summaryrefslogtreecommitdiffstats
path: root/Source/WebCore/webaudio/AudioContext.cpp
blob: 0d23cf584e7737e0b6cb74480557b0331513323b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
/*
 * Copyright (C) 2010, Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1.  Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"

#if ENABLE(WEB_AUDIO)

#include "AudioContext.h"

#include "ArrayBuffer.h"
#include "AudioBuffer.h"
#include "AudioBufferSourceNode.h"
#include "AudioChannelMerger.h"
#include "AudioChannelSplitter.h"
#include "AudioGainNode.h"
#include "AudioListener.h"
#include "AudioNodeInput.h"
#include "AudioNodeOutput.h"
#include "AudioPannerNode.h"
#include "ConvolverNode.h"
#include "DefaultAudioDestinationNode.h"
#include "DelayNode.h"
#include "Document.h"
#include "FFTFrame.h"
#include "HRTFDatabaseLoader.h"
#include "HRTFPanner.h"
#include "HighPass2FilterNode.h"
#include "JavaScriptAudioNode.h"
#include "LowPass2FilterNode.h"
#include "OfflineAudioCompletionEvent.h"
#include "OfflineAudioDestinationNode.h"
#include "PlatformString.h"
#include "RealtimeAnalyserNode.h"

#if DEBUG_AUDIONODE_REFERENCES
#include <stdio.h>
#endif

#include <wtf/OwnPtr.h>
#include <wtf/PassOwnPtr.h>
#include <wtf/RefCounted.h>

// FIXME: check the proper way to reference an undefined thread ID
const int UndefinedThreadIdentifier = 0xffffffff;

const unsigned MaxNodesToDeletePerQuantum = 10;

namespace WebCore {

PassRefPtr<AudioContext> AudioContext::create(Document* document)
{
    return adoptRef(new AudioContext(document));
}

PassRefPtr<AudioContext> AudioContext::createOfflineContext(Document* document, unsigned numberOfChannels, size_t numberOfFrames, double sampleRate)
{
    return adoptRef(new AudioContext(document, numberOfChannels, numberOfFrames, sampleRate));
}

// Constructor for rendering to the audio hardware.
AudioContext::AudioContext(Document* document)
    : ActiveDOMObject(document, this)
    , m_isInitialized(false)
    , m_isAudioThreadFinished(false)
    , m_document(document)
    , m_destinationNode(0)
    , m_connectionCount(0)
    , m_audioThread(0)
    , m_graphOwnerThread(UndefinedThreadIdentifier)
    , m_isOfflineContext(false)
{
    constructCommon();

    m_destinationNode = DefaultAudioDestinationNode::create(this);

    // This sets in motion an asynchronous loading mechanism on another thread.
    // We can check m_hrtfDatabaseLoader->isLoaded() to find out whether or not it has been fully loaded.
    // It's not that useful to have a callback function for this since the audio thread automatically starts rendering on the graph
    // when this has finished (see AudioDestinationNode).
    m_hrtfDatabaseLoader = HRTFDatabaseLoader::createAndLoadAsynchronouslyIfNecessary(sampleRate());

    // FIXME: for now default AudioContext does not need an explicit startRendering() call.
    // We may want to consider requiring it for symmetry with OfflineAudioContext
    m_destinationNode->startRendering();
}

// Constructor for offline (non-realtime) rendering.
AudioContext::AudioContext(Document* document, unsigned numberOfChannels, size_t numberOfFrames, double sampleRate)
    : ActiveDOMObject(document, this)
    , m_isInitialized(false)
    , m_isAudioThreadFinished(false)
    , m_document(document)
    , m_destinationNode(0)
    , m_connectionCount(0)
    , m_audioThread(0)
    , m_graphOwnerThread(UndefinedThreadIdentifier)
    , m_isOfflineContext(true)
{
    constructCommon();

    // FIXME: the passed in sampleRate MUST match the hardware sample-rate since HRTFDatabaseLoader is a singleton.
    m_hrtfDatabaseLoader = HRTFDatabaseLoader::createAndLoadAsynchronouslyIfNecessary(sampleRate);

    // Create a new destination for offline rendering.
    m_renderTarget = AudioBuffer::create(numberOfChannels, numberOfFrames, sampleRate);
    m_destinationNode = OfflineAudioDestinationNode::create(this, m_renderTarget.get());
}

void AudioContext::constructCommon()
{
    // Note: because adoptRef() won't be called until we leave this constructor, but code in this constructor needs to reference this context,
    // relax the check.
    relaxAdoptionRequirement();
    
    FFTFrame::initialize();
    
    m_listener = AudioListener::create();
    m_temporaryMonoBus = adoptPtr(new AudioBus(1, AudioNode::ProcessingSizeInFrames));
    m_temporaryStereoBus = adoptPtr(new AudioBus(2, AudioNode::ProcessingSizeInFrames));
}

AudioContext::~AudioContext()
{
#if DEBUG_AUDIONODE_REFERENCES
    printf("%p: AudioContext::~AudioContext()\n", this);
#endif    
    // AudioNodes keep a reference to their context, so there should be no way to be in the destructor if there are still AudioNodes around.
    ASSERT(!m_nodesToDelete.size());
    ASSERT(!m_referencedNodes.size());
    ASSERT(!m_finishedNodes.size());
}

void AudioContext::lazyInitialize()
{
    if (!m_isInitialized) {
        // Don't allow the context to initialize a second time after it's already been explicitly uninitialized.
        ASSERT(!m_isAudioThreadFinished);
        if (!m_isAudioThreadFinished) {
            if (m_destinationNode.get()) {
                // This starts the audio thread.  The destination node's provideInput() method will now be called repeatedly to render audio.
                // Each time provideInput() is called, a portion of the audio stream is rendered.  Let's call this time period a "render quantum".
                m_destinationNode->initialize();
            }
            m_isInitialized = true;
        }
    }
}

void AudioContext::uninitialize()
{
    if (m_isInitialized) {    
        // This stops the audio thread and all audio rendering.
        m_destinationNode->uninitialize();

        // Don't allow the context to initialize a second time after it's already been explicitly uninitialized.
        m_isAudioThreadFinished = true;

        // We have to release our reference to the destination node before the context will ever be deleted since the destination node holds a reference to the context.
        m_destinationNode.clear();
        
        // Get rid of the sources which may still be playing.
        derefUnfinishedSourceNodes();
        
        // Because the AudioBuffers are garbage collected, we can't delete them here.
        // Instead, at least release the potentially large amount of allocated memory for the audio data.
        // Note that we do this *after* the context is uninitialized and stops processing audio.
        for (unsigned i = 0; i < m_allocatedBuffers.size(); ++i)
            m_allocatedBuffers[i]->releaseMemory();
        m_allocatedBuffers.clear();
    
        m_isInitialized = false;
    }
}

bool AudioContext::isInitialized() const
{
    return m_isInitialized;
}

bool AudioContext::isRunnable() const
{
    if (!isInitialized())
        return false;
    
    // Check with the HRTF spatialization system to see if it's finished loading.
    return m_hrtfDatabaseLoader->isLoaded();
}

void AudioContext::stop()
{
    m_document = 0; // document is going away
    uninitialize();
}

Document* AudioContext::document() const
{
    ASSERT(m_document);
    return m_document;
}

bool AudioContext::hasDocument()
{
    return m_document;
}

void AudioContext::refBuffer(PassRefPtr<AudioBuffer> buffer)
{
    m_allocatedBuffers.append(buffer);
}

PassRefPtr<AudioBuffer> AudioContext::createBuffer(unsigned numberOfChannels, size_t numberOfFrames, double sampleRate)
{
    return AudioBuffer::create(numberOfChannels, numberOfFrames, sampleRate);
}

PassRefPtr<AudioBuffer> AudioContext::createBuffer(ArrayBuffer* arrayBuffer, bool mixToMono)
{
    ASSERT(arrayBuffer);
    if (!arrayBuffer)
        return 0;
    
    return AudioBuffer::createFromAudioFileData(arrayBuffer->data(), arrayBuffer->byteLength(), mixToMono, sampleRate());
}

PassRefPtr<AudioBufferSourceNode> AudioContext::createBufferSource()
{
    ASSERT(isMainThread());
    lazyInitialize();
    RefPtr<AudioBufferSourceNode> node = AudioBufferSourceNode::create(this, m_destinationNode->sampleRate());

    refNode(node.get()); // context keeps reference until source has finished playing
    return node;
}

PassRefPtr<JavaScriptAudioNode> AudioContext::createJavaScriptNode(size_t bufferSize)
{
    ASSERT(isMainThread());
    lazyInitialize();
    RefPtr<JavaScriptAudioNode> node = JavaScriptAudioNode::create(this, m_destinationNode->sampleRate(), bufferSize);

    refNode(node.get()); // context keeps reference until we stop making javascript rendering callbacks
    return node;
}

PassRefPtr<LowPass2FilterNode> AudioContext::createLowPass2Filter()
{
    ASSERT(isMainThread());
    lazyInitialize();
    return LowPass2FilterNode::create(this, m_destinationNode->sampleRate());
}

PassRefPtr<HighPass2FilterNode> AudioContext::createHighPass2Filter()
{
    ASSERT(isMainThread());
    lazyInitialize();
    return HighPass2FilterNode::create(this, m_destinationNode->sampleRate());
}

PassRefPtr<AudioPannerNode> AudioContext::createPanner()
{
    ASSERT(isMainThread());
    lazyInitialize();
    return AudioPannerNode::create(this, m_destinationNode->sampleRate());
}

PassRefPtr<ConvolverNode> AudioContext::createConvolver()
{
    ASSERT(isMainThread());
    lazyInitialize();
    return ConvolverNode::create(this, m_destinationNode->sampleRate());
}

PassRefPtr<RealtimeAnalyserNode> AudioContext::createAnalyser()
{
    ASSERT(isMainThread());
    lazyInitialize();
    return RealtimeAnalyserNode::create(this, m_destinationNode->sampleRate());
}

PassRefPtr<AudioGainNode> AudioContext::createGainNode()
{
    ASSERT(isMainThread());
    lazyInitialize();
    return AudioGainNode::create(this, m_destinationNode->sampleRate());
}

PassRefPtr<DelayNode> AudioContext::createDelayNode()
{
    ASSERT(isMainThread());
    lazyInitialize();
    return DelayNode::create(this, m_destinationNode->sampleRate());
}

PassRefPtr<AudioChannelSplitter> AudioContext::createChannelSplitter()
{
    ASSERT(isMainThread());
    lazyInitialize();
    return AudioChannelSplitter::create(this, m_destinationNode->sampleRate());
}

PassRefPtr<AudioChannelMerger> AudioContext::createChannelMerger()
{
    ASSERT(isMainThread());
    lazyInitialize();
    return AudioChannelMerger::create(this, m_destinationNode->sampleRate());
}

void AudioContext::notifyNodeFinishedProcessing(AudioNode* node)
{
    ASSERT(isAudioThread());
    m_finishedNodes.append(node);
}

void AudioContext::derefFinishedSourceNodes()
{
    ASSERT(isGraphOwner());
    ASSERT(isAudioThread() || isAudioThreadFinished());
    for (unsigned i = 0; i < m_finishedNodes.size(); i++)
        derefNode(m_finishedNodes[i]);

    m_finishedNodes.clear();
}

void AudioContext::refNode(AudioNode* node)
{
    ASSERT(isMainThread());
    AutoLocker locker(this);
    
    node->ref(AudioNode::RefTypeConnection);
    m_referencedNodes.append(node);
}

void AudioContext::derefNode(AudioNode* node)
{
    ASSERT(isGraphOwner());
    
    node->deref(AudioNode::RefTypeConnection);

    for (unsigned i = 0; i < m_referencedNodes.size(); ++i) {
        if (node == m_referencedNodes[i]) {
            m_referencedNodes.remove(i);
            break;
        }
    }
}

void AudioContext::derefUnfinishedSourceNodes()
{
    ASSERT(isMainThread() && isAudioThreadFinished());
    for (unsigned i = 0; i < m_referencedNodes.size(); ++i)
        m_referencedNodes[i]->deref(AudioNode::RefTypeConnection);

    m_referencedNodes.clear();
}

void AudioContext::lock(bool& mustReleaseLock)
{
    // Don't allow regular lock in real-time audio thread.
    ASSERT(isMainThread());

    ThreadIdentifier thisThread = currentThread();

    if (thisThread == m_graphOwnerThread) {
        // We already have the lock.
        mustReleaseLock = false;
    } else {
        // Acquire the lock.
        m_contextGraphMutex.lock();
        m_graphOwnerThread = thisThread;
        mustReleaseLock = true;
    }
}

bool AudioContext::tryLock(bool& mustReleaseLock)
{
    ThreadIdentifier thisThread = currentThread();
    bool isAudioThread = thisThread == audioThread();

    // Try to catch cases of using try lock on main thread - it should use regular lock.
    ASSERT(isAudioThread || isAudioThreadFinished());
    
    if (!isAudioThread) {
        // In release build treat tryLock() as lock() (since above ASSERT(isAudioThread) never fires) - this is the best we can do.
        lock(mustReleaseLock);
        return true;
    }
    
    bool hasLock;
    
    if (thisThread == m_graphOwnerThread) {
        // Thread already has the lock.
        hasLock = true;
        mustReleaseLock = false;
    } else {
        // Don't already have the lock - try to acquire it.
        hasLock = m_contextGraphMutex.tryLock();
        
        if (hasLock)
            m_graphOwnerThread = thisThread;

        mustReleaseLock = hasLock;
    }
    
    return hasLock;
}

void AudioContext::unlock()
{
    ASSERT(currentThread() == m_graphOwnerThread);

    m_graphOwnerThread = UndefinedThreadIdentifier;
    m_contextGraphMutex.unlock();
}

bool AudioContext::isAudioThread() const
{
    return currentThread() == m_audioThread;
}

bool AudioContext::isGraphOwner() const
{
    return currentThread() == m_graphOwnerThread;
}

void AudioContext::addDeferredFinishDeref(AudioNode* node, AudioNode::RefType refType)
{
    ASSERT(isAudioThread());
    m_deferredFinishDerefList.append(AudioContext::RefInfo(node, refType));
}

void AudioContext::handlePreRenderTasks()
{
    ASSERT(isAudioThread());
 
    // At the beginning of every render quantum, try to update the internal rendering graph state (from main thread changes).
    // It's OK if the tryLock() fails, we'll just take slightly longer to pick up the changes.
    bool mustReleaseLock;
    if (tryLock(mustReleaseLock)) {
        // Fixup the state of any dirty AudioNodeInputs and AudioNodeOutputs.
        handleDirtyAudioNodeInputs();
        handleDirtyAudioNodeOutputs();
        
        if (mustReleaseLock)
            unlock();
    }
}

void AudioContext::handlePostRenderTasks()
{
    ASSERT(isAudioThread());
 
    // Must use a tryLock() here too.  Don't worry, the lock will very rarely be contended and this method is called frequently.
    // The worst that can happen is that there will be some nodes which will take slightly longer than usual to be deleted or removed
    // from the render graph (in which case they'll render silence).
    bool mustReleaseLock;
    if (tryLock(mustReleaseLock)) {
        // Take care of finishing any derefs where the tryLock() failed previously.
        handleDeferredFinishDerefs();

        // Dynamically clean up nodes which are no longer needed.
        derefFinishedSourceNodes();

        // Finally actually delete.
        deleteMarkedNodes();

        // Fixup the state of any dirty AudioNodeInputs and AudioNodeOutputs.
        handleDirtyAudioNodeInputs();
        handleDirtyAudioNodeOutputs();
        
        if (mustReleaseLock)
            unlock();
    }
}

void AudioContext::handleDeferredFinishDerefs()
{
    ASSERT(isAudioThread() && isGraphOwner());
    for (unsigned i = 0; i < m_deferredFinishDerefList.size(); ++i) {
        AudioNode* node = m_deferredFinishDerefList[i].m_node;
        AudioNode::RefType refType = m_deferredFinishDerefList[i].m_refType;
        node->finishDeref(refType);
    }
    
    m_deferredFinishDerefList.clear();
}

void AudioContext::markForDeletion(AudioNode* node)
{
    ASSERT(isGraphOwner());
    m_nodesToDelete.append(node);
}

void AudioContext::deleteMarkedNodes()
{
    ASSERT(isGraphOwner() || isAudioThreadFinished());

    // Note: deleting an AudioNode can cause m_nodesToDelete to grow.
    size_t nodesDeleted = 0;
    while (size_t n = m_nodesToDelete.size()) {
        AudioNode* node = m_nodesToDelete[n - 1];
        m_nodesToDelete.removeLast();

        // Before deleting the node, clear out any AudioNodeInputs from m_dirtyAudioNodeInputs.
        unsigned numberOfInputs = node->numberOfInputs();
        for (unsigned i = 0; i < numberOfInputs; ++i)
            m_dirtyAudioNodeInputs.remove(node->input(i));

        // Before deleting the node, clear out any AudioNodeOutputs from m_dirtyAudioNodeOutputs.
        unsigned numberOfOutputs = node->numberOfOutputs();
        for (unsigned i = 0; i < numberOfOutputs; ++i)
            m_dirtyAudioNodeOutputs.remove(node->output(i));

        // Finally, delete it.
        delete node;

        // Don't delete too many nodes per render quantum since we don't want to do too much work in the realtime audio thread.
        if (++nodesDeleted > MaxNodesToDeletePerQuantum)
            break;
    }
}

void AudioContext::markAudioNodeInputDirty(AudioNodeInput* input)
{
    ASSERT(isGraphOwner());    
    m_dirtyAudioNodeInputs.add(input);
}

void AudioContext::markAudioNodeOutputDirty(AudioNodeOutput* output)
{
    ASSERT(isGraphOwner());    
    m_dirtyAudioNodeOutputs.add(output);
}

void AudioContext::handleDirtyAudioNodeInputs()
{
    ASSERT(isGraphOwner());    

    for (HashSet<AudioNodeInput*>::iterator i = m_dirtyAudioNodeInputs.begin(); i != m_dirtyAudioNodeInputs.end(); ++i)
        (*i)->updateRenderingState();

    m_dirtyAudioNodeInputs.clear();
}

void AudioContext::handleDirtyAudioNodeOutputs()
{
    ASSERT(isGraphOwner());    

    for (HashSet<AudioNodeOutput*>::iterator i = m_dirtyAudioNodeOutputs.begin(); i != m_dirtyAudioNodeOutputs.end(); ++i)
        (*i)->updateRenderingState();

    m_dirtyAudioNodeOutputs.clear();
}

ScriptExecutionContext* AudioContext::scriptExecutionContext() const
{
    return document();
}

AudioContext* AudioContext::toAudioContext()
{
    return this;
}

void AudioContext::startRendering()
{
    destination()->startRendering();
}

void AudioContext::fireCompletionEvent()
{
    ASSERT(isMainThread());
    if (!isMainThread())
        return;
        
    AudioBuffer* renderedBuffer = m_renderTarget.get();

    ASSERT(renderedBuffer);
    if (!renderedBuffer)
        return;

    // Avoid firing the event if the document has already gone away.
    if (hasDocument()) {
        // Call the offline rendering completion event listener.
        dispatchEvent(OfflineAudioCompletionEvent::create(renderedBuffer));
    }
}

} // namespace WebCore

#endif // ENABLE(WEB_AUDIO)