1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
|
/*
*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Copyright (c) 1997
* Moscow Center for SPARC Technology
*
* Copyright (c) 1999
* Boris Fomitchev
*
* This material is provided "as is", with absolutely no warranty expressed
* or implied. Any use is at your own risk.
*
* Permission to use or copy this software for any purpose is hereby granted
* without fee, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*
* Modified CRP 7/10/00 for improved conformance / efficiency on insert_unique /
* insert_equal with valid hint -- efficiency is improved all around, and it is
* should now be standard conforming for complexity on insert point immediately
* after hint (amortized constant time).
*
*/
#ifndef _STLP_TREE_C
#define _STLP_TREE_C
#ifndef _STLP_INTERNAL_TREE_H
# include <stl/_tree.h>
#endif
#if defined (_STLP_DEBUG)
# define _Rb_tree _STLP_NON_DBG_NAME(Rb_tree)
#endif
// fbp: these defines are for outline methods definitions.
// needed for definitions to be portable. Should not be used in method bodies.
#if defined (_STLP_NESTED_TYPE_PARAM_BUG)
# define __iterator__ _Rb_tree_iterator<_Value, _STLP_HEADER_TYPENAME _Traits::_NonConstTraits>
# define __size_type__ size_t
# define iterator __iterator__
#else
# define __iterator__ _STLP_TYPENAME_ON_RETURN_TYPE _Rb_tree<_Key, _Compare, _Value, _KeyOfValue, _Traits, _Alloc>::iterator
# define __size_type__ _STLP_TYPENAME_ON_RETURN_TYPE _Rb_tree<_Key, _Compare, _Value, _KeyOfValue, _Traits, _Alloc>::size_type
#endif
_STLP_BEGIN_NAMESPACE
_STLP_MOVE_TO_PRIV_NAMESPACE
#if defined (_STLP_EXPOSE_GLOBALS_IMPLEMENTATION)
template <class _Dummy> void _STLP_CALL
_Rb_global<_Dummy>::_Rotate_left(_Rb_tree_node_base* __x,
_Rb_tree_node_base*& __root) {
_Rb_tree_node_base* __y = __x->_M_right;
__x->_M_right = __y->_M_left;
if (__y->_M_left != 0)
__y->_M_left->_M_parent = __x;
__y->_M_parent = __x->_M_parent;
if (__x == __root)
__root = __y;
else if (__x == __x->_M_parent->_M_left)
__x->_M_parent->_M_left = __y;
else
__x->_M_parent->_M_right = __y;
__y->_M_left = __x;
__x->_M_parent = __y;
}
template <class _Dummy> void _STLP_CALL
_Rb_global<_Dummy>::_Rotate_right(_Rb_tree_node_base* __x,
_Rb_tree_node_base*& __root) {
_Rb_tree_node_base* __y = __x->_M_left;
__x->_M_left = __y->_M_right;
if (__y->_M_right != 0)
__y->_M_right->_M_parent = __x;
__y->_M_parent = __x->_M_parent;
if (__x == __root)
__root = __y;
else if (__x == __x->_M_parent->_M_right)
__x->_M_parent->_M_right = __y;
else
__x->_M_parent->_M_left = __y;
__y->_M_right = __x;
__x->_M_parent = __y;
}
template <class _Dummy> void _STLP_CALL
_Rb_global<_Dummy>::_Rebalance(_Rb_tree_node_base* __x,
_Rb_tree_node_base*& __root) {
__x->_M_color = _S_rb_tree_red;
while (__x != __root && __x->_M_parent->_M_color == _S_rb_tree_red) {
if (__x->_M_parent == __x->_M_parent->_M_parent->_M_left) {
_Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_right;
if (__y && __y->_M_color == _S_rb_tree_red) {
__x->_M_parent->_M_color = _S_rb_tree_black;
__y->_M_color = _S_rb_tree_black;
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
__x = __x->_M_parent->_M_parent;
}
else {
if (__x == __x->_M_parent->_M_right) {
__x = __x->_M_parent;
_Rotate_left(__x, __root);
}
__x->_M_parent->_M_color = _S_rb_tree_black;
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
_Rotate_right(__x->_M_parent->_M_parent, __root);
}
}
else {
_Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_left;
if (__y && __y->_M_color == _S_rb_tree_red) {
__x->_M_parent->_M_color = _S_rb_tree_black;
__y->_M_color = _S_rb_tree_black;
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
__x = __x->_M_parent->_M_parent;
}
else {
if (__x == __x->_M_parent->_M_left) {
__x = __x->_M_parent;
_Rotate_right(__x, __root);
}
__x->_M_parent->_M_color = _S_rb_tree_black;
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
_Rotate_left(__x->_M_parent->_M_parent, __root);
}
}
}
__root->_M_color = _S_rb_tree_black;
}
template <class _Dummy> _Rb_tree_node_base* _STLP_CALL
_Rb_global<_Dummy>::_Rebalance_for_erase(_Rb_tree_node_base* __z,
_Rb_tree_node_base*& __root,
_Rb_tree_node_base*& __leftmost,
_Rb_tree_node_base*& __rightmost) {
_Rb_tree_node_base* __y = __z;
_Rb_tree_node_base* __x;
_Rb_tree_node_base* __x_parent;
if (__y->_M_left == 0) // __z has at most one non-null child. y == z.
__x = __y->_M_right; // __x might be null.
else {
if (__y->_M_right == 0) // __z has exactly one non-null child. y == z.
__x = __y->_M_left; // __x is not null.
else { // __z has two non-null children. Set __y to
__y = _Rb_tree_node_base::_S_minimum(__y->_M_right); // __z's successor. __x might be null.
__x = __y->_M_right;
}
}
if (__y != __z) { // relink y in place of z. y is z's successor
__z->_M_left->_M_parent = __y;
__y->_M_left = __z->_M_left;
if (__y != __z->_M_right) {
__x_parent = __y->_M_parent;
if (__x) __x->_M_parent = __y->_M_parent;
__y->_M_parent->_M_left = __x; // __y must be a child of _M_left
__y->_M_right = __z->_M_right;
__z->_M_right->_M_parent = __y;
}
else
__x_parent = __y;
if (__root == __z)
__root = __y;
else if (__z->_M_parent->_M_left == __z)
__z->_M_parent->_M_left = __y;
else
__z->_M_parent->_M_right = __y;
__y->_M_parent = __z->_M_parent;
_STLP_STD::swap(__y->_M_color, __z->_M_color);
__y = __z;
// __y now points to node to be actually deleted
}
else { // __y == __z
__x_parent = __y->_M_parent;
if (__x) __x->_M_parent = __y->_M_parent;
if (__root == __z)
__root = __x;
else {
if (__z->_M_parent->_M_left == __z)
__z->_M_parent->_M_left = __x;
else
__z->_M_parent->_M_right = __x;
}
if (__leftmost == __z) {
if (__z->_M_right == 0) // __z->_M_left must be null also
__leftmost = __z->_M_parent;
// makes __leftmost == _M_header if __z == __root
else
__leftmost = _Rb_tree_node_base::_S_minimum(__x);
}
if (__rightmost == __z) {
if (__z->_M_left == 0) // __z->_M_right must be null also
__rightmost = __z->_M_parent;
// makes __rightmost == _M_header if __z == __root
else // __x == __z->_M_left
__rightmost = _Rb_tree_node_base::_S_maximum(__x);
}
}
if (__y->_M_color != _S_rb_tree_red) {
while (__x != __root && (__x == 0 || __x->_M_color == _S_rb_tree_black))
if (__x == __x_parent->_M_left) {
_Rb_tree_node_base* __w = __x_parent->_M_right;
if (__w->_M_color == _S_rb_tree_red) {
__w->_M_color = _S_rb_tree_black;
__x_parent->_M_color = _S_rb_tree_red;
_Rotate_left(__x_parent, __root);
__w = __x_parent->_M_right;
}
if ((__w->_M_left == 0 ||
__w->_M_left->_M_color == _S_rb_tree_black) && (__w->_M_right == 0 ||
__w->_M_right->_M_color == _S_rb_tree_black)) {
__w->_M_color = _S_rb_tree_red;
__x = __x_parent;
__x_parent = __x_parent->_M_parent;
} else {
if (__w->_M_right == 0 ||
__w->_M_right->_M_color == _S_rb_tree_black) {
if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
__w->_M_color = _S_rb_tree_red;
_Rotate_right(__w, __root);
__w = __x_parent->_M_right;
}
__w->_M_color = __x_parent->_M_color;
__x_parent->_M_color = _S_rb_tree_black;
if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
_Rotate_left(__x_parent, __root);
break;
}
} else { // same as above, with _M_right <-> _M_left.
_Rb_tree_node_base* __w = __x_parent->_M_left;
if (__w->_M_color == _S_rb_tree_red) {
__w->_M_color = _S_rb_tree_black;
__x_parent->_M_color = _S_rb_tree_red;
_Rotate_right(__x_parent, __root);
__w = __x_parent->_M_left;
}
if ((__w->_M_right == 0 ||
__w->_M_right->_M_color == _S_rb_tree_black) && (__w->_M_left == 0 ||
__w->_M_left->_M_color == _S_rb_tree_black)) {
__w->_M_color = _S_rb_tree_red;
__x = __x_parent;
__x_parent = __x_parent->_M_parent;
} else {
if (__w->_M_left == 0 ||
__w->_M_left->_M_color == _S_rb_tree_black) {
if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
__w->_M_color = _S_rb_tree_red;
_Rotate_left(__w, __root);
__w = __x_parent->_M_left;
}
__w->_M_color = __x_parent->_M_color;
__x_parent->_M_color = _S_rb_tree_black;
if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
_Rotate_right(__x_parent, __root);
break;
}
}
if (__x) __x->_M_color = _S_rb_tree_black;
}
return __y;
}
template <class _Dummy> _Rb_tree_node_base* _STLP_CALL
_Rb_global<_Dummy>::_M_decrement(_Rb_tree_node_base* _M_node) {
if (_M_node->_M_color == _S_rb_tree_red && _M_node->_M_parent->_M_parent == _M_node)
_M_node = _M_node->_M_right;
else if (_M_node->_M_left != 0) {
_M_node = _Rb_tree_node_base::_S_maximum(_M_node->_M_left);
}
else {
_Base_ptr __y = _M_node->_M_parent;
while (_M_node == __y->_M_left) {
_M_node = __y;
__y = __y->_M_parent;
}
_M_node = __y;
}
return _M_node;
}
template <class _Dummy> _Rb_tree_node_base* _STLP_CALL
_Rb_global<_Dummy>::_M_increment(_Rb_tree_node_base* _M_node) {
if (_M_node->_M_right != 0) {
_M_node = _Rb_tree_node_base::_S_minimum(_M_node->_M_right);
}
else {
_Base_ptr __y = _M_node->_M_parent;
while (_M_node == __y->_M_right) {
_M_node = __y;
__y = __y->_M_parent;
}
// check special case: This is necessary if _M_node is the
// _M_head and the tree contains only a single node __y. In
// that case parent, left and right all point to __y!
if (_M_node->_M_right != __y)
_M_node = __y;
}
return _M_node;
}
#endif /* _STLP_EXPOSE_GLOBALS_IMPLEMENTATION */
template <class _Key, class _Compare,
class _Value, class _KeyOfValue, class _Traits, class _Alloc>
_Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>&
_Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::operator=(
const _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>& __x) {
if (this != &__x) {
// Note that _Key may be a constant type.
clear();
_M_node_count = 0;
_M_key_compare = __x._M_key_compare;
if (__x._M_root() == 0) {
_M_root() = 0;
_M_leftmost() = &this->_M_header._M_data;
_M_rightmost() = &this->_M_header._M_data;
}
else {
_M_root() = _M_copy(__x._M_root(), &this->_M_header._M_data);
_M_leftmost() = _S_minimum(_M_root());
_M_rightmost() = _S_maximum(_M_root());
_M_node_count = __x._M_node_count;
}
}
return *this;
}
// CRP 7/10/00 inserted argument __on_right, which is another hint (meant to
// act like __on_left and ignore a portion of the if conditions -- specify
// __on_right != 0 to bypass comparison as false or __on_left != 0 to bypass
// comparison as true)
template <class _Key, class _Compare,
class _Value, class _KeyOfValue, class _Traits, class _Alloc>
__iterator__
_Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::_M_insert(_Rb_tree_node_base * __parent,
const _Value& __val,
_Rb_tree_node_base * __on_left,
_Rb_tree_node_base * __on_right) {
// We do not create the node here as, depending on tests, we might call
// _M_key_compare that can throw an exception.
_Base_ptr __new_node;
if ( __parent == &this->_M_header._M_data ) {
__new_node = _M_create_node(__val);
_S_left(__parent) = __new_node; // also makes _M_leftmost() = __new_node
_M_root() = __new_node;
_M_rightmost() = __new_node;
}
else if ( __on_right == 0 && // If __on_right != 0, the remainder fails to false
( __on_left != 0 || // If __on_left != 0, the remainder succeeds to true
_M_key_compare( _KeyOfValue()(__val), _S_key(__parent) ) ) ) {
__new_node = _M_create_node(__val);
_S_left(__parent) = __new_node;
if (__parent == _M_leftmost())
_M_leftmost() = __new_node; // maintain _M_leftmost() pointing to min node
}
else {
__new_node = _M_create_node(__val);
_S_right(__parent) = __new_node;
if (__parent == _M_rightmost())
_M_rightmost() = __new_node; // maintain _M_rightmost() pointing to max node
}
_S_parent(__new_node) = __parent;
_Rb_global_inst::_Rebalance(__new_node, this->_M_header._M_data._M_parent);
++_M_node_count;
return iterator(__new_node);
}
template <class _Key, class _Compare,
class _Value, class _KeyOfValue, class _Traits, class _Alloc>
__iterator__
_Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_equal(const _Value& __val) {
_Base_ptr __y = &this->_M_header._M_data;
_Base_ptr __x = _M_root();
while (__x != 0) {
__y = __x;
if (_M_key_compare(_KeyOfValue()(__val), _S_key(__x))) {
__x = _S_left(__x);
}
else
__x = _S_right(__x);
}
return _M_insert(__y, __val, __x);
}
template <class _Key, class _Compare,
class _Value, class _KeyOfValue, class _Traits, class _Alloc>
pair<__iterator__, bool>
_Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_unique(const _Value& __val) {
_Base_ptr __y = &this->_M_header._M_data;
_Base_ptr __x = _M_root();
bool __comp = true;
while (__x != 0) {
__y = __x;
__comp = _M_key_compare(_KeyOfValue()(__val), _S_key(__x));
__x = __comp ? _S_left(__x) : _S_right(__x);
}
iterator __j = iterator(__y);
if (__comp) {
if (__j == begin())
return pair<iterator,bool>(_M_insert(__y, __val, /* __x*/ __y), true);
else
--__j;
}
if (_M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__val))) {
return pair<iterator,bool>(_M_insert(__y, __val, __x), true);
}
return pair<iterator,bool>(__j, false);
}
// Modifications CRP 7/10/00 as noted to improve conformance and
// efficiency.
template <class _Key, class _Compare,
class _Value, class _KeyOfValue, class _Traits, class _Alloc>
__iterator__
_Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_unique(iterator __position,
const _Value& __val) {
if (__position._M_node == this->_M_header._M_data._M_left) { // begin()
// if the container is empty, fall back on insert_unique.
if (empty())
return insert_unique(__val).first;
if (_M_key_compare(_KeyOfValue()(__val), _S_key(__position._M_node))) {
return _M_insert(__position._M_node, __val, __position._M_node);
}
// first argument just needs to be non-null
else {
bool __comp_pos_v = _M_key_compare( _S_key(__position._M_node), _KeyOfValue()(__val) );
if (__comp_pos_v == false) // compare > and compare < both false so compare equal
return __position;
//Below __comp_pos_v == true
// Standard-conformance - does the insertion point fall immediately AFTER
// the hint?
iterator __after = __position;
++__after;
// Check for only one member -- in that case, __position points to itself,
// and attempting to increment will cause an infinite loop.
if (__after._M_node == &this->_M_header._M_data)
// Check guarantees exactly one member, so comparison was already
// performed and we know the result; skip repeating it in _M_insert
// by specifying a non-zero fourth argument.
return _M_insert(__position._M_node, __val, 0, __position._M_node);
// All other cases:
// Optimization to catch insert-equivalent -- save comparison results,
// and we get this for free.
if (_M_key_compare( _KeyOfValue()(__val), _S_key(__after._M_node) )) {
if (_S_right(__position._M_node) == 0)
return _M_insert(__position._M_node, __val, 0, __position._M_node);
else
return _M_insert(__after._M_node, __val, __after._M_node);
}
else {
return insert_unique(__val).first;
}
}
}
else if (__position._M_node == &this->_M_header._M_data) { // end()
if (_M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__val))) {
// pass along to _M_insert that it can skip comparing
// v, Key ; since compare Key, v was true, compare v, Key must be false.
return _M_insert(_M_rightmost(), __val, 0, __position._M_node); // Last argument only needs to be non-null
}
else
return insert_unique(__val).first;
}
else {
iterator __before = __position;
--__before;
bool __comp_v_pos = _M_key_compare(_KeyOfValue()(__val), _S_key(__position._M_node));
if (__comp_v_pos
&& _M_key_compare( _S_key(__before._M_node), _KeyOfValue()(__val) )) {
if (_S_right(__before._M_node) == 0)
return _M_insert(__before._M_node, __val, 0, __before._M_node); // Last argument only needs to be non-null
else
return _M_insert(__position._M_node, __val, __position._M_node);
// first argument just needs to be non-null
}
else {
// Does the insertion point fall immediately AFTER the hint?
iterator __after = __position;
++__after;
// Optimization to catch equivalent cases and avoid unnecessary comparisons
bool __comp_pos_v = !__comp_v_pos; // Stored this result earlier
// If the earlier comparison was true, this comparison doesn't need to be
// performed because it must be false. However, if the earlier comparison
// was false, we need to perform this one because in the equal case, both will
// be false.
if (!__comp_v_pos) {
__comp_pos_v = _M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__val));
}
if ( (!__comp_v_pos) // comp_v_pos true implies comp_v_pos false
&& __comp_pos_v
&& (__after._M_node == &this->_M_header._M_data ||
_M_key_compare( _KeyOfValue()(__val), _S_key(__after._M_node) ))) {
if (_S_right(__position._M_node) == 0)
return _M_insert(__position._M_node, __val, 0, __position._M_node);
else
return _M_insert(__after._M_node, __val, __after._M_node);
} else {
// Test for equivalent case
if (__comp_v_pos == __comp_pos_v)
return __position;
else
return insert_unique(__val).first;
}
}
}
}
template <class _Key, class _Compare,
class _Value, class _KeyOfValue, class _Traits, class _Alloc>
__iterator__
_Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_equal(iterator __position,
const _Value& __val) {
if (__position._M_node == this->_M_header._M_data._M_left) { // begin()
// Check for zero members
if (size() <= 0)
return insert_equal(__val);
if (!_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__val)))
return _M_insert(__position._M_node, __val, __position._M_node);
else {
// Check for only one member
if (__position._M_node->_M_left == __position._M_node)
// Unlike insert_unique, can't avoid doing a comparison here.
return _M_insert(__position._M_node, __val);
// All other cases:
// Standard-conformance - does the insertion point fall immediately AFTER
// the hint?
iterator __after = __position;
++__after;
// Already know that compare(pos, v) must be true!
// Therefore, we want to know if compare(after, v) is false.
// (i.e., we now pos < v, now we want to know if v <= after)
// If not, invalid hint.
if ( __after._M_node == &this->_M_header._M_data ||
!_M_key_compare( _S_key(__after._M_node), _KeyOfValue()(__val) ) ) {
if (_S_right(__position._M_node) == 0)
return _M_insert(__position._M_node, __val, 0, __position._M_node);
else
return _M_insert(__after._M_node, __val, __after._M_node);
}
else { // Invalid hint
return insert_equal(__val);
}
}
}
else if (__position._M_node == &this->_M_header._M_data) { // end()
if (!_M_key_compare(_KeyOfValue()(__val), _S_key(_M_rightmost())))
return _M_insert(_M_rightmost(), __val, 0, __position._M_node); // Last argument only needs to be non-null
else {
return insert_equal(__val);
}
}
else {
iterator __before = __position;
--__before;
// store the result of the comparison between pos and v so
// that we don't have to do it again later. Note that this reverses the shortcut
// on the if, possibly harming efficiency in comparisons; I think the harm will
// be negligible, and to do what I want to do (save the result of a comparison so
// that it can be re-used) there is no alternative. Test here is for before <= v <= pos.
bool __comp_pos_v = _M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__val));
if (!__comp_pos_v &&
!_M_key_compare(_KeyOfValue()(__val), _S_key(__before._M_node))) {
if (_S_right(__before._M_node) == 0)
return _M_insert(__before._M_node, __val, 0, __before._M_node); // Last argument only needs to be non-null
else
return _M_insert(__position._M_node, __val, __position._M_node);
}
else {
// Does the insertion point fall immediately AFTER the hint?
// Test for pos < v <= after
iterator __after = __position;
++__after;
if (__comp_pos_v &&
( __after._M_node == &this->_M_header._M_data ||
!_M_key_compare( _S_key(__after._M_node), _KeyOfValue()(__val) ) ) ) {
if (_S_right(__position._M_node) == 0)
return _M_insert(__position._M_node, __val, 0, __position._M_node);
else
return _M_insert(__after._M_node, __val, __after._M_node);
}
else { // Invalid hint
return insert_equal(__val);
}
}
}
}
template <class _Key, class _Compare,
class _Value, class _KeyOfValue, class _Traits, class _Alloc>
_Rb_tree_node_base*
_Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::_M_copy(_Rb_tree_node_base* __x,
_Rb_tree_node_base* __p) {
// structural copy. __x and __p must be non-null.
_Base_ptr __top = _M_clone_node(__x);
_S_parent(__top) = __p;
_STLP_TRY {
if (_S_right(__x))
_S_right(__top) = _M_copy(_S_right(__x), __top);
__p = __top;
__x = _S_left(__x);
while (__x != 0) {
_Base_ptr __y = _M_clone_node(__x);
_S_left(__p) = __y;
_S_parent(__y) = __p;
if (_S_right(__x))
_S_right(__y) = _M_copy(_S_right(__x), __y);
__p = __y;
__x = _S_left(__x);
}
}
_STLP_UNWIND(_M_erase(__top))
return __top;
}
// this has to stay out-of-line : it's recursive
template <class _Key, class _Compare,
class _Value, class _KeyOfValue, class _Traits, class _Alloc>
void
_Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>::_M_erase(_Rb_tree_node_base *__x) {
// erase without rebalancing
while (__x != 0) {
_M_erase(_S_right(__x));
_Base_ptr __y = _S_left(__x);
_STLP_STD::_Destroy(&_S_value(__x));
this->_M_header.deallocate(__STATIC_CAST(_Link_type, __x),1);
__x = __y;
}
}
#if defined (_STLP_DEBUG)
inline int
__black_count(_Rb_tree_node_base* __node, _Rb_tree_node_base* __root) {
if (__node == 0)
return 0;
else {
int __bc = __node->_M_color == _S_rb_tree_black ? 1 : 0;
if (__node == __root)
return __bc;
else
return __bc + __black_count(__node->_M_parent, __root);
}
}
template <class _Key, class _Compare,
class _Value, class _KeyOfValue, class _Traits, class _Alloc>
bool _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>::__rb_verify() const {
if (_M_node_count == 0 || begin() == end())
return ((_M_node_count == 0) &&
(begin() == end()) &&
(this->_M_header._M_data._M_left == &this->_M_header._M_data) &&
(this->_M_header._M_data._M_right == &this->_M_header._M_data));
int __len = __black_count(_M_leftmost(), _M_root());
for (const_iterator __it = begin(); __it != end(); ++__it) {
_Base_ptr __x = __it._M_node;
_Base_ptr __L = _S_left(__x);
_Base_ptr __R = _S_right(__x);
if (__x->_M_color == _S_rb_tree_red)
if ((__L && __L->_M_color == _S_rb_tree_red) ||
(__R && __R->_M_color == _S_rb_tree_red))
return false;
if (__L && _M_key_compare(_S_key(__x), _S_key(__L)))
return false;
if (__R && _M_key_compare(_S_key(__R), _S_key(__x)))
return false;
if (!__L && !__R && __black_count(__x, _M_root()) != __len)
return false;
}
if (_M_leftmost() != _Rb_tree_node_base::_S_minimum(_M_root()))
return false;
if (_M_rightmost() != _Rb_tree_node_base::_S_maximum(_M_root()))
return false;
return true;
}
#endif /* _STLP_DEBUG */
_STLP_MOVE_TO_STD_NAMESPACE
_STLP_END_NAMESPACE
#undef _Rb_tree
#undef __iterator__
#undef iterator
#undef __size_type__
#endif /* _STLP_TREE_C */
// Local Variables:
// mode:C++
// End:
|