1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
|
/*
* Copyright (C) 2006 Apple Computer, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "GIFImageDecoder.h"
#include "GIFImageReader.h"
namespace WebCore {
class GIFImageDecoderPrivate {
public:
GIFImageDecoderPrivate(GIFImageDecoder* decoder = 0)
: m_reader(decoder)
, m_readOffset(0)
{
}
~GIFImageDecoderPrivate()
{
m_reader.close();
}
bool decode(SharedBuffer* data,
GIFImageDecoder::GIFQuery query = GIFImageDecoder::GIFFullQuery,
unsigned int haltFrame = -1)
{
return m_reader.read((const unsigned char*)data->data() + m_readOffset, data->size() - m_readOffset,
query,
haltFrame);
}
unsigned frameCount() const { return m_reader.images_count; }
int repetitionCount() const { return m_reader.loop_count; }
void setReadOffset(unsigned o) { m_readOffset = o; }
bool isTransparent() const { return m_reader.frame_reader->is_transparent; }
void getColorMap(unsigned char*& map, unsigned& size) const
{
if (m_reader.frame_reader->is_local_colormap_defined) {
map = m_reader.frame_reader->local_colormap;
size = (unsigned)m_reader.frame_reader->local_colormap_size;
} else {
map = m_reader.global_colormap;
size = m_reader.global_colormap_size;
}
}
unsigned frameXOffset() const { return m_reader.frame_reader->x_offset; }
unsigned frameYOffset() const { return m_reader.frame_reader->y_offset; }
unsigned frameWidth() const { return m_reader.frame_reader->width; }
unsigned frameHeight() const { return m_reader.frame_reader->height; }
int transparentPixel() const { return m_reader.frame_reader->tpixel; }
unsigned duration() const { return m_reader.frame_reader->delay_time; }
private:
GIFImageReader m_reader;
unsigned m_readOffset;
};
GIFImageDecoder::GIFImageDecoder()
: m_frameCountValid(true)
, m_repetitionCount(cAnimationLoopOnce)
, m_reader(0)
{
}
GIFImageDecoder::~GIFImageDecoder()
{
delete m_reader;
}
// Take the data and store it.
void GIFImageDecoder::setData(SharedBuffer* data, bool allDataReceived)
{
if (m_failed)
return;
// Cache our new data.
ImageDecoder::setData(data, allDataReceived);
// Our frame count is now unknown.
m_frameCountValid = false;
// Create the GIF reader.
if (!m_reader && !m_failed)
m_reader = new GIFImageDecoderPrivate(this);
}
// Whether or not the size information has been decoded yet.
bool GIFImageDecoder::isSizeAvailable() const
{
// If we have pending data to decode, send it to the GIF reader now.
if (!m_sizeAvailable && m_reader) {
if (m_failed)
return false;
// The decoder will go ahead and aggressively consume everything up until the first
// size is encountered.
decode(GIFSizeQuery, 0);
}
return m_sizeAvailable;
}
// The total number of frames for the image. Will scan the image data for the answer
// (without necessarily decoding all of the individual frames).
int GIFImageDecoder::frameCount()
{
// If the decoder had an earlier error, we will just return what we had decoded
// so far.
if (!m_frameCountValid) {
// FIXME: Scanning all the data has O(n^2) behavior if the data were to come in really
// slowly. Might be interesting to try to clone our existing read session to preserve
// state, but for now we just crawl all the data. Note that this is no worse than what
// ImageIO does on Mac right now (it also crawls all the data again).
GIFImageDecoderPrivate reader;
// This function may fail, but we want to keep any partial data it may
// have decoded, so don't mark it is invalid. If there is an overflow
// or some serious error, m_failed will have gotten set for us.
reader.decode(m_data.get(), GIFFrameCountQuery);
m_frameCountValid = true;
m_frameBufferCache.resize(reader.frameCount());
}
return m_frameBufferCache.size();
}
// The number of repetitions to perform for an animation loop.
int GIFImageDecoder::repetitionCount() const
{
// This value can arrive at any point in the image data stream. Most GIFs
// in the wild declare it near the beginning of the file, so it usually is
// set by the time we've decoded the size, but (depending on the GIF and the
// packets sent back by the webserver) not always. Our caller is
// responsible for waiting until image decoding has finished to ask this if
// it needs an authoritative answer. In the meantime, we should default to
// "loop once".
if (m_reader) {
// Added wrinkle: ImageSource::clear() may destroy the reader, making
// the result from the reader _less_ authoritative on future calls. To
// detect this, the reader returns cLoopCountNotSeen (-2) instead of
// cAnimationLoopOnce (-1) when its current incarnation hasn't actually
// seen a loop count yet; in this case we return our previously-cached
// value.
const int repetitionCount = m_reader->repetitionCount();
if (repetitionCount != cLoopCountNotSeen)
m_repetitionCount = repetitionCount;
}
return m_repetitionCount;
}
RGBA32Buffer* GIFImageDecoder::frameBufferAtIndex(size_t index)
{
if (index >= static_cast<size_t>(frameCount()))
return 0;
RGBA32Buffer& frame = m_frameBufferCache[index];
if (frame.status() != RGBA32Buffer::FrameComplete && m_reader)
decode(GIFFullQuery, index + 1); // Decode this frame.
return &frame;
}
void GIFImageDecoder::clearFrameBufferCache(size_t clearBeforeFrame)
{
// In some cases, like if the decoder was destroyed while animating, we
// can be asked to clear more frames than we currently have.
if (m_frameBufferCache.isEmpty())
return; // Nothing to do.
// The "-1" here is tricky. It does not mean that |clearBeforeFrame| is the
// last frame we wish to preserve, but rather that we never want to clear
// the very last frame in the cache: it's empty (so clearing it is
// pointless), it's partial (so we don't want to clear it anyway), or the
// cache could be enlarged with a future setData() call and it could be
// needed to construct the next frame (see comments below). Callers can
// always use ImageSource::clear(true, ...) to completely free the memory in
// this case.
clearBeforeFrame = std::min(clearBeforeFrame, m_frameBufferCache.size() - 1);
const Vector<RGBA32Buffer>::iterator end(m_frameBufferCache.begin() + clearBeforeFrame);
// We need to preserve frames such that:
// * We don't clear |end|
// * We don't clear the frame we're currently decoding
// * We don't clear any frame from which a future initFrameBuffer() call
// will copy bitmap data
// All other frames can be cleared. Because of the constraints on when
// ImageSource::clear() can be called (see ImageSource.h), we're guaranteed
// not to have non-empty frames after the frame we're currently decoding.
// So, scan backwards from |end| as follows:
// * If the frame is empty, we're still past any frames we care about.
// * If the frame is complete, but is DisposeOverwritePrevious, we'll
// skip over it in future initFrameBuffer() calls. We can clear it
// unless it's |end|, and keep scanning. For any other disposal method,
// stop scanning, as we've found the frame initFrameBuffer() will need
// next.
// * If the frame is partial, we're decoding it, so don't clear it; if it
// has a disposal method other than DisposeOverwritePrevious, stop
// scanning, as we'll only need this frame when decoding the next one.
Vector<RGBA32Buffer>::iterator i(end);
for (; (i != m_frameBufferCache.begin()) && ((i->status() == RGBA32Buffer::FrameEmpty) || (i->disposalMethod() == RGBA32Buffer::DisposeOverwritePrevious)); --i) {
if ((i->status() == RGBA32Buffer::FrameComplete) && (i != end))
i->clear();
}
// Now |i| holds the last frame we need to preserve; clear prior frames.
for (Vector<RGBA32Buffer>::iterator j(m_frameBufferCache.begin()); j != i; ++j) {
ASSERT(j->status() != RGBA32Buffer::FramePartial);
if (j->status() != RGBA32Buffer::FrameEmpty)
j->clear();
}
}
// Feed data to the GIF reader.
void GIFImageDecoder::decode(GIFQuery query, unsigned haltAtFrame) const
{
if (m_failed)
return;
m_failed = !m_reader->decode(m_data.get(), query, haltAtFrame);
if (m_failed) {
delete m_reader;
m_reader = 0;
}
}
// Callbacks from the GIF reader.
void GIFImageDecoder::sizeNowAvailable(unsigned width, unsigned height)
{
m_size = IntSize(width, height);
m_sizeAvailable = true;
}
void GIFImageDecoder::decodingHalted(unsigned bytesLeft)
{
m_reader->setReadOffset(m_data->size() - bytesLeft);
}
void GIFImageDecoder::initFrameBuffer(unsigned frameIndex)
{
// Initialize the frame rect in our buffer.
IntRect frameRect(m_reader->frameXOffset(), m_reader->frameYOffset(),
m_reader->frameWidth(), m_reader->frameHeight());
// Make sure the frameRect doesn't extend past the bottom-right of the buffer.
if (frameRect.right() > size().width())
frameRect.setWidth(size().width() - m_reader->frameXOffset());
if (frameRect.bottom() > size().height())
frameRect.setHeight(size().height() - m_reader->frameYOffset());
RGBA32Buffer* const buffer = &m_frameBufferCache[frameIndex];
buffer->setRect(frameRect);
if (frameIndex == 0) {
// This is the first frame, so we're not relying on any previous data.
prepEmptyFrameBuffer(buffer);
} else {
// The starting state for this frame depends on the previous frame's
// disposal method.
//
// Frames that use the DisposeOverwritePrevious method are effectively
// no-ops in terms of changing the starting state of a frame compared to
// the starting state of the previous frame, so skip over them. (If the
// first frame specifies this method, it will get treated like
// DisposeOverwriteBgcolor below and reset to a completely empty image.)
const RGBA32Buffer* prevBuffer = &m_frameBufferCache[--frameIndex];
RGBA32Buffer::FrameDisposalMethod prevMethod =
prevBuffer->disposalMethod();
while ((frameIndex > 0)
&& (prevMethod == RGBA32Buffer::DisposeOverwritePrevious)) {
prevBuffer = &m_frameBufferCache[--frameIndex];
prevMethod = prevBuffer->disposalMethod();
}
ASSERT(prevBuffer->status() == RGBA32Buffer::FrameComplete);
if ((prevMethod == RGBA32Buffer::DisposeNotSpecified) ||
(prevMethod == RGBA32Buffer::DisposeKeep)) {
// Preserve the last frame as the starting state for this frame.
buffer->bytes() = prevBuffer->bytes();
buffer->setHasAlpha(prevBuffer->hasAlpha());
} else {
// We want to clear the previous frame to transparent, without
// affecting pixels in the image outside of the frame.
const IntRect& prevRect = prevBuffer->rect();
if ((frameIndex == 0)
|| prevRect.contains(IntRect(IntPoint(0, 0), size()))) {
// Clearing the first frame, or a frame the size of the whole
// image, results in a completely empty image.
prepEmptyFrameBuffer(buffer);
} else {
// Copy the whole previous buffer, then clear just its frame.
buffer->bytes() = prevBuffer->bytes();
buffer->setHasAlpha(prevBuffer->hasAlpha());
for (int y = prevRect.y(); y < prevRect.bottom(); ++y) {
unsigned* const currentRow =
buffer->bytes().data() + (y * m_size.width());
for (int x = prevRect.x(); x < prevRect.right(); ++x)
buffer->setRGBA(*(currentRow + x), 0, 0, 0, 0);
}
if ((prevRect.width() > 0) && (prevRect.height() > 0))
buffer->setHasAlpha(true);
}
}
}
// Update our status to be partially complete.
buffer->setStatus(RGBA32Buffer::FramePartial);
// Reset the alpha pixel tracker for this frame.
m_currentBufferSawAlpha = false;
}
void GIFImageDecoder::prepEmptyFrameBuffer(RGBA32Buffer* buffer) const
{
buffer->bytes().resize(size().width() * size().height());
buffer->bytes().fill(0);
buffer->setHasAlpha(true);
}
void GIFImageDecoder::haveDecodedRow(unsigned frameIndex,
unsigned char* rowBuffer, // Pointer to single scanline temporary buffer
unsigned char* rowEnd,
unsigned rowNumber, // The row index
unsigned repeatCount, // How many times to repeat the row
bool writeTransparentPixels)
{
// Initialize the frame if necessary.
RGBA32Buffer& buffer = m_frameBufferCache[frameIndex];
if (buffer.status() == RGBA32Buffer::FrameEmpty)
initFrameBuffer(frameIndex);
// Do nothing for bogus data.
if (rowBuffer == 0 || static_cast<int>(m_reader->frameYOffset() + rowNumber) >= size().height())
return;
unsigned colorMapSize;
unsigned char* colorMap;
m_reader->getColorMap(colorMap, colorMapSize);
if (!colorMap)
return;
// The buffers that we draw are the entire image's width and height, so a final output frame is
// width * height RGBA32 values in size.
//
// A single GIF frame, however, can be smaller than the entire image, i.e., it can represent some sub-rectangle
// within the overall image. The rows we are decoding are within this
// sub-rectangle. This means that if the GIF frame's sub-rectangle is (x,y,w,h) then row 0 is really row
// y, and each row goes from x to x+w.
unsigned dstPos = (m_reader->frameYOffset() + rowNumber) * size().width() + m_reader->frameXOffset();
unsigned* dst = buffer.bytes().data() + dstPos;
unsigned* dstEnd = dst + size().width() - m_reader->frameXOffset();
unsigned* currDst = dst;
unsigned char* currentRowByte = rowBuffer;
while (currentRowByte != rowEnd && currDst < dstEnd) {
if ((!m_reader->isTransparent() || *currentRowByte != m_reader->transparentPixel()) && *currentRowByte < colorMapSize) {
unsigned colorIndex = *currentRowByte * 3;
unsigned red = colorMap[colorIndex];
unsigned green = colorMap[colorIndex + 1];
unsigned blue = colorMap[colorIndex + 2];
RGBA32Buffer::setRGBA(*currDst, red, green, blue, 255);
} else {
m_currentBufferSawAlpha = true;
// We may or may not need to write transparent pixels to the buffer.
// If we're compositing against a previous image, it's wrong, and if
// we're writing atop a cleared, fully transparent buffer, it's
// unnecessary; but if we're decoding an interlaced gif and
// displaying it "Haeberli"-style, we must write these for passes
// beyond the first, or the initial passes will "show through" the
// later ones.
if (writeTransparentPixels)
RGBA32Buffer::setRGBA(*currDst, 0, 0, 0, 0);
}
currDst++;
currentRowByte++;
}
if (repeatCount > 1) {
// Copy the row |repeatCount|-1 times.
unsigned num = currDst - dst;
unsigned data_size = num * sizeof(unsigned);
unsigned width = size().width();
unsigned* end = buffer.bytes().data() + width * size().height();
currDst = dst + width;
for (unsigned i = 1; i < repeatCount; i++) {
if (currDst + num > end) // Protect against a buffer overrun from a bogus repeatCount.
break;
memcpy(currDst, dst, data_size);
currDst += width;
}
}
// Our partial height is rowNumber + 1, e.g., row 2 is the 3rd row, so that's a height of 3.
// Adding in repeatCount - 1 to rowNumber + 1 works out to just be rowNumber + repeatCount.
buffer.ensureHeight(rowNumber + repeatCount);
}
void GIFImageDecoder::frameComplete(unsigned frameIndex, unsigned frameDuration, RGBA32Buffer::FrameDisposalMethod disposalMethod)
{
// Initialize the frame if necessary. Some GIFs insert do-nothing frames,
// in which case we never reach haveDecodedRow() before getting here.
RGBA32Buffer& buffer = m_frameBufferCache[frameIndex];
if (buffer.status() == RGBA32Buffer::FrameEmpty)
initFrameBuffer(frameIndex);
buffer.ensureHeight(m_size.height());
buffer.setStatus(RGBA32Buffer::FrameComplete);
buffer.setDuration(frameDuration);
buffer.setDisposalMethod(disposalMethod);
if (!m_currentBufferSawAlpha) {
// The whole frame was non-transparent, so it's possible that the entire
// resulting buffer was non-transparent, and we can setHasAlpha(false).
if (buffer.rect().contains(IntRect(IntPoint(0, 0), size())))
buffer.setHasAlpha(false);
else if (frameIndex > 0) {
// Tricky case. This frame does not have alpha only if everywhere
// outside its rect doesn't have alpha. To know whether this is
// true, we check the start state of the frame -- if it doesn't have
// alpha, we're safe.
//
// First skip over prior DisposeOverwritePrevious frames (since they
// don't affect the start state of this frame) the same way we do in
// initFrameBuffer().
const RGBA32Buffer* prevBuffer = &m_frameBufferCache[--frameIndex];
while ((frameIndex > 0)
&& (prevBuffer->disposalMethod() == RGBA32Buffer::DisposeOverwritePrevious))
prevBuffer = &m_frameBufferCache[--frameIndex];
// Now, if we're at a DisposeNotSpecified or DisposeKeep frame, then
// we can say we have no alpha if that frame had no alpha. But
// since in initFrameBuffer() we already copied that frame's alpha
// state into the current frame's, we need do nothing at all here.
//
// The only remaining case is a DisposeOverwriteBgcolor frame. If
// it had no alpha, and its rect is contained in the current frame's
// rect, we know the current frame has no alpha.
if ((prevBuffer->disposalMethod() == RGBA32Buffer::DisposeOverwriteBgcolor)
&& !prevBuffer->hasAlpha() && buffer.rect().contains(prevBuffer->rect()))
buffer.setHasAlpha(false);
}
}
}
void GIFImageDecoder::gifComplete()
{
if (m_reader)
m_repetitionCount = m_reader->repetitionCount();
delete m_reader;
m_reader = 0;
}
} // namespace WebCore
|