summaryrefslogtreecommitdiffstats
path: root/Source/WebCore/platform/graphics/gpu/LoopBlinnPathProcessor.cpp
blob: 54398850f56a0cc52a26a9ffc84e7a454a62196d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
/*
 * Copyright (C) 2011 Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1.  Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"

#include "LoopBlinnPathProcessor.h"

#include "FloatPoint.h"
#include "FloatRect.h"
#include "LoopBlinnClassifier.h"
#include "LoopBlinnConstants.h"
#include "LoopBlinnLocalTriangulator.h"
#include "LoopBlinnMathUtils.h"
#include "LoopBlinnPathCache.h"
#include "LoopBlinnTextureCoords.h"
#include "PODArena.h"
#include "PODIntervalTree.h"
#include "Path.h"
#include "internal_glu.h"
#include <algorithm>
#include <wtf/Assertions.h>
#include <wtf/FastMalloc.h>

#if USE(SKIA)
#include "SkGeometry.h"
#include "SkPath.h"
#include "SkScalar.h"
#else
// Must port to your platform.
#endif

namespace WebCore {

using LoopBlinnMathUtils::XRay;
using LoopBlinnMathUtils::chopCubicAt;
using LoopBlinnMathUtils::numXRayCrossingsForCubic;
using LoopBlinnMathUtils::trianglesOverlap;
using LoopBlinnMathUtils::xRayCrossesLine;
using LoopBlinnPathProcessorImplementation::Contour;
using LoopBlinnPathProcessorImplementation::Segment;

namespace {

#ifndef NDEBUG
String valueToString(const FloatRect& arg)
{
    StringBuilder builder;
    builder.append("[FloatRect x=");
    builder.append(String::number(arg.x()));
    builder.append(" y=");
    builder.append(String::number(arg.y()));
    builder.append(" maxX=");
    builder.append(String::number(arg.maxX()));
    builder.append(" maxY=");
    builder.append(String::number(arg.maxY()));
    builder.append("]");
    return builder.toString();
}
#endif

struct SweepData;

} // anonymous namespace

namespace LoopBlinnPathProcessorImplementation {
class Segment;
}

#ifndef NDEBUG
// Routines needed to print the types of IntervalNodes we instantiate
// in this file.
template <>
struct ValueToString<float> {
    static String string(const float& value)
    {
        return String::number(value);
    }
};

template <>
struct ValueToString<SweepData*> {
    static String string(SweepData* const& value)
    {
        return String::format("0x%p", value);
    }
};

template <>
struct ValueToString<LoopBlinnPathProcessorImplementation::Segment*> {
    static String string(LoopBlinnPathProcessorImplementation::Segment* const& value)
    {
        return String::format("0x%p", value);
    }
};
#endif

namespace LoopBlinnPathProcessorImplementation {

//----------------------------------------------------------------------
// Segment
//

// Describes a segment of the path: either a cubic or a line segment.
// These are stored in a doubly linked list to speed up curve
// subdivision, which occurs due to either rendering artifacts in the
// loop case or due to overlapping triangles.
class Segment {
    WTF_MAKE_NONCOPYABLE(Segment);
public:
    enum Kind {
        Cubic,
        Line
    };

    // No-argument constructor allows construction by the PODArena class.
    Segment()
         : m_arena(0)
         , m_kind(Cubic)
         , m_prev(0)
         , m_next(0)
         , m_contour(0)
         , m_triangulator(0)
         , m_markedForSubdivision(false)
    {
    }

    // Initializer for cubic curve segments.
    void setup(PODArena* arena,
               Contour* contour,
               FloatPoint cp0,
               FloatPoint cp1,
               FloatPoint cp2,
               FloatPoint cp3)
    {
        m_arena = arena;
        m_contour = contour;
        m_kind = Cubic;
        m_points[0] = cp0;
        m_points[1] = cp1;
        m_points[2] = cp2;
        m_points[3] = cp3;
        computeBoundingBox();
    }

    // Initializer for line segments.
    void setup(PODArena* arena,
               Contour* contour,
               FloatPoint p0,
               FloatPoint p1)
    {
        m_arena = arena;
        m_contour = contour;
        m_kind = Line;
        m_points[0] = p0;
        m_points[1] = p1;
        computeBoundingBox();
    }

    Kind kind() const { return m_kind; }

    // Returns the i'th control point, 0 <= i < 4.
    const FloatPoint& getPoint(int i)
    {
        ASSERT(i >= 0 && i < 4);
        return m_points[i];
    }

    Segment* next() const { return m_next; }
    Segment* prev() const { return m_prev; }

    void setNext(Segment* next) { m_next = next; }
    void setPrev(Segment* prev) { m_prev = prev; }

    // The contour this segment belongs to.
    Contour* contour() const { return m_contour; }

    // Subdivides the current segment at the given parameter value (0 <=
    // t <= 1) and replaces it with the two newly created Segments in
    // the linked list, if possible. Returns a pointer to the leftmost
    // Segment.
    Segment* subdivide(float param)
    {
        FloatPoint dst[7];
        chopCubicAt(m_points, dst, param);
        Segment* left = m_arena->allocateObject<Segment>();
        Segment* right = m_arena->allocateObject<Segment>();
        left->setup(m_arena, m_contour, dst[0], dst[1], dst[2], dst[3]);
        right->setup(m_arena, m_contour, dst[3], dst[4], dst[5], dst[6]);
        left->setNext(right);
        right->setPrev(left);
        // Try to set up a link between "this->prev()" and "left".
        if (prev()) {
            left->setPrev(prev());
            prev()->setNext(left);
        }
        // Try to set up a link between "this->next()" and "right".
        Segment* n = next();
        if (n) {
            right->setNext(n);
            n->setPrev(right);
        }
        // Set up a link between "this" and "left"; this is only to
        // provide a certain amount of continuity during forward iteration.
        setNext(left);
        return left;
    }

    // Subdivides the current segment at the halfway point and replaces
    // it with the two newly created Segments in the linked list, if
    // possible. Returns a pointer to the leftmost Segment.
    Segment* subdivide() { return subdivide(0.5f); }

    const FloatRect& boundingBox() const { return m_boundingBox; }

    // Computes the number of times a query line starting at the given
    // point and extending to x=+infinity crosses this segment. Outgoing
    // "ambiguous" argument indicates whether the query intersected an
    // endpoint or tangent point of the segment, indicating that another
    // query point is preferred.
    int numCrossingsForXRay(const XRay& xRay, bool& ambiguous) const
    {
        if (m_kind == Cubic)
            // Should consider caching the monotonic cubics.
            return numXRayCrossingsForCubic(xRay, m_points, ambiguous);

        return xRayCrossesLine(xRay, m_points, ambiguous) ? 1 : 0;
    }

    // Performs a local triangulation of the control points in this
    // segment. This operation only makes sense for cubic type segments.
    // texCoords may be null when the klm coordinates have not been
    // computed yet.
    void triangulate(LoopBlinnLocalTriangulator::InsideEdgeComputation computeInsideEdges,
                     const LoopBlinnTextureCoords::Result* texCoords);

    // Returns the number of control point triangles associated with
    // this segment.
    int numberOfTriangles() const
    {
        if (!m_triangulator)
            return 0;
        return m_triangulator->numberOfTriangles();
    }

    // Fetches the given control point triangle for this segment.
    LoopBlinnLocalTriangulator::Triangle* getTriangle(int index)
    {
        ASSERT(m_triangulator);
        return m_triangulator->getTriangle(index);
    }

    // Number of vertices along the inside edge of this segment. This
    // can be called either for line or cubic type segments.
    int numberOfInteriorVertices() const
    {
        if (m_kind == Cubic) {
            if (m_triangulator)
                return m_triangulator->numberOfInteriorVertices();

            return 0;
        }

        return 2;
    }

    // Returns the given interior vertex, 0 <= index < numberOfInteriorVertices().
    FloatPoint getInteriorVertex(int index) const
    {
        ASSERT(index >= 0 && index < numberOfInteriorVertices());
        if (m_kind == Cubic) {
            FloatPoint res;
            if (m_triangulator) {
                LoopBlinnLocalTriangulator::Vertex* vertex = m_triangulator->getInteriorVertex(index);
                if (vertex)
                    res.set(vertex->xyCoordinates().x(), vertex->xyCoordinates().y());
            }
            return res;
        }

        return m_points[index];
    }

    // State to assist with curve subdivision.
    bool markedForSubdivision() const { return m_markedForSubdivision; }
    void setMarkedForSubdivision(bool markedForSubdivision) { m_markedForSubdivision = markedForSubdivision; }

#ifndef NDEBUG
    // Suppport for printing Segments.
    String toString() const
    {
        StringBuilder builder;
        builder.append("[Segment kind=");
        builder.append(kind() == Line ? "line" : "cubic");
        builder.append(" boundingBox=");
        builder.append(valueToString(boundingBox()));
        builder.append(" contour=0x");
        builder.append(String::format("%p", contour()));
        builder.append(" markedForSubdivision=");
        builder.append(markedForSubdivision() ? "true" : "false");
        builder.append("]");
        return builder.toString();
    }
#endif

 private:
    // Computes the bounding box of this Segment.
    void computeBoundingBox()
    {
        switch (m_kind) {
        case Cubic:
            m_boundingBox.fitToPoints(m_points[0], m_points[1], m_points[2], m_points[3]);
            break;

        case Line:
            m_boundingBox.fitToPoints(m_points[0], m_points[1]);
            break;
        }
    }

    PODArena* m_arena;
    Kind m_kind;
    FloatPoint m_points[4];
    Segment* m_prev;
    Segment* m_next;
    Contour* m_contour;
    FloatRect m_boundingBox;
    LoopBlinnLocalTriangulator* m_triangulator;
    bool m_markedForSubdivision;
};

//----------------------------------------------------------------------
// Contour
//

// Describes a closed contour of the path.
class Contour {
    WTF_MAKE_NONCOPYABLE(Contour);
public:
    Contour()
    {
        m_first = &m_sentinel;
        m_first->setNext(m_first);
        m_first->setPrev(m_first);
        m_isOrientedCounterClockwise = true;
        m_boundingBoxDirty = false;
        m_fillSide = LoopBlinnConstants::RightSide;
    }

    void add(Segment* segment)
    {
        if (m_first == &m_sentinel) {
            // First element is the sentinel. Replace it with the incoming
            // segment.
            segment->setNext(m_first);
            segment->setPrev(m_first);
            m_first->setNext(segment);
            m_first->setPrev(segment);
            m_first = segment;
        } else {
            // m_first->prev() is the sentinel.
            ASSERT(m_first->prev() == &m_sentinel);
            Segment* last = m_sentinel.prev();
            last->setNext(segment);
            segment->setPrev(last);
            segment->setNext(&m_sentinel);
            m_sentinel.setPrev(segment);
        }
        m_boundingBoxDirty = true;
    }

    // Subdivides the given segment at the given parametric value.
    // Returns a pointer to the first of the two portions of the
    // subdivided segment.
    Segment* subdivide(Segment* segment, float param)
    {
        Segment* left = segment->subdivide(param);
        if (m_first == segment)
            m_first = left;
        return left;
    }

    // Subdivides the given segment at the halfway point. Returns a
    // pointer to the first of the two portions of the subdivided
    // segment.
    Segment* subdivide(Segment* segment)
    {
        Segment* left = segment->subdivide();
        if (m_first == segment)
            m_first = left;
        return left;
    }

    // Returns the first segment in the contour for iteration.
    Segment* begin() const { return m_first; }

    // Returns the last segment in the contour for iteration. Callers
    // should not iterate over this segment. In other words:
    //  for (Segment* cur = contour->begin();
    //       cur != contour->end();
    //       cur = cur->next()) {
    //    // .. process cur ...
    //  }
    Segment* end()
    {
        ASSERT(m_first->prev() == &m_sentinel);
        return &m_sentinel;
    }

    bool isOrientedCounterClockwise() const { return m_isOrientedCounterClockwise; }
    void setIsOrientedCounterClockwise(bool isOrientedCounterClockwise) { m_isOrientedCounterClockwise = isOrientedCounterClockwise; }

    const FloatRect& boundingBox()
    {
        if (m_boundingBoxDirty) {
            bool first = true;
            for (Segment* cur = begin(); cur != end(); cur = cur->next()) {
                if (first)
                    m_boundingBox = cur->boundingBox();
                else
                    m_boundingBox.unite(cur->boundingBox());
                first = false;
            }

            m_boundingBoxDirty = false;
        }
        return m_boundingBox;
    }

    // Returns which side of this contour is filled.
    LoopBlinnConstants::FillSide fillSide() const
    {
        return m_fillSide;
    }

    void setFillSide(LoopBlinnConstants::FillSide fillSide)
    {
        m_fillSide = fillSide;
    }

private:
    // The start of the segment chain. The segments are kept in a
    // circular doubly linked list for rapid access to the beginning and
    // end.
    Segment* m_first;

    // The sentinel element at the end of the chain, needed for
    // reasonable iteration semantics.
    Segment m_sentinel;

    bool m_isOrientedCounterClockwise;

    FloatRect m_boundingBox;
    bool m_boundingBoxDirty;

    // Which side of this contour should be filled.
    LoopBlinnConstants::FillSide m_fillSide;
};

//----------------------------------------------------------------------
// Segment
//

// Definition of Segment::triangulate(), which must come after
// declaration of Contour.
void Segment::triangulate(LoopBlinnLocalTriangulator::InsideEdgeComputation computeInsideEdges,
                          const LoopBlinnTextureCoords::Result* texCoords)
{
    ASSERT(m_kind == Cubic);
    if (!m_triangulator)
        m_triangulator = m_arena->allocateObject<LoopBlinnLocalTriangulator>();
    m_triangulator->reset();
    for (int i = 0; i < 4; i++) {
        LoopBlinnLocalTriangulator::Vertex* vertex = m_triangulator->getVertex(i);
        if (texCoords) {
            vertex->set(getPoint(i).x(),
                        getPoint(i).y(),
                        texCoords->klmCoordinates[i].x(),
                        texCoords->klmCoordinates[i].y(),
                        texCoords->klmCoordinates[i].z());
        } else {
            vertex->set(getPoint(i).x(),
                        getPoint(i).y(),
                        // No texture coordinates yet
                        0, 0, 0);
        }
    }
    m_triangulator->triangulate(computeInsideEdges, contour()->fillSide());
}

} // namespace LoopBlinnPathProcessorImplementation

//----------------------------------------------------------------------
// LoopBlinnPathProcessor
//

LoopBlinnPathProcessor::LoopBlinnPathProcessor()
    : m_arena(PODArena::create())
#ifndef NDEBUG
    , m_verboseLogging(false)
#endif
{
}

LoopBlinnPathProcessor::LoopBlinnPathProcessor(PassRefPtr<PODArena> arena)
    : m_arena(arena)
#ifndef NDEBUG
    , m_verboseLogging(false)
#endif
{
}

LoopBlinnPathProcessor::~LoopBlinnPathProcessor()
{
}

void LoopBlinnPathProcessor::process(const Path& path, LoopBlinnPathCache& cache)
{
    buildContours(path);

    // Run plane-sweep algorithm to determine overlaps of control point
    // curves and subdivide curves appropriately.
    subdivideCurves();

    // Determine orientations of countours. Based on orientation and the
    // number of curve crossings at a random point on the contour,
    // determine whether to fill the left or right side of the contour.
    determineSidesToFill();

    // Classify curves, compute texture coordinates and subdivide as
    // necessary to eliminate rendering artifacts. Do the final
    // triangulation of the curve segments, determining the path along
    // the interior of the shape.
    for (Vector<Contour*>::iterator iter = m_contours.begin(); iter != m_contours.end(); ++iter) {
        Contour* cur = *iter;
        for (Segment* seg = cur->begin(); seg != cur->end(); seg = seg->next()) {
            if (seg->kind() == Segment::Cubic) {
                LoopBlinnClassifier::Result classification = LoopBlinnClassifier::classify(seg->getPoint(0),
                                                                                           seg->getPoint(1),
                                                                                           seg->getPoint(2),
                                                                                           seg->getPoint(3));
#ifndef NDEBUG
                if (m_verboseLogging)
                    LOG_ERROR("Classification: %d", (int) classification.curveType);
#endif
                LoopBlinnTextureCoords::Result texCoords =
                    LoopBlinnTextureCoords::compute(classification, cur->fillSide());
                if (texCoords.hasRenderingArtifact) {
                    // FIXME: there is a problem where the algorithm
                    // sometimes fails to converge when splitting at the
                    // subdivision parameter value. For the time being,
                    // split halfway.
                    cur->subdivide(seg);
                    // Next iteration will handle the newly subdivided curves
                } else {
                    if (!texCoords.isLineOrPoint) {
                        seg->triangulate(LoopBlinnLocalTriangulator::ComputeInsideEdges, &texCoords);
                        for (int i = 0; i < seg->numberOfTriangles(); i++) {
                            LoopBlinnLocalTriangulator::Triangle* triangle = seg->getTriangle(i);
                            for (int j = 0; j < 3; j++) {
                                LoopBlinnLocalTriangulator::Vertex* vert = triangle->getVertex(j);
                                cache.addVertex(vert->xyCoordinates().x(),
                                                vert->xyCoordinates().y(),
                                                vert->klmCoordinates().x(),
                                                vert->klmCoordinates().y(),
                                                vert->klmCoordinates().z());
                            }
                        }
#ifdef LOOP_BLINN_PATH_CACHE_DEBUG_INTERIOR_EDGES
                        // Show the end user the interior edges as well
                        for (int i = 1; i < seg->numberOfInteriorVertices(); i++) {
                            FloatPoint vert = seg->getInteriorVertex(i);
                            // Duplicate previous vertex to be able to draw GL_LINES
                            FloatPoint prev = seg->getInteriorVertex(i - 1);
                            cache.addInteriorEdgeVertex(prev.x(), prev.y());
                            cache.addInteriorEdgeVertex(vert.x(), vert.y());
                        }
#endif // LOOP_BLINN_PATH_CACHE_DEBUG_INTERIOR_EDGES
                    }
                }
            }
        }
    }

    // Run the interior paths through a tessellation algorithm
    // supporting multiple contours.
    tessellateInterior(cache);
}

void LoopBlinnPathProcessor::buildContours(const Path& path)
{
    // Clear out the contours
    m_contours.clear();
#if USE(SKIA)
    SkPath::Iter iter(*path.platformPath(), false);
    SkPoint points[4];
    SkPath::Verb verb;
    Contour* contour = 0;
    SkPoint curPoint = { 0 };
    SkPoint moveToPoint = { 0 };
    do {
        verb = iter.next(points);
        if (verb != SkPath::kMove_Verb) {
            if (!contour) {
                contour = m_arena->allocateObject<Contour>();
                m_contours.append(contour);
            }
        }
        switch (verb) {
        case SkPath::kMove_Verb: {
            contour = m_arena->allocateObject<Contour>();
            m_contours.append(contour);
            curPoint = points[0];
            moveToPoint = points[0];
#ifndef NDEBUG
            if (m_verboseLogging)
                LOG_ERROR("MoveTo (%f, %f)", points[0].fX, points[0].fY);
#endif
            break;
        }
        case SkPath::kLine_Verb: {
            Segment* segment = m_arena->allocateObject<Segment>();
            if (iter.isCloseLine()) {
                segment->setup(m_arena.get(), contour, curPoint, points[1]);
#ifndef NDEBUG
                if (m_verboseLogging)
                    LOG_ERROR("CloseLineTo (%f, %f), (%f, %f)", curPoint.fX, curPoint.fY, points[1].fX, points[1].fY);
#endif
                contour->add(segment);
                contour = 0;
            } else {
                segment->setup(m_arena.get(), contour, points[0], points[1]);
#ifndef NDEBUG
                if (m_verboseLogging)
                    LOG_ERROR("LineTo (%f, %f), (%f, %f)", points[0].fX, points[0].fY, points[1].fX, points[1].fY);
#endif
                contour->add(segment);
                curPoint = points[1];
            }
            break;
        }
        case SkPath::kQuad_Verb: {
            // Need to degree elevate the quadratic into a cubic
            SkPoint cubic[4];
            SkConvertQuadToCubic(points, cubic);
            Segment* segment = m_arena->allocateObject<Segment>();
            segment->setup(m_arena.get(), contour,
                           cubic[0], cubic[1], cubic[2], cubic[3]);
#ifndef NDEBUG
            if (m_verboseLogging)
                LOG_ERROR("Quad->CubicTo (%f, %f), (%f, %f), (%f, %f), (%f, %f)", cubic[0].fX, cubic[0].fY, cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY, cubic[3].fX, cubic[3].fY);
#endif
            contour->add(segment);
            curPoint = cubic[3];
            break;
        }
        case SkPath::kCubic_Verb: {
            Segment* segment = m_arena->allocateObject<Segment>();
            segment->setup(m_arena.get(), contour, points[0], points[1], points[2], points[3]);
#ifndef NDEBUG
            if (m_verboseLogging)
                LOG_ERROR("CubicTo (%f, %f), (%f, %f), (%f, %f), (%f, %f)", points[0].fX, points[0].fY, points[1].fX, points[1].fY, points[2].fX, points[2].fY, points[3].fX, points[3].fY);
#endif
            contour->add(segment);
            curPoint = points[3];
            break;
        }
        case SkPath::kClose_Verb: {
            Segment* segment = m_arena->allocateObject<Segment>();
            segment->setup(m_arena.get(), contour, curPoint, moveToPoint);
#ifndef NDEBUG
            if (m_verboseLogging)
                LOG_ERROR("Close (%f, %f) -> (%f, %f)", curPoint.fX, curPoint.fY, moveToPoint.fX, moveToPoint.fY);
#endif
            contour->add(segment);
            contour = 0;
        }
        case SkPath::kDone_Verb:
            break;
        }
    } while (verb != SkPath::kDone_Verb);
#else // !USE(SKIA)
    // Must port to your platform.
    ASSERT_NOT_REACHED();
#endif
}

#ifndef NDEBUG
Vector<Segment*> LoopBlinnPathProcessor::allSegmentsOverlappingY(Contour* queryContour, float x, float y)
{
    Vector<Segment*> res;
    for (Vector<Contour*>::iterator iter = m_contours.begin(); iter != m_contours.end(); ++iter) {
        Contour* cur = *iter;
        for (Segment* seg = cur->begin(); seg != cur->end(); seg = seg->next()) {
            const FloatRect& boundingBox = seg->boundingBox();
            if (boundingBox.y() <= y && y <= boundingBox.maxY())
                res.append(seg);
        }
    }
    return res;
}
#endif

// Uncomment this to debug the orientation computation.
// #define GPU_PATH_PROCESSOR_DEBUG_ORIENTATION

void LoopBlinnPathProcessor::determineSidesToFill()
{
    // Loop and Blinn's algorithm can only easily emulate the even/odd
    // fill rule, and only for non-intersecting curves. We can determine
    // which side of each curve segment to fill based on its
    // clockwise/counterclockwise orientation and how many other
    // contours surround it.

    // To optimize the query of all curve segments intersecting a
    // horizontal line going to x=+infinity, we build up an interval
    // tree whose keys are the y extents of the segments.
    PODIntervalTree<float, Segment*> tree(m_arena);
    typedef PODIntervalTree<float, Segment*>::IntervalType IntervalType;

    for (Vector<Contour*>::iterator iter = m_contours.begin(); iter != m_contours.end(); ++iter) {
        Contour* cur = *iter;
        determineOrientation(cur);
        for (Segment* seg = cur->begin(); seg != cur->end(); seg = seg->next()) {
            const FloatRect& boundingBox = seg->boundingBox();
            tree.add(tree.createInterval(boundingBox.y(), boundingBox.maxY(), seg));
        }
    }

    // Now iterate through the contours and pick a random segment (in
    // this case we use the first) and a random point on that segment.
    // Find all segments from other contours which intersect this one
    // and count the number of crossings a horizontal line to
    // x=+infinity makes with those contours. This combined with the
    // orientation of the curve tells us which side to fill -- again,
    // assuming an even/odd fill rule, which is all we can easily
    // handle.
    for (Vector<Contour*>::iterator iter = m_contours.begin(); iter != m_contours.end(); ++iter) {
        Contour* cur = *iter;

        bool ambiguous = true;
        int numCrossings = 0;

        // For each contour, attempt to find a point on the contour which,
        // when we cast an XRay, does not intersect the other contours at
        // an ambiguous point (the junction between two curves or at a
        // tangent point). Ambiguous points make the determination of
        // whether this contour is contained within another fragile. Note
        // that this loop is only an approximation to the selection of a
        // good casting point. We could as well evaluate a segment to
        // determine a point upon it.
        for (Segment* seg = cur->begin();
             ambiguous && seg != cur->end();
             seg = seg->next()) {
            numCrossings = 0;
            // We use a zero-sized vertical interval for the query.
            Vector<IntervalType> overlaps = tree.allOverlaps(tree.createInterval(seg->getPoint(0).y(),
                                                                                 seg->getPoint(0).y(),
                                                                                 0));
#if defined(GPU_PATH_PROCESSOR_DEBUG_ORIENTATION) && !defined(NDEBUG)
            Vector<Segment*> slowOverlaps = allSegmentsOverlappingY(cur, seg->getPoint(0).x(), seg->getPoint(0).y());
            if (overlaps.size() != slowOverlaps.size()) {
                LOG_ERROR("For query point (%f, %f) on contour 0x%p:", seg->getPoint(0).x(), seg->getPoint(0).y(), cur);
                LOG_ERROR(" overlaps:");
                for (size_t i = 0; i < overlaps.size(); i++)
                    LOG_ERROR("  %d: %s", i+1, overlaps[i].data()->toString().ascii().data());
                LOG_ERROR(" slowOverlaps:");
                for (size_t i = 0; i < slowOverlaps.size(); i++)
                    LOG_ERROR("  %d: %s", (i+1) slowOverlaps[i]->toString());
                LOG_ERROR("Interval tree:");
                tree.dump();
            }
            ASSERT(overlaps.size() == slowOverlaps.size());
#endif // defined(GPU_PATH_PROCESSOR_DEBUG_ORIENTATION) && !defined(NDEBUG)
            for (Vector<IntervalType>::iterator iter = overlaps.begin(); iter != overlaps.end(); ++iter) {
                const IntervalType& interval = *iter;
                Segment* querySegment = interval.data();
                // Ignore segments coming from the same contour.
                if (querySegment->contour() != cur) {
                    // Only perform queries that can affect the computation.
                    const FloatRect& boundingBox = querySegment->contour()->boundingBox();
                    if (seg->getPoint(0).x() >= boundingBox.x()
                        && seg->getPoint(0).x() <= boundingBox.maxX()) {
                        numCrossings += querySegment->numCrossingsForXRay(seg->getPoint(0),
                                                                          ambiguous);
                        if (ambiguous) {
#ifndef NDEBUG
                            if (m_verboseLogging) {
                                LOG_ERROR("Ambiguous intersection query at point (%f, %f)", seg->getPoint(0).x(), seg->getPoint(0).y());
                                LOG_ERROR("Query segment: %s", querySegment->toString().ascii().data());
                            }
#endif
                            break; // Abort iteration over overlaps.
                        }
                    }
                }
            }
        } // for (Segment* seg = cur->begin(); ...

        cur->setFillSide((cur->isOrientedCounterClockwise() ^ (numCrossings & 1)) ? LoopBlinnConstants::LeftSide : LoopBlinnConstants::RightSide);
    }
}

void LoopBlinnPathProcessor::determineOrientation(Contour* contour)
{
    // Determine signed area of the polygon represented by the points
    // along the segments. Consider this an approximation to the true
    // orientation of the polygon; it probably won't handle
    // self-intersecting curves correctly.
    //
    // There is also a pretty basic assumption here that the contour is
    // closed.
    float signedArea = 0;
    for (Segment* seg = contour->begin();
         seg != contour->end();
         seg = seg->next()) {
        int limit = (seg->kind() == Segment::Cubic) ? 4 : 2;
        for (int i = 1; i < limit; i++) {
            const FloatPoint& prevPoint = seg->getPoint(i - 1);
            const FloatPoint& point = seg->getPoint(i);
            float curArea = prevPoint.x() * point.y() - prevPoint.y() * point.x();
#ifndef NDEBUG
            if (m_verboseLogging)
                LOG_ERROR("Adding to signed area (%f, %f) -> (%f, %f) = %f", prevPoint.x(), prevPoint.y(), point.x(), point.y(), curArea);
#endif
            signedArea += curArea;
        }
    }

    if (signedArea > 0)
        contour->setIsOrientedCounterClockwise(true);
    else
        contour->setIsOrientedCounterClockwise(false);
}

namespace {

//----------------------------------------------------------------------
// Classes and typedefs needed for curve subdivision. These can't be scoped
// within the subdivideCurves() method itself, because templates then fail
// to instantiate.

// The user data which is placed in the PODIntervalTree.
struct SweepData {
    SweepData()
        : triangle(0)
        , segment(0)
    {
    }

    // The triangle this interval is associated with
    LoopBlinnLocalTriangulator::Triangle* triangle;
    // The segment the triangle is associated with
    Segment* segment;
};

typedef PODIntervalTree<float, SweepData*> SweepTree;
typedef SweepTree::IntervalType SweepInterval;

// The entry / exit events which occur at the minimum and maximum x
// coordinates of the control point triangles' bounding boxes.
//
// Note that this class requires its copy constructor and assignment
// operator since it needs to be stored in a Vector.
class SweepEvent {
public:
    SweepEvent()
        : m_x(0)
        , m_entry(false)
        , m_interval(0, 0, 0)
    {
    }

    // Initializes the SweepEvent.
    void setup(float x, bool entry, SweepInterval interval)
    {
        m_x = x;
        m_entry = entry;
        m_interval = interval;
    }

    float x() const { return m_x; }
    bool entry() const { return m_entry; }
    const SweepInterval& interval() const { return m_interval; }

    bool operator<(const SweepEvent& other) const
    {
        return m_x < other.m_x;
    }

private:
    float m_x;
    bool m_entry;
    SweepInterval m_interval;
};

bool trianglesOverlap(LoopBlinnLocalTriangulator::Triangle* t0,
                      LoopBlinnLocalTriangulator::Triangle* t1)
{
    return trianglesOverlap(t0->getVertex(0)->xyCoordinates(),
                            t0->getVertex(1)->xyCoordinates(),
                            t0->getVertex(2)->xyCoordinates(),
                            t1->getVertex(0)->xyCoordinates(),
                            t1->getVertex(1)->xyCoordinates(),
                            t1->getVertex(2)->xyCoordinates());
}

} // anonymous namespace

void LoopBlinnPathProcessor::subdivideCurves()
{
    // We need to determine all overlaps of all control point triangles
    // (from different segments, not the same segment) and, if any
    // exist, subdivide the associated curves.
    //
    // The plane-sweep algorithm determines all overlaps of a set of
    // rectangles in the 2D plane. Our problem maps very well to this
    // algorithm and significantly reduces the complexity compared to a
    // naive implementation.
    //
    // Each bounding box of a control point triangle is converted into
    // an "entry" event at its smallest X coordinate and an "exit" event
    // at its largest X coordinate. Each event has an associated
    // one-dimensional interval representing the Y span of the bounding
    // box. We sort these events by increasing X coordinate. We then
    // iterate through them. For each entry event we add the interval to
    // a side interval tree, and query this tree for overlapping
    // intervals. Any overlapping interval corresponds to an overlapping
    // bounding box. For each exit event we remove the associated
    // interval from the interval tree.

    Vector<Segment*> curSegments;
    Vector<Segment*> nextSegments;

    // Start things off by considering all of the segments
    for (Vector<Contour*>::iterator iter = m_contours.begin(); iter != m_contours.end(); ++iter) {
        Contour* cur = *iter;
        for (Segment* seg = cur->begin(); seg != cur->end(); seg = seg->next()) {
            if (seg->kind() == Segment::Cubic) {
                seg->triangulate(LoopBlinnLocalTriangulator::DontComputeInsideEdges, 0);
                curSegments.append(seg);
            }
        }
    }

    // Subdivide curves at most this many times
    const int MaxIterations = 5;
    Vector<SweepInterval> overlaps;

    for (int currentIteration = 0; currentIteration < MaxIterations; ++currentIteration) {
        if (!curSegments.size())
            // Done
            break;

        Vector<SweepEvent> events;
        SweepTree tree(m_arena);
        for (Vector<Segment*>::iterator iter = curSegments.begin(); iter != curSegments.end(); ++iter) {
            Segment* seg = *iter;
            ASSERT(seg->kind() == Segment::Cubic);
            for (int i = 0; i < seg->numberOfTriangles(); i++) {
                LoopBlinnLocalTriangulator::Triangle* triangle = seg->getTriangle(i);
                FloatRect boundingBox;
                boundingBox.fitToPoints(triangle->getVertex(0)->xyCoordinates(),
                                        triangle->getVertex(1)->xyCoordinates(),
                                        triangle->getVertex(2)->xyCoordinates());
                // Ignore zero-width triangles to avoid issues with
                // coincident entry and exit events for the same triangle
                if (boundingBox.maxX() > boundingBox.x()) {
                    SweepData* data = m_arena->allocateObject<SweepData>();
                    data->triangle = triangle;
                    data->segment = seg;
                    SweepInterval interval = tree.createInterval(boundingBox.y(), boundingBox.maxY(), data);
                    // Add entry and exit events
                    SweepEvent event;
                    event.setup(boundingBox.x(), true, interval);
                    events.append(event);
                    event.setup(boundingBox.maxX(), false, interval);
                    events.append(event);
                }
            }
        }

        // Sort events by increasing X coordinate
        std::sort(events.begin(), events.end());
#ifndef NDEBUG
        for (size_t ii = 1; ii < events.size(); ++ii)
            ASSERT(events[ii - 1].x() <= events[ii].x());
#endif

        // Now iterate through the events
        for (Vector<SweepEvent>::iterator iter = events.begin(); iter != events.end(); ++iter) {
            SweepEvent event = *iter;
            if (event.entry()) {
                // See whether the associated segment has been subdivided yet
                if (!event.interval().data()->segment->markedForSubdivision()) {
                    // Query the tree
                    overlaps.clear();
                    tree.allOverlaps(event.interval(), overlaps);
                    // Now see exactly which triangles overlap this one
                    for (Vector<SweepInterval>::iterator iter = overlaps.begin(); iter != overlaps.end(); ++iter) {
                        SweepInterval overlap = *iter;
                        // Only pay attention to overlaps from a different Segment
                        if (event.interval().data()->segment != overlap.data()->segment) {
                            // See whether the triangles actually overlap
                            if (trianglesOverlap(event.interval().data()->triangle,
                                                 overlap.data()->triangle)) {
                                // Actually subdivide the segments.
                                // Each one might already have been subdivided.
                                Segment* seg = event.interval().data()->segment;
                                conditionallySubdivide(seg, nextSegments);
                                seg = overlap.data()->segment;
                                conditionallySubdivide(seg, nextSegments);
                            }
                        }
                    }
                }
                // Add this interval into the tree
                tree.add(event.interval());
            } else {
                // Remove this interval from the tree
                tree.remove(event.interval());
            }
        }

        curSegments.swap(nextSegments);
        nextSegments.clear();
    }
}

void LoopBlinnPathProcessor::conditionallySubdivide(Segment* seg, Vector<Segment*>& nextSegments)
{
    if (!seg->markedForSubdivision()) {
        seg->setMarkedForSubdivision(true);
        Segment* next = seg->contour()->subdivide(seg);
        // Triangulate the newly subdivided segments.
        next->triangulate(LoopBlinnLocalTriangulator::DontComputeInsideEdges, 0);
        next->next()->triangulate(LoopBlinnLocalTriangulator::DontComputeInsideEdges, 0);
        // Add them for the next iteration.
        nextSegments.append(next);
        nextSegments.append(next->next());
    }
}

#ifndef NDEBUG
void LoopBlinnPathProcessor::subdivideCurvesSlow()
{
    // Alternate, significantly slower algorithm for curve subdivision
    // for use in debugging.
    Vector<Segment*> curSegments;
    Vector<Segment*> nextSegments;

    // Start things off by considering all of the segments
    for (Vector<Contour*>::iterator iter = m_contours.begin(); iter != m_contours.end(); ++iter) {
        Contour* cur = *iter;
        for (Segment* seg = cur->begin(); seg != cur->end(); seg = seg->next()) {
            if (seg->kind() == Segment::Cubic) {
                seg->triangulate(LoopBlinnLocalTriangulator::DontComputeInsideEdges, 0);
                curSegments.append(seg);
            }
        }
    }

    // Subdivide curves at most this many times
    const int MaxIterations = 5;

    for (int currentIteration = 0; currentIteration < MaxIterations; ++currentIteration) {
        if (!curSegments.size())
            // Done
            break;

        for (Vector<Segment*>::iterator iter = curSegments.begin(); iter != curSegments.end(); ++iter) {
            Segment* seg = *iter;
            ASSERT(seg->kind() == Segment::Cubic);
            for (Vector<Segment*>::iterator iter2 = curSegments.begin();
                 iter2 != curSegments.end();
                 iter2++) {
                Segment* seg2 = *iter2;
                ASSERT(seg2->kind() == Segment::Cubic);
                if (seg != seg2) {
                    for (int i = 0; i < seg->numberOfTriangles(); i++) {
                        LoopBlinnLocalTriangulator::Triangle* triangle = seg->getTriangle(i);
                        for (int j = 0; j < seg2->numberOfTriangles(); j++) {
                            LoopBlinnLocalTriangulator::Triangle* triangle2 = seg2->getTriangle(j);
                            if (trianglesOverlap(triangle, triangle2)) {
                                conditionallySubdivide(seg, nextSegments);
                                conditionallySubdivide(seg2, nextSegments);
                            }
                        }
                    }
                }
            }
        }

        curSegments.swap(nextSegments);
        nextSegments.clear();
    }
}
#endif

namespace {

//----------------------------------------------------------------------
// Structures and callbacks for tessellation of the interior region of
// the contours.

// The user data for the GLU tessellator.
struct TessellationState {
    TessellationState(LoopBlinnPathCache& inputCache)
        : cache(inputCache) { }

    LoopBlinnPathCache& cache;
    Vector<void*> allocatedPointers;
};

static void vertexCallback(void* vertexData, void* data)
{
    TessellationState* state = static_cast<TessellationState*>(data);
    GLdouble* location = static_cast<GLdouble*>(vertexData);
    state->cache.addInteriorVertex(static_cast<float>(location[0]),
                                   static_cast<float>(location[1]));
}

static void combineCallback(GLdouble coords[3], void* vertexData[4],
                            GLfloat weight[4], void** outData,
                            void* polygonData)
{
    TessellationState* state = static_cast<TessellationState*>(polygonData);
    GLdouble* outVertex = static_cast<GLdouble*>(fastMalloc(3 * sizeof(GLdouble)));
    state->allocatedPointers.append(outVertex);
    outVertex[0] = coords[0];
    outVertex[1] = coords[1];
    outVertex[2] = coords[2];
    *outData = outVertex;
}

static void edgeFlagCallback(GLboolean)
{
    // No-op just to prevent triangle strips and fans from being passed to us.
    // See the OpenGL Programming Guide, Chapter 11, "Tessellators and Quadrics".
}

} // anonymous namespace

void LoopBlinnPathProcessor::tessellateInterior(LoopBlinnPathCache& cache)
{
    // Because the GLU tessellator requires its input in
    // double-precision format, we need to make a separate copy of the
    // data.
    Vector<GLdouble> vertexData;
    Vector<size_t> contourEndings;
    // For avoiding adding coincident vertices.
    float curX = 0, curY = 0;
    for (Vector<Contour*>::iterator iter = m_contours.begin(); iter != m_contours.end(); ++iter) {
        Contour* cur = *iter;
        bool first = true;
        for (Segment* seg = cur->begin(); seg != cur->end(); seg = seg->next()) {
            int numberOfInteriorVertices = seg->numberOfInteriorVertices();
            for (int i = 0; i < numberOfInteriorVertices - 1; i++) {
                FloatPoint point = seg->getInteriorVertex(i);
                if (first) {
                    first = false;
                    vertexData.append(point.x());
                    vertexData.append(point.y());
                    vertexData.append(0);
                    curX = point.x();
                    curY = point.y();
                } else if (point.x() != curX || point.y() != curY)  {
                    vertexData.append(point.x());
                    vertexData.append(point.y());
                    vertexData.append(0);
                    curX = point.x();
                    curY = point.y();
                }
            }
        }
        contourEndings.append(vertexData.size());
    }
    // Now that we have all of the vertex data in a stable location in
    // memory, call the tessellator.
    GLUtesselator* tess = internal_gluNewTess();
    TessellationState state(cache);
    internal_gluTessCallback(tess, GLU_TESS_VERTEX_DATA,
                             reinterpret_cast<GLvoid (*)()>(vertexCallback));
    internal_gluTessCallback(tess, GLU_TESS_COMBINE_DATA,
                             reinterpret_cast<GLvoid (*)()>(combineCallback));
    internal_gluTessCallback(tess, GLU_TESS_EDGE_FLAG,
                             reinterpret_cast<GLvoid (*)()>(edgeFlagCallback));
    internal_gluTessBeginPolygon(tess, &state);
    internal_gluTessBeginContour(tess);
    GLdouble* base = vertexData.data();
    int contourIndex = 0;
    for (size_t i = 0; i < vertexData.size(); i += 3) {
        if (i == contourEndings[contourIndex]) {
            internal_gluTessEndContour(tess);
            internal_gluTessBeginContour(tess);
            ++contourIndex;
        }
        internal_gluTessVertex(tess, &base[i], &base[i]);
    }
    internal_gluTessEndContour(tess);
    internal_gluTessEndPolygon(tess);
    for (size_t i = 0; i < state.allocatedPointers.size(); i++)
        fastFree(state.allocatedPointers[i]);
    internal_gluDeleteTess(tess);
}

} // namespace WebCore