counter.addressOfCounter()));
}
#endif

#if ENABLE(SAMPLING_COUNTERS) && CPU(X86) // Or any other little-endian 32-bit platform!
void JITCompiler::emitCount(AbstractSamplingCounter& counter, uint32_t increment)
{
    intptr_t hiWord = reinterpret_cast<intptr_t>(counter.addressOfCounter()) + sizeof(int32_t);
    add32(TrustedImm32(increment), AbsoluteAddress(counter.addressOfCounter()));
    addWithCarry32(TrustedImm32(0), AbsoluteAddress(reinterpret_cast<void*>(hiWord)));
}
#endif

} } // namespace JSC::DFG

#endif