1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
|
/*
* This file is part of the render object implementation for KHTML.
*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* Copyright (C) 2003 Apple Computer, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "RenderFlexibleBox.h"
#include "CharacterNames.h"
#include "RenderLayer.h"
#include "RenderView.h"
#include <wtf/StdLibExtras.h>
#ifdef ANDROID_LAYOUT
#include "Document.h"
#include "Settings.h"
#endif
using namespace std;
namespace WebCore {
class FlexBoxIterator {
public:
FlexBoxIterator(RenderFlexibleBox* parent)
{
box = parent;
if (box->style()->boxOrient() == HORIZONTAL && box->style()->direction() == RTL)
forward = box->style()->boxDirection() != BNORMAL;
else
forward = box->style()->boxDirection() == BNORMAL;
lastOrdinal = 1;
if (!forward) {
// No choice, since we're going backwards, we have to find out the highest ordinal up front.
RenderBox* child = box->firstChildBox();
while (child) {
if (child->style()->boxOrdinalGroup() > lastOrdinal)
lastOrdinal = child->style()->boxOrdinalGroup();
child = child->nextSiblingBox();
}
}
reset();
}
void reset()
{
current = 0;
currentOrdinal = forward ? 0 : lastOrdinal+1;
}
RenderBox* first()
{
reset();
return next();
}
RenderBox* next()
{
do {
if (!current) {
if (forward) {
currentOrdinal++;
if (currentOrdinal > lastOrdinal)
return 0;
current = box->firstChildBox();
} else {
currentOrdinal--;
if (currentOrdinal == 0)
return 0;
current = box->lastChildBox();
}
}
else
current = forward ? current->nextSiblingBox() : current->previousSiblingBox();
if (current && current->style()->boxOrdinalGroup() > lastOrdinal)
lastOrdinal = current->style()->boxOrdinalGroup();
} while (!current || current->style()->boxOrdinalGroup() != currentOrdinal ||
current->style()->visibility() == COLLAPSE);
return current;
}
private:
RenderFlexibleBox* box;
RenderBox* current;
bool forward;
unsigned int currentOrdinal;
unsigned int lastOrdinal;
};
RenderFlexibleBox::RenderFlexibleBox(Node* node)
:RenderBlock(node)
{
setChildrenInline(false); // All of our children must be block-level
m_flexingChildren = m_stretchingChildren = false;
}
RenderFlexibleBox::~RenderFlexibleBox()
{
}
void RenderFlexibleBox::calcHorizontalPrefWidths()
{
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
// positioned children don't affect the minmaxwidth
if (child->isPositioned() || child->style()->visibility() == COLLAPSE)
continue;
// A margin basically has three types: fixed, percentage, and auto (variable).
// Auto and percentage margins simply become 0 when computing min/max width.
// Fixed margins can be added in as is.
Length ml = child->style()->marginLeft();
Length mr = child->style()->marginRight();
int margin = 0, marginLeft = 0, marginRight = 0;
if (ml.isFixed())
marginLeft += ml.value();
if (mr.isFixed())
marginRight += mr.value();
margin = marginLeft + marginRight;
m_minPrefWidth += child->minPrefWidth() + margin;
m_maxPrefWidth += child->maxPrefWidth() + margin;
}
}
void RenderFlexibleBox::calcVerticalPrefWidths()
{
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
// Positioned children and collapsed children don't affect the min/max width
if (child->isPositioned() || child->style()->visibility() == COLLAPSE)
continue;
// A margin basically has three types: fixed, percentage, and auto (variable).
// Auto/percentage margins simply become 0 when computing min/max width.
// Fixed margins can be added in as is.
Length ml = child->style()->marginLeft();
Length mr = child->style()->marginRight();
int margin = 0;
if (ml.isFixed())
margin += ml.value();
if (mr.isFixed())
margin += mr.value();
int w = child->minPrefWidth() + margin;
m_minPrefWidth = max(w, m_minPrefWidth);
w = child->maxPrefWidth() + margin;
m_maxPrefWidth = max(w, m_maxPrefWidth);
}
}
void RenderFlexibleBox::calcPrefWidths()
{
ASSERT(prefWidthsDirty());
if (style()->width().isFixed() && style()->width().value() > 0)
m_minPrefWidth = m_maxPrefWidth = calcContentBoxWidth(style()->width().value());
else {
m_minPrefWidth = m_maxPrefWidth = 0;
if (hasMultipleLines() || isVertical())
calcVerticalPrefWidths();
else
calcHorizontalPrefWidths();
m_maxPrefWidth = max(m_minPrefWidth, m_maxPrefWidth);
}
if (style()->minWidth().isFixed() && style()->minWidth().value() > 0) {
m_maxPrefWidth = max(m_maxPrefWidth, calcContentBoxWidth(style()->minWidth().value()));
m_minPrefWidth = max(m_minPrefWidth, calcContentBoxWidth(style()->minWidth().value()));
}
if (style()->maxWidth().isFixed() && style()->maxWidth().value() != undefinedLength) {
m_maxPrefWidth = min(m_maxPrefWidth, calcContentBoxWidth(style()->maxWidth().value()));
m_minPrefWidth = min(m_minPrefWidth, calcContentBoxWidth(style()->maxWidth().value()));
}
int toAdd = borderLeft() + borderRight() + paddingLeft() + paddingRight();
if (hasOverflowClip() && style()->overflowY() == OSCROLL)
toAdd += verticalScrollbarWidth();
m_minPrefWidth += toAdd;
m_maxPrefWidth += toAdd;
setPrefWidthsDirty(false);
}
void RenderFlexibleBox::layoutBlock(bool relayoutChildren)
{
ASSERT(needsLayout());
if (!relayoutChildren && layoutOnlyPositionedObjects())
return;
LayoutRepainter repainter(*this, checkForRepaintDuringLayout());
LayoutStateMaintainer statePusher(view(), this, IntSize(x(), y()), hasTransform() || hasReflection());
int previousWidth = width();
int previousHeight = height();
#ifdef ANDROID_LAYOUT
int previousVisibleWidth = m_visibleWidth;
#endif
calcWidth();
calcHeight();
m_overflowWidth = width();
if (previousWidth != width() || previousHeight != height() ||
(parent()->isFlexibleBox() && parent()->style()->boxOrient() == HORIZONTAL &&
parent()->style()->boxAlign() == BSTRETCH))
relayoutChildren = true;
#ifdef ANDROID_LAYOUT
const Settings* settings = document()->settings();
ASSERT(settings);
if (previousVisibleWidth != m_visibleWidth
&& settings->layoutAlgorithm() == Settings::kLayoutFitColumnToScreen)
relayoutChildren = true;
#endif
setHeight(0);
m_overflowHeight = 0;
m_flexingChildren = m_stretchingChildren = false;
initMaxMarginValues();
// For overflow:scroll blocks, ensure we have both scrollbars in place always.
if (scrollsOverflow()) {
if (style()->overflowX() == OSCROLL)
layer()->setHasHorizontalScrollbar(true);
if (style()->overflowY() == OSCROLL)
layer()->setHasVerticalScrollbar(true);
}
if (isHorizontal())
layoutHorizontalBox(relayoutChildren);
else
layoutVerticalBox(relayoutChildren);
int oldHeight = height();
calcHeight();
if (oldHeight != height()) {
// If the block got expanded in size, then increase our overflowheight to match.
if (m_overflowHeight > height())
m_overflowHeight -= (borderBottom() + paddingBottom() + horizontalScrollbarHeight());
if (m_overflowHeight < height())
m_overflowHeight = height();
}
if (previousHeight != height())
relayoutChildren = true;
layoutPositionedObjects(relayoutChildren || isRoot());
if (!isFloatingOrPositioned() && height() == 0) {
// We are a block with no border and padding and a computed height
// of 0. The CSS spec states that zero-height blocks collapse their margins
// together.
// When blocks are self-collapsing, we just use the top margin values and set the
// bottom margin max values to 0. This way we don't factor in the values
// twice when we collapse with our previous vertically adjacent and
// following vertically adjacent blocks.
int pos = maxTopPosMargin();
int neg = maxTopNegMargin();
if (maxBottomPosMargin() > pos)
pos = maxBottomPosMargin();
if (maxBottomNegMargin() > neg)
neg = maxBottomNegMargin();
setMaxTopMargins(pos, neg);
setMaxBottomMargins(0, 0);
}
// Always ensure our overflow width is at least as large as our width.
if (m_overflowWidth < width())
m_overflowWidth = width();
if (!hasOverflowClip()) {
int shadowLeft;
int shadowRight;
int shadowTop;
int shadowBottom;
style()->getBoxShadowExtent(shadowTop, shadowRight, shadowBottom, shadowLeft);
m_overflowLeft = min(m_overflowLeft, shadowLeft);
m_overflowWidth = max(m_overflowWidth, width() + shadowRight);
m_overflowTop = min(m_overflowTop, shadowTop);
m_overflowHeight = max(m_overflowHeight, height() + shadowBottom);
if (hasReflection()) {
IntRect reflection(reflectionBox());
m_overflowTop = min(m_overflowTop, reflection.y());
m_overflowHeight = max(m_overflowHeight, reflection.bottom());
m_overflowLeft = min(m_overflowLeft, reflection.x());
m_overflowHeight = max(m_overflowWidth, reflection.right());
}
}
statePusher.pop();
// Update our scrollbars if we're overflow:auto/scroll/hidden now that we know if
// we overflow or not.
if (hasOverflowClip())
layer()->updateScrollInfoAfterLayout();
// Repaint with our new bounds if they are different from our old bounds.
repainter.repaintAfterLayout();
setNeedsLayout(false);
}
// The first walk over our kids is to find out if we have any flexible children.
static void gatherFlexChildrenInfo(FlexBoxIterator& iterator, bool relayoutChildren, unsigned int& highestFlexGroup, unsigned int& lowestFlexGroup, bool& haveFlex)
{
RenderBox* child = iterator.first();
while (child) {
// Check to see if this child flexes.
if (!child->isPositioned() && child->style()->boxFlex() > 0.0f) {
// We always have to lay out flexible objects again, since the flex distribution
// may have changed, and we need to reallocate space.
child->setOverrideSize(-1);
if (!relayoutChildren)
child->setChildNeedsLayout(true, false);
haveFlex = true;
unsigned int flexGroup = child->style()->boxFlexGroup();
if (lowestFlexGroup == 0)
lowestFlexGroup = flexGroup;
if (flexGroup < lowestFlexGroup)
lowestFlexGroup = flexGroup;
if (flexGroup > highestFlexGroup)
highestFlexGroup = flexGroup;
}
child = iterator.next();
}
}
void RenderFlexibleBox::layoutHorizontalBox(bool relayoutChildren)
{
int toAdd = borderBottom() + paddingBottom() + horizontalScrollbarHeight();
int yPos = borderTop() + paddingTop();
int xPos = borderLeft() + paddingLeft();
bool heightSpecified = false;
int oldHeight = 0;
int remainingSpace = 0;
m_overflowHeight = height();
FlexBoxIterator iterator(this);
unsigned int highestFlexGroup = 0;
unsigned int lowestFlexGroup = 0;
bool haveFlex = false;
gatherFlexChildrenInfo(iterator, relayoutChildren, highestFlexGroup, lowestFlexGroup, haveFlex);
RenderBox* child;
RenderBlock::startDelayUpdateScrollInfo();
// We do 2 passes. The first pass is simply to lay everyone out at
// their preferred widths. The second pass handles flexing the children.
do {
// Reset our height.
setHeight(yPos);
m_overflowHeight = height();
xPos = borderLeft() + paddingLeft();
// Our first pass is done without flexing. We simply lay the children
// out within the box. We have to do a layout first in order to determine
// our box's intrinsic height.
int maxAscent = 0, maxDescent = 0;
child = iterator.first();
while (child) {
// make sure we relayout children if we need it.
if (relayoutChildren || (child->isReplaced() && (child->style()->width().isPercent() || child->style()->height().isPercent())))
child->setChildNeedsLayout(true, false);
if (child->isPositioned()) {
child = iterator.next();
continue;
}
// Compute the child's vertical margins.
child->calcVerticalMargins();
// Now do the layout.
child->layoutIfNeeded();
// Update our height and overflow height.
if (style()->boxAlign() == BBASELINE) {
int ascent = child->firstLineBoxBaseline();
if (ascent == -1)
ascent = child->height() + child->marginBottom();
ascent += child->marginTop();
int descent = (child->marginTop() + child->height() + child->marginBottom()) - ascent;
// Update our maximum ascent.
maxAscent = max(maxAscent, ascent);
// Update our maximum descent.
maxDescent = max(maxDescent, descent);
// Now update our height.
setHeight(max(yPos + maxAscent + maxDescent, height()));
}
else
setHeight(max(height(), yPos + child->marginTop() + child->height() + child->marginBottom()));
child = iterator.next();
}
if (!iterator.first() && hasLineIfEmpty())
setHeight(height() + lineHeight(true, true));
setHeight(height() + toAdd);
// Always make sure our overflowheight is at least our height.
if (m_overflowHeight < height())
m_overflowHeight = height();
oldHeight = height();
calcHeight();
relayoutChildren = false;
if (oldHeight != height())
heightSpecified = true;
// Now that our height is actually known, we can place our boxes.
m_stretchingChildren = (style()->boxAlign() == BSTRETCH);
child = iterator.first();
while (child) {
if (child->isPositioned()) {
child->containingBlock()->insertPositionedObject(child);
if (child->style()->hasStaticX()) {
if (style()->direction() == LTR)
child->layer()->setStaticX(xPos);
else child->layer()->setStaticX(width() - xPos);
}
if (child->style()->hasStaticY())
child->layer()->setStaticY(yPos);
child = iterator.next();
continue;
}
// We need to see if this child's height has changed, since we make block elements
// fill the height of a containing box by default.
// Now do a layout.
int oldChildHeight = child->height();
child->calcHeight();
if (oldChildHeight != child->height())
child->setChildNeedsLayout(true, false);
child->layoutIfNeeded();
// We can place the child now, using our value of box-align.
xPos += child->marginLeft();
int childY = yPos;
switch (style()->boxAlign()) {
case BCENTER:
childY += child->marginTop() + max(0, (contentHeight() - (child->height() + child->marginTop() + child->marginBottom()))/2);
break;
case BBASELINE: {
int ascent = child->firstLineBoxBaseline();
if (ascent == -1)
ascent = child->height() + child->marginBottom();
ascent += child->marginTop();
childY += child->marginTop() + (maxAscent - ascent);
break;
}
case BEND:
childY += contentHeight() - child->marginBottom() - child->height();
break;
default: // BSTART
childY += child->marginTop();
break;
}
placeChild(child, xPos, childY);
if (child->isRenderBlock())
toRenderBlock(child)->addVisualOverflow(toRenderBlock(child)->floatRect());
m_overflowHeight = max(m_overflowHeight, childY + child->overflowHeight(false));
m_overflowTop = min(m_overflowTop, child->y() + child->overflowTop(false));
xPos += child->width() + child->marginRight();
child = iterator.next();
}
remainingSpace = borderLeft() + paddingLeft() + contentWidth() - xPos;
m_stretchingChildren = false;
if (m_flexingChildren)
haveFlex = false; // We're done.
else if (haveFlex) {
// We have some flexible objects. See if we need to grow/shrink them at all.
if (!remainingSpace)
break;
// Allocate the remaining space among the flexible objects. If we are trying to
// grow, then we go from the lowest flex group to the highest flex group. For shrinking,
// we go from the highest flex group to the lowest group.
bool expanding = remainingSpace > 0;
unsigned int start = expanding ? lowestFlexGroup : highestFlexGroup;
unsigned int end = expanding? highestFlexGroup : lowestFlexGroup;
for (unsigned int i = start; i <= end && remainingSpace; i++) {
// Always start off by assuming the group can get all the remaining space.
int groupRemainingSpace = remainingSpace;
do {
// Flexing consists of multiple passes, since we have to change ratios every time an object hits its max/min-width
// For a given pass, we always start off by computing the totalFlex of all objects that can grow/shrink at all, and
// computing the allowed growth before an object hits its min/max width (and thus
// forces a totalFlex recomputation).
int groupRemainingSpaceAtBeginning = groupRemainingSpace;
float totalFlex = 0.0f;
child = iterator.first();
while (child) {
if (allowedChildFlex(child, expanding, i))
totalFlex += child->style()->boxFlex();
child = iterator.next();
}
child = iterator.first();
int spaceAvailableThisPass = groupRemainingSpace;
while (child) {
int allowedFlex = allowedChildFlex(child, expanding, i);
if (allowedFlex) {
int projectedFlex = (allowedFlex == INT_MAX) ? allowedFlex : (int)(allowedFlex * (totalFlex / child->style()->boxFlex()));
spaceAvailableThisPass = expanding ? min(spaceAvailableThisPass, projectedFlex) : max(spaceAvailableThisPass, projectedFlex);
}
child = iterator.next();
}
// The flex groups may not have any flexible objects this time around.
if (!spaceAvailableThisPass || totalFlex == 0.0f) {
// If we just couldn't grow/shrink any more, then it's time to transition to the next flex group.
groupRemainingSpace = 0;
continue;
}
// Now distribute the space to objects.
child = iterator.first();
while (child && spaceAvailableThisPass && totalFlex) {
if (allowedChildFlex(child, expanding, i)) {
int spaceAdd = (int)(spaceAvailableThisPass * (child->style()->boxFlex()/totalFlex));
if (spaceAdd) {
child->setOverrideSize(child->overrideWidth() + spaceAdd);
m_flexingChildren = true;
relayoutChildren = true;
}
spaceAvailableThisPass -= spaceAdd;
remainingSpace -= spaceAdd;
groupRemainingSpace -= spaceAdd;
totalFlex -= child->style()->boxFlex();
}
child = iterator.next();
}
if (groupRemainingSpace == groupRemainingSpaceAtBeginning) {
// this is not advancing, avoid getting stuck by distributing the remaining pixels
child = iterator.first();
int spaceAdd = groupRemainingSpace > 0 ? 1 : -1;
while (child && groupRemainingSpace) {
if (allowedChildFlex(child, expanding, i)) {
child->setOverrideSize(child->overrideWidth() + spaceAdd);
m_flexingChildren = true;
relayoutChildren = true;
remainingSpace -= spaceAdd;
groupRemainingSpace -= spaceAdd;
}
child = iterator.next();
}
}
} while (groupRemainingSpace);
}
// We didn't find any children that could grow.
if (haveFlex && !m_flexingChildren)
haveFlex = false;
}
} while (haveFlex);
m_flexingChildren = false;
RenderBlock::finishDelayUpdateScrollInfo();
if (remainingSpace > 0 && ((style()->direction() == LTR && style()->boxPack() != BSTART) ||
(style()->direction() == RTL && style()->boxPack() != BEND))) {
// Children must be repositioned.
int offset = 0;
if (style()->boxPack() == BJUSTIFY) {
// Determine the total number of children.
int totalChildren = 0;
child = iterator.first();
while (child) {
if (child->isPositioned()) {
child = iterator.next();
continue;
}
totalChildren++;
child = iterator.next();
}
// Iterate over the children and space them out according to the
// justification level.
if (totalChildren > 1) {
totalChildren--;
bool firstChild = true;
child = iterator.first();
while (child) {
if (child->isPositioned()) {
child = iterator.next();
continue;
}
if (firstChild) {
firstChild = false;
child = iterator.next();
continue;
}
offset += remainingSpace/totalChildren;
remainingSpace -= (remainingSpace/totalChildren);
totalChildren--;
placeChild(child, child->x()+offset, child->y());
child = iterator.next();
}
}
} else {
if (style()->boxPack() == BCENTER)
offset += remainingSpace/2;
else // END for LTR, START for RTL
offset += remainingSpace;
child = iterator.first();
while (child) {
if (child->isPositioned()) {
child = iterator.next();
continue;
}
placeChild(child, child->x()+offset, child->y());
child = iterator.next();
}
}
}
child = iterator.first();
while (child && child->isPositioned()) {
child = iterator.next();
}
if (child) {
m_overflowLeft = min(child->x() + child->overflowLeft(false), m_overflowLeft);
RenderBox* lastChild = child;
while ((child = iterator.next())) {
if (!child->isPositioned())
lastChild = child;
}
m_overflowWidth = max(lastChild->x() + lastChild->overflowWidth(false), m_overflowWidth);
}
// So that the calcHeight in layoutBlock() knows to relayout positioned objects because of
// a height change, we revert our height back to the intrinsic height before returning.
if (heightSpecified)
setHeight(oldHeight);
}
void RenderFlexibleBox::layoutVerticalBox(bool relayoutChildren)
{
int xPos = borderLeft() + paddingLeft();
int yPos = borderTop() + paddingTop();
if (style()->direction() == RTL)
xPos = width() - paddingRight() - borderRight();
int toAdd = borderBottom() + paddingBottom() + horizontalScrollbarHeight();
bool heightSpecified = false;
int oldHeight = 0;
int remainingSpace = 0;
FlexBoxIterator iterator(this);
unsigned int highestFlexGroup = 0;
unsigned int lowestFlexGroup = 0;
bool haveFlex = false;
gatherFlexChildrenInfo(iterator, relayoutChildren, highestFlexGroup, lowestFlexGroup, haveFlex);
RenderBox* child;
// We confine the line clamp ugliness to vertical flexible boxes (thus keeping it out of
// mainstream block layout); this is not really part of the XUL box model.
bool haveLineClamp = style()->lineClamp() >= 0 && style()->lineClamp() <= 100;
if (haveLineClamp) {
int maxLineCount = 0;
child = iterator.first();
while (child) {
if (!child->isPositioned()) {
if (relayoutChildren || (child->isReplaced() && (child->style()->width().isPercent() || child->style()->height().isPercent())) ||
(child->style()->height().isAuto() && child->isBlockFlow() && !child->needsLayout())) {
child->setChildNeedsLayout(true, false);
// Dirty all the positioned objects.
if (child->isRenderBlock()) {
toRenderBlock(child)->markPositionedObjectsForLayout();
toRenderBlock(child)->clearTruncation();
}
}
child->layoutIfNeeded();
if (child->style()->height().isAuto() && child->isBlockFlow())
maxLineCount = max(maxLineCount, toRenderBlock(child)->lineCount());
}
child = iterator.next();
}
// Get the # of lines and then alter all block flow children with auto height to use the
// specified height. We always try to leave room for at least one line.
int numVisibleLines = max(1, static_cast<int>((maxLineCount + 1) * style()->lineClamp() / 100.0));
if (numVisibleLines < maxLineCount) {
for (child = iterator.first(); child; child = iterator.next()) {
if (child->isPositioned() || !child->style()->height().isAuto() || !child->isBlockFlow())
continue;
RenderBlock* blockChild = toRenderBlock(child);
int lineCount = blockChild->lineCount();
if (lineCount <= numVisibleLines)
continue;
int newHeight = blockChild->heightForLineCount(numVisibleLines);
if (newHeight == child->height())
continue;
child->setChildNeedsLayout(true, false);
child->setOverrideSize(newHeight);
m_flexingChildren = true;
child->layoutIfNeeded();
m_flexingChildren = false;
child->setOverrideSize(-1);
// FIXME: For now don't support RTL.
if (style()->direction() != LTR)
continue;
// Get the last line
RootInlineBox* lastLine = blockChild->lineAtIndex(lineCount-1);
if (!lastLine)
continue;
// See if the last item is an anchor
InlineBox* anchorBox = lastLine->lastChild();
if (!anchorBox)
continue;
if (!anchorBox->renderer()->node())
continue;
if (!anchorBox->renderer()->node()->isLink())
continue;
RootInlineBox* lastVisibleLine = blockChild->lineAtIndex(numVisibleLines-1);
if (!lastVisibleLine)
continue;
const UChar ellipsisAndSpace[2] = { horizontalEllipsis, ' ' };
DEFINE_STATIC_LOCAL(AtomicString, ellipsisAndSpaceStr, (ellipsisAndSpace, 2));
const Font& font = style(numVisibleLines == 1)->font();
int ellipsisAndSpaceWidth = font.width(TextRun(ellipsisAndSpace, 2));
// Get ellipsis width + " " + anchor width
int totalWidth = ellipsisAndSpaceWidth + anchorBox->width();
// See if this width can be accommodated on the last visible line
RenderBlock* destBlock = toRenderBlock(lastVisibleLine->renderer());
RenderBlock* srcBlock = toRenderBlock(lastLine->renderer());
// FIXME: Directions of src/destBlock could be different from our direction and from one another.
if (srcBlock->style()->direction() != LTR)
continue;
if (destBlock->style()->direction() != LTR)
continue;
int ltr = true;
int blockRightEdge = destBlock->rightOffset(lastVisibleLine->y(), false);
int blockLeftEdge = destBlock->leftOffset(lastVisibleLine->y(), false);
int blockEdge = ltr ? blockRightEdge : blockLeftEdge;
if (!lastVisibleLine->canAccommodateEllipsis(ltr, blockEdge,
lastVisibleLine->x() + lastVisibleLine->width(),
totalWidth))
continue;
// Let the truncation code kick in.
lastVisibleLine->placeEllipsis(ellipsisAndSpaceStr, ltr, blockLeftEdge, blockRightEdge, totalWidth, anchorBox);
destBlock->setHasMarkupTruncation(true);
}
}
}
RenderBlock::startDelayUpdateScrollInfo();
// We do 2 passes. The first pass is simply to lay everyone out at
// their preferred widths. The second pass handles flexing the children.
// Our first pass is done without flexing. We simply lay the children
// out within the box.
do {
setHeight(borderTop() + paddingTop());
int minHeight = height() + toAdd;
m_overflowHeight = height();
child = iterator.first();
while (child) {
// make sure we relayout children if we need it.
if (!haveLineClamp && (relayoutChildren || (child->isReplaced() && (child->style()->width().isPercent() || child->style()->height().isPercent()))))
child->setChildNeedsLayout(true, false);
if (child->isPositioned())
{
child->containingBlock()->insertPositionedObject(child);
if (child->style()->hasStaticX()) {
if (style()->direction() == LTR)
child->layer()->setStaticX(borderLeft()+paddingLeft());
else
child->layer()->setStaticX(borderRight()+paddingRight());
}
if (child->style()->hasStaticY())
child->layer()->setStaticY(height());
child = iterator.next();
continue;
}
// Compute the child's vertical margins.
child->calcVerticalMargins();
// Add in the child's marginTop to our height.
setHeight(height() + child->marginTop());
// Now do a layout.
child->layoutIfNeeded();
// We can place the child now, using our value of box-align.
int childX = borderLeft() + paddingLeft();
switch (style()->boxAlign()) {
case BCENTER:
case BBASELINE: // Baseline just maps to center for vertical boxes
childX += child->marginLeft() + max(0, (contentWidth() - (child->width() + child->marginLeft() + child->marginRight()))/2);
break;
case BEND:
if (style()->direction() == RTL)
childX += child->marginLeft();
else
childX += contentWidth() - child->marginRight() - child->width();
break;
default: // BSTART/BSTRETCH
if (style()->direction() == LTR)
childX += child->marginLeft();
else
childX += contentWidth() - child->marginRight() - child->width();
break;
}
// Place the child.
placeChild(child, childX, height());
setHeight(height() + child->height() + child->marginBottom());
if (child->isRenderBlock())
toRenderBlock(child)->addVisualOverflow(toRenderBlock(child)->floatRect());
// See if this child has made our overflow need to grow.
m_overflowWidth = max(child->x() + child->overflowWidth(false), m_overflowWidth);
m_overflowLeft = min(child->x() + child->overflowLeft(false), m_overflowLeft);
child = iterator.next();
}
yPos = height();
if (!iterator.first() && hasLineIfEmpty())
setHeight(height() + lineHeight(true, true));
setHeight(height() + toAdd);
// Negative margins can cause our height to shrink below our minimal height (border/padding).
// If this happens, ensure that the computed height is increased to the minimal height.
if (height() < minHeight)
setHeight(minHeight);
// Always make sure our overflowheight is at least our height.
if (m_overflowHeight < height())
m_overflowHeight = height();
// Now we have to calc our height, so we know how much space we have remaining.
oldHeight = height();
calcHeight();
if (oldHeight != height())
heightSpecified = true;
remainingSpace = borderTop() + paddingTop() + contentHeight() - yPos;
if (m_flexingChildren)
haveFlex = false; // We're done.
else if (haveFlex) {
// We have some flexible objects. See if we need to grow/shrink them at all.
if (!remainingSpace)
break;
// Allocate the remaining space among the flexible objects. If we are trying to
// grow, then we go from the lowest flex group to the highest flex group. For shrinking,
// we go from the highest flex group to the lowest group.
bool expanding = remainingSpace > 0;
unsigned int start = expanding ? lowestFlexGroup : highestFlexGroup;
unsigned int end = expanding? highestFlexGroup : lowestFlexGroup;
for (unsigned int i = start; i <= end && remainingSpace; i++) {
// Always start off by assuming the group can get all the remaining space.
int groupRemainingSpace = remainingSpace;
do {
// Flexing consists of multiple passes, since we have to change ratios every time an object hits its max/min-width
// For a given pass, we always start off by computing the totalFlex of all objects that can grow/shrink at all, and
// computing the allowed growth before an object hits its min/max width (and thus
// forces a totalFlex recomputation).
int groupRemainingSpaceAtBeginning = groupRemainingSpace;
float totalFlex = 0.0f;
child = iterator.first();
while (child) {
if (allowedChildFlex(child, expanding, i))
totalFlex += child->style()->boxFlex();
child = iterator.next();
}
child = iterator.first();
int spaceAvailableThisPass = groupRemainingSpace;
while (child) {
int allowedFlex = allowedChildFlex(child, expanding, i);
if (allowedFlex) {
int projectedFlex = (allowedFlex == INT_MAX) ? allowedFlex : (int)(allowedFlex * (totalFlex / child->style()->boxFlex()));
spaceAvailableThisPass = expanding ? min(spaceAvailableThisPass, projectedFlex) : max(spaceAvailableThisPass, projectedFlex);
}
child = iterator.next();
}
// The flex groups may not have any flexible objects this time around.
if (!spaceAvailableThisPass || totalFlex == 0.0f) {
// If we just couldn't grow/shrink any more, then it's time to transition to the next flex group.
groupRemainingSpace = 0;
continue;
}
// Now distribute the space to objects.
child = iterator.first();
while (child && spaceAvailableThisPass && totalFlex) {
if (allowedChildFlex(child, expanding, i)) {
int spaceAdd = (int)(spaceAvailableThisPass * (child->style()->boxFlex()/totalFlex));
if (spaceAdd) {
child->setOverrideSize(child->overrideHeight() + spaceAdd);
m_flexingChildren = true;
relayoutChildren = true;
}
spaceAvailableThisPass -= spaceAdd;
remainingSpace -= spaceAdd;
groupRemainingSpace -= spaceAdd;
totalFlex -= child->style()->boxFlex();
}
child = iterator.next();
}
if (groupRemainingSpace == groupRemainingSpaceAtBeginning) {
// this is not advancing, avoid getting stuck by distributing the remaining pixels
child = iterator.first();
int spaceAdd = groupRemainingSpace > 0 ? 1 : -1;
while (child && groupRemainingSpace) {
if (allowedChildFlex(child, expanding, i)) {
child->setOverrideSize(child->overrideHeight() + spaceAdd);
m_flexingChildren = true;
relayoutChildren = true;
remainingSpace -= spaceAdd;
groupRemainingSpace -= spaceAdd;
}
child = iterator.next();
}
}
} while (groupRemainingSpace);
}
// We didn't find any children that could grow.
if (haveFlex && !m_flexingChildren)
haveFlex = false;
}
} while (haveFlex);
RenderBlock::finishDelayUpdateScrollInfo();
if (style()->boxPack() != BSTART && remainingSpace > 0) {
// Children must be repositioned.
int offset = 0;
if (style()->boxPack() == BJUSTIFY) {
// Determine the total number of children.
int totalChildren = 0;
child = iterator.first();
while (child) {
if (child->isPositioned()) {
child = iterator.next();
continue;
}
totalChildren++;
child = iterator.next();
}
// Iterate over the children and space them out according to the
// justification level.
if (totalChildren > 1) {
totalChildren--;
bool firstChild = true;
child = iterator.first();
while (child) {
if (child->isPositioned()) {
child = iterator.next();
continue;
}
if (firstChild) {
firstChild = false;
child = iterator.next();
continue;
}
offset += remainingSpace/totalChildren;
remainingSpace -= (remainingSpace/totalChildren);
totalChildren--;
placeChild(child, child->x(), child->y()+offset);
child = iterator.next();
}
}
} else {
if (style()->boxPack() == BCENTER)
offset += remainingSpace/2;
else // END
offset += remainingSpace;
child = iterator.first();
while (child) {
if (child->isPositioned()) {
child = iterator.next();
continue;
}
placeChild(child, child->x(), child->y()+offset);
child = iterator.next();
}
}
}
child = iterator.first();
while (child && child->isPositioned()) {
child = iterator.next();
}
if (child) {
m_overflowTop = min(child->y() + child->overflowTop(false), m_overflowTop);
RenderBox* lastChild = child;
while ((child = iterator.next())) {
if (!child->isPositioned())
lastChild = child;
}
m_overflowHeight = max(lastChild->y() + lastChild->overflowHeight(false), m_overflowHeight);
}
// So that the calcHeight in layoutBlock() knows to relayout positioned objects because of
// a height change, we revert our height back to the intrinsic height before returning.
if (heightSpecified)
setHeight(oldHeight);
}
void RenderFlexibleBox::placeChild(RenderBox* child, int x, int y)
{
IntRect oldRect(child->x(), child->y() , child->width(), child->height());
// Place the child.
child->setLocation(x, y);
// If the child moved, we have to repaint it as well as any floating/positioned
// descendants. An exception is if we need a layout. In this case, we know we're going to
// repaint ourselves (and the child) anyway.
if (!selfNeedsLayout() && child->checkForRepaintDuringLayout())
child->repaintDuringLayoutIfMoved(oldRect);
}
int RenderFlexibleBox::allowedChildFlex(RenderBox* child, bool expanding, unsigned int group)
{
if (child->isPositioned() || child->style()->boxFlex() == 0.0f || child->style()->boxFlexGroup() != group)
return 0;
if (expanding) {
if (isHorizontal()) {
// FIXME: For now just handle fixed values.
int maxW = INT_MAX;
int w = child->overrideWidth() - (child->borderLeft() + child->borderRight() + child->paddingLeft() + child->paddingRight());
if (!child->style()->maxWidth().isUndefined() &&
child->style()->maxWidth().isFixed())
maxW = child->style()->maxWidth().value();
else if (child->style()->maxWidth().type() == Intrinsic)
maxW = child->maxPrefWidth();
else if (child->style()->maxWidth().type() == MinIntrinsic)
maxW = child->minPrefWidth();
if (maxW == INT_MAX)
return maxW;
return max(0, maxW - w);
} else {
// FIXME: For now just handle fixed values.
int maxH = INT_MAX;
int h = child->overrideHeight() - (child->borderTop() + child->borderBottom() + child->paddingTop() + child->paddingBottom());
if (!child->style()->maxHeight().isUndefined() &&
child->style()->maxHeight().isFixed())
maxH = child->style()->maxHeight().value();
if (maxH == INT_MAX)
return maxH;
return max(0, maxH - h);
}
}
// FIXME: For now just handle fixed values.
if (isHorizontal()) {
int minW = child->minPrefWidth();
int w = child->overrideWidth() - (child->borderLeft() + child->borderRight() + child->paddingLeft() + child->paddingRight());
if (child->style()->minWidth().isFixed())
minW = child->style()->minWidth().value();
else if (child->style()->minWidth().type() == Intrinsic)
minW = child->maxPrefWidth();
else if (child->style()->minWidth().type() == MinIntrinsic)
minW = child->minPrefWidth();
int allowedShrinkage = min(0, minW - w);
return allowedShrinkage;
} else {
if (child->style()->minHeight().isFixed()) {
int minH = child->style()->minHeight().value();
int h = child->overrideHeight() - (child->borderLeft() + child->borderRight() + child->paddingLeft() + child->paddingRight());
int allowedShrinkage = min(0, minH - h);
return allowedShrinkage;
}
}
return 0;
}
const char *RenderFlexibleBox::renderName() const
{
if (isFloating())
return "RenderFlexibleBox (floating)";
if (isPositioned())
return "RenderFlexibleBox (positioned)";
if (isRelPositioned())
return "RenderFlexibleBox (relative positioned)";
return "RenderFlexibleBox";
}
} // namespace WebCore
|