summaryrefslogtreecommitdiffstats
path: root/Source/WebCore/platform/graphics/gpu/PODRedBlackTree.h
blob: 6d5954c6e283ab87093703f5943540361eac0e24 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
/*
 * Copyright (C) 2010 Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1.  Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

// A red-black tree, which is a form of a balanced binary tree. It
// supports efficient insertion, deletion and queries of comparable
// elements. The same element may be inserted multiple times. The
// algorithmic complexity of common operations is:
//
//   Insertion: O(lg(n))
//   Deletion:  O(lg(n))
//   Querying:  O(lg(n))
//
// The data type T that is stored in this red-black tree must be only
// Plain Old Data (POD), or bottom out into POD. It must _not_ rely on
// having its destructor called. This implementation internally
// allocates storage in large chunks and does not call the destructor
// on each object.
//
// Type T must supply a default constructor, a copy constructor, and
// the "<" and "==" operators.
//
// In debug mode, printing of the data contained in the tree is
// enabled. This requires the template specialization to be available:
//
//   template<> struct WebCore::ValueToString<T> {
//       static String string(const T& t);
//   };
//
// Note that when complex types are stored in this red/black tree, it
// is possible that single invocations of the "<" and "==" operators
// will be insufficient to describe the ordering of elements in the
// tree during queries. As a concrete example, consider the case where
// intervals are stored in the tree sorted by low endpoint. The "<"
// operator on the Interval class only compares the low endpoint, but
// the "==" operator takes into account the high endpoint as well.
// This makes the necessary logic for querying and deletion somewhat
// more complex. In order to properly handle such situations, the
// property "needsFullOrderingComparisons" must be set to true on
// the tree.
//
// This red-black tree is designed to be _augmented_; subclasses can
// add additional and summary information to each node to efficiently
// store and index more complex data structures. A concrete example is
// the IntervalTree, which extends each node with a summary statistic
// to efficiently store one-dimensional intervals.
//
// The design of this red-black tree comes from Cormen, Leiserson,
// and Rivest, _Introduction to Algorithms_, MIT Press, 1990.

#ifndef PODRedBlackTree_h
#define PODRedBlackTree_h

#include "PODArena.h"
#include <wtf/Assertions.h>
#include <wtf/Noncopyable.h>
#include <wtf/RefPtr.h>
#ifndef NDEBUG
#include "Logging.h"
#include <wtf/text/CString.h>
#include <wtf/text/StringBuilder.h>
#include <wtf/text/WTFString.h>
#endif

namespace WebCore {

#ifndef NDEBUG
template<class T>
struct ValueToString;
#endif

template<class T>
class PODRedBlackTree {
public:
    // Visitor interface for walking all of the tree's elements.
    class Visitor {
    public:
        virtual void visit(const T& data) = 0;
    protected:
        virtual ~Visitor() { }
    };

    // Constructs a new red-black tree, allocating temporary objects
    // from a newly constructed PODArena.
    PODRedBlackTree()
        : m_arena(PODArena::create())
        , m_root(0)
        , m_needsFullOrderingComparisons(false)
#ifndef NDEBUG
        , m_verboseDebugging(false)
#endif
    {
    }

    // Constructs a new red-black tree, allocating temporary objects
    // from the given PODArena.
    explicit PODRedBlackTree(PassRefPtr<PODArena> arena)
        : m_arena(arena)
        , m_root(0)
        , m_needsFullOrderingComparisons(false)
#ifndef NDEBUG
        , m_verboseDebugging(false)
#endif
    {
    }

    virtual ~PODRedBlackTree() { }

    void add(const T& data)
    {
        Node* node = m_arena->allocateObject<Node, T>(data);
        insertNode(node);
    }

    // Returns true if the datum was found in the tree.
    bool remove(const T& data)
    {
        Node* node = treeSearch(data);
        if (node) {
            deleteNode(node);
            return true;
        }
        return false;
    }

    bool contains(const T& data) const { return treeSearch(data); }

    void visitInorder(Visitor* visitor) const
    {
        if (!m_root)
            return;
        visitInorderImpl(m_root, visitor);
    }

    int size() const
    {
        Counter counter;
        visitInorder(&counter);
        return counter.count();
    }

    // See the class documentation for an explanation of this property.
    void setNeedsFullOrderingComparisons(bool needsFullOrderingComparisons)
    {
        m_needsFullOrderingComparisons = needsFullOrderingComparisons;
    }

    virtual bool checkInvariants() const
    {
        int blackCount;
        return checkInvariantsFromNode(m_root, &blackCount);
    }

#ifndef NDEBUG
    // Dumps the tree's contents to the logging info stream for
    // debugging purposes.
    void dump() const
    {
        dumpFromNode(m_root, 0);
    }

    // Turns on or off verbose debugging of the tree, causing many
    // messages to be logged during insertion and other operations in
    // debug mode.
    void setVerboseDebugging(bool verboseDebugging)
    {
        m_verboseDebugging = verboseDebugging;
    }
#endif

protected:
    enum Color {
        Red = 1,
        Black
    };

    // The base Node class which is stored in the tree. Nodes are only
    // an internal concept; users of the tree deal only with the data
    // they store in it.
    class Node : public Noncopyable {
    public:
        // Constructor. Newly-created nodes are colored red.
        explicit Node(const T& data)
            : m_left(0)
            , m_right(0)
            , m_parent(0)
            , m_color(Red)
            , m_data(data)
        {
        }

        virtual ~Node() { }

        Color color() const { return m_color; }
        void setColor(Color color) { m_color = color; }

        // Fetches the user data.
        T& data() { return m_data; }

        // Copies all user-level fields from the source node, but not
        // internal fields. For example, the base implementation of this
        // method copies the "m_data" field, but not the child or parent
        // fields. Any augmentation information also does not need to be
        // copied, as it will be recomputed. Subclasses must call the
        // superclass implementation.
        virtual void copyFrom(Node* src) { m_data = src->data(); }

        Node* left() const { return m_left; }
        void setLeft(Node* node) { m_left = node; }

        Node* right() const { return m_right; }
        void setRight(Node* node) { m_right = node; }

        Node* parent() const { return m_parent; }
        void setParent(Node* node) { m_parent = node; }

    private:
        Node* m_left;
        Node* m_right;
        Node* m_parent;
        Color m_color;
        T m_data;
    };

    // Returns the root of the tree, which is needed by some subclasses.
    Node* root() const { return m_root; }

private:
    // This virtual method is the hook that subclasses should use when
    // augmenting the red-black tree with additional per-node summary
    // information. For example, in the case of an interval tree, this
    // is used to compute the maximum endpoint of the subtree below the
    // given node based on the values in the left and right children. It
    // is guaranteed that this will be called in the correct order to
    // properly update such summary information based only on the values
    // in the left and right children. This method should return true if
    // the node's summary information changed.
    virtual bool updateNode(Node* node) { return false; }

    //----------------------------------------------------------------------
    // Generic binary search tree operations
    //

    // Searches the tree for the given datum.
    Node* treeSearch(const T& data) const
    {
        if (m_needsFullOrderingComparisons)
            return treeSearchFullComparisons(m_root, data);

        return treeSearchNormal(m_root, data);
    }

    // Searches the tree using the normal comparison operations,
    // suitable for simple data types such as numbers.
    Node* treeSearchNormal(Node* current, const T& data) const
    {
        while (current) {
            if (current->data() == data)
                return current;
            if (data < current->data())
                current = current->left();
            else
                current = current->right();
        }
        return 0;
    }

    // Searches the tree using multiple comparison operations, required
    // for data types with more complex behavior such as intervals.
    Node* treeSearchFullComparisons(Node* current, const T& data) const
    {
        if (!current)
            return 0;
        if (data < current->data())
            return treeSearchFullComparisons(current->left(), data);
        if (current->data() < data)
            return treeSearchFullComparisons(current->right(), data);
        if (data == current->data())
            return current;

        // We may need to traverse both the left and right subtrees.
        Node* result = treeSearchFullComparisons(current->left(), data);
        if (!result)
            result = treeSearchFullComparisons(current->right(), data);
        return result;
    }

    void treeInsert(Node* z)
    {
        Node* y = 0;
        Node* x = m_root;
        while (x) {
            y = x;
            if (z->data() < x->data())
                x = x->left();
            else
                x = x->right();
        }
        z->setParent(y);
        if (!y)
            m_root = z;
        else {
            if (z->data() < y->data())
                y->setLeft(z);
            else
                y->setRight(z);
        }
    }

    // Finds the node following the given one in sequential ordering of
    // their data, or null if none exists.
    Node* treeSuccessor(Node* x)
    {
        if (x->right())
            return treeMinimum(x->right());
        Node* y = x->parent();
        while (y && x == y->right()) {
            x = y;
            y = y->parent();
        }
        return y;
    }

    // Finds the minimum element in the sub-tree rooted at the given
    // node.
    Node* treeMinimum(Node* x)
    {
        while (x->left())
            x = x->left();
        return x;
    }

    // Helper for maintaining the augmented red-black tree.
    void propagateUpdates(Node* start)
    {
        bool shouldContinue = true;
        while (start && shouldContinue) {
            shouldContinue = updateNode(start);
            start = start->parent();
        }
    }

    //----------------------------------------------------------------------
    // Red-Black tree operations
    //

    // Left-rotates the subtree rooted at x.
    // Returns the new root of the subtree (x's right child).
    Node* leftRotate(Node* x)
    {
        // Set y.
        Node* y = x->right();

        // Turn y's left subtree into x's right subtree.
        x->setRight(y->left());
        if (y->left())
            y->left()->setParent(x);

        // Link x's parent to y.
        y->setParent(x->parent());
        if (!x->parent())
            m_root = y;
        else {
            if (x == x->parent()->left())
                x->parent()->setLeft(y);
            else
                x->parent()->setRight(y);
        }

        // Put x on y's left.
        y->setLeft(x);
        x->setParent(y);

        // Update nodes lowest to highest.
        updateNode(x);
        updateNode(y);
        return y;
    }

    // Right-rotates the subtree rooted at y.
    // Returns the new root of the subtree (y's left child).
    Node* rightRotate(Node* y)
    {
        // Set x.
        Node* x = y->left();

        // Turn x's right subtree into y's left subtree.
        y->setLeft(x->right());
        if (x->right())
            x->right()->setParent(y);

        // Link y's parent to x.
        x->setParent(y->parent());
        if (!y->parent())
            m_root = x;
        else {
            if (y == y->parent()->left())
                y->parent()->setLeft(x);
            else
                y->parent()->setRight(x);
        }

        // Put y on x's right.
        x->setRight(y);
        y->setParent(x);

        // Update nodes lowest to highest.
        updateNode(y);
        updateNode(x);
        return x;
    }

    // Inserts the given node into the tree.
    void insertNode(Node* x)
    {
        treeInsert(x);
        x->setColor(Red);
        updateNode(x);

        logIfVerbose("  PODRedBlackTree::InsertNode");

        // The node from which to start propagating updates upwards.
        Node* updateStart = x->parent();

        while (x != m_root && x->parent()->color() == Red) {
            if (x->parent() == x->parent()->parent()->left()) {
                Node* y = x->parent()->parent()->right();
                if (y && y->color() == Red) {
                    // Case 1
                    logIfVerbose("  Case 1/1");
                    x->parent()->setColor(Black);
                    y->setColor(Black);
                    x->parent()->parent()->setColor(Red);
                    updateNode(x->parent());
                    x = x->parent()->parent();
                    updateNode(x);
                    updateStart = x->parent();
                } else {
                    if (x == x->parent()->right()) {
                        logIfVerbose("  Case 1/2");
                        // Case 2
                        x = x->parent();
                        leftRotate(x);
                    }
                    // Case 3
                    logIfVerbose("  Case 1/3");
                    x->parent()->setColor(Black);
                    x->parent()->parent()->setColor(Red);
                    Node* newSubTreeRoot = rightRotate(x->parent()->parent());
                    updateStart = newSubTreeRoot->parent();
                }
            } else {
                // Same as "then" clause with "right" and "left" exchanged.
                Node* y = x->parent()->parent()->left();
                if (y && y->color() == Red) {
                    // Case 1
                    logIfVerbose("  Case 2/1");
                    x->parent()->setColor(Black);
                    y->setColor(Black);
                    x->parent()->parent()->setColor(Red);
                    updateNode(x->parent());
                    x = x->parent()->parent();
                    updateNode(x);
                    updateStart = x->parent();
                } else {
                    if (x == x->parent()->left()) {
                        // Case 2
                        logIfVerbose("  Case 2/2");
                        x = x->parent();
                        rightRotate(x);
                    }
                    // Case 3
                    logIfVerbose("  Case 2/3");
                    x->parent()->setColor(Black);
                    x->parent()->parent()->setColor(Red);
                    Node* newSubTreeRoot = leftRotate(x->parent()->parent());
                    updateStart = newSubTreeRoot->parent();
                }
            }
        }

        propagateUpdates(updateStart);

        m_root->setColor(Black);
    }

    // Restores the red-black property to the tree after splicing out
    // a node. Note that x may be null, which is why xParent must be
    // supplied.
    void deleteFixup(Node* x, Node* xParent)
    {
        while (x != m_root && (!x || x->color() == Black)) {
            if (x == xParent->left()) {
                // Note: the text points out that w can not be null.
                // The reason is not obvious from simply looking at
                // the code; it comes about from the properties of the
                // red-black tree.
                Node* w = xParent->right();
                ASSERT(w); // x's sibling should not be null.
                if (w->color() == Red) {
                    // Case 1
                    w->setColor(Black);
                    xParent->setColor(Red);
                    leftRotate(xParent);
                    w = xParent->right();
                }
                if ((!w->left() || w->left()->color() == Black)
                    && (!w->right() || w->right()->color() == Black)) {
                    // Case 2
                    w->setColor(Red);
                    x = xParent;
                    xParent = x->parent();
                } else {
                    if (!w->right() || w->right()->color() == Black) {
                        // Case 3
                        w->left()->setColor(Black);
                        w->setColor(Red);
                        rightRotate(w);
                        w = xParent->right();
                    }
                    // Case 4
                    w->setColor(xParent->color());
                    xParent->setColor(Black);
                    if (w->right())
                        w->right()->setColor(Black);
                    leftRotate(xParent);
                    x = m_root;
                    xParent = x->parent();
                }
            } else {
                // Same as "then" clause with "right" and "left"
                // exchanged.

                // Note: the text points out that w can not be null.
                // The reason is not obvious from simply looking at
                // the code; it comes about from the properties of the
                // red-black tree.
                Node* w = xParent->left();
                ASSERT(w); // x's sibling should not be null.
                if (w->color() == Red) {
                    // Case 1
                    w->setColor(Black);
                    xParent->setColor(Red);
                    rightRotate(xParent);
                    w = xParent->left();
                }
                if ((!w->right() || w->right()->color() == Black)
                    && (!w->left() || w->left()->color() == Black)) {
                    // Case 2
                    w->setColor(Red);
                    x = xParent;
                    xParent = x->parent();
                } else {
                    if (!w->left() || w->left()->color() == Black) {
                        // Case 3
                        w->right()->setColor(Black);
                        w->setColor(Red);
                        leftRotate(w);
                        w = xParent->left();
                    }
                    // Case 4
                    w->setColor(xParent->color());
                    xParent->setColor(Black);
                    if (w->left())
                        w->left()->setColor(Black);
                    rightRotate(xParent);
                    x = m_root;
                    xParent = x->parent();
                }
            }
        }
        if (x)
            x->setColor(Black);
    }

    // Deletes the given node from the tree. Note that this
    // particular node may not actually be removed from the tree;
    // instead, another node might be removed and its contents
    // copied into z.
    void deleteNode(Node* z)
    {
        // Y is the node to be unlinked from the tree.
        Node* y;
        if (!z->left() || !z->right())
            y = z;
        else
            y = treeSuccessor(z);

        // Y is guaranteed to be non-null at this point.
        Node* x;
        if (y->left())
            x = y->left();
        else
            x = y->right();

        // X is the child of y which might potentially replace y in
        // the tree. X might be null at this point.
        Node* xParent;
        if (x) {
            x->setParent(y->parent());
            xParent = x->parent();
        } else
            xParent = y->parent();
        if (!y->parent())
            m_root = x;
        else {
            if (y == y->parent()->left())
                y->parent()->setLeft(x);
            else
                y->parent()->setRight(x);
        }
        if (y != z) {
            z->copyFrom(y);
            // This node has changed location in the tree and must be updated.
            updateNode(z);
            // The parent and its parents may now be out of date.
            propagateUpdates(z->parent());
        }

        // If we haven't already updated starting from xParent, do so now.
        if (xParent && xParent != y && xParent != z)
            propagateUpdates(xParent);
        if (y->color() == Black)
            deleteFixup(x, xParent);
    }

    // Visits the subtree rooted at the given node in order.
    void visitInorderImpl(Node* node, Visitor* visitor) const
    {
        if (node->left())
            visitInorderImpl(node->left(), visitor);
        visitor->visit(node->data());
        if (node->right())
            visitInorderImpl(node->right(), visitor);
    }

    //----------------------------------------------------------------------
    // Helper class for size()

    // A Visitor which simply counts the number of visited elements.
    class Counter : public Visitor, public Noncopyable {
    public:
        Counter()
            : m_count(0) { }

        virtual void visit(const T& data) { ++m_count; }
        int count() const { return m_count; }

    private:
        int m_count;
    };

    //----------------------------------------------------------------------
    // Verification and debugging routines
    //

    // Returns in the "blackCount" parameter the number of black
    // children along all paths to all leaves of the given node.
    bool checkInvariantsFromNode(Node* node, int* blackCount) const
    {
        // Base case is a leaf node.
        if (!node) {
            *blackCount = 1;
            return true;
        }

        // Each node is either red or black.
        if (!(node->color() == Red || node->color() == Black))
            return false;

        // Every leaf (or null) is black.

        if (node->color() == Red) {
            // Both of its children are black.
            if (!((!node->left() || node->left()->color() == Black)))
                return false;
            if (!((!node->right() || node->right()->color() == Black)))
                return false;
        }

        // Every simple path to a leaf node contains the same number of
        // black nodes.
        int leftCount = 0, rightCount = 0;
        bool leftValid = checkInvariantsFromNode(node->left(), &leftCount);
        bool rightValid = checkInvariantsFromNode(node->right(), &rightCount);
        if (!leftValid || !rightValid)
            return false;
        *blackCount = leftCount + (node->color() == Black ? 1 : 0);
        return leftCount == rightCount;
    }

#ifdef NDEBUG
    void logIfVerbose(const char* output) const { }
#else
    void logIfVerbose(const char* output) const
    {
        if (m_verboseDebugging)
            LOG_ERROR("%s", output);
    }
#endif

#ifndef NDEBUG
    // Dumps the subtree rooted at the given node.
    void dumpFromNode(Node* node, int indentation) const
    {
        StringBuilder builder;
        for (int i = 0; i < indentation; i++)
            builder.append(" ");
        builder.append("-");
        if (node) {
            builder.append(" ");
            builder.append(ValueToString<T>::string(node->data()));
            builder.append((node->color() == Black) ? " (black)" : " (red)");
        }
        LOG_ERROR("%s", builder.toString().ascii().data());
        if (node) {
            dumpFromNode(node->left(), indentation + 2);
            dumpFromNode(node->right(), indentation + 2);
        }
    }
#endif

    //----------------------------------------------------------------------
    // Data members

    RefPtr<PODArena> m_arena;
    Node* m_root;
    bool m_needsFullOrderingComparisons;
#ifndef NDEBUG
    bool m_verboseDebugging;
#endif
};

} // namespace WebCore

#endif // PODRedBlackTree_h