summaryrefslogtreecommitdiffstats
path: root/Source/WebCore/platform/image-decoders/bmp/BMPImageReader.cpp
blob: 1805bc7c506a849baad633d7194b905b7530739f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
/*
 * Copyright (c) 2008, 2009, Google Inc. All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * 
 *     * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 *     * Neither the name of Google Inc. nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "BMPImageReader.h"

namespace WebCore {

BMPImageReader::BMPImageReader(ImageDecoder* parent, size_t decodedAndHeaderOffset, size_t imgDataOffset, bool usesAndMask)
    : m_parent(parent)
    , m_buffer(0)
    , m_decodedOffset(decodedAndHeaderOffset)
    , m_headerOffset(decodedAndHeaderOffset)
    , m_imgDataOffset(imgDataOffset)
    , m_isOS21x(false)
    , m_isOS22x(false)
    , m_isTopDown(false)
    , m_needToProcessBitmasks(false)
    , m_needToProcessColorTable(false)
    , m_tableSizeInBytes(0)
    , m_seenNonZeroAlphaPixel(false)
    , m_seenZeroAlphaPixel(false)
    , m_andMaskState(usesAndMask ? NotYetDecoded : None)
{
    // Clue-in decodeBMP() that we need to detect the correct info header size.
    memset(&m_infoHeader, 0, sizeof(m_infoHeader));
}

bool BMPImageReader::decodeBMP(bool onlySize)
{
    // Calculate size of info header.
    if (!m_infoHeader.biSize && !readInfoHeaderSize())
        return false;

    // Read and process info header.
    if ((m_decodedOffset < (m_headerOffset + m_infoHeader.biSize)) && !processInfoHeader())
        return false;

    // processInfoHeader() set the size, so if that's all we needed, we're done.
    if (onlySize)
        return true;

    // Read and process the bitmasks, if needed.
    if (m_needToProcessBitmasks && !processBitmasks())
        return false;

    // Read and process the color table, if needed.
    if (m_needToProcessColorTable && !processColorTable())
        return false;

    // Initialize the framebuffer if needed.
    ASSERT(m_buffer);  // Parent should set this before asking us to decode!
    if (m_buffer->status() == ImageFrame::FrameEmpty) {
        if (!m_buffer->setSize(m_parent->size().width(), m_parent->size().height()))
            return m_parent->setFailed(); // Unable to allocate.
        m_buffer->setStatus(ImageFrame::FramePartial);
        // setSize() calls eraseARGB(), which resets the alpha flag, so we force
        // it back to false here.  We'll set it true below in all cases where
        // these 0s could actually show through.
        m_buffer->setHasAlpha(false);

        // For BMPs, the frame always fills the entire image.
        m_buffer->setRect(IntRect(IntPoint(), m_parent->size()));

        if (!m_isTopDown)
            m_coord.setY(m_parent->size().height() - 1);
    }

    // Decode the data.
    if ((m_andMaskState != Decoding) && !pastEndOfImage(0)) {
        if ((m_infoHeader.biCompression != RLE4) && (m_infoHeader.biCompression != RLE8) && (m_infoHeader.biCompression != RLE24)) {
            const ProcessingResult result = processNonRLEData(false, 0);
            if (result != Success)
                return (result == Failure) ? m_parent->setFailed() : false;
        } else if (!processRLEData())
            return false;
    }

    // If the image has an AND mask and there was no alpha data, process the
    // mask.
    if ((m_andMaskState == NotYetDecoded) && !m_buffer->hasAlpha()) {
        // Reset decoding coordinates to start of image.
        m_coord.setX(0);
        m_coord.setY(m_isTopDown ? 0 : (m_parent->size().height() - 1));

        // The AND mask is stored as 1-bit data.
        m_infoHeader.biBitCount = 1;

        m_andMaskState = Decoding;
    }
    if (m_andMaskState == Decoding) {
        const ProcessingResult result = processNonRLEData(false, 0);
        if (result != Success)
            return (result == Failure) ? m_parent->setFailed() : false;
    }

    // Done!
    m_buffer->setStatus(ImageFrame::FrameComplete);
    return true;
}

bool BMPImageReader::readInfoHeaderSize()
{
    // Get size of info header.
    ASSERT(m_decodedOffset == m_headerOffset);
    if ((m_decodedOffset > m_data->size()) || ((m_data->size() - m_decodedOffset) < 4))
        return false;
    m_infoHeader.biSize = readUint32(0);
    // Don't increment m_decodedOffset here, it just makes the code in
    // processInfoHeader() more confusing.

    // Don't allow the header to overflow (which would be harmless here, but
    // problematic or at least confusing in other places), or to overrun the
    // image data.
    if (((m_headerOffset + m_infoHeader.biSize) < m_headerOffset) || (m_imgDataOffset && (m_imgDataOffset < (m_headerOffset + m_infoHeader.biSize))))
        return m_parent->setFailed();

    // See if this is a header size we understand:
    // OS/2 1.x: 12
    if (m_infoHeader.biSize == 12)
        m_isOS21x = true;
    // Windows V3: 40
    else if ((m_infoHeader.biSize == 40) || isWindowsV4Plus())
        ;
    // OS/2 2.x: any multiple of 4 between 16 and 64, inclusive, or 42 or 46
    else if ((m_infoHeader.biSize >= 16) && (m_infoHeader.biSize <= 64) && (!(m_infoHeader.biSize & 3) || (m_infoHeader.biSize == 42) || (m_infoHeader.biSize == 46)))
        m_isOS22x = true;
    else
        return m_parent->setFailed();

    return true;
}

bool BMPImageReader::processInfoHeader()
{
    // Read info header.
    ASSERT(m_decodedOffset == m_headerOffset);
    if ((m_decodedOffset > m_data->size()) || ((m_data->size() - m_decodedOffset) < m_infoHeader.biSize) || !readInfoHeader())
        return false;
    m_decodedOffset += m_infoHeader.biSize;

    // Sanity-check header values.
    if (!isInfoHeaderValid())
        return m_parent->setFailed();

    // Set our size.
    if (!m_parent->setSize(m_infoHeader.biWidth, m_infoHeader.biHeight))
        return false;

    // For paletted images, bitmaps can set biClrUsed to 0 to mean "all
    // colors", so set it to the maximum number of colors for this bit depth.
    // Also do this for bitmaps that put too large a value here.
    if (m_infoHeader.biBitCount < 16) {
      const uint32_t maxColors = static_cast<uint32_t>(1) << m_infoHeader.biBitCount;
      if (!m_infoHeader.biClrUsed || (m_infoHeader.biClrUsed > maxColors))
          m_infoHeader.biClrUsed = maxColors;
    }

    // For any bitmaps that set their BitCount to the wrong value, reset the
    // counts now that we've calculated the number of necessary colors, since
    // other code relies on this value being correct.
    if (m_infoHeader.biCompression == RLE8)
        m_infoHeader.biBitCount = 8;
    else if (m_infoHeader.biCompression == RLE4)
        m_infoHeader.biBitCount = 4;

    // Tell caller what still needs to be processed.
    if (m_infoHeader.biBitCount >= 16)
        m_needToProcessBitmasks = true;
    else if (m_infoHeader.biBitCount)
        m_needToProcessColorTable = true;

    return true;
}

bool BMPImageReader::readInfoHeader()
{
    // Pre-initialize some fields that not all headers set.
    m_infoHeader.biCompression = RGB;
    m_infoHeader.biClrUsed = 0;

    if (m_isOS21x) {
        m_infoHeader.biWidth = readUint16(4);
        m_infoHeader.biHeight = readUint16(6);
        ASSERT(m_andMaskState == None);  // ICO is a Windows format, not OS/2!
        m_infoHeader.biBitCount = readUint16(10);
        return true;
    }

    m_infoHeader.biWidth = readUint32(4);
    m_infoHeader.biHeight = readUint32(8);
    if (m_andMaskState != None)
        m_infoHeader.biHeight /= 2;
    m_infoHeader.biBitCount = readUint16(14);

    // Read compression type, if present.
    if (m_infoHeader.biSize >= 20) {
        uint32_t biCompression = readUint32(16);

        // Detect OS/2 2.x-specific compression types.
        if ((biCompression == 3) && (m_infoHeader.biBitCount == 1)) {
            m_infoHeader.biCompression = HUFFMAN1D;
            m_isOS22x = true;
        } else if ((biCompression == 4) && (m_infoHeader.biBitCount == 24)) {
            m_infoHeader.biCompression = RLE24;
            m_isOS22x = true;
        } else if (biCompression > 5)
            return m_parent->setFailed(); // Some type we don't understand.
        else
            m_infoHeader.biCompression = static_cast<CompressionType>(biCompression);
    }

    // Read colors used, if present.
    if (m_infoHeader.biSize >= 36)
        m_infoHeader.biClrUsed = readUint32(32);

    // Windows V4+ can safely read the four bitmasks from 40-56 bytes in, so do
    // that here.  If the bit depth is less than 16, these values will be
    // ignored by the image data decoders.  If the bit depth is at least 16 but
    // the compression format isn't BITFIELDS, these values will be ignored and
    // overwritten* in processBitmasks().
    // NOTE: We allow alpha here.  Microsoft doesn't really document this well,
    // but some BMPs appear to use it.
    //
    // For non-Windows V4+, m_bitMasks[] et. al will be initialized later
    // during processBitmasks().
    //
    // *Except the alpha channel.  Bizarrely, some RGB bitmaps expect decoders
    // to pay attention to the alpha mask here, so there's a special case in
    // processBitmasks() that doesn't always overwrite that value.
    if (isWindowsV4Plus()) {
        m_bitMasks[0] = readUint32(40);
        m_bitMasks[1] = readUint32(44);
        m_bitMasks[2] = readUint32(48);
        m_bitMasks[3] = readUint32(52);
    }

    // Detect top-down BMPs.
    if (m_infoHeader.biHeight < 0) {
        m_isTopDown = true;
        m_infoHeader.biHeight = -m_infoHeader.biHeight;
    }

    return true;
}

bool BMPImageReader::isInfoHeaderValid() const
{
    // Non-positive widths/heights are invalid.  (We've already flipped the
    // sign of the height for top-down bitmaps.)
    if ((m_infoHeader.biWidth <= 0) || !m_infoHeader.biHeight)
        return false;

    // Only Windows V3+ has top-down bitmaps.
    if (m_isTopDown && (m_isOS21x || m_isOS22x))
        return false;

    // Only bit depths of 1, 4, 8, or 24 are universally supported.
    if ((m_infoHeader.biBitCount != 1) && (m_infoHeader.biBitCount != 4) && (m_infoHeader.biBitCount != 8) && (m_infoHeader.biBitCount != 24)) {
        // Windows V3+ additionally supports bit depths of 0 (for embedded
        // JPEG/PNG images), 16, and 32.
        if (m_isOS21x || m_isOS22x || (m_infoHeader.biBitCount && (m_infoHeader.biBitCount != 16) && (m_infoHeader.biBitCount != 32)))
            return false;
    }

    // Each compression type is only valid with certain bit depths (except RGB,
    // which can be used with any bit depth).  Also, some formats do not
    // some compression types.
    switch (m_infoHeader.biCompression) {
    case RGB:
        if (!m_infoHeader.biBitCount)
            return false;
        break;

    case RLE8:
        // Supposedly there are undocumented formats like "BitCount = 1,
        // Compression = RLE4" (which means "4 bit, but with a 2-color table"),
        // so also allow the paletted RLE compression types to have too low a
        // bit count; we'll correct this later.
        if (!m_infoHeader.biBitCount || (m_infoHeader.biBitCount > 8))
            return false;
        break;

    case RLE4:
        // See comments in RLE8.
        if (!m_infoHeader.biBitCount || (m_infoHeader.biBitCount > 4))
            return false;
        break;

    case BITFIELDS:
        // Only valid for Windows V3+.
        if (m_isOS21x || m_isOS22x || ((m_infoHeader.biBitCount != 16) && (m_infoHeader.biBitCount != 32)))
            return false;
        break;

    case JPEG:
    case PNG:
        // Only valid for Windows V3+.
        if (m_isOS21x || m_isOS22x || m_infoHeader.biBitCount)
            return false;
        break;

    case HUFFMAN1D:
        // Only valid for OS/2 2.x.
        if (!m_isOS22x || (m_infoHeader.biBitCount != 1))
            return false;
        break;

    case RLE24:
        // Only valid for OS/2 2.x.
        if (!m_isOS22x || (m_infoHeader.biBitCount != 24))
            return false;
        break;
    
    default:
        // Some type we don't understand.  This should have been caught in
        // readInfoHeader().
        ASSERT_NOT_REACHED();
        return false;
    }

    // Top-down bitmaps cannot be compressed; they must be RGB or BITFIELDS.
    if (m_isTopDown && (m_infoHeader.biCompression != RGB) && (m_infoHeader.biCompression != BITFIELDS))
        return false;

    // Reject the following valid bitmap types that we don't currently bother
    // decoding.  Few other people decode these either, they're unlikely to be
    // in much use.
    // TODO(pkasting): Consider supporting these someday.
    //   * Bitmaps larger than 2^16 pixels in either dimension (Windows
    //     probably doesn't draw these well anyway, and the decoded data would
    //     take a lot of memory).
    if ((m_infoHeader.biWidth >= (1 << 16)) || (m_infoHeader.biHeight >= (1 << 16)))
        return false;
    //   * Windows V3+ JPEG-in-BMP and PNG-in-BMP bitmaps (supposedly not found
    //     in the wild, only used to send data to printers?).
    if ((m_infoHeader.biCompression == JPEG) || (m_infoHeader.biCompression == PNG))
        return false;
    //   * OS/2 2.x Huffman-encoded monochrome bitmaps (see
    //      http://www.fileformat.info/mirror/egff/ch09_05.htm , re: "G31D"
    //      algorithm).
    if (m_infoHeader.biCompression == HUFFMAN1D)
        return false;

    return true;
}

bool BMPImageReader::processBitmasks()
{
    // Create m_bitMasks[] values.
    if (m_infoHeader.biCompression != BITFIELDS) {
        // The format doesn't actually use bitmasks.  To simplify the decode
        // logic later, create bitmasks for the RGB data.  For Windows V4+,
        // this overwrites the masks we read from the header, which are
        // supposed to be ignored in non-BITFIELDS cases.
        // 16 bits:    MSB <-                     xRRRRRGG GGGBBBBB -> LSB
        // 24/32 bits: MSB <- [AAAAAAAA] RRRRRRRR GGGGGGGG BBBBBBBB -> LSB
        const int numBits = (m_infoHeader.biBitCount == 16) ? 5 : 8;
        for (int i = 0; i <= 2; ++i)
            m_bitMasks[i] = ((static_cast<uint32_t>(1) << (numBits * (3 - i))) - 1) ^ ((static_cast<uint32_t>(1) << (numBits * (2 - i))) - 1);

        // For Windows V4+ 32-bit RGB, don't overwrite the alpha mask from the
        // header (see note in readInfoHeader()).
        if (m_infoHeader.biBitCount < 32)
            m_bitMasks[3] = 0;
        else if (!isWindowsV4Plus())
            m_bitMasks[3] = static_cast<uint32_t>(0xff000000);
    } else if (!isWindowsV4Plus()) {
        // For Windows V4+ BITFIELDS mode bitmaps, this was already done when
        // we read the info header.

        // Fail if we don't have enough file space for the bitmasks.
        static const size_t SIZEOF_BITMASKS = 12;
        if (((m_headerOffset + m_infoHeader.biSize + SIZEOF_BITMASKS) < (m_headerOffset + m_infoHeader.biSize)) || (m_imgDataOffset && (m_imgDataOffset < (m_headerOffset + m_infoHeader.biSize + SIZEOF_BITMASKS))))
            return m_parent->setFailed();

        // Read bitmasks.
        if ((m_data->size() - m_decodedOffset) < SIZEOF_BITMASKS)
            return false;
        m_bitMasks[0] = readUint32(0);
        m_bitMasks[1] = readUint32(4);
        m_bitMasks[2] = readUint32(8);
        // No alpha in anything other than Windows V4+.
        m_bitMasks[3] = 0;

        m_decodedOffset += SIZEOF_BITMASKS;
    }

    // We've now decoded all the non-image data we care about.  Skip anything
    // else before the actual raster data.
    if (m_imgDataOffset)
        m_decodedOffset = m_imgDataOffset;
    m_needToProcessBitmasks = false;

    // Check masks and set shift values.
    for (int i = 0; i < 4; ++i) {
        // Trim the mask to the allowed bit depth.  Some Windows V4+ BMPs
        // specify a bogus alpha channel in bits that don't exist in the pixel
        // data (for example, bits 25-31 in a 24-bit RGB format).
        if (m_infoHeader.biBitCount < 32)
            m_bitMasks[i] &= ((static_cast<uint32_t>(1) << m_infoHeader.biBitCount) - 1);

        // For empty masks (common on the alpha channel, especially after the
        // trimming above), quickly clear the shifts and continue, to avoid an
        // infinite loop in the counting code below.
        uint32_t tempMask = m_bitMasks[i];
        if (!tempMask) {
            m_bitShiftsRight[i] = m_bitShiftsLeft[i] = 0;
            continue;
        }

        // Make sure bitmask does not overlap any other bitmasks.
        for (int j = 0; j < i; ++j) {
            if (tempMask & m_bitMasks[j])
                return m_parent->setFailed();
        }

        // Count offset into pixel data.
        for (m_bitShiftsRight[i] = 0; !(tempMask & 1); tempMask >>= 1)
            ++m_bitShiftsRight[i];

        // Count size of mask.
        for (m_bitShiftsLeft[i] = 8; tempMask & 1; tempMask >>= 1)
            --m_bitShiftsLeft[i];

        // Make sure bitmask is contiguous.
        if (tempMask)
            return m_parent->setFailed();

        // Since RGBABuffer tops out at 8 bits per channel, adjust the shift
        // amounts to use the most significant 8 bits of the channel.
        if (m_bitShiftsLeft[i] < 0) {
            m_bitShiftsRight[i] -= m_bitShiftsLeft[i];
            m_bitShiftsLeft[i] = 0;
        }
    }

    return true;
}

bool BMPImageReader::processColorTable()
{
    m_tableSizeInBytes = m_infoHeader.biClrUsed * (m_isOS21x ? 3 : 4);

    // Fail if we don't have enough file space for the color table.
    if (((m_headerOffset + m_infoHeader.biSize + m_tableSizeInBytes) < (m_headerOffset + m_infoHeader.biSize)) || (m_imgDataOffset && (m_imgDataOffset < (m_headerOffset + m_infoHeader.biSize + m_tableSizeInBytes))))
        return m_parent->setFailed();

    // Read color table.
    if ((m_decodedOffset > m_data->size()) || ((m_data->size() - m_decodedOffset) < m_tableSizeInBytes))
        return false;
    m_colorTable.resize(m_infoHeader.biClrUsed);
    for (size_t i = 0; i < m_infoHeader.biClrUsed; ++i) {
        m_colorTable[i].rgbBlue = m_data->data()[m_decodedOffset++];
        m_colorTable[i].rgbGreen = m_data->data()[m_decodedOffset++];
        m_colorTable[i].rgbRed = m_data->data()[m_decodedOffset++];
        // Skip padding byte (not present on OS/2 1.x).
        if (!m_isOS21x)
            ++m_decodedOffset;
    }

    // We've now decoded all the non-image data we care about.  Skip anything
    // else before the actual raster data.
    if (m_imgDataOffset)
        m_decodedOffset = m_imgDataOffset;
    m_needToProcessColorTable = false;

    return true;
}

bool BMPImageReader::processRLEData()
{
    if (m_decodedOffset > m_data->size())
        return false;

    // RLE decoding is poorly specified.  Two main problems:
    // (1) Are EOL markers necessary?  What happens when we have too many
    //     pixels for one row?
    //     http://www.fileformat.info/format/bmp/egff.htm says extra pixels
    //     should wrap to the next line.  Real BMPs I've encountered seem to
    //     instead expect extra pixels to be ignored until the EOL marker is
    //     seen, although this has only happened in a few cases and I suspect
    //     those BMPs may be invalid.  So we only change lines on EOL (or Delta
    //     with dy > 0), and fail in most cases when pixels extend past the end
    //     of the line.
    // (2) When Delta, EOL, or EOF are seen, what happens to the "skipped"
    //     pixels?
    //     http://www.daubnet.com/formats/BMP.html says these should be filled
    //     with color 0.  However, the "do nothing" and "don't care" comments
    //     of other references suggest leaving these alone, i.e. letting them
    //     be transparent to the background behind the image.  This seems to
    //     match how MSPAINT treats BMPs, so we do that.  Note that when we
    //     actually skip pixels for a case like this, we need to note on the
    //     framebuffer that we have alpha.

    // Impossible to decode row-at-a-time, so just do things as a stream of
    // bytes.
    while (true) {
        // Every entry takes at least two bytes; bail if there isn't enough
        // data.
        if ((m_data->size() - m_decodedOffset) < 2)
            return false;

        // For every entry except EOF, we'd better not have reached the end of
        // the image.
        const uint8_t count = m_data->data()[m_decodedOffset];
        const uint8_t code = m_data->data()[m_decodedOffset + 1];
        if ((count || (code != 1)) && pastEndOfImage(0))
            return m_parent->setFailed();

        // Decode.
        if (!count) {
            switch (code) {
            case 0:  // Magic token: EOL
                // Skip any remaining pixels in this row.
                if (m_coord.x() < m_parent->size().width())
                    m_buffer->setHasAlpha(true);
                moveBufferToNextRow();

                m_decodedOffset += 2;
                break;

            case 1:  // Magic token: EOF
                // Skip any remaining pixels in the image.
                if ((m_coord.x() < m_parent->size().width()) || (m_isTopDown ? (m_coord.y() < (m_parent->size().height() - 1)) : (m_coord.y() > 0)))
                    m_buffer->setHasAlpha(true);
                return true;

            case 2: {  // Magic token: Delta
                // The next two bytes specify dx and dy.  Bail if there isn't
                // enough data.
                if ((m_data->size() - m_decodedOffset) < 4)
                    return false;

                // Fail if this takes us past the end of the desired row or
                // past the end of the image.
                const uint8_t dx = m_data->data()[m_decodedOffset + 2];
                const uint8_t dy = m_data->data()[m_decodedOffset + 3];
                if (dx || dy)
                    m_buffer->setHasAlpha(true);
                if (((m_coord.x() + dx) > m_parent->size().width()) || pastEndOfImage(dy))
                    return m_parent->setFailed();

                // Skip intervening pixels.
                m_coord.move(dx, m_isTopDown ? dy : -dy);

                m_decodedOffset += 4;
                break;
            }

            default: { // Absolute mode
                // |code| pixels specified as in BI_RGB, zero-padded at the end
                // to a multiple of 16 bits.
                // Because processNonRLEData() expects m_decodedOffset to
                // point to the beginning of the pixel data, bump it past
                // the escape bytes and then reset if decoding failed.
                m_decodedOffset += 2;
                const ProcessingResult result = processNonRLEData(true, code);
                if (result == Failure)
                    return m_parent->setFailed();
                if (result == InsufficientData) {
                    m_decodedOffset -= 2;
                    return false;
                }
                break;
            }
            }
        } else {  // Encoded mode
            // The following color data is repeated for |count| total pixels.
            // Strangely, some BMPs seem to specify excessively large counts
            // here; ignore pixels past the end of the row.
            const int endX = std::min(m_coord.x() + count, m_parent->size().width());

            if (m_infoHeader.biCompression == RLE24) {
                // Bail if there isn't enough data.
                if ((m_data->size() - m_decodedOffset) < 4)
                    return false;

                // One BGR triple that we copy |count| times.
                fillRGBA(endX, m_data->data()[m_decodedOffset + 3], m_data->data()[m_decodedOffset + 2], code, 0xff);
                m_decodedOffset += 4;
            } else {
                // RLE8 has one color index that gets repeated; RLE4 has two
                // color indexes in the upper and lower 4 bits of the byte,
                // which are alternated.
                size_t colorIndexes[2] = {code, code};
                if (m_infoHeader.biCompression == RLE4) {
                    colorIndexes[0] = (colorIndexes[0] >> 4) & 0xf;
                    colorIndexes[1] &= 0xf;
                }
                if ((colorIndexes[0] >= m_infoHeader.biClrUsed) || (colorIndexes[1] >= m_infoHeader.biClrUsed))
                    return m_parent->setFailed();
                for (int which = 0; m_coord.x() < endX; ) {
                    setI(colorIndexes[which]);
                    which = !which;
                }

                m_decodedOffset += 2;
            }
        }
    }
}

BMPImageReader::ProcessingResult BMPImageReader::processNonRLEData(bool inRLE, int numPixels)
{
    if (m_decodedOffset > m_data->size())
        return InsufficientData;

    if (!inRLE)
        numPixels = m_parent->size().width();

    // Fail if we're being asked to decode more pixels than remain in the row.
    const int endX = m_coord.x() + numPixels;
    if (endX > m_parent->size().width())
        return Failure;

    // Determine how many bytes of data the requested number of pixels
    // requires.
    const size_t pixelsPerByte = 8 / m_infoHeader.biBitCount;
    const size_t bytesPerPixel = m_infoHeader.biBitCount / 8;
    const size_t unpaddedNumBytes = (m_infoHeader.biBitCount < 16) ? ((numPixels + pixelsPerByte - 1) / pixelsPerByte) : (numPixels * bytesPerPixel);
    // RLE runs are zero-padded at the end to a multiple of 16 bits.  Non-RLE
    // data is in rows and is zero-padded to a multiple of 32 bits.
    const size_t alignBits = inRLE ? 1 : 3;
    const size_t paddedNumBytes = (unpaddedNumBytes + alignBits) & ~alignBits;

    // Decode as many rows as we can.  (For RLE, where we only want to decode
    // one row, we've already checked that this condition is true.)
    while (!pastEndOfImage(0)) {
        // Bail if we don't have enough data for the desired number of pixels.
        if ((m_data->size() - m_decodedOffset) < paddedNumBytes)
            return InsufficientData;

        if (m_infoHeader.biBitCount < 16) {
            // Paletted data.  Pixels are stored little-endian within bytes.
            // Decode pixels one byte at a time, left to right (so, starting at
            // the most significant bits in the byte).
            const uint8_t mask = (1 << m_infoHeader.biBitCount) - 1;
            for (size_t byte = 0; byte < unpaddedNumBytes; ++byte) {
                uint8_t pixelData = m_data->data()[m_decodedOffset + byte];
                for (size_t pixel = 0; (pixel < pixelsPerByte) && (m_coord.x() < endX); ++pixel) {
                    const size_t colorIndex = (pixelData >> (8 - m_infoHeader.biBitCount)) & mask;
                    if (m_andMaskState == Decoding) {
                        // There's no way to accurately represent an AND + XOR
                        // operation as an RGBA image, so where the AND values
                        // are 1, we simply set the framebuffer pixels to fully
                        // transparent, on the assumption that most ICOs on the
                        // web will not be doing a lot of inverting.
                        if (colorIndex) {
                            setRGBA(0, 0, 0, 0);
                            m_buffer->setHasAlpha(true);
                        } else
                            m_coord.move(1, 0);
                    } else {
                        if (colorIndex >= m_infoHeader.biClrUsed)
                            return Failure;
                        setI(colorIndex);
                    }
                    pixelData <<= m_infoHeader.biBitCount;
                }
            }
        } else {
            // RGB data.  Decode pixels one at a time, left to right.
            while (m_coord.x() < endX) {
                const uint32_t pixel = readCurrentPixel(bytesPerPixel);

                // Some BMPs specify an alpha channel but don't actually use it
                // (it contains all 0s).  To avoid displaying these images as
                // fully-transparent, decode as if images are fully opaque
                // until we actually see a non-zero alpha value; at that point,
                // reset any previously-decoded pixels to fully transparent and
                // continue decoding based on the real alpha channel values.
                // As an optimization, avoid setting "hasAlpha" to true for
                // images where all alpha values are 255; opaque images are
                // faster to draw.
                int alpha = getAlpha(pixel);
                if (!m_seenNonZeroAlphaPixel && !alpha) {
                    m_seenZeroAlphaPixel = true;
                    alpha = 255;
                } else {
                    m_seenNonZeroAlphaPixel = true;
                    if (m_seenZeroAlphaPixel) {
                        m_buffer->zeroFill();
                        m_seenZeroAlphaPixel = false;
                    } else if (alpha != 255)
                        m_buffer->setHasAlpha(true);
                }

                setRGBA(getComponent(pixel, 0), getComponent(pixel, 1),
                        getComponent(pixel, 2), alpha);
            }
        }

        // Success, keep going.
        m_decodedOffset += paddedNumBytes;
        if (inRLE)
            return Success;
        moveBufferToNextRow();
    }

    // Finished decoding whole image.
    return Success;
}

void BMPImageReader::moveBufferToNextRow()
{
    m_coord.move(-m_coord.x(), m_isTopDown ? 1 : -1);
}

} // namespace WebCore