summaryrefslogtreecommitdiffstats
path: root/WebCore/platform/graphics/chromium/LayerRendererChromium.cpp
blob: fbdb9e2d0118a87c50e7402f4ce9f0a5ed381edb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
/*
 * Copyright (C) 2010 Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *     * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 *     * Neither the name of Google Inc. nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */


#include "config.h"

#if USE(ACCELERATED_COMPOSITING)
#include "LayerRendererChromium.h"

#include "GLES2Context.h"
#include "LayerChromium.h"
#include "NotImplemented.h"
#include "Page.h"
#if PLATFORM(SKIA)
#include "NativeImageSkia.h"
#include "PlatformContextSkia.h"
#endif

#include <GLES2/gl2.h>

namespace WebCore {

static WTFLogChannel LogLayerRenderer = { 0x00000000, "LayerRenderer", WTFLogChannelOn };

static void checkGLError()
{
#ifndef NDEBUG
    GLenum error = glGetError();
    if (error)
        LOG_ERROR("GL Error: %d " , error);
#endif
}

static GLuint loadShader(GLenum type, const char* shaderSource)
{
    GLuint shader = glCreateShader(type);
    if (!shader)
        return 0;
    glShaderSource(shader, 1, &shaderSource, 0);
    glCompileShader(shader);
    GLint compiled;
    glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled);
    if (!compiled) {
        glDeleteShader(shader);
        return 0;
    }
    return shader;
}

static GLuint loadShaderProgram(const char* vertexShaderSource, const char* fragmentShaderSource)
{
    GLuint vertexShader;
    GLuint fragmentShader;
    GLuint programObject;
    GLint linked;
    vertexShader = loadShader(GL_VERTEX_SHADER, vertexShaderSource);
    if (!vertexShader)
        return 0;
    fragmentShader = loadShader(GL_FRAGMENT_SHADER, fragmentShaderSource);
    if (!fragmentShader) {
        glDeleteShader(vertexShader);
        return 0;
    }
    programObject = glCreateProgram();
    if (!programObject)
        return 0;
    glAttachShader(programObject, vertexShader);
    glAttachShader(programObject, fragmentShader);
    glLinkProgram(programObject);
    glGetProgramiv(programObject, GL_LINK_STATUS, &linked);
    if (!linked) {
        glDeleteProgram(programObject);
        return 0;
    }
    glDeleteShader(vertexShader);
    glDeleteShader(fragmentShader);
    return programObject;
}

static void toGLMatrix(float* flattened, const TransformationMatrix& m)
{
    flattened[0] = m.m11();
    flattened[1] = m.m12();
    flattened[2] = m.m13();
    flattened[3] = m.m14();
    flattened[4] = m.m21();
    flattened[5] = m.m22();
    flattened[6] = m.m23();
    flattened[7] = m.m24();
    flattened[8] = m.m31();
    flattened[9] = m.m32();
    flattened[10] = m.m33();
    flattened[11] = m.m34();
    flattened[12] = m.m41();
    flattened[13] = m.m42();
    flattened[14] = m.m43();
    flattened[15] = m.m44();
}

static TransformationMatrix orthoMatrix(float left, float right, float bottom, float top, float nearZ, float farZ)
{
    float deltaX = right - left;
    float deltaY = top - bottom;
    float deltaZ = farZ - nearZ;
    TransformationMatrix ortho;
    if (!deltaX || !deltaY || !deltaZ)
        return ortho;
    ortho.setM11(2.0f / deltaX);
    ortho.setM41(-(right + left) / deltaX);
    ortho.setM22(2.0f / deltaY);
    ortho.setM42(-(top + bottom) / deltaY);
    ortho.setM33(-2.0f / deltaZ);
    ortho.setM43(-(nearZ + farZ) / deltaZ);
    return ortho;
}

// Creates a GL texture object to be used for transfering the layer's bitmap into.
static GLuint createLayerTexture()
{
    GLuint textureId = 0;
    glGenTextures(1, &textureId);
    glBindTexture(GL_TEXTURE_2D, textureId);
    // Do basic linear filtering on resize.
    glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    // NPOT textures in GL ES only work when the wrap mode is set to GL_CLAMP_TO_EDGE.
    glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
    return textureId;
}


PassOwnPtr<LayerRendererChromium> LayerRendererChromium::create(Page* page)
{
    return new LayerRendererChromium(page);
}

LayerRendererChromium::LayerRendererChromium(Page* page)
    : m_rootLayer(0)
    , m_needsDisplay(false)
    , m_layerProgramObject(0)
    , m_borderProgramObject(0)
    , m_scrollProgramObject(0)
    , m_positionLocation(0)
    , m_texCoordLocation(1)
    , m_page(page)
    , m_rootLayerTextureWidth(0)
    , m_rootLayerTextureHeight(0)
{
    m_quadVboIds[Vertices] = m_quadVboIds[LayerElements] = 0;
    m_hardwareCompositing = (initGL() && initializeSharedGLObjects());
}

LayerRendererChromium::~LayerRendererChromium()
{
    if (m_hardwareCompositing) {
        makeContextCurrent();
        glDeleteBuffers(3, m_quadVboIds);
        glDeleteProgram(m_layerProgramObject);
        glDeleteProgram(m_scrollProgramObject);
        glDeleteProgram(m_borderProgramObject);
    }
}

void LayerRendererChromium::drawTexturedQuad(const TransformationMatrix& matrix, float width, float height, float opacity, bool scrolling)
{
    static GLfloat glMatrix[16];

    TransformationMatrix renderMatrix = matrix;

    // Apply a scaling factor to size the quad from 1x1 to its intended size.
    renderMatrix.scale3d(width, height, 1);

    // Apply the projection matrix before sending the transform over to the shader.
    renderMatrix.multiply(m_projectionMatrix);

    toGLMatrix(&glMatrix[0], renderMatrix);

    int matrixLocation = (scrolling ? m_scrollMatrixLocation : m_matrixLocation);
    glUniformMatrix4fv(matrixLocation, 1, false, &glMatrix[0]);

    if (!scrolling)
        glUniform1f(m_alphaLocation, opacity);

    glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0);
}


// Updates the contents of the root layer texture that fall inside the updateRect
// and re-composits all sublayers.
void LayerRendererChromium::drawLayers(const IntRect& updateRect, const IntRect& visibleRect,
                                       const IntRect& contentRect, const IntPoint& scrollPosition)
{
    ASSERT(m_hardwareCompositing);

    if (!m_rootLayer)
        return;

    // If the size of the visible area has changed then allocate a new texture
    // to store the contents of the root layer and adjust the projection matrix
    // and viewport.
    makeContextCurrent();

    glBindTexture(GL_TEXTURE_2D, m_rootLayerTextureId);

    unsigned int visibleRectWidth = visibleRect.width();
    unsigned int visibleRectHeight = visibleRect.height();
    if (visibleRectWidth != m_rootLayerTextureWidth || visibleRectHeight != m_rootLayerTextureHeight) {
        m_rootLayerTextureWidth = visibleRect.width();
        m_rootLayerTextureHeight = visibleRect.height();

        m_projectionMatrix = orthoMatrix(0, visibleRectWidth + 0.5, visibleRectHeight + 0.5, 0, -1000, 1000);
        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, m_rootLayerTextureWidth, m_rootLayerTextureHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
    }

    // The GL viewport covers the entire visible area, including the scrollbars.
    glViewport(0, 0, visibleRectWidth, visibleRectHeight);

    // The layer, scroll and debug border shaders all use the same vertex attributes
    // so we can bind them only once.
    glBindBuffer(GL_ARRAY_BUFFER, m_quadVboIds[Vertices]);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_quadVboIds[LayerElements]);
    GLuint offset = 0;
    glVertexAttribPointer(m_positionLocation, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)(offset));
    offset += 3 * sizeof(GLfloat);
    glVertexAttribPointer(m_texCoordLocation, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)(offset));
    glEnableVertexAttribArray(m_positionLocation);
    glEnableVertexAttribArray(m_texCoordLocation);
    glActiveTexture(GL_TEXTURE0);
    glDisable(GL_DEPTH_TEST);
    glDisable(GL_CULL_FACE);

    IntPoint scrollDelta = toPoint(scrollPosition - m_scrollPosition);
    // Scroll only when the updateRect contains pixels for the newly uncovered region to avoid flashing.
    if ((scrollDelta.x() && updateRect.width() >= abs(scrollDelta.x()) && updateRect.height() >= contentRect.height())
        || (scrollDelta.y() && updateRect.height() >= abs(scrollDelta.y()) && updateRect.width() >= contentRect.width())) {
        // Scrolling works as follows: We render a quad with the current root layer contents
        // translated by the amount the page has scrolled since the last update and then read the
        // pixels of the content area (visible area excluding the scroll bars) back into the
        // root layer texture. The newly exposed area is subesquently filled as usual with
        // the contents of the updateRect.
        TransformationMatrix scrolledLayerMatrix;
        scrolledLayerMatrix.translate3d((int)floorf(0.5 * visibleRect.width() + 0.5) - scrollDelta.x(),
            (int)floorf(0.5 * visibleRect.height() + 0.5) + scrollDelta.y(), 0);
        scrolledLayerMatrix.scale3d(1, -1, 1);

        // Switch shaders to avoid RGB swizzling.
        glUseProgram(m_scrollProgramObject);
        glUniform1i(m_scrollSamplerLocation, 0);

        drawTexturedQuad(scrolledLayerMatrix, visibleRect.width(), visibleRect.height(), 1, true);

        glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 0, 0, contentRect.width(), contentRect.height());

        checkGLError();
        m_scrollPosition = scrollPosition;
    }

    // FIXME: The following check should go away when the compositor renders independently from its own thread.
    // Ignore a 1x1 update rect at (0, 0) as that's used a way to kick off a redraw for the compositor.
    if (!(!updateRect.x() && !updateRect.y() && updateRect.width() == 1 && updateRect.height() == 1)) {
        // Update the root layer texture.
        ASSERT((updateRect.x() + updateRect.width() <= m_rootLayerTextureWidth)
               && (updateRect.y() + updateRect.height() <= m_rootLayerTextureHeight));

#if PLATFORM(SKIA)
        // Get the contents of the updated rect.
        const SkBitmap bitmap = m_rootLayer->platformCanvas()->getDevice()->accessBitmap(false);
        int rootLayerWidth = bitmap.width();
        int rootLayerHeight = bitmap.height();
        ASSERT(rootLayerWidth == updateRect.width() && rootLayerHeight == updateRect.height());
        void* pixels = bitmap.getPixels();

        checkGLError();
        // Copy the contents of the updated rect to the root layer texture.
        glTexSubImage2D(GL_TEXTURE_2D, 0, updateRect.x(), updateRect.y(), updateRect.width(), updateRect.height(), GL_RGBA, GL_UNSIGNED_BYTE, pixels);
        checkGLError();
#else
#error Must port to your platform
#endif
    }

    glClearColor(0, 0, 1, 1);
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

    // Render the root layer using a quad that takes up the entire visible area of the window.
    glUseProgram(m_layerProgramObject);
    glUniform1i(m_samplerLocation, 0);
    TransformationMatrix layerMatrix;
    layerMatrix.translate3d(visibleRect.width() / 2, visibleRect.height() / 2, 0);
    drawTexturedQuad(layerMatrix, visibleRect.width(), visibleRect.height(), 1, false);

    // If culling is enabled then we will cull the backface.
    glCullFace(GL_BACK);
    // The orthographic projection is setup such that Y starts at zero and
    // increases going down the page so we need to adjust the winding order of
    // front facing triangles.
    glFrontFace(GL_CW);

    // The shader used to render layers returns pre-multiplied alpha colors
    // so we need to send the blending mode appropriately.
    glEnable(GL_BLEND);
    glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);

    checkGLError();

    // FIXME: Need to prevent composited layers from drawing over the scroll
    // bars.

    // FIXME: Sublayers need to be sorted in Z to get the correct transparency effect.

    // Translate all the composited layers by the scroll position.
    TransformationMatrix matrix;
    matrix.translate3d(-m_scrollPosition.x(), -m_scrollPosition.y(), 0);
    float opacity = 1;
    const Vector<RefPtr<LayerChromium> >& sublayers = m_rootLayer->getSublayers();
    for (size_t i = 0; i < sublayers.size(); i++)
        compositeLayersRecursive(sublayers[i].get(), matrix, opacity, visibleRect);

    glFlush();
    m_gles2Context->swapBuffers();

    m_needsDisplay = false;
}

// Returns the id of the texture currently associated with the layer or
// -1 if the id hasn't been registered yet.
int LayerRendererChromium::getTextureId(LayerChromium* layer)
{
    TextureIdMap::iterator textureId = m_textureIdMap.find(layer);
    if (textureId != m_textureIdMap.end())
        return textureId->second;

    return -1;
}

// Allocates a new texture for the layer and registers it in the textureId map.
// FIXME: We will need to come up with a more sophisticated allocation strategy here.
// FIXME: We need to free up the associated texture upon layer destruction.
int LayerRendererChromium::assignTextureForLayer(LayerChromium* layer)
{
    GLuint textureId = createLayerTexture();

    // FIXME: Check that textureId is valid
    m_textureIdMap.set(layer, textureId);
    return textureId;
}

bool LayerRendererChromium::freeLayerTexture(LayerChromium* layer)
{
    TextureIdMap::iterator textureId = m_textureIdMap.find(layer);
    if (textureId == m_textureIdMap.end())
        return false;
    // Free up the texture.
    glDeleteTextures(1, &(textureId->second));
    m_textureIdMap.remove(textureId);
    return true;
}

// Draws a debug border around the layer's bounds.
void LayerRendererChromium::drawDebugBorder(LayerChromium* layer, const TransformationMatrix& matrix)
{
    static GLfloat glMatrix[16];
    Color borderColor = layer->borderColor();
    if (!borderColor.alpha())
        return;

    glUseProgram(m_borderProgramObject);
    TransformationMatrix renderMatrix = matrix;
    IntSize bounds = layer->bounds();
    renderMatrix.scale3d(bounds.width(), bounds.height(), 1);
    renderMatrix.multiply(m_projectionMatrix);
    toGLMatrix(&glMatrix[0], renderMatrix);
    glUniformMatrix4fv(m_borderMatrixLocation, 1, false, &glMatrix[0]);

    glUniform4f(m_borderColorLocation, borderColor.red() / 255.0,
                                       borderColor.green() / 255.0,
                                       borderColor.blue() / 255.0,
                                       1);

    glLineWidth(layer->borderWidth());

    // The indices for the line are stored in the same array as the triangle indices.
    glDrawElements(GL_LINE_LOOP, 4, GL_UNSIGNED_SHORT, (void*)(6 * sizeof(unsigned short)));
    checkGLError();

    // Switch back to the shader program used for layer contents.
    glUseProgram(m_layerProgramObject);
}

// Returns true if any part of the layer falls within the visibleRect
bool LayerRendererChromium::isLayerVisible(LayerChromium* layer, const TransformationMatrix& matrix, const IntRect& visibleRect)
{
    // Form the matrix used by the shader to map the corners of the layer's
    // bounds into clip space.
    TransformationMatrix renderMatrix = matrix;
    renderMatrix.scale3d(layer->bounds().width(), layer->bounds().height(), 1);
    renderMatrix.multiply(m_projectionMatrix);

    FloatRect layerRect(-0.5, -0.5, 1, 1);
    FloatRect mappedRect = renderMatrix.mapRect(layerRect);

    // The layer is visible if it intersects any part of a rectangle whose origin
    // is at (-1, -1) and size is 2x2.
    return mappedRect.intersects(FloatRect(-1, -1, 2, 2));
}

void LayerRendererChromium::compositeLayersRecursive(LayerChromium* layer, const TransformationMatrix& matrix, float opacity, const IntRect& visibleRect)
{
    static GLfloat glMatrix[16];

    // Compute the new matrix transformation that will be applied to this layer and
    // all its sublayers.
    // The basic transformation chain for the layer is (using the Matrix x Vector order):
    // M = M[p] * T[l] * T[a] * M[l] * T[-a]
    // Where M[p] is the parent matrix passed down to the function
    //       T[l] is the translation of the layer's center
    //       T[a] and T[-a] is a translation/inverse translation by the anchor point
    //       M[l] is the layer's matrix
    // Note that the final matrix used by the shader for the layer is P * M * S . This final product
    // is effectively computed in drawTexturedQuad().
    // Where: P is the projection matrix
    //        M is the layer's matrix computed above
    //        S is the scale adjustment (to scale up to the layer size)
    IntSize bounds = layer->bounds();
    FloatPoint anchorPoint = layer->anchorPoint();
    FloatPoint position = layer->position();
    float anchorX = (anchorPoint.x() - 0.5) * bounds.width();
    float anchorY = (0.5 - anchorPoint.y()) * bounds.height();

    // M = M[p]
    TransformationMatrix localMatrix = matrix;
    // M = M[p] * T[l]
    localMatrix.translate3d(position.x(), position.y(), 0);
    // M = M[p] * T[l] * T[a]
    localMatrix.translate3d(anchorX, anchorY, 0);
    // M = M[p] * T[l] * T[a] * M[l]
    localMatrix.multLeft(layer->transform());
    // M = M[p] * T[l] * T[a] * M[l] * T[-a]
    localMatrix.translate3d(-anchorX, -anchorY, 0);

    bool skipLayer = false;
    if (bounds.width() > 2048 || bounds.height() > 2048) {
        LOG(LayerRenderer, "Skipping layer with size %d %d", bounds.width(), bounds.height());
        skipLayer = true;
    }

    // Calculate the layer's opacity.
    opacity *= layer->opacity();

    bool layerVisible = isLayerVisible(layer, localMatrix, visibleRect);

    // Note that there are two types of layers:
    // 1. Layers that have their own GraphicsContext and can draw their contents on demand (layer->drawsContent() == true).
    // 2. Layers that are just containers of images/video/etc that don't own a GraphicsContext (layer->contents() == true).
    if ((layer->drawsContent() || layer->contents()) && !skipLayer && layerVisible) {
        int textureId = getTextureId(layer);
        // If no texture has been created for the layer yet then create one now.
        if (textureId == -1)
            textureId = assignTextureForLayer(layer);

        // Redraw the contents of the layer if necessary.
        if ((layer->drawsContent() || layer->contents()) && layer->contentsDirty()) {
            // Update the contents of the layer before taking a snapshot. For layers that
            // are simply containers, the following call just clears the dirty flag but doesn't
            // actually do any draws/copies.
            layer->updateContents();

            const SkBitmap* skiaBitmap = 0;
            void* pixels = 0;
            if (layer->drawsContent()) { // Layer has its own GraphicsContext.
                // The contents of the layer are stored in the canvas associated with it.
                const SkBitmap& bitmap = layer->platformCanvas()->getDevice()->accessBitmap(false);
                skiaBitmap = &bitmap;
            } else { // Layer is a container.
                // The layer contains an Image.
                NativeImageSkia* skiaImage = static_cast<NativeImageSkia*>(layer->contents());
                skiaBitmap = skiaImage;
            }

            ASSERT(skiaBitmap);
            SkBitmap::Config skiaConfig = skiaBitmap->config();
            // FIXME: must support more image configurations.
            if (skiaConfig == SkBitmap::kARGB_8888_Config) {
                SkAutoLockPixels lock(*skiaBitmap);
                int bitmapWidth = skiaBitmap->width();
                int bitmapHeight = skiaBitmap->height();
                int rowBytes = skiaBitmap->rowBytes();
                ASSERT(rowBytes == bitmapWidth * 4);

                // Copy the layer contents into the texture.
                glBindTexture(GL_TEXTURE_2D, textureId);
                void* pixels = skiaBitmap->getPixels();
                if (pixels) {
                    // FIXME. We can be smart here and call glTexSubImage2D if the new bitmap has the same
                    // size as the old one which will save us one unecessary allocation / deallocation.
                    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, bitmapWidth, bitmapHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, pixels);
                    checkGLError();
                }
            }
        }

        if (layer->doubleSided())
            glDisable(GL_CULL_FACE);
        else
            glEnable(GL_CULL_FACE);

        glBindTexture(GL_TEXTURE_2D, textureId);

        drawTexturedQuad(localMatrix, bounds.width(), bounds.height(), opacity, false);
    }

    // Draw the debug border if there is one.
    drawDebugBorder(layer, localMatrix);

    // Apply the sublayer transform.
    localMatrix.multLeft(layer->sublayerTransform());

    // The origin of the sublayers is actually the left top corner of the layer
    // instead of the center. The matrix passed down to the sublayers is therefore:
    // M[s] = M * T[-center]
    localMatrix.translate3d(-bounds.width() * 0.5, -bounds.height() * 0.5, 0);
    const Vector<RefPtr<LayerChromium> >& sublayers = layer->getSublayers();
    for (size_t i = 0; i < sublayers.size(); i++)
        compositeLayersRecursive(sublayers[i].get(), localMatrix, opacity, visibleRect);
}

bool LayerRendererChromium::makeContextCurrent()
{
    return m_gles2Context->makeCurrent();
}

bool LayerRendererChromium::initGL()
{
    m_gles2Context = GLES2Context::create(m_page);

    if (!m_gles2Context)
        return false;

    return true;
}

// Binds the given attribute name to a common location across all three programs
// used by the compositor. This allows the code to bind the attributes only once
// even when switching between programs.
void LayerRendererChromium::bindCommonAttribLocation(int location, char* attribName)
{
    glBindAttribLocation(m_layerProgramObject, location, attribName);
    glBindAttribLocation(m_borderProgramObject, location, attribName);
    glBindAttribLocation(m_scrollProgramObject, location, attribName);
}

bool LayerRendererChromium::initializeSharedGLObjects()
{
    // Shaders for drawing the layer contents.
    char vertexShaderString[] =
        "attribute vec4 a_position;   \n"
        "attribute vec2 a_texCoord;   \n"
        "uniform mat4 matrix;         \n"
        "varying vec2 v_texCoord;     \n"
        "void main()                  \n"
        "{                            \n"
        "  gl_Position = matrix * a_position; \n"
        "  v_texCoord = a_texCoord;   \n"
        "}                            \n";
    char fragmentShaderString[] =
        // FIXME: Re-introduce precision qualifier when we need GL ES shaders.
        "//precision mediump float;                            \n"
        "varying vec2 v_texCoord;                            \n"
        "uniform sampler2D s_texture;                        \n"
        "uniform float alpha;                                \n"
        "void main()                                         \n"
        "{                                                   \n"
        "  vec4 texColor = texture2D(s_texture, v_texCoord); \n"
        "  gl_FragColor = vec4(texColor.z, texColor.y, texColor.x, texColor.w) * alpha; \n"
        "}                                                   \n";

    // Fragment shader used for rendering the scrolled root layer quad. It differs
    // from fragmentShaderString in that it doesn't swizzle the colors and doesn't
    // take an alpha value.
    char scrollFragmentShaderString[] =
        // FIXME: Re-introduce precision qualifier when we need GL ES shaders.
        "//precision mediump float;                            \n"
        "varying vec2 v_texCoord;                            \n"
        "uniform sampler2D s_texture;                        \n"
        "void main()                                         \n"
        "{                                                   \n"
        "  vec4 texColor = texture2D(s_texture, v_texCoord); \n"
        "  gl_FragColor = vec4(texColor.x, texColor.y, texColor.z, texColor.w); \n"
        "}                                                   \n";

    // Shaders for drawing the debug borders around the layers.
    char borderVertexShaderString[] =
        "attribute vec4 a_position;   \n"
        "uniform mat4 matrix;         \n"
        "void main()                  \n"
        "{                            \n"
        "   gl_Position = matrix * a_position; \n"
        "}                            \n";
    char borderFragmentShaderString[] =
        // FIXME: Re-introduce precision qualifier when we need GL ES shaders.
        "//precision mediump float;                            \n"
        "uniform vec4 color;                                 \n"
        "void main()                                         \n"
        "{                                                   \n"
        "  gl_FragColor = color;                             \n"
        "}                                                   \n";

    GLfloat vertices[] = { -0.5f,  0.5f, 0.0f, // Position 0
                            0.0f,  1.0f, // TexCoord 0 
                           -0.5f, -0.5f, 0.0f, // Position 1
                            0.0f,  0.0f, // TexCoord 1
                            0.5f, -0.5f, 0.0f, // Position 2
                            1.0f,  0.0f, // TexCoord 2
                            0.5f,  0.5f, 0.0f, // Position 3
                            1.0f,  1.0f // TexCoord 3
                         };
    GLushort indices[] = { 0, 1, 2, 0, 2, 3, // The two triangles that make up the layer quad.
                           0, 1, 2, 3}; // A line path for drawing the layer border.

    makeContextCurrent();
    m_layerProgramObject = loadShaderProgram(vertexShaderString, fragmentShaderString);
    if (!m_layerProgramObject) {
        LOG_ERROR("Failed to create shader program for layers");
        return false;
    }

    m_scrollProgramObject = loadShaderProgram(vertexShaderString, scrollFragmentShaderString);
    if (!m_scrollProgramObject) {
        LOG_ERROR("Failed to create shader program for scrolling layer");
        return false;
    }

    m_borderProgramObject = loadShaderProgram(borderVertexShaderString, borderFragmentShaderString);
    if (!m_borderProgramObject) {
        LOG_ERROR("Failed to create shader program for debug borders");
        return false;
    }

    // Specify the attrib location for the position and make it the same for all three programs to
    // avoid binding re-binding the vertex attributes.
    bindCommonAttribLocation(m_positionLocation, "a_position");
    bindCommonAttribLocation(m_texCoordLocation, "a_texCoord");

    checkGLError();

    // Re-link the shaders to get the new attrib location to take effect.
    glLinkProgram(m_layerProgramObject);
    glLinkProgram(m_borderProgramObject);
    glLinkProgram(m_scrollProgramObject);

    checkGLError();

    // Get locations of uniforms for the layer content shader program.
    m_samplerLocation = glGetUniformLocation(m_layerProgramObject, "s_texture");
    m_matrixLocation = glGetUniformLocation(m_layerProgramObject, "matrix");
    m_alphaLocation = glGetUniformLocation(m_layerProgramObject, "alpha");

    m_scrollMatrixLocation = glGetUniformLocation(m_scrollProgramObject, "matrix");
    m_scrollSamplerLocation = glGetUniformLocation(m_scrollProgramObject, "s_texture");

    // Get locations of uniforms for the debug border shader program.
    m_borderMatrixLocation = glGetUniformLocation(m_borderProgramObject, "matrix");
    m_borderColorLocation = glGetUniformLocation(m_borderProgramObject, "color");

    glGenBuffers(3, m_quadVboIds);
    glBindBuffer(GL_ARRAY_BUFFER, m_quadVboIds[Vertices]);
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_quadVboIds[LayerElements]);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);

    // Create a texture object to hold the contents of the root layer.
    m_rootLayerTextureId = createLayerTexture();
    if (m_rootLayerTextureId == -1) {
        LOG_ERROR("Failed to create texture for root layer");
        return false;
    }
    // Turn off filtering for the root layer to avoid blurring from the repeated
    // writes and reads to the framebuffer that happen while scrolling.
    glBindTexture(GL_TEXTURE_2D, m_rootLayerTextureId);
    glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
    glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

    return true;
}
} // namespace WebCore

#endif // USE(ACCELERATED_COMPOSITING)