1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
|
/*
* Copyright (C) 2006 Samuel Weinig (sam.weinig@gmail.com)
* Copyright (C) 2004, 2005, 2006, 2008 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "BitmapImage.h"
#include "FloatRect.h"
#include "ImageObserver.h"
#include "IntRect.h"
#include "MIMETypeRegistry.h"
#include "PlatformString.h"
#include "Timer.h"
#include <wtf/CurrentTime.h>
#include <wtf/Vector.h>
namespace WebCore {
static int frameBytes(const IntSize& frameSize)
{
return frameSize.width() * frameSize.height() * 4;
}
BitmapImage::BitmapImage(ImageObserver* observer)
: Image(observer)
, m_currentFrame(0)
, m_frames(0)
, m_frameTimer(0)
, m_repetitionCount(cAnimationNone)
, m_repetitionCountStatus(Unknown)
, m_repetitionsComplete(0)
, m_desiredFrameStartTime(0)
, m_isSolidColor(false)
, m_checkedForSolidColor(false)
, m_animationFinished(false)
, m_allDataReceived(false)
, m_haveSize(false)
, m_sizeAvailable(false)
, m_hasUniformFrameSize(true)
, m_decodedSize(0)
, m_haveFrameCount(false)
, m_frameCount(0)
{
initPlatformData();
}
BitmapImage::~BitmapImage()
{
invalidatePlatformData();
stopAnimation();
}
void BitmapImage::destroyDecodedData(bool destroyAll)
{
int framesCleared = 0;
const size_t clearBeforeFrame = destroyAll ? m_frames.size() : m_currentFrame;
for (size_t i = 0; i < clearBeforeFrame; ++i) {
// The underlying frame isn't actually changing (we're just trying to
// save the memory for the framebuffer data), so we don't need to clear
// the metadata.
if (m_frames[i].clear(false))
++framesCleared;
}
destroyMetadataAndNotify(framesCleared);
m_source.clear(destroyAll, clearBeforeFrame, data(), m_allDataReceived);
return;
}
void BitmapImage::destroyDecodedDataIfNecessary(bool destroyAll)
{
// Animated images >5MB are considered large enough that we'll only hang on
// to one frame at a time.
static const unsigned cLargeAnimationCutoff = 5242880;
if (m_frames.size() * frameBytes(m_size) > cLargeAnimationCutoff)
destroyDecodedData(destroyAll);
}
void BitmapImage::destroyMetadataAndNotify(int framesCleared)
{
m_isSolidColor = false;
invalidatePlatformData();
const int deltaBytes = framesCleared * -frameBytes(m_size);
m_decodedSize += deltaBytes;
if (deltaBytes && imageObserver())
imageObserver()->decodedSizeChanged(this, deltaBytes);
}
void BitmapImage::cacheFrame(size_t index)
{
size_t numFrames = frameCount();
ASSERT(m_decodedSize == 0 || numFrames > 1);
if (m_frames.size() < numFrames)
m_frames.grow(numFrames);
m_frames[index].m_frame = m_source.createFrameAtIndex(index);
if (numFrames == 1 && m_frames[index].m_frame)
checkForSolidColor();
m_frames[index].m_haveMetadata = true;
m_frames[index].m_isComplete = m_source.frameIsCompleteAtIndex(index);
if (repetitionCount(false) != cAnimationNone)
m_frames[index].m_duration = m_source.frameDurationAtIndex(index);
m_frames[index].m_hasAlpha = m_source.frameHasAlphaAtIndex(index);
const IntSize frameSize(index ? m_source.frameSizeAtIndex(index) : m_size);
if (frameSize != m_size)
m_hasUniformFrameSize = false;
if (m_frames[index].m_frame) {
const int deltaBytes = frameBytes(frameSize);
m_decodedSize += deltaBytes;
if (imageObserver())
imageObserver()->decodedSizeChanged(this, deltaBytes);
}
}
IntSize BitmapImage::size() const
{
if (m_sizeAvailable && !m_haveSize) {
m_size = m_source.size();
m_haveSize = true;
}
return m_size;
}
IntSize BitmapImage::currentFrameSize() const
{
if (!m_currentFrame || m_hasUniformFrameSize)
return size();
return m_source.frameSizeAtIndex(m_currentFrame);
}
bool BitmapImage::getHotSpot(IntPoint& hotSpot) const
{
return m_source.getHotSpot(hotSpot);
}
bool BitmapImage::dataChanged(bool allDataReceived)
{
// Because we're modifying the current frame, clear its (now possibly
// inaccurate) metadata as well.
destroyMetadataAndNotify((!m_frames.isEmpty() && m_frames[m_frames.size() - 1].clear(true)) ? 1 : 0);
// Feed all the data we've seen so far to the image decoder.
m_allDataReceived = allDataReceived;
m_source.setData(data(), allDataReceived);
// Clear the frame count.
m_haveFrameCount = false;
m_hasUniformFrameSize = true;
// Image properties will not be available until the first frame of the file
// reaches kCGImageStatusIncomplete.
return isSizeAvailable();
}
String BitmapImage::filenameExtension() const
{
return m_source.filenameExtension();
}
size_t BitmapImage::frameCount()
{
if (!m_haveFrameCount) {
m_haveFrameCount = true;
m_frameCount = m_source.frameCount();
}
return m_frameCount;
}
bool BitmapImage::isSizeAvailable()
{
if (m_sizeAvailable)
return true;
m_sizeAvailable = m_source.isSizeAvailable();
return m_sizeAvailable;
}
NativeImagePtr BitmapImage::frameAtIndex(size_t index)
{
if (index >= frameCount())
return 0;
if (index >= m_frames.size() || !m_frames[index].m_frame)
cacheFrame(index);
return m_frames[index].m_frame;
}
bool BitmapImage::frameIsCompleteAtIndex(size_t index)
{
if (index >= frameCount())
return true;
if (index >= m_frames.size() || !m_frames[index].m_haveMetadata)
cacheFrame(index);
return m_frames[index].m_isComplete;
}
float BitmapImage::frameDurationAtIndex(size_t index)
{
if (index >= frameCount())
return 0;
if (index >= m_frames.size() || !m_frames[index].m_haveMetadata)
cacheFrame(index);
return m_frames[index].m_duration;
}
bool BitmapImage::frameHasAlphaAtIndex(size_t index)
{
if (index >= frameCount())
return true;
if (index >= m_frames.size() || !m_frames[index].m_haveMetadata)
cacheFrame(index);
return m_frames[index].m_hasAlpha;
}
int BitmapImage::repetitionCount(bool imageKnownToBeComplete)
{
if ((m_repetitionCountStatus == Unknown) || ((m_repetitionCountStatus == Uncertain) && imageKnownToBeComplete)) {
// Snag the repetition count. If |imageKnownToBeComplete| is false, the
// repetition count may not be accurate yet for GIFs; in this case the
// decoder will default to cAnimationLoopOnce, and we'll try and read
// the count again once the whole image is decoded.
m_repetitionCount = m_source.repetitionCount();
m_repetitionCountStatus = (imageKnownToBeComplete || m_repetitionCount == cAnimationNone) ? Certain : Uncertain;
}
return m_repetitionCount;
}
bool BitmapImage::shouldAnimate()
{
return (repetitionCount(false) != cAnimationNone && !m_animationFinished && imageObserver());
}
void BitmapImage::startAnimation(bool catchUpIfNecessary)
{
#ifdef ANDROID_ANIMATED_GIF
// We can't ever seem to keep up, so always let us just show the next frame
catchUpIfNecessary = false;
#endif
if (m_frameTimer || !shouldAnimate() || frameCount() <= 1)
return;
// If we aren't already animating, set now as the animation start time.
const double time = currentTime();
if (!m_desiredFrameStartTime)
m_desiredFrameStartTime = time;
// Don't advance the animation to an incomplete frame.
size_t nextFrame = (m_currentFrame + 1) % frameCount();
if (!m_allDataReceived && !frameIsCompleteAtIndex(nextFrame))
return;
// Don't advance past the last frame if we haven't decoded the whole image
// yet and our repetition count is potentially unset. The repetition count
// in a GIF can potentially come after all the rest of the image data, so
// wait on it.
if (!m_allDataReceived && repetitionCount(false) == cAnimationLoopOnce && m_currentFrame >= (frameCount() - 1))
return;
// Determine time for next frame to start. By ignoring paint and timer lag
// in this calculation, we make the animation appear to run at its desired
// rate regardless of how fast it's being repainted.
const double currentDuration = frameDurationAtIndex(m_currentFrame);
m_desiredFrameStartTime += currentDuration;
// When an animated image is more than five minutes out of date, the
// user probably doesn't care about resyncing and we could burn a lot of
// time looping through frames below. Just reset the timings.
const double cAnimationResyncCutoff = 5 * 60;
if ((time - m_desiredFrameStartTime) > cAnimationResyncCutoff)
m_desiredFrameStartTime = time + currentDuration;
// The image may load more slowly than it's supposed to animate, so that by
// the time we reach the end of the first repetition, we're well behind.
// Clamp the desired frame start time in this case, so that we don't skip
// frames (or whole iterations) trying to "catch up". This is a tradeoff:
// It guarantees users see the whole animation the second time through and
// don't miss any repetitions, and is closer to what other browsers do; on
// the other hand, it makes animations "less accurate" for pages that try to
// sync an image and some other resource (e.g. audio), especially if users
// switch tabs (and thus stop drawing the animation, which will pause it)
// during that initial loop, then switch back later.
if (nextFrame == 0 && m_repetitionsComplete == 0 && m_desiredFrameStartTime < time)
m_desiredFrameStartTime = time;
if (!catchUpIfNecessary || time < m_desiredFrameStartTime) {
// Haven't yet reached time for next frame to start; delay until then.
m_frameTimer = new Timer<BitmapImage>(this, &BitmapImage::advanceAnimation);
m_frameTimer->startOneShot(std::max(m_desiredFrameStartTime - time, 0.));
} else {
// We've already reached or passed the time for the next frame to start.
// See if we've also passed the time for frames after that to start, in
// case we need to skip some frames entirely. Remember not to advance
// to an incomplete frame.
for (size_t frameAfterNext = (nextFrame + 1) % frameCount(); frameIsCompleteAtIndex(frameAfterNext); frameAfterNext = (nextFrame + 1) % frameCount()) {
// Should we skip the next frame?
double frameAfterNextStartTime = m_desiredFrameStartTime + frameDurationAtIndex(nextFrame);
if (time < frameAfterNextStartTime)
break;
// Yes; skip over it without notifying our observers.
if (!internalAdvanceAnimation(true))
return;
m_desiredFrameStartTime = frameAfterNextStartTime;
nextFrame = frameAfterNext;
}
// Draw the next frame immediately. Note that m_desiredFrameStartTime
// may be in the past, meaning the next time through this function we'll
// kick off the next advancement sooner than this frame's duration would
// suggest.
if (internalAdvanceAnimation(false)) {
// The image region has been marked dirty, but once we return to our
// caller, draw() will clear it, and nothing will cause the
// animation to advance again. We need to start the timer for the
// next frame running, or the animation can hang. (Compare this
// with when advanceAnimation() is called, and the region is dirtied
// while draw() is not in the callstack, meaning draw() gets called
// to update the region and thus startAnimation() is reached again.)
// NOTE: For large images with slow or heavily-loaded systems,
// throwing away data as we go (see destroyDecodedData()) means we
// can spend so much time re-decoding data above that by the time we
// reach here we're behind again. If we let startAnimation() run
// the catch-up code again, we can get long delays without painting
// as we race the timer, or even infinite recursion. In this
// situation the best we can do is to simply change frames as fast
// as possible, so force startAnimation() to set a zero-delay timer
// and bail out if we're not caught up.
startAnimation(false);
}
}
}
void BitmapImage::stopAnimation()
{
// This timer is used to animate all occurrences of this image. Don't invalidate
// the timer unless all renderers have stopped drawing.
delete m_frameTimer;
m_frameTimer = 0;
}
void BitmapImage::resetAnimation()
{
stopAnimation();
m_currentFrame = 0;
m_repetitionsComplete = 0;
m_desiredFrameStartTime = 0;
m_animationFinished = false;
// For extremely large animations, when the animation is reset, we just throw everything away.
destroyDecodedDataIfNecessary(true);
}
void BitmapImage::advanceAnimation(Timer<BitmapImage>*)
{
internalAdvanceAnimation(false);
// At this point the image region has been marked dirty, and if it's
// onscreen, we'll soon make a call to draw(), which will call
// startAnimation() again to keep the animation moving.
}
bool BitmapImage::internalAdvanceAnimation(bool skippingFrames)
{
// Stop the animation.
stopAnimation();
// See if anyone is still paying attention to this animation. If not, we don't
// advance and will remain suspended at the current frame until the animation is resumed.
if (!skippingFrames && imageObserver()->shouldPauseAnimation(this))
return false;
++m_currentFrame;
bool advancedAnimation = true;
bool destroyAll = false;
if (m_currentFrame >= frameCount()) {
++m_repetitionsComplete;
// Get the repetition count again. If we weren't able to get a
// repetition count before, we should have decoded the whole image by
// now, so it should now be available.
// Note that we don't need to special-case cAnimationLoopOnce here
// because it is 0 (see comments on its declaration in ImageSource.h).
if (repetitionCount(true) != cAnimationLoopInfinite && m_repetitionsComplete > m_repetitionCount) {
m_animationFinished = true;
m_desiredFrameStartTime = 0;
--m_currentFrame;
advancedAnimation = false;
} else {
m_currentFrame = 0;
destroyAll = true;
}
}
destroyDecodedDataIfNecessary(destroyAll);
// We need to draw this frame if we advanced to it while not skipping, or if
// while trying to skip frames we hit the last frame and thus had to stop.
if (skippingFrames != advancedAnimation)
imageObserver()->animationAdvanced(this);
return advancedAnimation;
}
}
|