summaryrefslogtreecommitdiffstats
path: root/WebCore/platform/Timer.cpp
blob: 5f9fe275884b5a997fadb88e76e218f430a60879 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
/*
 * Copyright (C) 2006, 2008 Apple Inc. All rights reserved.
 * Copyright (C) 2009 Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE COMPUTER, INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#include "config.h"
#include "Timer.h"

#include "SharedTimer.h"
#include "ThreadGlobalData.h"
#include "ThreadTimers.h"
#include <limits.h>
#include <limits>
#include <math.h>
#include <wtf/CurrentTime.h>
#include <wtf/HashSet.h>
#include <wtf/Vector.h>

using namespace std;

namespace WebCore {

// Timers are stored in a heap data structure, used to implement a priority queue.
// This allows us to efficiently determine which timer needs to fire the soonest.
// Then we set a single shared system timer to fire at that time.
//
// When a timer's "next fire time" changes, we need to move it around in the priority queue.

// Simple accessors to thread-specific data.
static Vector<TimerBase*>& timerHeap()
{
    return threadGlobalData().threadTimers().timerHeap();
}

// Class to represent elements in the heap when calling the standard library heap algorithms.
// Maintains the m_heapIndex value in the timers themselves, which allows us to do efficient
// modification of the heap.
class TimerHeapElement {
public:
    explicit TimerHeapElement(int i)
        : m_index(i)
        , m_timer(timerHeap()[m_index])
    { 
        checkConsistency(); 
    }

    TimerHeapElement(const TimerHeapElement&);
    TimerHeapElement& operator=(const TimerHeapElement&);

    TimerBase* timer() const { return m_timer; }

    void checkConsistency() const
    {
        ASSERT(m_index >= 0);
        ASSERT(m_index < static_cast<int>(timerHeap().size()));
    }

private:
    TimerHeapElement();

    int m_index;
    TimerBase* m_timer;
};

inline TimerHeapElement::TimerHeapElement(const TimerHeapElement& o)
    : m_index(-1), m_timer(o.timer())
{
}

inline TimerHeapElement& TimerHeapElement::operator=(const TimerHeapElement& o)
{
    TimerBase* t = o.timer();
    m_timer = t;
    if (m_index != -1) {
        checkConsistency();
        timerHeap()[m_index] = t;
        t->m_heapIndex = m_index;
    }
    return *this;
}

inline bool operator<(const TimerHeapElement& a, const TimerHeapElement& b)
{
    // The comparisons below are "backwards" because the heap puts the largest 
    // element first and we want the lowest time to be the first one in the heap.
    double aFireTime = a.timer()->m_nextFireTime;
    double bFireTime = b.timer()->m_nextFireTime;
    if (bFireTime != aFireTime)
        return bFireTime < aFireTime;
    
    // We need to look at the difference of the insertion orders instead of comparing the two 
    // outright in case of overflow. 
    unsigned difference = a.timer()->m_heapInsertionOrder - b.timer()->m_heapInsertionOrder;
    return difference < UINT_MAX / 2;
}

// ----------------

// Class to represent iterators in the heap when calling the standard library heap algorithms.
// Returns TimerHeapElement for elements in the heap rather than the TimerBase pointers themselves.
class TimerHeapIterator : public iterator<random_access_iterator_tag, TimerHeapElement, int> {
public:
    TimerHeapIterator() : m_index(-1) { }
    TimerHeapIterator(int i) : m_index(i) { checkConsistency(); }

    TimerHeapIterator& operator++() { checkConsistency(); ++m_index; checkConsistency(); return *this; }
    TimerHeapIterator operator++(int) { checkConsistency(); checkConsistency(1); return m_index++; }

    TimerHeapIterator& operator--() { checkConsistency(); --m_index; checkConsistency(); return *this; }
    TimerHeapIterator operator--(int) { checkConsistency(); checkConsistency(-1); return m_index--; }

    TimerHeapIterator& operator+=(int i) { checkConsistency(); m_index += i; checkConsistency(); return *this; }
    TimerHeapIterator& operator-=(int i) { checkConsistency(); m_index -= i; checkConsistency(); return *this; }

    TimerHeapElement operator*() const { return TimerHeapElement(m_index); }
    TimerHeapElement operator[](int i) const { return TimerHeapElement(m_index + i); }

    int index() const { return m_index; }

    void checkConsistency(int offset = 0) const
    {
        ASSERT_UNUSED(offset, m_index + offset >= 0);
        ASSERT_UNUSED(offset, m_index + offset <= static_cast<int>(timerHeap().size()));
    }

private:
    int m_index;
};

inline bool operator==(TimerHeapIterator a, TimerHeapIterator b) { return a.index() == b.index(); }
inline bool operator!=(TimerHeapIterator a, TimerHeapIterator b) { return a.index() != b.index(); }
inline bool operator<(TimerHeapIterator a, TimerHeapIterator b) { return a.index() < b.index(); }

inline TimerHeapIterator operator+(TimerHeapIterator a, int b) { return a.index() + b; }
inline TimerHeapIterator operator+(int a, TimerHeapIterator b) { return a + b.index(); }

inline TimerHeapIterator operator-(TimerHeapIterator a, int b) { return a.index() - b; }
inline int operator-(TimerHeapIterator a, TimerHeapIterator b) { return a.index() - b.index(); }

// ----------------

TimerBase::TimerBase()
    : m_nextFireTime(0)
    , m_repeatInterval(0)
    , m_heapIndex(-1)
#ifndef NDEBUG
    , m_thread(currentThread())
#endif
{
}

TimerBase::~TimerBase()
{
    stop();
    ASSERT(!inHeap());
}

void TimerBase::start(double nextFireInterval, double repeatInterval)
{
    ASSERT(m_thread == currentThread());

    m_repeatInterval = repeatInterval;
    setNextFireTime(currentTime() + nextFireInterval);
}

void TimerBase::stop()
{
    ASSERT(m_thread == currentThread());

    m_repeatInterval = 0;
    setNextFireTime(0);

    ASSERT(m_nextFireTime == 0);
    ASSERT(m_repeatInterval == 0);
    ASSERT(!inHeap());
}

double TimerBase::nextFireInterval() const
{
    ASSERT(isActive());
    double current = currentTime();
    if (m_nextFireTime < current)
        return 0;
    return m_nextFireTime - current;
}

inline void TimerBase::checkHeapIndex() const
{
    ASSERT(!timerHeap().isEmpty());
    ASSERT(m_heapIndex >= 0);
    ASSERT(m_heapIndex < static_cast<int>(timerHeap().size()));
    ASSERT(timerHeap()[m_heapIndex] == this);
}

inline void TimerBase::checkConsistency() const
{
    // Timers should be in the heap if and only if they have a non-zero next fire time.
    ASSERT(inHeap() == (m_nextFireTime != 0));
    if (inHeap())
        checkHeapIndex();
}

void TimerBase::heapDecreaseKey()
{
    ASSERT(m_nextFireTime != 0);
    checkHeapIndex();
    push_heap(TimerHeapIterator(0), TimerHeapIterator(m_heapIndex + 1));
    checkHeapIndex();
}

inline void TimerBase::heapDelete()
{
    ASSERT(m_nextFireTime == 0);
    heapPop();
    timerHeap().removeLast();
    m_heapIndex = -1;
}

void TimerBase::heapDeleteMin()
{
    ASSERT(m_nextFireTime == 0);
    heapPopMin();
    timerHeap().removeLast();
    m_heapIndex = -1;
}

inline void TimerBase::heapIncreaseKey()
{
    ASSERT(m_nextFireTime != 0);
    heapPop();
    heapDecreaseKey();
}

inline void TimerBase::heapInsert()
{
    ASSERT(!inHeap());
    timerHeap().append(this);
    m_heapIndex = timerHeap().size() - 1;
    heapDecreaseKey();
}

inline void TimerBase::heapPop()
{
    // Temporarily force this timer to have the minimum key so we can pop it.
    double fireTime = m_nextFireTime;
    m_nextFireTime = -numeric_limits<double>::infinity();
    heapDecreaseKey();
    heapPopMin();
    m_nextFireTime = fireTime;
}

void TimerBase::heapPopMin()
{
    ASSERT(this == timerHeap().first());
    checkHeapIndex();
    pop_heap(TimerHeapIterator(0), TimerHeapIterator(timerHeap().size()));
    checkHeapIndex();
    ASSERT(this == timerHeap().last());
}

void TimerBase::setNextFireTime(double newTime)
{
    ASSERT(m_thread == currentThread());

    // Keep heap valid while changing the next-fire time.
    double oldTime = m_nextFireTime;
    if (oldTime != newTime) {
        m_nextFireTime = newTime;
        static unsigned currentHeapInsertionOrder;
        m_heapInsertionOrder = currentHeapInsertionOrder++;

        bool wasFirstTimerInHeap = m_heapIndex == 0;

        if (oldTime == 0)
            heapInsert();
        else if (newTime == 0)
            heapDelete();
        else if (newTime < oldTime)
            heapDecreaseKey();
        else
            heapIncreaseKey();

        bool isFirstTimerInHeap = m_heapIndex == 0;

        if (wasFirstTimerInHeap || isFirstTimerInHeap)
            threadGlobalData().threadTimers().updateSharedTimer();
    }

    checkConsistency();
}

void TimerBase::fireTimersInNestedEventLoop()
{
    // Redirect to ThreadTimers.
    threadGlobalData().threadTimers().fireTimersInNestedEventLoop();
}

} // namespace WebCore