summaryrefslogtreecommitdiffstats
path: root/V8Binding/v8/src/x64/macro-assembler-x64.cc
blob: 38ada92a99812622212fb3d844413527bec4d2d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#include "bootstrapper.h"
#include "codegen-inl.h"
#include "assembler-x64.h"
#include "macro-assembler-x64.h"
#include "serialize.h"
#include "debug.h"

namespace v8 {
namespace internal {

MacroAssembler::MacroAssembler(void* buffer, int size)
  : Assembler(buffer, size),
    unresolved_(0),
    generating_stub_(false),
    allow_stub_calls_(true),
    code_object_(Heap::undefined_value()) {
}


void MacroAssembler::LoadRoot(Register destination,
                              Heap::RootListIndex index) {
  movq(destination, Operand(r13, index << kPointerSizeLog2));
}


void MacroAssembler::PushRoot(Heap::RootListIndex index) {
  push(Operand(r13, index << kPointerSizeLog2));
}


void MacroAssembler::CompareRoot(Register with,
                                 Heap::RootListIndex index) {
  cmpq(with, Operand(r13, index << kPointerSizeLog2));
}


void MacroAssembler::CompareRoot(Operand with,
                                 Heap::RootListIndex index) {
  LoadRoot(kScratchRegister, index);
  cmpq(with, kScratchRegister);
}


static void RecordWriteHelper(MacroAssembler* masm,
                              Register object,
                              Register addr,
                              Register scratch) {
  Label fast;

  // Compute the page start address from the heap object pointer, and reuse
  // the 'object' register for it.
  ASSERT(is_int32(~Page::kPageAlignmentMask));
  masm->and_(object,
             Immediate(static_cast<int32_t>(~Page::kPageAlignmentMask)));
  Register page_start = object;

  // Compute the bit addr in the remembered set/index of the pointer in the
  // page. Reuse 'addr' as pointer_offset.
  masm->subq(addr, page_start);
  masm->shr(addr, Immediate(kPointerSizeLog2));
  Register pointer_offset = addr;

  // If the bit offset lies beyond the normal remembered set range, it is in
  // the extra remembered set area of a large object.
  masm->cmpq(pointer_offset, Immediate(Page::kPageSize / kPointerSize));
  masm->j(less, &fast);

  // Adjust 'page_start' so that addressing using 'pointer_offset' hits the
  // extra remembered set after the large object.

  // Load the array length into 'scratch'.
  masm->movl(scratch,
             Operand(page_start,
                     Page::kObjectStartOffset + FixedArray::kLengthOffset));
  Register array_length = scratch;

  // Extra remembered set starts right after the large object (a FixedArray), at
  //   page_start + kObjectStartOffset + objectSize
  // where objectSize is FixedArray::kHeaderSize + kPointerSize * array_length.
  // Add the delta between the end of the normal RSet and the start of the
  // extra RSet to 'page_start', so that addressing the bit using
  // 'pointer_offset' hits the extra RSet words.
  masm->lea(page_start,
            Operand(page_start, array_length, times_pointer_size,
                    Page::kObjectStartOffset + FixedArray::kHeaderSize
                        - Page::kRSetEndOffset));

  // NOTE: For now, we use the bit-test-and-set (bts) x86 instruction
  // to limit code size. We should probably evaluate this decision by
  // measuring the performance of an equivalent implementation using
  // "simpler" instructions
  masm->bind(&fast);
  masm->bts(Operand(page_start, Page::kRSetOffset), pointer_offset);
}


class RecordWriteStub : public CodeStub {
 public:
  RecordWriteStub(Register object, Register addr, Register scratch)
      : object_(object), addr_(addr), scratch_(scratch) { }

  void Generate(MacroAssembler* masm);

 private:
  Register object_;
  Register addr_;
  Register scratch_;

#ifdef DEBUG
  void Print() {
    PrintF("RecordWriteStub (object reg %d), (addr reg %d), (scratch reg %d)\n",
           object_.code(), addr_.code(), scratch_.code());
  }
#endif

  // Minor key encoding in 12 bits of three registers (object, address and
  // scratch) OOOOAAAASSSS.
  class ScratchBits: public BitField<uint32_t, 0, 4> {};
  class AddressBits: public BitField<uint32_t, 4, 4> {};
  class ObjectBits: public BitField<uint32_t, 8, 4> {};

  Major MajorKey() { return RecordWrite; }

  int MinorKey() {
    // Encode the registers.
    return ObjectBits::encode(object_.code()) |
           AddressBits::encode(addr_.code()) |
           ScratchBits::encode(scratch_.code());
  }
};


void RecordWriteStub::Generate(MacroAssembler* masm) {
  RecordWriteHelper(masm, object_, addr_, scratch_);
  masm->ret(0);
}


// Set the remembered set bit for [object+offset].
// object is the object being stored into, value is the object being stored.
// If offset is zero, then the scratch register contains the array index into
// the elements array represented as a Smi.
// All registers are clobbered by the operation.
void MacroAssembler::RecordWrite(Register object,
                                 int offset,
                                 Register value,
                                 Register scratch) {
  // First, check if a remembered set write is even needed. The tests below
  // catch stores of Smis and stores into young gen (which does not have space
  // for the remembered set bits.
  Label done;

  // Test that the object address is not in the new space.  We cannot
  // set remembered set bits in the new space.
  movq(value, object);
  ASSERT(is_int32(static_cast<int64_t>(Heap::NewSpaceMask())));
  and_(value, Immediate(static_cast<int32_t>(Heap::NewSpaceMask())));
  movq(kScratchRegister, ExternalReference::new_space_start());
  cmpq(value, kScratchRegister);
  j(equal, &done);

  if ((offset > 0) && (offset < Page::kMaxHeapObjectSize)) {
    // Compute the bit offset in the remembered set, leave it in 'value'.
    lea(value, Operand(object, offset));
    ASSERT(is_int32(Page::kPageAlignmentMask));
    and_(value, Immediate(static_cast<int32_t>(Page::kPageAlignmentMask)));
    shr(value, Immediate(kObjectAlignmentBits));

    // Compute the page address from the heap object pointer, leave it in
    // 'object' (immediate value is sign extended).
    and_(object, Immediate(~Page::kPageAlignmentMask));

    // NOTE: For now, we use the bit-test-and-set (bts) x86 instruction
    // to limit code size. We should probably evaluate this decision by
    // measuring the performance of an equivalent implementation using
    // "simpler" instructions
    bts(Operand(object, Page::kRSetOffset), value);
  } else {
    Register dst = scratch;
    if (offset != 0) {
      lea(dst, Operand(object, offset));
    } else {
      // array access: calculate the destination address in the same manner as
      // KeyedStoreIC::GenerateGeneric.  Multiply a smi by 4 to get an offset
      // into an array of pointers.
      lea(dst, Operand(object, dst, times_half_pointer_size,
                       FixedArray::kHeaderSize - kHeapObjectTag));
    }
    // If we are already generating a shared stub, not inlining the
    // record write code isn't going to save us any memory.
    if (generating_stub()) {
      RecordWriteHelper(this, object, dst, value);
    } else {
      RecordWriteStub stub(object, dst, value);
      CallStub(&stub);
    }
  }

  bind(&done);
}


void MacroAssembler::Assert(Condition cc, const char* msg) {
  if (FLAG_debug_code) Check(cc, msg);
}


void MacroAssembler::Check(Condition cc, const char* msg) {
  Label L;
  j(cc, &L);
  Abort(msg);
  // will not return here
  bind(&L);
}


void MacroAssembler::NegativeZeroTest(Register result,
                                      Register op,
                                      Label* then_label) {
  Label ok;
  testl(result, result);
  j(not_zero, &ok);
  testl(op, op);
  j(sign, then_label);
  bind(&ok);
}


void MacroAssembler::Abort(const char* msg) {
  // We want to pass the msg string like a smi to avoid GC
  // problems, however msg is not guaranteed to be aligned
  // properly. Instead, we pass an aligned pointer that is
  // a proper v8 smi, but also pass the alignment difference
  // from the real pointer as a smi.
  intptr_t p1 = reinterpret_cast<intptr_t>(msg);
  intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
  // Note: p0 might not be a valid Smi *value*, but it has a valid Smi tag.
  ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
#ifdef DEBUG
  if (msg != NULL) {
    RecordComment("Abort message: ");
    RecordComment(msg);
  }
#endif
  push(rax);
  movq(kScratchRegister, p0, RelocInfo::NONE);
  push(kScratchRegister);
  movq(kScratchRegister,
       reinterpret_cast<intptr_t>(Smi::FromInt(p1 - p0)),
       RelocInfo::NONE);
  push(kScratchRegister);
  CallRuntime(Runtime::kAbort, 2);
  // will not return here
}


void MacroAssembler::CallStub(CodeStub* stub) {
  ASSERT(allow_stub_calls());  // calls are not allowed in some stubs
  Call(stub->GetCode(), RelocInfo::CODE_TARGET);
}


void MacroAssembler::StubReturn(int argc) {
  ASSERT(argc >= 1 && generating_stub());
  ret((argc - 1) * kPointerSize);
}


void MacroAssembler::IllegalOperation(int num_arguments) {
  if (num_arguments > 0) {
    addq(rsp, Immediate(num_arguments * kPointerSize));
  }
  LoadRoot(rax, Heap::kUndefinedValueRootIndex);
}


void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) {
  CallRuntime(Runtime::FunctionForId(id), num_arguments);
}


void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) {
  // If the expected number of arguments of the runtime function is
  // constant, we check that the actual number of arguments match the
  // expectation.
  if (f->nargs >= 0 && f->nargs != num_arguments) {
    IllegalOperation(num_arguments);
    return;
  }

  Runtime::FunctionId function_id =
      static_cast<Runtime::FunctionId>(f->stub_id);
  RuntimeStub stub(function_id, num_arguments);
  CallStub(&stub);
}


void MacroAssembler::TailCallRuntime(ExternalReference const& ext,
                                     int num_arguments,
                                     int result_size) {
  // ----------- S t a t e -------------
  //  -- rsp[0] : return address
  //  -- rsp[8] : argument num_arguments - 1
  //  ...
  //  -- rsp[8 * num_arguments] : argument 0 (receiver)
  // -----------------------------------

  // TODO(1236192): Most runtime routines don't need the number of
  // arguments passed in because it is constant. At some point we
  // should remove this need and make the runtime routine entry code
  // smarter.
  movq(rax, Immediate(num_arguments));
  JumpToRuntime(ext, result_size);
}


void MacroAssembler::JumpToRuntime(const ExternalReference& ext,
                                   int result_size) {
  // Set the entry point and jump to the C entry runtime stub.
  movq(rbx, ext);
  CEntryStub ces(result_size);
  movq(kScratchRegister, ces.GetCode(), RelocInfo::CODE_TARGET);
  jmp(kScratchRegister);
}


void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
  bool resolved;
  Handle<Code> code = ResolveBuiltin(id, &resolved);

  const char* name = Builtins::GetName(id);
  int argc = Builtins::GetArgumentsCount(id);

  movq(target, code, RelocInfo::EMBEDDED_OBJECT);
  if (!resolved) {
    uint32_t flags =
        Bootstrapper::FixupFlagsArgumentsCount::encode(argc) |
        Bootstrapper::FixupFlagsIsPCRelative::encode(false) |
        Bootstrapper::FixupFlagsUseCodeObject::encode(true);
    Unresolved entry = { pc_offset() - sizeof(intptr_t), flags, name };
    unresolved_.Add(entry);
  }
  addq(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
}


Handle<Code> MacroAssembler::ResolveBuiltin(Builtins::JavaScript id,
                                            bool* resolved) {
  // Move the builtin function into the temporary function slot by
  // reading it from the builtins object. NOTE: We should be able to
  // reduce this to two instructions by putting the function table in
  // the global object instead of the "builtins" object and by using a
  // real register for the function.
  movq(rdx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
  movq(rdx, FieldOperand(rdx, GlobalObject::kBuiltinsOffset));
  int builtins_offset =
      JSBuiltinsObject::kJSBuiltinsOffset + (id * kPointerSize);
  movq(rdi, FieldOperand(rdx, builtins_offset));


  return Builtins::GetCode(id, resolved);
}


void MacroAssembler::Set(Register dst, int64_t x) {
  if (x == 0) {
    xor_(dst, dst);
  } else if (is_int32(x)) {
    movq(dst, Immediate(x));
  } else if (is_uint32(x)) {
    movl(dst, Immediate(x));
  } else {
    movq(dst, x, RelocInfo::NONE);
  }
}


void MacroAssembler::Set(const Operand& dst, int64_t x) {
  if (x == 0) {
    xor_(kScratchRegister, kScratchRegister);
    movq(dst, kScratchRegister);
  } else if (is_int32(x)) {
    movq(dst, Immediate(x));
  } else if (is_uint32(x)) {
    movl(dst, Immediate(x));
  } else {
    movq(kScratchRegister, x, RelocInfo::NONE);
    movq(dst, kScratchRegister);
  }
}


// ----------------------------------------------------------------------------
// Smi tagging, untagging and tag detection.


void MacroAssembler::Integer32ToSmi(Register dst, Register src) {
  ASSERT_EQ(1, kSmiTagSize);
  ASSERT_EQ(0, kSmiTag);
#ifdef DEBUG
    cmpq(src, Immediate(0xC0000000u));
    Check(positive, "Smi conversion overflow");
#endif
  if (dst.is(src)) {
    addl(dst, src);
  } else {
    lea(dst, Operand(src, src, times_1, 0));
  }
}


void MacroAssembler::Integer32ToSmi(Register dst,
                                    Register src,
                                    Label* on_overflow) {
  ASSERT_EQ(1, kSmiTagSize);
  ASSERT_EQ(0, kSmiTag);
  if (!dst.is(src)) {
    movl(dst, src);
  }
  addl(dst, src);
  j(overflow, on_overflow);
}


void MacroAssembler::Integer64AddToSmi(Register dst,
                                       Register src,
                                       int constant) {
#ifdef DEBUG
  movl(kScratchRegister, src);
  addl(kScratchRegister, Immediate(constant));
  Check(no_overflow, "Add-and-smi-convert overflow");
  Condition valid = CheckInteger32ValidSmiValue(kScratchRegister);
  Check(valid, "Add-and-smi-convert overflow");
#endif
  lea(dst, Operand(src, src, times_1, constant << kSmiTagSize));
}


void MacroAssembler::SmiToInteger32(Register dst, Register src) {
  ASSERT_EQ(1, kSmiTagSize);
  ASSERT_EQ(0, kSmiTag);
  if (!dst.is(src)) {
    movl(dst, src);
  }
  sarl(dst, Immediate(kSmiTagSize));
}


void MacroAssembler::SmiToInteger64(Register dst, Register src) {
  ASSERT_EQ(1, kSmiTagSize);
  ASSERT_EQ(0, kSmiTag);
  movsxlq(dst, src);
  sar(dst, Immediate(kSmiTagSize));
}


void MacroAssembler::PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
                                                           Register src,
                                                           int power) {
  ASSERT(power >= 0);
  ASSERT(power < 64);
  if (power == 0) {
    SmiToInteger64(dst, src);
    return;
  }
  movsxlq(dst, src);
  shl(dst, Immediate(power - 1));
}

void MacroAssembler::JumpIfSmi(Register src, Label* on_smi) {
  ASSERT_EQ(0, kSmiTag);
  testl(src, Immediate(kSmiTagMask));
  j(zero, on_smi);
}


void MacroAssembler::JumpIfNotSmi(Register src, Label* on_not_smi) {
  Condition not_smi = CheckNotSmi(src);
  j(not_smi, on_not_smi);
}


void MacroAssembler::JumpIfNotPositiveSmi(Register src,
                                          Label* on_not_positive_smi) {
  Condition not_positive_smi = CheckNotPositiveSmi(src);
  j(not_positive_smi, on_not_positive_smi);
}


void MacroAssembler::JumpIfSmiEqualsConstant(Register src,
                                             int constant,
                                             Label* on_equals) {
  if (Smi::IsValid(constant)) {
    Condition are_equal = CheckSmiEqualsConstant(src, constant);
    j(are_equal, on_equals);
  }
}


void MacroAssembler::JumpIfSmiGreaterEqualsConstant(Register src,
                                                    int constant,
                                                    Label* on_greater_equals) {
  if (Smi::IsValid(constant)) {
    Condition are_greater_equal = CheckSmiGreaterEqualsConstant(src, constant);
    j(are_greater_equal, on_greater_equals);
  } else if (constant < Smi::kMinValue) {
    jmp(on_greater_equals);
  }
}


void MacroAssembler::JumpIfNotValidSmiValue(Register src, Label* on_invalid) {
  Condition is_valid = CheckInteger32ValidSmiValue(src);
  j(ReverseCondition(is_valid), on_invalid);
}



void MacroAssembler::JumpIfNotBothSmi(Register src1,
                                      Register src2,
                                      Label* on_not_both_smi) {
  Condition not_both_smi = CheckNotBothSmi(src1, src2);
  j(not_both_smi, on_not_both_smi);
}

Condition MacroAssembler::CheckSmi(Register src) {
  testb(src, Immediate(kSmiTagMask));
  return zero;
}


Condition MacroAssembler::CheckNotSmi(Register src) {
  ASSERT_EQ(0, kSmiTag);
  testb(src, Immediate(kSmiTagMask));
  return not_zero;
}


Condition MacroAssembler::CheckPositiveSmi(Register src) {
  ASSERT_EQ(0, kSmiTag);
  testl(src, Immediate(static_cast<uint32_t>(0x80000000u | kSmiTagMask)));
  return zero;
}


Condition MacroAssembler::CheckNotPositiveSmi(Register src) {
  ASSERT_EQ(0, kSmiTag);
  testl(src, Immediate(static_cast<uint32_t>(0x80000000u | kSmiTagMask)));
  return not_zero;
}


Condition MacroAssembler::CheckBothSmi(Register first, Register second) {
  if (first.is(second)) {
    return CheckSmi(first);
  }
  movl(kScratchRegister, first);
  orl(kScratchRegister, second);
  return CheckSmi(kScratchRegister);
}


Condition MacroAssembler::CheckNotBothSmi(Register first, Register second) {
  ASSERT_EQ(0, kSmiTag);
  if (first.is(second)) {
    return CheckNotSmi(first);
  }
  movl(kScratchRegister, first);
  or_(kScratchRegister, second);
  return CheckNotSmi(kScratchRegister);
}


Condition MacroAssembler::CheckIsMinSmi(Register src) {
  ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
  cmpl(src, Immediate(0x40000000));
  return equal;
}

Condition MacroAssembler::CheckSmiEqualsConstant(Register src, int constant) {
  if (constant == 0) {
    testl(src, src);
    return zero;
  }
  if (Smi::IsValid(constant)) {
    cmpl(src, Immediate(Smi::FromInt(constant)));
    return zero;
  }
  // Can't be equal.
  UNREACHABLE();
  return no_condition;
}


Condition MacroAssembler::CheckSmiGreaterEqualsConstant(Register src,
                                                        int constant) {
  if (constant == 0) {
    testl(src, Immediate(static_cast<uint32_t>(0x80000000u)));
    return positive;
  }
  if (Smi::IsValid(constant)) {
    cmpl(src, Immediate(Smi::FromInt(constant)));
    return greater_equal;
  }
  // Can't be equal.
  UNREACHABLE();
  return no_condition;
}


Condition MacroAssembler::CheckInteger32ValidSmiValue(Register src) {
  // A 32-bit integer value can be converted to a smi if it is in the
  // range [-2^30 .. 2^30-1]. That is equivalent to having its 32-bit
  // representation have bits 30 and 31 be equal.
  cmpl(src, Immediate(0xC0000000u));
  return positive;
}


void MacroAssembler::SmiNeg(Register dst,
                            Register src,
                            Label* on_not_smi_result) {
  if (!dst.is(src)) {
    movl(dst, src);
  }
  negl(dst);
  testl(dst, Immediate(0x7fffffff));
  // If the result is zero or 0x80000000, negation failed to create a smi.
  j(equal, on_not_smi_result);
}


void MacroAssembler::SmiAdd(Register dst,
                            Register src1,
                            Register src2,
                            Label* on_not_smi_result) {
  ASSERT(!dst.is(src2));
  if (!dst.is(src1)) {
    movl(dst, src1);
  }
  addl(dst, src2);
  if (!dst.is(src1)) {
    j(overflow, on_not_smi_result);
  } else {
    Label smi_result;
    j(no_overflow, &smi_result);
    // Restore src1.
    subl(src1, src2);
    jmp(on_not_smi_result);
    bind(&smi_result);
  }
}



void MacroAssembler::SmiSub(Register dst,
                            Register src1,
                            Register src2,
                            Label* on_not_smi_result) {
  ASSERT(!dst.is(src2));
  if (!dst.is(src1)) {
    movl(dst, src1);
  }
  subl(dst, src2);
  if (!dst.is(src1)) {
    j(overflow, on_not_smi_result);
  } else {
    Label smi_result;
    j(no_overflow, &smi_result);
    // Restore src1.
    addl(src1, src2);
    jmp(on_not_smi_result);
    bind(&smi_result);
  }
}


void MacroAssembler::SmiMul(Register dst,
                            Register src1,
                            Register src2,
                            Label* on_not_smi_result) {
  ASSERT(!dst.is(src2));

  if (dst.is(src1)) {
    movq(kScratchRegister, src1);
  }
  SmiToInteger32(dst, src1);

  imull(dst, src2);
  j(overflow, on_not_smi_result);

  // Check for negative zero result.  If product is zero, and one
  // argument is negative, go to slow case.  The frame is unchanged
  // in this block, so local control flow can use a Label rather
  // than a JumpTarget.
  Label non_zero_result;
  testl(dst, dst);
  j(not_zero, &non_zero_result);

  // Test whether either operand is negative (the other must be zero).
  orl(kScratchRegister, src2);
  j(negative, on_not_smi_result);
  bind(&non_zero_result);
}


void MacroAssembler::SmiTryAddConstant(Register dst,
                                       Register src,
                                       int32_t constant,
                                       Label* on_not_smi_result) {
  // Does not assume that src is a smi.
  ASSERT_EQ(1, kSmiTagMask);
  ASSERT_EQ(0, kSmiTag);
  ASSERT(Smi::IsValid(constant));

  Register tmp = (src.is(dst) ? kScratchRegister : dst);
  movl(tmp, src);
  addl(tmp, Immediate(Smi::FromInt(constant)));
  if (tmp.is(kScratchRegister)) {
    j(overflow, on_not_smi_result);
    testl(tmp, Immediate(kSmiTagMask));
    j(not_zero, on_not_smi_result);
    movl(dst, tmp);
  } else {
    movl(kScratchRegister, Immediate(kSmiTagMask));
    cmovl(overflow, dst, kScratchRegister);
    testl(dst, kScratchRegister);
    j(not_zero, on_not_smi_result);
  }
}


void MacroAssembler::SmiAddConstant(Register dst,
                                    Register src,
                                    int32_t constant,
                                    Label* on_not_smi_result) {
  ASSERT(Smi::IsValid(constant));
  if (on_not_smi_result == NULL) {
    if (dst.is(src)) {
      movl(dst, src);
    } else {
      lea(dst, Operand(src, constant << kSmiTagSize));
    }
  } else {
    if (!dst.is(src)) {
      movl(dst, src);
    }
    addl(dst, Immediate(Smi::FromInt(constant)));
    if (!dst.is(src)) {
      j(overflow, on_not_smi_result);
    } else {
      Label result_ok;
      j(no_overflow, &result_ok);
      subl(dst, Immediate(Smi::FromInt(constant)));
      jmp(on_not_smi_result);
      bind(&result_ok);
    }
  }
}


void MacroAssembler::SmiSubConstant(Register dst,
                                    Register src,
                                    int32_t constant,
                                    Label* on_not_smi_result) {
  ASSERT(Smi::IsValid(constant));
  Smi* smi_value = Smi::FromInt(constant);
  if (dst.is(src)) {
    // Optimistic subtract - may change value of dst register,
    // if it has garbage bits in the higher half, but will not change
    // the value as a tagged smi.
    subl(dst, Immediate(smi_value));
    if (on_not_smi_result != NULL) {
      Label add_success;
      j(no_overflow, &add_success);
      addl(dst, Immediate(smi_value));
      jmp(on_not_smi_result);
      bind(&add_success);
    }
  } else {
    UNIMPLEMENTED();  // Not used yet.
  }
}


void MacroAssembler::SmiDiv(Register dst,
                            Register src1,
                            Register src2,
                            Label* on_not_smi_result) {
  ASSERT(!src2.is(rax));
  ASSERT(!src2.is(rdx));
  ASSERT(!src1.is(rdx));

  // Check for 0 divisor (result is +/-Infinity).
  Label positive_divisor;
  testl(src2, src2);
  j(zero, on_not_smi_result);
  j(positive, &positive_divisor);
  // Check for negative zero result.  If the dividend is zero, and the
  // divisor is negative, return a floating point negative zero.
  testl(src1, src1);
  j(zero, on_not_smi_result);
  bind(&positive_divisor);

  // Sign extend src1 into edx:eax.
  if (!src1.is(rax)) {
    movl(rax, src1);
  }
  cdq();

  idivl(src2);
  // Check for the corner case of dividing the most negative smi by
  // -1. We cannot use the overflow flag, since it is not set by
  // idiv instruction.
  ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
  cmpl(rax, Immediate(0x40000000));
  j(equal, on_not_smi_result);
  // Check that the remainder is zero.
  testl(rdx, rdx);
  j(not_zero, on_not_smi_result);
  // Tag the result and store it in the destination register.
  Integer32ToSmi(dst, rax);
}


void MacroAssembler::SmiMod(Register dst,
                            Register src1,
                            Register src2,
                            Label* on_not_smi_result) {
  ASSERT(!dst.is(kScratchRegister));
  ASSERT(!src1.is(kScratchRegister));
  ASSERT(!src2.is(kScratchRegister));
  ASSERT(!src2.is(rax));
  ASSERT(!src2.is(rdx));
  ASSERT(!src1.is(rdx));

  testl(src2, src2);
  j(zero, on_not_smi_result);

  if (src1.is(rax)) {
    // Mist remember the value to see if a zero result should
    // be a negative zero.
    movl(kScratchRegister, rax);
  } else {
    movl(rax, src1);
  }
  // Sign extend eax into edx:eax.
  cdq();
  idivl(src2);
  // Check for a negative zero result.  If the result is zero, and the
  // dividend is negative, return a floating point negative zero.
  Label non_zero_result;
  testl(rdx, rdx);
  j(not_zero, &non_zero_result);
  if (src1.is(rax)) {
    testl(kScratchRegister, kScratchRegister);
  } else {
    testl(src1, src1);
  }
  j(negative, on_not_smi_result);
  bind(&non_zero_result);
  if (!dst.is(rdx)) {
    movl(dst, rdx);
  }
}


void MacroAssembler::SmiNot(Register dst, Register src) {
  if (dst.is(src)) {
    not_(dst);
    // Remove inverted smi-tag.  The mask is sign-extended to 64 bits.
    xor_(src, Immediate(kSmiTagMask));
  } else {
    ASSERT_EQ(0, kSmiTag);
    lea(dst, Operand(src, kSmiTagMask));
    not_(dst);
  }
}


void MacroAssembler::SmiAnd(Register dst, Register src1, Register src2) {
  if (!dst.is(src1)) {
    movl(dst, src1);
  }
  and_(dst, src2);
}


void MacroAssembler::SmiAndConstant(Register dst, Register src, int constant) {
  ASSERT(Smi::IsValid(constant));
  if (!dst.is(src)) {
    movl(dst, src);
  }
  and_(dst, Immediate(Smi::FromInt(constant)));
}


void MacroAssembler::SmiOr(Register dst, Register src1, Register src2) {
  if (!dst.is(src1)) {
    movl(dst, src1);
  }
  or_(dst, src2);
}


void MacroAssembler::SmiOrConstant(Register dst, Register src, int constant) {
  ASSERT(Smi::IsValid(constant));
  if (!dst.is(src)) {
    movl(dst, src);
  }
  or_(dst, Immediate(Smi::FromInt(constant)));
}

void MacroAssembler::SmiXor(Register dst, Register src1, Register src2) {
  if (!dst.is(src1)) {
    movl(dst, src1);
  }
  xor_(dst, src2);
}


void MacroAssembler::SmiXorConstant(Register dst, Register src, int constant) {
  ASSERT(Smi::IsValid(constant));
  if (!dst.is(src)) {
    movl(dst, src);
  }
  xor_(dst, Immediate(Smi::FromInt(constant)));
}



void MacroAssembler::SmiShiftArithmeticRightConstant(Register dst,
                                                     Register src,
                                                     int shift_value) {
  if (shift_value > 0) {
    if (dst.is(src)) {
      sarl(dst, Immediate(shift_value));
      and_(dst, Immediate(~kSmiTagMask));
    } else {
      UNIMPLEMENTED();  // Not used.
    }
  }
}


void MacroAssembler::SmiShiftLogicalRightConstant(Register dst,
                                                  Register src,
                                                  int shift_value,
                                                  Label* on_not_smi_result) {
  // Logic right shift interprets its result as an *unsigned* number.
  if (dst.is(src)) {
    UNIMPLEMENTED();  // Not used.
  } else {
    movl(dst, src);
    // Untag the smi.
    sarl(dst, Immediate(kSmiTagSize));
    if (shift_value < 2) {
      // A negative Smi shifted right two is in the positive Smi range,
      // but if shifted only by zero or one, it never is.
      j(negative, on_not_smi_result);
    }
    if (shift_value > 0) {
      // Do the right shift on the integer value.
      shrl(dst, Immediate(shift_value));
    }
    // Re-tag the result.
    addl(dst, dst);
  }
}


void MacroAssembler::SmiShiftLeftConstant(Register dst,
                                          Register src,
                                          int shift_value,
                                          Label* on_not_smi_result) {
  if (dst.is(src)) {
    UNIMPLEMENTED();  // Not used.
  } else {
    movl(dst, src);
    if (shift_value > 0) {
      // Treat dst as an untagged integer value equal to two times the
      // smi value of src, i.e., already shifted left by one.
      if (shift_value > 1) {
        shll(dst, Immediate(shift_value - 1));
      }
      // Convert int result to Smi, checking that it is in smi range.
      ASSERT(kSmiTagSize == 1);  // adjust code if not the case
      Integer32ToSmi(dst, dst, on_not_smi_result);
    }
  }
}


void MacroAssembler::SmiShiftLeft(Register dst,
                                  Register src1,
                                  Register src2,
                                  Label* on_not_smi_result) {
  ASSERT(!dst.is(rcx));
  Label result_ok;
  // Untag both operands.
  SmiToInteger32(dst, src1);
  SmiToInteger32(rcx, src2);
  shll(dst);
  // Check that the *signed* result fits in a smi.
  Condition is_valid = CheckInteger32ValidSmiValue(dst);
  j(is_valid, &result_ok);
  // Restore the relevant bits of the source registers
  // and call the slow version.
  if (dst.is(src1)) {
    shrl(dst);
    Integer32ToSmi(dst, dst);
  }
  Integer32ToSmi(rcx, rcx);
  jmp(on_not_smi_result);
  bind(&result_ok);
  Integer32ToSmi(dst, dst);
}


void MacroAssembler::SmiShiftLogicalRight(Register dst,
                                          Register src1,
                                          Register src2,
                                          Label* on_not_smi_result) {
  ASSERT(!dst.is(rcx));
  Label result_ok;
  // Untag both operands.
  SmiToInteger32(dst, src1);
  SmiToInteger32(rcx, src2);

  shrl(dst);
  // Check that the *unsigned* result fits in a smi.
  // I.e., that it is a valid positive smi value. The positive smi
  // values are  0..0x3fffffff, i.e., neither of the top-most two
  // bits can be set.
  //
  // These two cases can only happen with shifts by 0 or 1 when
  // handed a valid smi.  If the answer cannot be represented by a
  // smi, restore the left and right arguments, and jump to slow
  // case.  The low bit of the left argument may be lost, but only
  // in a case where it is dropped anyway.
  testl(dst, Immediate(0xc0000000));
  j(zero, &result_ok);
  if (dst.is(src1)) {
    shll(dst);
    Integer32ToSmi(dst, dst);
  }
  Integer32ToSmi(rcx, rcx);
  jmp(on_not_smi_result);
  bind(&result_ok);
  // Smi-tag the result in answer.
  Integer32ToSmi(dst, dst);
}


void MacroAssembler::SmiShiftArithmeticRight(Register dst,
                                             Register src1,
                                             Register src2) {
  ASSERT(!dst.is(rcx));
  // Untag both operands.
  SmiToInteger32(dst, src1);
  SmiToInteger32(rcx, src2);
  // Shift as integer.
  sarl(dst);
  // Retag result.
  Integer32ToSmi(dst, dst);
}


void MacroAssembler::SelectNonSmi(Register dst,
                                  Register src1,
                                  Register src2,
                                  Label* on_not_smis) {
  ASSERT(!dst.is(src1));
  ASSERT(!dst.is(src2));
  // Both operands must not be smis.
#ifdef DEBUG
  Condition not_both_smis = CheckNotBothSmi(src1, src2);
  Check(not_both_smis, "Both registers were smis.");
#endif
  ASSERT_EQ(0, kSmiTag);
  ASSERT_EQ(0, Smi::FromInt(0));
  movq(kScratchRegister, Immediate(kSmiTagMask));
  and_(kScratchRegister, src1);
  testl(kScratchRegister, src2);
  j(not_zero, on_not_smis);
  // One operand is a smi.

  ASSERT_EQ(1, static_cast<int>(kSmiTagMask));
  // kScratchRegister still holds src1 & kSmiTag, which is either zero or one.
  subq(kScratchRegister, Immediate(1));
  // If src1 is a smi, then scratch register all 1s, else it is all 0s.
  movq(dst, src1);
  xor_(dst, src2);
  and_(dst, kScratchRegister);
  // If src1 is a smi, dst holds src1 ^ src2, else it is zero.
  xor_(dst, src1);
  // If src1 is a smi, dst is src2, else it is src1, i.e., a non-smi.
}


SmiIndex MacroAssembler::SmiToIndex(Register dst, Register src, int shift) {
  ASSERT(is_uint6(shift));
  if (shift == 0) {  // times_1.
    SmiToInteger32(dst, src);
    return SmiIndex(dst, times_1);
  }
  if (shift <= 4) {  // 2 - 16 times multiplier is handled using ScaleFactor.
    // We expect that all smis are actually zero-padded. If this holds after
    // checking, this line can be omitted.
    movl(dst, src);  // Ensure that the smi is zero-padded.
    return SmiIndex(dst, static_cast<ScaleFactor>(shift - kSmiTagSize));
  }
  // Shift by shift-kSmiTagSize.
  movl(dst, src);  // Ensure that the smi is zero-padded.
  shl(dst, Immediate(shift - kSmiTagSize));
  return SmiIndex(dst, times_1);
}


SmiIndex MacroAssembler::SmiToNegativeIndex(Register dst,
                                            Register src,
                                            int shift) {
  // Register src holds a positive smi.
  ASSERT(is_uint6(shift));
  if (shift == 0) {  // times_1.
    SmiToInteger32(dst, src);
    neg(dst);
    return SmiIndex(dst, times_1);
  }
  if (shift <= 4) {  // 2 - 16 times multiplier is handled using ScaleFactor.
    movl(dst, src);
    neg(dst);
    return SmiIndex(dst, static_cast<ScaleFactor>(shift - kSmiTagSize));
  }
  // Shift by shift-kSmiTagSize.
  movl(dst, src);
  neg(dst);
  shl(dst, Immediate(shift - kSmiTagSize));
  return SmiIndex(dst, times_1);
}



bool MacroAssembler::IsUnsafeSmi(Smi* value) {
  return false;
}

void MacroAssembler::LoadUnsafeSmi(Register dst, Smi* source) {
  UNIMPLEMENTED();
}


void MacroAssembler::Move(Register dst, Handle<Object> source) {
  ASSERT(!source->IsFailure());
  if (source->IsSmi()) {
    if (IsUnsafeSmi(source)) {
      LoadUnsafeSmi(dst, source);
    } else {
      int32_t smi = static_cast<int32_t>(reinterpret_cast<intptr_t>(*source));
      movq(dst, Immediate(smi));
    }
  } else {
    movq(dst, source, RelocInfo::EMBEDDED_OBJECT);
  }
}


void MacroAssembler::Move(const Operand& dst, Handle<Object> source) {
  if (source->IsSmi()) {
    int32_t smi = static_cast<int32_t>(reinterpret_cast<intptr_t>(*source));
    movq(dst, Immediate(smi));
  } else {
    movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT);
    movq(dst, kScratchRegister);
  }
}


void MacroAssembler::Cmp(Register dst, Handle<Object> source) {
  Move(kScratchRegister, source);
  cmpq(dst, kScratchRegister);
}


void MacroAssembler::Cmp(const Operand& dst, Handle<Object> source) {
  if (source->IsSmi()) {
    if (IsUnsafeSmi(source)) {
      LoadUnsafeSmi(kScratchRegister, source);
      cmpl(dst, kScratchRegister);
    } else {
      // For smi-comparison, it suffices to compare the low 32 bits.
      int32_t smi = static_cast<int32_t>(reinterpret_cast<intptr_t>(*source));
      cmpl(dst, Immediate(smi));
    }
  } else {
    ASSERT(source->IsHeapObject());
    movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT);
    cmpq(dst, kScratchRegister);
  }
}


void MacroAssembler::Push(Handle<Object> source) {
  if (source->IsSmi()) {
    if (IsUnsafeSmi(source)) {
      LoadUnsafeSmi(kScratchRegister, source);
      push(kScratchRegister);
    } else {
      int32_t smi = static_cast<int32_t>(reinterpret_cast<intptr_t>(*source));
      push(Immediate(smi));
    }
  } else {
    ASSERT(source->IsHeapObject());
    movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT);
    push(kScratchRegister);
  }
}


void MacroAssembler::Push(Smi* source) {
  if (IsUnsafeSmi(source)) {
    LoadUnsafeSmi(kScratchRegister, source);
    push(kScratchRegister);
  } else {
    int32_t smi = static_cast<int32_t>(reinterpret_cast<intptr_t>(source));
    push(Immediate(smi));
  }
}


void MacroAssembler::Jump(ExternalReference ext) {
  movq(kScratchRegister, ext);
  jmp(kScratchRegister);
}


void MacroAssembler::Jump(Address destination, RelocInfo::Mode rmode) {
  movq(kScratchRegister, destination, rmode);
  jmp(kScratchRegister);
}


void MacroAssembler::Jump(Handle<Code> code_object, RelocInfo::Mode rmode) {
  ASSERT(RelocInfo::IsCodeTarget(rmode));
  movq(kScratchRegister, code_object, rmode);
#ifdef DEBUG
  Label target;
  bind(&target);
#endif
  jmp(kScratchRegister);
#ifdef DEBUG
  ASSERT_EQ(kCallTargetAddressOffset,
            SizeOfCodeGeneratedSince(&target) + kPointerSize);
#endif
}


void MacroAssembler::Call(ExternalReference ext) {
  movq(kScratchRegister, ext);
  call(kScratchRegister);
}


void MacroAssembler::Call(Address destination, RelocInfo::Mode rmode) {
  movq(kScratchRegister, destination, rmode);
  call(kScratchRegister);
}


void MacroAssembler::Call(Handle<Code> code_object, RelocInfo::Mode rmode) {
  ASSERT(RelocInfo::IsCodeTarget(rmode));
  WriteRecordedPositions();
  movq(kScratchRegister, code_object, rmode);
#ifdef DEBUG
  // Patch target is kPointer size bytes *before* target label.
  Label target;
  bind(&target);
#endif
  call(kScratchRegister);
#ifdef DEBUG
  ASSERT_EQ(kCallTargetAddressOffset,
            SizeOfCodeGeneratedSince(&target) + kPointerSize);
#endif
}


void MacroAssembler::PushTryHandler(CodeLocation try_location,
                                    HandlerType type) {
  // Adjust this code if not the case.
  ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);

  // The pc (return address) is already on TOS.  This code pushes state,
  // frame pointer and current handler.  Check that they are expected
  // next on the stack, in that order.
  ASSERT_EQ(StackHandlerConstants::kStateOffset,
            StackHandlerConstants::kPCOffset - kPointerSize);
  ASSERT_EQ(StackHandlerConstants::kFPOffset,
            StackHandlerConstants::kStateOffset - kPointerSize);
  ASSERT_EQ(StackHandlerConstants::kNextOffset,
            StackHandlerConstants::kFPOffset - kPointerSize);

  if (try_location == IN_JAVASCRIPT) {
    if (type == TRY_CATCH_HANDLER) {
      push(Immediate(StackHandler::TRY_CATCH));
    } else {
      push(Immediate(StackHandler::TRY_FINALLY));
    }
    push(rbp);
  } else {
    ASSERT(try_location == IN_JS_ENTRY);
    // The frame pointer does not point to a JS frame so we save NULL
    // for rbp. We expect the code throwing an exception to check rbp
    // before dereferencing it to restore the context.
    push(Immediate(StackHandler::ENTRY));
    push(Immediate(0));  // NULL frame pointer.
  }
  // Save the current handler.
  movq(kScratchRegister, ExternalReference(Top::k_handler_address));
  push(Operand(kScratchRegister, 0));
  // Link this handler.
  movq(Operand(kScratchRegister, 0), rsp);
}


void MacroAssembler::Ret() {
  ret(0);
}


void MacroAssembler::FCmp() {
  fucompp();
  push(rax);
  fnstsw_ax();
  if (CpuFeatures::IsSupported(CpuFeatures::SAHF)) {
    sahf();
  } else {
    shrl(rax, Immediate(8));
    and_(rax, Immediate(0xFF));
    push(rax);
    popfq();
  }
  pop(rax);
}


void MacroAssembler::CmpObjectType(Register heap_object,
                                   InstanceType type,
                                   Register map) {
  movq(map, FieldOperand(heap_object, HeapObject::kMapOffset));
  CmpInstanceType(map, type);
}


void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
  cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
       Immediate(static_cast<int8_t>(type)));
}


void MacroAssembler::TryGetFunctionPrototype(Register function,
                                             Register result,
                                             Label* miss) {
  // Check that the receiver isn't a smi.
  testl(function, Immediate(kSmiTagMask));
  j(zero, miss);

  // Check that the function really is a function.
  CmpObjectType(function, JS_FUNCTION_TYPE, result);
  j(not_equal, miss);

  // Make sure that the function has an instance prototype.
  Label non_instance;
  testb(FieldOperand(result, Map::kBitFieldOffset),
        Immediate(1 << Map::kHasNonInstancePrototype));
  j(not_zero, &non_instance);

  // Get the prototype or initial map from the function.
  movq(result,
       FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));

  // If the prototype or initial map is the hole, don't return it and
  // simply miss the cache instead. This will allow us to allocate a
  // prototype object on-demand in the runtime system.
  CompareRoot(result, Heap::kTheHoleValueRootIndex);
  j(equal, miss);

  // If the function does not have an initial map, we're done.
  Label done;
  CmpObjectType(result, MAP_TYPE, kScratchRegister);
  j(not_equal, &done);

  // Get the prototype from the initial map.
  movq(result, FieldOperand(result, Map::kPrototypeOffset));
  jmp(&done);

  // Non-instance prototype: Fetch prototype from constructor field
  // in initial map.
  bind(&non_instance);
  movq(result, FieldOperand(result, Map::kConstructorOffset));

  // All done.
  bind(&done);
}


void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
  if (FLAG_native_code_counters && counter->Enabled()) {
    movq(kScratchRegister, ExternalReference(counter));
    movl(Operand(kScratchRegister, 0), Immediate(value));
  }
}


void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
  ASSERT(value > 0);
  if (FLAG_native_code_counters && counter->Enabled()) {
    movq(kScratchRegister, ExternalReference(counter));
    Operand operand(kScratchRegister, 0);
    if (value == 1) {
      incl(operand);
    } else {
      addl(operand, Immediate(value));
    }
  }
}


void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
  ASSERT(value > 0);
  if (FLAG_native_code_counters && counter->Enabled()) {
    movq(kScratchRegister, ExternalReference(counter));
    Operand operand(kScratchRegister, 0);
    if (value == 1) {
      decl(operand);
    } else {
      subl(operand, Immediate(value));
    }
  }
}


#ifdef ENABLE_DEBUGGER_SUPPORT

void MacroAssembler::PushRegistersFromMemory(RegList regs) {
  ASSERT((regs & ~kJSCallerSaved) == 0);
  // Push the content of the memory location to the stack.
  for (int i = 0; i < kNumJSCallerSaved; i++) {
    int r = JSCallerSavedCode(i);
    if ((regs & (1 << r)) != 0) {
      ExternalReference reg_addr =
          ExternalReference(Debug_Address::Register(i));
      movq(kScratchRegister, reg_addr);
      push(Operand(kScratchRegister, 0));
    }
  }
}

void MacroAssembler::SaveRegistersToMemory(RegList regs) {
  ASSERT((regs & ~kJSCallerSaved) == 0);
  // Copy the content of registers to memory location.
  for (int i = 0; i < kNumJSCallerSaved; i++) {
    int r = JSCallerSavedCode(i);
    if ((regs & (1 << r)) != 0) {
      Register reg = { r };
      ExternalReference reg_addr =
          ExternalReference(Debug_Address::Register(i));
      movq(kScratchRegister, reg_addr);
      movq(Operand(kScratchRegister, 0), reg);
    }
  }
}


void MacroAssembler::RestoreRegistersFromMemory(RegList regs) {
  ASSERT((regs & ~kJSCallerSaved) == 0);
  // Copy the content of memory location to registers.
  for (int i = kNumJSCallerSaved - 1; i >= 0; i--) {
    int r = JSCallerSavedCode(i);
    if ((regs & (1 << r)) != 0) {
      Register reg = { r };
      ExternalReference reg_addr =
          ExternalReference(Debug_Address::Register(i));
      movq(kScratchRegister, reg_addr);
      movq(reg, Operand(kScratchRegister, 0));
    }
  }
}


void MacroAssembler::PopRegistersToMemory(RegList regs) {
  ASSERT((regs & ~kJSCallerSaved) == 0);
  // Pop the content from the stack to the memory location.
  for (int i = kNumJSCallerSaved - 1; i >= 0; i--) {
    int r = JSCallerSavedCode(i);
    if ((regs & (1 << r)) != 0) {
      ExternalReference reg_addr =
          ExternalReference(Debug_Address::Register(i));
      movq(kScratchRegister, reg_addr);
      pop(Operand(kScratchRegister, 0));
    }
  }
}


void MacroAssembler::CopyRegistersFromStackToMemory(Register base,
                                                    Register scratch,
                                                    RegList regs) {
  ASSERT(!scratch.is(kScratchRegister));
  ASSERT(!base.is(kScratchRegister));
  ASSERT(!base.is(scratch));
  ASSERT((regs & ~kJSCallerSaved) == 0);
  // Copy the content of the stack to the memory location and adjust base.
  for (int i = kNumJSCallerSaved - 1; i >= 0; i--) {
    int r = JSCallerSavedCode(i);
    if ((regs & (1 << r)) != 0) {
      movq(scratch, Operand(base, 0));
      ExternalReference reg_addr =
          ExternalReference(Debug_Address::Register(i));
      movq(kScratchRegister, reg_addr);
      movq(Operand(kScratchRegister, 0), scratch);
      lea(base, Operand(base, kPointerSize));
    }
  }
}

#endif  // ENABLE_DEBUGGER_SUPPORT


void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag) {
  bool resolved;
  Handle<Code> code = ResolveBuiltin(id, &resolved);

  // Calls are not allowed in some stubs.
  ASSERT(flag == JUMP_FUNCTION || allow_stub_calls());

  // Rely on the assertion to check that the number of provided
  // arguments match the expected number of arguments. Fake a
  // parameter count to avoid emitting code to do the check.
  ParameterCount expected(0);
  InvokeCode(Handle<Code>(code), expected, expected,
             RelocInfo::CODE_TARGET, flag);

  const char* name = Builtins::GetName(id);
  int argc = Builtins::GetArgumentsCount(id);
  // The target address for the jump is stored as an immediate at offset
  // kInvokeCodeAddressOffset.
  if (!resolved) {
    uint32_t flags =
        Bootstrapper::FixupFlagsArgumentsCount::encode(argc) |
        Bootstrapper::FixupFlagsIsPCRelative::encode(false) |
        Bootstrapper::FixupFlagsUseCodeObject::encode(false);
    Unresolved entry =
        { pc_offset() - kCallTargetAddressOffset, flags, name };
    unresolved_.Add(entry);
  }
}


void MacroAssembler::InvokePrologue(const ParameterCount& expected,
                                    const ParameterCount& actual,
                                    Handle<Code> code_constant,
                                    Register code_register,
                                    Label* done,
                                    InvokeFlag flag) {
  bool definitely_matches = false;
  Label invoke;
  if (expected.is_immediate()) {
    ASSERT(actual.is_immediate());
    if (expected.immediate() == actual.immediate()) {
      definitely_matches = true;
    } else {
      movq(rax, Immediate(actual.immediate()));
      if (expected.immediate() ==
          SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
        // Don't worry about adapting arguments for built-ins that
        // don't want that done. Skip adaption code by making it look
        // like we have a match between expected and actual number of
        // arguments.
        definitely_matches = true;
      } else {
        movq(rbx, Immediate(expected.immediate()));
      }
    }
  } else {
    if (actual.is_immediate()) {
      // Expected is in register, actual is immediate. This is the
      // case when we invoke function values without going through the
      // IC mechanism.
      cmpq(expected.reg(), Immediate(actual.immediate()));
      j(equal, &invoke);
      ASSERT(expected.reg().is(rbx));
      movq(rax, Immediate(actual.immediate()));
    } else if (!expected.reg().is(actual.reg())) {
      // Both expected and actual are in (different) registers. This
      // is the case when we invoke functions using call and apply.
      cmpq(expected.reg(), actual.reg());
      j(equal, &invoke);
      ASSERT(actual.reg().is(rax));
      ASSERT(expected.reg().is(rbx));
    }
  }

  if (!definitely_matches) {
    Handle<Code> adaptor =
        Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
    if (!code_constant.is_null()) {
      movq(rdx, code_constant, RelocInfo::EMBEDDED_OBJECT);
      addq(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag));
    } else if (!code_register.is(rdx)) {
      movq(rdx, code_register);
    }

    if (flag == CALL_FUNCTION) {
      Call(adaptor, RelocInfo::CODE_TARGET);
      jmp(done);
    } else {
      Jump(adaptor, RelocInfo::CODE_TARGET);
    }
    bind(&invoke);
  }
}


void MacroAssembler::InvokeCode(Register code,
                                const ParameterCount& expected,
                                const ParameterCount& actual,
                                InvokeFlag flag) {
  Label done;
  InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag);
  if (flag == CALL_FUNCTION) {
    call(code);
  } else {
    ASSERT(flag == JUMP_FUNCTION);
    jmp(code);
  }
  bind(&done);
}


void MacroAssembler::InvokeCode(Handle<Code> code,
                                const ParameterCount& expected,
                                const ParameterCount& actual,
                                RelocInfo::Mode rmode,
                                InvokeFlag flag) {
  Label done;
  Register dummy = rax;
  InvokePrologue(expected, actual, code, dummy, &done, flag);
  if (flag == CALL_FUNCTION) {
    Call(code, rmode);
  } else {
    ASSERT(flag == JUMP_FUNCTION);
    Jump(code, rmode);
  }
  bind(&done);
}


void MacroAssembler::InvokeFunction(Register function,
                                    const ParameterCount& actual,
                                    InvokeFlag flag) {
  ASSERT(function.is(rdi));
  movq(rdx, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
  movq(rsi, FieldOperand(function, JSFunction::kContextOffset));
  movsxlq(rbx,
          FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset));
  movq(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset));
  // Advances rdx to the end of the Code object header, to the start of
  // the executable code.
  lea(rdx, FieldOperand(rdx, Code::kHeaderSize));

  ParameterCount expected(rbx);
  InvokeCode(rdx, expected, actual, flag);
}


void MacroAssembler::EnterFrame(StackFrame::Type type) {
  push(rbp);
  movq(rbp, rsp);
  push(rsi);  // Context.
  push(Immediate(Smi::FromInt(type)));
  movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT);
  push(kScratchRegister);
  if (FLAG_debug_code) {
    movq(kScratchRegister,
         Factory::undefined_value(),
         RelocInfo::EMBEDDED_OBJECT);
    cmpq(Operand(rsp, 0), kScratchRegister);
    Check(not_equal, "code object not properly patched");
  }
}


void MacroAssembler::LeaveFrame(StackFrame::Type type) {
  if (FLAG_debug_code) {
    movq(kScratchRegister, Immediate(Smi::FromInt(type)));
    cmpq(Operand(rbp, StandardFrameConstants::kMarkerOffset), kScratchRegister);
    Check(equal, "stack frame types must match");
  }
  movq(rsp, rbp);
  pop(rbp);
}



void MacroAssembler::EnterExitFrame(StackFrame::Type type, int result_size) {
  ASSERT(type == StackFrame::EXIT || type == StackFrame::EXIT_DEBUG);

  // Setup the frame structure on the stack.
  // All constants are relative to the frame pointer of the exit frame.
  ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize);
  ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize);
  ASSERT(ExitFrameConstants::kCallerFPOffset ==  0 * kPointerSize);
  push(rbp);
  movq(rbp, rsp);

  // Reserve room for entry stack pointer and push the debug marker.
  ASSERT(ExitFrameConstants::kSPOffset  == -1 * kPointerSize);
  push(Immediate(0));  // saved entry sp, patched before call
  push(Immediate(type == StackFrame::EXIT_DEBUG ? 1 : 0));

  // Save the frame pointer and the context in top.
  ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address);
  ExternalReference context_address(Top::k_context_address);
  movq(r14, rax);  // Backup rax before we use it.

  movq(rax, rbp);
  store_rax(c_entry_fp_address);
  movq(rax, rsi);
  store_rax(context_address);

  // Setup argv in callee-saved register r15. It is reused in LeaveExitFrame,
  // so it must be retained across the C-call.
  int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
  lea(r15, Operand(rbp, r14, times_pointer_size, offset));

#ifdef ENABLE_DEBUGGER_SUPPORT
  // Save the state of all registers to the stack from the memory
  // location. This is needed to allow nested break points.
  if (type == StackFrame::EXIT_DEBUG) {
    // TODO(1243899): This should be symmetric to
    // CopyRegistersFromStackToMemory() but it isn't! esp is assumed
    // correct here, but computed for the other call. Very error
    // prone! FIX THIS.  Actually there are deeper problems with
    // register saving than this asymmetry (see the bug report
    // associated with this issue).
    PushRegistersFromMemory(kJSCallerSaved);
  }
#endif

#ifdef _WIN64
  // Reserve space on stack for result and argument structures, if necessary.
  int result_stack_space = (result_size < 2) ? 0 : result_size * kPointerSize;
  // Reserve space for the Arguments object.  The Windows 64-bit ABI
  // requires us to pass this structure as a pointer to its location on
  // the stack.  The structure contains 2 values.
  int argument_stack_space = 2 * kPointerSize;
  // We also need backing space for 4 parameters, even though
  // we only pass one or two parameter, and it is in a register.
  int argument_mirror_space = 4 * kPointerSize;
  int total_stack_space =
      argument_mirror_space + argument_stack_space + result_stack_space;
  subq(rsp, Immediate(total_stack_space));
#endif

  // Get the required frame alignment for the OS.
  static const int kFrameAlignment = OS::ActivationFrameAlignment();
  if (kFrameAlignment > 0) {
    ASSERT(IsPowerOf2(kFrameAlignment));
    movq(kScratchRegister, Immediate(-kFrameAlignment));
    and_(rsp, kScratchRegister);
  }

  // Patch the saved entry sp.
  movq(Operand(rbp, ExitFrameConstants::kSPOffset), rsp);
}


void MacroAssembler::LeaveExitFrame(StackFrame::Type type, int result_size) {
  // Registers:
  // r15 : argv
#ifdef ENABLE_DEBUGGER_SUPPORT
  // Restore the memory copy of the registers by digging them out from
  // the stack. This is needed to allow nested break points.
  if (type == StackFrame::EXIT_DEBUG) {
    // It's okay to clobber register rbx below because we don't need
    // the function pointer after this.
    const int kCallerSavedSize = kNumJSCallerSaved * kPointerSize;
    int kOffset = ExitFrameConstants::kDebugMarkOffset - kCallerSavedSize;
    lea(rbx, Operand(rbp, kOffset));
    CopyRegistersFromStackToMemory(rbx, rcx, kJSCallerSaved);
  }
#endif

  // Get the return address from the stack and restore the frame pointer.
  movq(rcx, Operand(rbp, 1 * kPointerSize));
  movq(rbp, Operand(rbp, 0 * kPointerSize));

#ifdef _WIN64
  // If return value is on the stack, pop it to registers.
  if (result_size > 1) {
    ASSERT_EQ(2, result_size);
    // Position above 4 argument mirrors and arguments object.
    movq(rax, Operand(rsp, 6 * kPointerSize));
    movq(rdx, Operand(rsp, 7 * kPointerSize));
  }
#endif

  // Pop everything up to and including the arguments and the receiver
  // from the caller stack.
  lea(rsp, Operand(r15, 1 * kPointerSize));

  // Restore current context from top and clear it in debug mode.
  ExternalReference context_address(Top::k_context_address);
  movq(kScratchRegister, context_address);
  movq(rsi, Operand(kScratchRegister, 0));
#ifdef DEBUG
  movq(Operand(kScratchRegister, 0), Immediate(0));
#endif

  // Push the return address to get ready to return.
  push(rcx);

  // Clear the top frame.
  ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address);
  movq(kScratchRegister, c_entry_fp_address);
  movq(Operand(kScratchRegister, 0), Immediate(0));
}


Register MacroAssembler::CheckMaps(JSObject* object, Register object_reg,
                                   JSObject* holder, Register holder_reg,
                                   Register scratch,
                                   Label* miss) {
  // Make sure there's no overlap between scratch and the other
  // registers.
  ASSERT(!scratch.is(object_reg) && !scratch.is(holder_reg));

  // Keep track of the current object in register reg.  On the first
  // iteration, reg is an alias for object_reg, on later iterations,
  // it is an alias for holder_reg.
  Register reg = object_reg;
  int depth = 1;

  // Check the maps in the prototype chain.
  // Traverse the prototype chain from the object and do map checks.
  while (object != holder) {
    depth++;

    // Only global objects and objects that do not require access
    // checks are allowed in stubs.
    ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());

    JSObject* prototype = JSObject::cast(object->GetPrototype());
    if (Heap::InNewSpace(prototype)) {
      // Get the map of the current object.
      movq(scratch, FieldOperand(reg, HeapObject::kMapOffset));
      Cmp(scratch, Handle<Map>(object->map()));
      // Branch on the result of the map check.
      j(not_equal, miss);
      // Check access rights to the global object.  This has to happen
      // after the map check so that we know that the object is
      // actually a global object.
      if (object->IsJSGlobalProxy()) {
        CheckAccessGlobalProxy(reg, scratch, miss);

        // Restore scratch register to be the map of the object.
        // We load the prototype from the map in the scratch register.
        movq(scratch, FieldOperand(reg, HeapObject::kMapOffset));
      }
      // The prototype is in new space; we cannot store a reference
      // to it in the code. Load it from the map.
      reg = holder_reg;  // from now the object is in holder_reg
      movq(reg, FieldOperand(scratch, Map::kPrototypeOffset));

    } else {
      // Check the map of the current object.
      Cmp(FieldOperand(reg, HeapObject::kMapOffset),
          Handle<Map>(object->map()));
      // Branch on the result of the map check.
      j(not_equal, miss);
      // Check access rights to the global object.  This has to happen
      // after the map check so that we know that the object is
      // actually a global object.
      if (object->IsJSGlobalProxy()) {
        CheckAccessGlobalProxy(reg, scratch, miss);
      }
      // The prototype is in old space; load it directly.
      reg = holder_reg;  // from now the object is in holder_reg
      Move(reg, Handle<JSObject>(prototype));
    }

    // Go to the next object in the prototype chain.
    object = prototype;
  }

  // Check the holder map.
  Cmp(FieldOperand(reg, HeapObject::kMapOffset),
      Handle<Map>(holder->map()));
  j(not_equal, miss);

  // Log the check depth.
  LOG(IntEvent("check-maps-depth", depth));

  // Perform security check for access to the global object and return
  // the holder register.
  ASSERT(object == holder);
  ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
  if (object->IsJSGlobalProxy()) {
    CheckAccessGlobalProxy(reg, scratch, miss);
  }
  return reg;
}




void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
                                            Register scratch,
                                            Label* miss) {
  Label same_contexts;

  ASSERT(!holder_reg.is(scratch));
  ASSERT(!scratch.is(kScratchRegister));
  // Load current lexical context from the stack frame.
  movq(scratch, Operand(rbp, StandardFrameConstants::kContextOffset));

  // When generating debug code, make sure the lexical context is set.
  if (FLAG_debug_code) {
    cmpq(scratch, Immediate(0));
    Check(not_equal, "we should not have an empty lexical context");
  }
  // Load the global context of the current context.
  int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
  movq(scratch, FieldOperand(scratch, offset));
  movq(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset));

  // Check the context is a global context.
  if (FLAG_debug_code) {
    Cmp(FieldOperand(scratch, HeapObject::kMapOffset),
        Factory::global_context_map());
    Check(equal, "JSGlobalObject::global_context should be a global context.");
  }

  // Check if both contexts are the same.
  cmpq(scratch, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
  j(equal, &same_contexts);

  // Compare security tokens.
  // Check that the security token in the calling global object is
  // compatible with the security token in the receiving global
  // object.

  // Check the context is a global context.
  if (FLAG_debug_code) {
    // Preserve original value of holder_reg.
    push(holder_reg);
    movq(holder_reg, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
    CompareRoot(holder_reg, Heap::kNullValueRootIndex);
    Check(not_equal, "JSGlobalProxy::context() should not be null.");

    // Read the first word and compare to global_context_map(),
    movq(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset));
    CompareRoot(holder_reg, Heap::kGlobalContextMapRootIndex);
    Check(equal, "JSGlobalObject::global_context should be a global context.");
    pop(holder_reg);
  }

  movq(kScratchRegister,
       FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
  int token_offset = Context::kHeaderSize +
                     Context::SECURITY_TOKEN_INDEX * kPointerSize;
  movq(scratch, FieldOperand(scratch, token_offset));
  cmpq(scratch, FieldOperand(kScratchRegister, token_offset));
  j(not_equal, miss);

  bind(&same_contexts);
}


void MacroAssembler::LoadAllocationTopHelper(Register result,
                                             Register result_end,
                                             Register scratch,
                                             AllocationFlags flags) {
  ExternalReference new_space_allocation_top =
      ExternalReference::new_space_allocation_top_address();

  // Just return if allocation top is already known.
  if ((flags & RESULT_CONTAINS_TOP) != 0) {
    // No use of scratch if allocation top is provided.
    ASSERT(scratch.is(no_reg));
#ifdef DEBUG
    // Assert that result actually contains top on entry.
    movq(kScratchRegister, new_space_allocation_top);
    cmpq(result, Operand(kScratchRegister, 0));
    Check(equal, "Unexpected allocation top");
#endif
    return;
  }

  // Move address of new object to result. Use scratch register if available.
  if (scratch.is(no_reg)) {
    movq(kScratchRegister, new_space_allocation_top);
    movq(result, Operand(kScratchRegister, 0));
  } else {
    ASSERT(!scratch.is(result_end));
    movq(scratch, new_space_allocation_top);
    movq(result, Operand(scratch, 0));
  }
}


void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
                                               Register scratch) {
  ExternalReference new_space_allocation_top =
      ExternalReference::new_space_allocation_top_address();

  // Update new top.
  if (result_end.is(rax)) {
    // rax can be stored directly to a memory location.
    store_rax(new_space_allocation_top);
  } else {
    // Register required - use scratch provided if available.
    if (scratch.is(no_reg)) {
      movq(kScratchRegister, new_space_allocation_top);
      movq(Operand(kScratchRegister, 0), result_end);
    } else {
      movq(Operand(scratch, 0), result_end);
    }
  }
}


void MacroAssembler::AllocateInNewSpace(int object_size,
                                        Register result,
                                        Register result_end,
                                        Register scratch,
                                        Label* gc_required,
                                        AllocationFlags flags) {
  ASSERT(!result.is(result_end));

  // Load address of new object into result.
  LoadAllocationTopHelper(result, result_end, scratch, flags);

  // Calculate new top and bail out if new space is exhausted.
  ExternalReference new_space_allocation_limit =
      ExternalReference::new_space_allocation_limit_address();
  lea(result_end, Operand(result, object_size));
  movq(kScratchRegister, new_space_allocation_limit);
  cmpq(result_end, Operand(kScratchRegister, 0));
  j(above, gc_required);

  // Update allocation top.
  UpdateAllocationTopHelper(result_end, scratch);

  // Tag the result if requested.
  if ((flags & TAG_OBJECT) != 0) {
    addq(result, Immediate(kHeapObjectTag));
  }
}


void MacroAssembler::AllocateInNewSpace(int header_size,
                                        ScaleFactor element_size,
                                        Register element_count,
                                        Register result,
                                        Register result_end,
                                        Register scratch,
                                        Label* gc_required,
                                        AllocationFlags flags) {
  ASSERT(!result.is(result_end));

  // Load address of new object into result.
  LoadAllocationTopHelper(result, result_end, scratch, flags);

  // Calculate new top and bail out if new space is exhausted.
  ExternalReference new_space_allocation_limit =
      ExternalReference::new_space_allocation_limit_address();
  lea(result_end, Operand(result, element_count, element_size, header_size));
  movq(kScratchRegister, new_space_allocation_limit);
  cmpq(result_end, Operand(kScratchRegister, 0));
  j(above, gc_required);

  // Update allocation top.
  UpdateAllocationTopHelper(result_end, scratch);

  // Tag the result if requested.
  if ((flags & TAG_OBJECT) != 0) {
    addq(result, Immediate(kHeapObjectTag));
  }
}


void MacroAssembler::AllocateInNewSpace(Register object_size,
                                        Register result,
                                        Register result_end,
                                        Register scratch,
                                        Label* gc_required,
                                        AllocationFlags flags) {
  // Load address of new object into result.
  LoadAllocationTopHelper(result, result_end, scratch, flags);

  // Calculate new top and bail out if new space is exhausted.
  ExternalReference new_space_allocation_limit =
      ExternalReference::new_space_allocation_limit_address();
  if (!object_size.is(result_end)) {
    movq(result_end, object_size);
  }
  addq(result_end, result);
  movq(kScratchRegister, new_space_allocation_limit);
  cmpq(result_end, Operand(kScratchRegister, 0));
  j(above, gc_required);

  // Update allocation top.
  UpdateAllocationTopHelper(result_end, scratch);

  // Tag the result if requested.
  if ((flags & TAG_OBJECT) != 0) {
    addq(result, Immediate(kHeapObjectTag));
  }
}


void MacroAssembler::UndoAllocationInNewSpace(Register object) {
  ExternalReference new_space_allocation_top =
      ExternalReference::new_space_allocation_top_address();

  // Make sure the object has no tag before resetting top.
  and_(object, Immediate(~kHeapObjectTagMask));
  movq(kScratchRegister, new_space_allocation_top);
#ifdef DEBUG
  cmpq(object, Operand(kScratchRegister, 0));
  Check(below, "Undo allocation of non allocated memory");
#endif
  movq(Operand(kScratchRegister, 0), object);
}


CodePatcher::CodePatcher(byte* address, int size)
    : address_(address), size_(size), masm_(address, size + Assembler::kGap) {
  // Create a new macro assembler pointing to the address of the code to patch.
  // The size is adjusted with kGap on order for the assembler to generate size
  // bytes of instructions without failing with buffer size constraints.
  ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}


CodePatcher::~CodePatcher() {
  // Indicate that code has changed.
  CPU::FlushICache(address_, size_);

  // Check that the code was patched as expected.
  ASSERT(masm_.pc_ == address_ + size_);
  ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}


} }  // namespace v8::internal