summaryrefslogtreecommitdiffstats
path: root/Source/ThirdParty/ANGLE/src/libGLESv2/VertexDataManager.cpp
blob: 95bc3fb8783c295a732a132d71725e5cbbf96f4a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
//
// Copyright (c) 2002-2012 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//

// VertexDataManager.h: Defines the VertexDataManager, a class that
// runs the Buffer translation process.

#include "libGLESv2/VertexDataManager.h"

#include "common/debug.h"

#include "libGLESv2/Buffer.h"
#include "libGLESv2/Program.h"
#include "libGLESv2/main.h"

#include "libGLESv2/vertexconversion.h"
#include "libGLESv2/IndexDataManager.h"

namespace
{
    enum { INITIAL_STREAM_BUFFER_SIZE = 1024*1024 };
    // This has to be at least 4k or else it fails on ATI cards.
    enum { CONSTANT_VERTEX_BUFFER_SIZE = 4096 };
}

namespace gl
{
unsigned int VertexBuffer::mCurrentSerial = 1;

int elementsInBuffer(const VertexAttribute &attribute, int size)
{
    int stride = attribute.stride();
    return (size - attribute.mOffset % stride + (stride - attribute.typeSize())) / stride;
}

VertexDataManager::VertexDataManager(Context *context, IDirect3DDevice9 *device) : mContext(context), mDevice(device)
{
    for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
    {
        mDirtyCurrentValue[i] = true;
        mCurrentValueBuffer[i] = NULL;
        mCurrentValueOffsets[i] = 0;
    }

    const D3DCAPS9 &caps = context->getDeviceCaps();
    checkVertexCaps(caps.DeclTypes);

    mStreamingBuffer = new StreamingVertexBuffer(mDevice, INITIAL_STREAM_BUFFER_SIZE);

    if (!mStreamingBuffer)
    {
        ERR("Failed to allocate the streaming vertex buffer.");
    }
}

VertexDataManager::~VertexDataManager()
{
    delete mStreamingBuffer;

    for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
    {
        delete mCurrentValueBuffer[i];
    }
}

std::size_t VertexDataManager::writeAttributeData(ArrayVertexBuffer *vertexBuffer, GLint start, GLsizei count, const VertexAttribute &attribute, GLsizei instances)
{
    Buffer *buffer = attribute.mBoundBuffer.get();

    int inputStride = attribute.stride();
    int elementSize = attribute.typeSize();
    const FormatConverter &converter = formatConverter(attribute);
    std::size_t streamOffset = 0;

    void *output = NULL;
    
    if (vertexBuffer)
    {
        output = vertexBuffer->map(attribute, spaceRequired(attribute, count, instances), &streamOffset);
    }

    if (output == NULL)
    {
        ERR("Failed to map vertex buffer.");
        return -1;
    }

    const char *input = NULL;

    if (buffer)
    {
        int offset = attribute.mOffset;

        input = static_cast<const char*>(buffer->data()) + offset;
    }
    else
    {
        input = static_cast<const char*>(attribute.mPointer);
    }

    if (instances == 0 || attribute.mDivisor == 0)
    {
        input += inputStride * start;
    }

    if (converter.identity && inputStride == elementSize)
    {
        memcpy(output, input, count * inputStride);
    }
    else
    {
        converter.convertArray(input, inputStride, count, output);
    }

    vertexBuffer->unmap();

    return streamOffset;
}

GLenum VertexDataManager::prepareVertexData(GLint start, GLsizei count, TranslatedAttribute *translated, GLsizei instances)
{
    if (!mStreamingBuffer)
    {
        return GL_OUT_OF_MEMORY;
    }

    const VertexAttributeArray &attribs = mContext->getVertexAttributes();
    Program *program = mContext->getCurrentProgram();

    for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
    {
        translated[attributeIndex].active = (program->getSemanticIndex(attributeIndex) != -1);
    }

    // Determine the required storage size per used buffer, and invalidate static buffers that don't contain matching attributes
    for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
    {
        if (translated[i].active && attribs[i].mArrayEnabled)
        {
            Buffer *buffer = attribs[i].mBoundBuffer.get();
            StaticVertexBuffer *staticBuffer = buffer ? buffer->getStaticVertexBuffer() : NULL;

            if (staticBuffer)
            {
                if (staticBuffer->size() == 0)
                {
                    int totalCount = elementsInBuffer(attribs[i], buffer->size());
                    staticBuffer->addRequiredSpace(spaceRequired(attribs[i], totalCount, 0));
                }
                else if (staticBuffer->lookupAttribute(attribs[i]) == -1)
                {
                    // This static buffer doesn't have matching attributes, so fall back to using the streaming buffer
                    // Add the space of all previous attributes belonging to the invalidated static buffer to the streaming buffer
                    for (int previous = 0; previous < i; previous++)
                    {
                        if (translated[previous].active && attribs[previous].mArrayEnabled)
                        {
                            Buffer *previousBuffer = attribs[previous].mBoundBuffer.get();
                            StaticVertexBuffer *previousStaticBuffer = previousBuffer ? previousBuffer->getStaticVertexBuffer() : NULL;

                            if (staticBuffer == previousStaticBuffer)
                            {
                                mStreamingBuffer->addRequiredSpace(spaceRequired(attribs[previous], count, instances));
                            }
                        }
                    }

                    mStreamingBuffer->addRequiredSpace(spaceRequired(attribs[i], count, instances));

                    buffer->invalidateStaticData();
                }    
            }
            else
            {
                mStreamingBuffer->addRequiredSpace(spaceRequired(attribs[i], count, instances));
            }
        }
    }

    // Reserve the required space per used buffer
    for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
    {
        if (translated[i].active && attribs[i].mArrayEnabled)
        {
            Buffer *buffer = attribs[i].mBoundBuffer.get();
            ArrayVertexBuffer *staticBuffer = buffer ? buffer->getStaticVertexBuffer() : NULL;
            ArrayVertexBuffer *vertexBuffer = staticBuffer ? staticBuffer : mStreamingBuffer;

            if (vertexBuffer)
            {
                vertexBuffer->reserveRequiredSpace();
            }
        }
    }

    // Perform the vertex data translations
    for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
    {
        if (translated[i].active)
        {
            if (attribs[i].mArrayEnabled)
            {
                Buffer *buffer = attribs[i].mBoundBuffer.get();

                if (!buffer && attribs[i].mPointer == NULL)
                {
                    // This is an application error that would normally result in a crash, but we catch it and return an error
                    ERR("An enabled vertex array has no buffer and no pointer.");
                    return GL_INVALID_OPERATION;
                }

                const FormatConverter &converter = formatConverter(attribs[i]);

                StaticVertexBuffer *staticBuffer = buffer ? buffer->getStaticVertexBuffer() : NULL;
                ArrayVertexBuffer *vertexBuffer = staticBuffer ? staticBuffer : static_cast<ArrayVertexBuffer*>(mStreamingBuffer);

                std::size_t streamOffset = -1;

                if (staticBuffer)
                {
                    streamOffset = staticBuffer->lookupAttribute(attribs[i]);

                    if (streamOffset == -1)
                    {
                        // Convert the entire buffer
                        int totalCount = elementsInBuffer(attribs[i], buffer->size());
                        int startIndex = attribs[i].mOffset / attribs[i].stride();

                        streamOffset = writeAttributeData(staticBuffer, -startIndex, totalCount, attribs[i], 0);
                    }

                    if (streamOffset != -1)
                    {
                        streamOffset += (attribs[i].mOffset / attribs[i].stride()) * converter.outputElementSize;

                        if (instances == 0 || attribs[i].mDivisor == 0)
                        {
                            streamOffset += start * converter.outputElementSize;
                        }
                    }
                }
                else
                {
                    streamOffset = writeAttributeData(mStreamingBuffer, start, count, attribs[i], instances);
                }

                if (streamOffset == -1)
                {
                    return GL_OUT_OF_MEMORY;
                }

                translated[i].vertexBuffer = vertexBuffer->getBuffer();
                translated[i].serial = vertexBuffer->getSerial();
                translated[i].divisor = attribs[i].mDivisor;

                translated[i].type = converter.d3dDeclType;
                translated[i].stride = converter.outputElementSize;
                translated[i].offset = streamOffset;
            }
            else
            {
                if (!mCurrentValueBuffer[i])
                {
                    mCurrentValueBuffer[i] = new StreamingVertexBuffer(mDevice, CONSTANT_VERTEX_BUFFER_SIZE);
                }

                StreamingVertexBuffer *buffer = mCurrentValueBuffer[i];

                if (mDirtyCurrentValue[i])
                {
                    const int requiredSpace = 4 * sizeof(float);
                    buffer->addRequiredSpace(requiredSpace);
                    buffer->reserveRequiredSpace();
                    float *data = static_cast<float*>(buffer->map(VertexAttribute(), requiredSpace, &mCurrentValueOffsets[i]));
                    if (data)
                    {
                        data[0] = attribs[i].mCurrentValue[0];
                        data[1] = attribs[i].mCurrentValue[1];
                        data[2] = attribs[i].mCurrentValue[2];
                        data[3] = attribs[i].mCurrentValue[3];
                        buffer->unmap();
                        mDirtyCurrentValue[i] = false;
                    }
                }

                translated[i].vertexBuffer = mCurrentValueBuffer[i]->getBuffer();
                translated[i].serial = mCurrentValueBuffer[i]->getSerial();
                translated[i].divisor = 0;

                translated[i].type = D3DDECLTYPE_FLOAT4;
                translated[i].stride = 0;
                translated[i].offset = mCurrentValueOffsets[i];
            }
        }
    }

    for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
    {
        if (translated[i].active && attribs[i].mArrayEnabled)
        {
            Buffer *buffer = attribs[i].mBoundBuffer.get();

            if (buffer)
            {
                buffer->promoteStaticUsage(count * attribs[i].typeSize());
            }
        }
    }

    return GL_NO_ERROR;
}

std::size_t VertexDataManager::spaceRequired(const VertexAttribute &attrib, std::size_t count, GLsizei instances) const
{
    size_t elementSize = formatConverter(attrib).outputElementSize;

    if (instances == 0 || attrib.mDivisor == 0)
    {
        return elementSize * count;
    }
    else
    {
        return elementSize * ((instances + attrib.mDivisor - 1) / attrib.mDivisor);
    }
}

// Mapping from OpenGL-ES vertex attrib type to D3D decl type:
//
// BYTE                 SHORT (Cast)
// BYTE-norm            FLOAT (Normalize) (can't be exactly represented as SHORT-norm)
// UNSIGNED_BYTE        UBYTE4 (Identity) or SHORT (Cast)
// UNSIGNED_BYTE-norm   UBYTE4N (Identity) or FLOAT (Normalize)
// SHORT                SHORT (Identity)
// SHORT-norm           SHORT-norm (Identity) or FLOAT (Normalize)
// UNSIGNED_SHORT       FLOAT (Cast)
// UNSIGNED_SHORT-norm  USHORT-norm (Identity) or FLOAT (Normalize)
// FIXED (not in WebGL) FLOAT (FixedToFloat)
// FLOAT                FLOAT (Identity)

// GLToCType maps from GL type (as GLenum) to the C typedef. 
template <GLenum GLType> struct GLToCType { };

template <> struct GLToCType<GL_BYTE> { typedef GLbyte type; };
template <> struct GLToCType<GL_UNSIGNED_BYTE> { typedef GLubyte type; };
template <> struct GLToCType<GL_SHORT> { typedef GLshort type; };
template <> struct GLToCType<GL_UNSIGNED_SHORT> { typedef GLushort type; };
template <> struct GLToCType<GL_FIXED> { typedef GLuint type; };
template <> struct GLToCType<GL_FLOAT> { typedef GLfloat type; };

// This differs from D3DDECLTYPE in that it is unsized. (Size expansion is applied last.)
enum D3DVertexType
{
    D3DVT_FLOAT,
    D3DVT_SHORT,
    D3DVT_SHORT_NORM,
    D3DVT_UBYTE,
    D3DVT_UBYTE_NORM,
    D3DVT_USHORT_NORM
};

// D3DToCType maps from D3D vertex type (as enum D3DVertexType) to the corresponding C type.
template <unsigned int D3DType> struct D3DToCType { };

template <> struct D3DToCType<D3DVT_FLOAT> { typedef float type; };
template <> struct D3DToCType<D3DVT_SHORT> { typedef short type; };
template <> struct D3DToCType<D3DVT_SHORT_NORM> { typedef short type; };
template <> struct D3DToCType<D3DVT_UBYTE> { typedef unsigned char type; };
template <> struct D3DToCType<D3DVT_UBYTE_NORM> { typedef unsigned char type; };
template <> struct D3DToCType<D3DVT_USHORT_NORM> { typedef unsigned short type; };

// Encode the type/size combinations that D3D permits. For each type/size it expands to a widener that will provide the appropriate final size.
template <unsigned int type, int size>
struct WidenRule
{
};

template <int size> struct WidenRule<D3DVT_FLOAT, size>          : gl::NoWiden<size> { };
template <int size> struct WidenRule<D3DVT_SHORT, size>          : gl::WidenToEven<size> { };
template <int size> struct WidenRule<D3DVT_SHORT_NORM, size>     : gl::WidenToEven<size> { };
template <int size> struct WidenRule<D3DVT_UBYTE, size>          : gl::WidenToFour<size> { };
template <int size> struct WidenRule<D3DVT_UBYTE_NORM, size>     : gl::WidenToFour<size> { };
template <int size> struct WidenRule<D3DVT_USHORT_NORM, size>    : gl::WidenToEven<size> { };

// VertexTypeFlags encodes the D3DCAPS9::DeclType flag and vertex declaration flag for each D3D vertex type & size combination.
template <unsigned int d3dtype, int size>
struct VertexTypeFlags
{
};

template <unsigned int capflag, unsigned int declflag>
struct VertexTypeFlagsHelper
{
    enum { capflag = capflag };
    enum { declflag = declflag };
};

template <> struct VertexTypeFlags<D3DVT_FLOAT, 1> : VertexTypeFlagsHelper<0, D3DDECLTYPE_FLOAT1> { };
template <> struct VertexTypeFlags<D3DVT_FLOAT, 2> : VertexTypeFlagsHelper<0, D3DDECLTYPE_FLOAT2> { };
template <> struct VertexTypeFlags<D3DVT_FLOAT, 3> : VertexTypeFlagsHelper<0, D3DDECLTYPE_FLOAT3> { };
template <> struct VertexTypeFlags<D3DVT_FLOAT, 4> : VertexTypeFlagsHelper<0, D3DDECLTYPE_FLOAT4> { };
template <> struct VertexTypeFlags<D3DVT_SHORT, 2> : VertexTypeFlagsHelper<0, D3DDECLTYPE_SHORT2> { };
template <> struct VertexTypeFlags<D3DVT_SHORT, 4> : VertexTypeFlagsHelper<0, D3DDECLTYPE_SHORT4> { };
template <> struct VertexTypeFlags<D3DVT_SHORT_NORM, 2> : VertexTypeFlagsHelper<D3DDTCAPS_SHORT2N, D3DDECLTYPE_SHORT2N> { };
template <> struct VertexTypeFlags<D3DVT_SHORT_NORM, 4> : VertexTypeFlagsHelper<D3DDTCAPS_SHORT4N, D3DDECLTYPE_SHORT4N> { };
template <> struct VertexTypeFlags<D3DVT_UBYTE, 4> : VertexTypeFlagsHelper<D3DDTCAPS_UBYTE4, D3DDECLTYPE_UBYTE4> { };
template <> struct VertexTypeFlags<D3DVT_UBYTE_NORM, 4> : VertexTypeFlagsHelper<D3DDTCAPS_UBYTE4N, D3DDECLTYPE_UBYTE4N> { };
template <> struct VertexTypeFlags<D3DVT_USHORT_NORM, 2> : VertexTypeFlagsHelper<D3DDTCAPS_USHORT2N, D3DDECLTYPE_USHORT2N> { };
template <> struct VertexTypeFlags<D3DVT_USHORT_NORM, 4> : VertexTypeFlagsHelper<D3DDTCAPS_USHORT4N, D3DDECLTYPE_USHORT4N> { };


// VertexTypeMapping maps GL type & normalized flag to preferred and fallback D3D vertex types (as D3DVertexType enums).
template <GLenum GLtype, bool normalized>
struct VertexTypeMapping
{
};

template <D3DVertexType Preferred, D3DVertexType Fallback = Preferred>
struct VertexTypeMappingBase
{
    enum { preferred = Preferred };
    enum { fallback = Fallback };
};

template <> struct VertexTypeMapping<GL_BYTE, false>                        : VertexTypeMappingBase<D3DVT_SHORT> { };                       // Cast
template <> struct VertexTypeMapping<GL_BYTE, true>                         : VertexTypeMappingBase<D3DVT_FLOAT> { };                       // Normalize
template <> struct VertexTypeMapping<GL_UNSIGNED_BYTE, false>               : VertexTypeMappingBase<D3DVT_UBYTE, D3DVT_FLOAT> { };          // Identity, Cast
template <> struct VertexTypeMapping<GL_UNSIGNED_BYTE, true>                : VertexTypeMappingBase<D3DVT_UBYTE_NORM, D3DVT_FLOAT> { };     // Identity, Normalize
template <> struct VertexTypeMapping<GL_SHORT, false>                       : VertexTypeMappingBase<D3DVT_SHORT> { };                       // Identity
template <> struct VertexTypeMapping<GL_SHORT, true>                        : VertexTypeMappingBase<D3DVT_SHORT_NORM, D3DVT_FLOAT> { };     // Cast, Normalize
template <> struct VertexTypeMapping<GL_UNSIGNED_SHORT, false>              : VertexTypeMappingBase<D3DVT_FLOAT> { };                       // Cast
template <> struct VertexTypeMapping<GL_UNSIGNED_SHORT, true>               : VertexTypeMappingBase<D3DVT_USHORT_NORM, D3DVT_FLOAT> { };    // Cast, Normalize
template <bool normalized> struct VertexTypeMapping<GL_FIXED, normalized>   : VertexTypeMappingBase<D3DVT_FLOAT> { };                       // FixedToFloat
template <bool normalized> struct VertexTypeMapping<GL_FLOAT, normalized>   : VertexTypeMappingBase<D3DVT_FLOAT> { };                       // Identity


// Given a GL type & norm flag and a D3D type, ConversionRule provides the type conversion rule (Cast, Normalize, Identity, FixedToFloat).
// The conversion rules themselves are defined in vertexconversion.h.

// Almost all cases are covered by Cast (including those that are actually Identity since Cast<T,T> knows it's an identity mapping).
template <GLenum fromType, bool normalized, unsigned int toType>
struct ConversionRule : gl::Cast<typename GLToCType<fromType>::type, typename D3DToCType<toType>::type>
{
};

// All conversions from normalized types to float use the Normalize operator.
template <GLenum fromType> struct ConversionRule<fromType, true, D3DVT_FLOAT> : gl::Normalize<typename GLToCType<fromType>::type> { };

// Use a full specialisation for this so that it preferentially matches ahead of the generic normalize-to-float rules.
template <> struct ConversionRule<GL_FIXED, true, D3DVT_FLOAT> : gl::FixedToFloat<GLuint, 16> { };
template <> struct ConversionRule<GL_FIXED, false, D3DVT_FLOAT> : gl::FixedToFloat<GLuint, 16> { };

// A 2-stage construction is used for DefaultVertexValues because float must use SimpleDefaultValues (i.e. 0/1)
// whether it is normalized or not.
template <class T, bool normalized>
struct DefaultVertexValuesStage2
{
};

template <class T> struct DefaultVertexValuesStage2<T, true>  : gl::NormalizedDefaultValues<T> { };
template <class T> struct DefaultVertexValuesStage2<T, false> : gl::SimpleDefaultValues<T> { };

// Work out the default value rule for a D3D type (expressed as the C type) and 
template <class T, bool normalized>
struct DefaultVertexValues : DefaultVertexValuesStage2<T, normalized>
{
};

template <bool normalized> struct DefaultVertexValues<float, normalized> : gl::SimpleDefaultValues<float> { };

// Policy rules for use with Converter, to choose whether to use the preferred or fallback conversion.
// The fallback conversion produces an output that all D3D9 devices must support.
template <class T> struct UsePreferred { enum { type = T::preferred }; };
template <class T> struct UseFallback { enum { type = T::fallback }; };

// Converter ties it all together. Given an OpenGL type/norm/size and choice of preferred/fallback conversion,
// it provides all the members of the appropriate VertexDataConverter, the D3DCAPS9::DeclTypes flag in cap flag
// and the D3DDECLTYPE member needed for the vertex declaration in declflag.
template <GLenum fromType, bool normalized, int size, template <class T> class PreferenceRule>
struct Converter
    : gl::VertexDataConverter<typename GLToCType<fromType>::type,
                              WidenRule<PreferenceRule< VertexTypeMapping<fromType, normalized> >::type, size>,
                              ConversionRule<fromType,
                                             normalized,
                                             PreferenceRule< VertexTypeMapping<fromType, normalized> >::type>,
                              DefaultVertexValues<typename D3DToCType<PreferenceRule< VertexTypeMapping<fromType, normalized> >::type>::type, normalized > >
{
private:
    enum { d3dtype = PreferenceRule< VertexTypeMapping<fromType, normalized> >::type };
    enum { d3dsize = WidenRule<d3dtype, size>::finalWidth };

public:
    enum { capflag = VertexTypeFlags<d3dtype, d3dsize>::capflag };
    enum { declflag = VertexTypeFlags<d3dtype, d3dsize>::declflag };
};

// Initialise a TranslationInfo
#define TRANSLATION(type, norm, size, preferred)                                    \
    {                                                                               \
        Converter<type, norm, size, preferred>::identity,                           \
        Converter<type, norm, size, preferred>::finalSize,                          \
        Converter<type, norm, size, preferred>::convertArray,                       \
        static_cast<D3DDECLTYPE>(Converter<type, norm, size, preferred>::declflag)  \
    }

#define TRANSLATION_FOR_TYPE_NORM_SIZE(type, norm, size)    \
    {                                                       \
        Converter<type, norm, size, UsePreferred>::capflag, \
        TRANSLATION(type, norm, size, UsePreferred),        \
        TRANSLATION(type, norm, size, UseFallback)          \
    }

#define TRANSLATIONS_FOR_TYPE(type)                                                                                                                                                                         \
    {                                                                                                                                                                                                       \
        { TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 1), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 2), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 3), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 4) }, \
        { TRANSLATION_FOR_TYPE_NORM_SIZE(type, true, 1), TRANSLATION_FOR_TYPE_NORM_SIZE(type, true, 2), TRANSLATION_FOR_TYPE_NORM_SIZE(type, true, 3), TRANSLATION_FOR_TYPE_NORM_SIZE(type, true, 4) },     \
    }

#define TRANSLATIONS_FOR_TYPE_NO_NORM(type)                                                                                                                                                                 \
    {                                                                                                                                                                                                       \
        { TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 1), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 2), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 3), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 4) }, \
        { TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 1), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 2), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 3), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 4) }, \
    }

const VertexDataManager::TranslationDescription VertexDataManager::mPossibleTranslations[NUM_GL_VERTEX_ATTRIB_TYPES][2][4] = // [GL types as enumerated by typeIndex()][normalized][size-1]
{
    TRANSLATIONS_FOR_TYPE(GL_BYTE),
    TRANSLATIONS_FOR_TYPE(GL_UNSIGNED_BYTE),
    TRANSLATIONS_FOR_TYPE(GL_SHORT),
    TRANSLATIONS_FOR_TYPE(GL_UNSIGNED_SHORT),
    TRANSLATIONS_FOR_TYPE_NO_NORM(GL_FIXED),
    TRANSLATIONS_FOR_TYPE_NO_NORM(GL_FLOAT)
};

void VertexDataManager::checkVertexCaps(DWORD declTypes)
{
    for (unsigned int i = 0; i < NUM_GL_VERTEX_ATTRIB_TYPES; i++)
    {
        for (unsigned int j = 0; j < 2; j++)
        {
            for (unsigned int k = 0; k < 4; k++)
            {
                if (mPossibleTranslations[i][j][k].capsFlag == 0 || (declTypes & mPossibleTranslations[i][j][k].capsFlag) != 0)
                {
                    mAttributeTypes[i][j][k] = mPossibleTranslations[i][j][k].preferredConversion;
                }
                else
                {
                    mAttributeTypes[i][j][k] = mPossibleTranslations[i][j][k].fallbackConversion;
                }
            }
        }
    }
}

// This is used to index mAttributeTypes and mPossibleTranslations.
unsigned int VertexDataManager::typeIndex(GLenum type) const
{
    switch (type)
    {
      case GL_BYTE: return 0;
      case GL_UNSIGNED_BYTE: return 1;
      case GL_SHORT: return 2;
      case GL_UNSIGNED_SHORT: return 3;
      case GL_FIXED: return 4;
      case GL_FLOAT: return 5;

      default: UNREACHABLE(); return 5;
    }
}

VertexBuffer::VertexBuffer(IDirect3DDevice9 *device, std::size_t size, DWORD usageFlags) : mDevice(device), mVertexBuffer(NULL)
{
    if (size > 0)
    {
        D3DPOOL pool = getDisplay()->getBufferPool(usageFlags);
        HRESULT result = device->CreateVertexBuffer(size, usageFlags, 0, pool, &mVertexBuffer, NULL);
        mSerial = issueSerial();
        
        if (FAILED(result))
        {
            ERR("Out of memory allocating a vertex buffer of size %lu.", size);
        }
    }
}

VertexBuffer::~VertexBuffer()
{
    if (mVertexBuffer)
    {
        mVertexBuffer->Release();
    }
}

void VertexBuffer::unmap()
{
    if (mVertexBuffer)
    {
        mVertexBuffer->Unlock();
    }
}

IDirect3DVertexBuffer9 *VertexBuffer::getBuffer() const
{
    return mVertexBuffer;
}

unsigned int VertexBuffer::getSerial() const
{
    return mSerial;
}

unsigned int VertexBuffer::issueSerial()
{
    return mCurrentSerial++;
}

ArrayVertexBuffer::ArrayVertexBuffer(IDirect3DDevice9 *device, std::size_t size, DWORD usageFlags) : VertexBuffer(device, size, usageFlags)
{
    mBufferSize = size;
    mWritePosition = 0;
    mRequiredSpace = 0;
}

ArrayVertexBuffer::~ArrayVertexBuffer()
{
}

void ArrayVertexBuffer::addRequiredSpace(UINT requiredSpace)
{
    mRequiredSpace += requiredSpace;
}

StreamingVertexBuffer::StreamingVertexBuffer(IDirect3DDevice9 *device, std::size_t initialSize) : ArrayVertexBuffer(device, initialSize, D3DUSAGE_DYNAMIC | D3DUSAGE_WRITEONLY)
{
}

StreamingVertexBuffer::~StreamingVertexBuffer()
{
}

void *StreamingVertexBuffer::map(const VertexAttribute &attribute, std::size_t requiredSpace, std::size_t *offset)
{
    void *mapPtr = NULL;

    if (mVertexBuffer)
    {
        HRESULT result = mVertexBuffer->Lock(mWritePosition, requiredSpace, &mapPtr, D3DLOCK_NOOVERWRITE);
        
        if (FAILED(result))
        {
            ERR("Lock failed with error 0x%08x", result);
            return NULL;
        }

        *offset = mWritePosition;
        mWritePosition += requiredSpace;
    }

    return mapPtr;
}

void StreamingVertexBuffer::reserveRequiredSpace()
{
    if (mRequiredSpace > mBufferSize)
    {
        if (mVertexBuffer)
        {
            mVertexBuffer->Release();
            mVertexBuffer = NULL;
        }

        mBufferSize = std::max(mRequiredSpace, 3 * mBufferSize / 2);   // 1.5 x mBufferSize is arbitrary and should be checked to see we don't have too many reallocations.

        D3DPOOL pool = getDisplay()->getBufferPool(D3DUSAGE_DYNAMIC | D3DUSAGE_WRITEONLY);
        HRESULT result = mDevice->CreateVertexBuffer(mBufferSize, D3DUSAGE_DYNAMIC | D3DUSAGE_WRITEONLY, 0, pool, &mVertexBuffer, NULL);
        mSerial = issueSerial();
    
        if (FAILED(result))
        {
            ERR("Out of memory allocating a vertex buffer of size %lu.", mBufferSize);
        }

        mWritePosition = 0;
    }
    else if (mWritePosition + mRequiredSpace > mBufferSize)   // Recycle
    {
        if (mVertexBuffer)
        {
            void *dummy;
            mVertexBuffer->Lock(0, 1, &dummy, D3DLOCK_DISCARD);
            mVertexBuffer->Unlock();
        }

        mWritePosition = 0;
    }

    mRequiredSpace = 0;
}

StaticVertexBuffer::StaticVertexBuffer(IDirect3DDevice9 *device) : ArrayVertexBuffer(device, 0, D3DUSAGE_WRITEONLY)
{
}

StaticVertexBuffer::~StaticVertexBuffer()
{
}

void *StaticVertexBuffer::map(const VertexAttribute &attribute, std::size_t requiredSpace, std::size_t *streamOffset)
{
    void *mapPtr = NULL;

    if (mVertexBuffer)
    {
        HRESULT result = mVertexBuffer->Lock(mWritePosition, requiredSpace, &mapPtr, 0);
        
        if (FAILED(result))
        {
            ERR("Lock failed with error 0x%08x", result);
            return NULL;
        }

        int attributeOffset = attribute.mOffset % attribute.stride();
        VertexElement element = {attribute.mType, attribute.mSize, attribute.stride(), attribute.mNormalized, attributeOffset, mWritePosition};
        mCache.push_back(element);

        *streamOffset = mWritePosition;
        mWritePosition += requiredSpace;
    }

    return mapPtr;
}

void StaticVertexBuffer::reserveRequiredSpace()
{
    if (!mVertexBuffer && mBufferSize == 0)
    {
        D3DPOOL pool = getDisplay()->getBufferPool(D3DUSAGE_WRITEONLY);
        HRESULT result = mDevice->CreateVertexBuffer(mRequiredSpace, D3DUSAGE_WRITEONLY, 0, pool, &mVertexBuffer, NULL);
        mSerial = issueSerial();

        if (FAILED(result))
        {
            ERR("Out of memory allocating a vertex buffer of size %lu.", mRequiredSpace);
        }

        mBufferSize = mRequiredSpace;
    }
    else if (mVertexBuffer && mBufferSize >= mRequiredSpace)
    {
        // Already allocated
    }
    else UNREACHABLE();   // Static vertex buffers can't be resized

    mRequiredSpace = 0;
}

std::size_t StaticVertexBuffer::lookupAttribute(const VertexAttribute &attribute)
{
    for (unsigned int element = 0; element < mCache.size(); element++)
    {
        if (mCache[element].type == attribute.mType &&
            mCache[element].size == attribute.mSize &&
            mCache[element].stride == attribute.stride() &&
            mCache[element].normalized == attribute.mNormalized)
        {
            if (mCache[element].attributeOffset == attribute.mOffset % attribute.stride())
            {
                return mCache[element].streamOffset;
            }
        }
    }

    return -1;
}

const VertexDataManager::FormatConverter &VertexDataManager::formatConverter(const VertexAttribute &attribute) const
{
    return mAttributeTypes[typeIndex(attribute.mType)][attribute.mNormalized][attribute.mSize - 1];
}
}